linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  37#include <keys/user-type.h>
  38
  39#include <linux/device-mapper.h>
  40
  41#define DM_MSG_PREFIX "crypt"
  42
  43/*
  44 * context holding the current state of a multi-part conversion
  45 */
  46struct convert_context {
  47        struct completion restart;
  48        struct bio *bio_in;
  49        struct bio *bio_out;
  50        struct bvec_iter iter_in;
  51        struct bvec_iter iter_out;
  52        sector_t cc_sector;
  53        atomic_t cc_pending;
  54        union {
  55                struct skcipher_request *req;
  56                struct aead_request *req_aead;
  57        } r;
  58
  59};
  60
  61/*
  62 * per bio private data
  63 */
  64struct dm_crypt_io {
  65        struct crypt_config *cc;
  66        struct bio *base_bio;
  67        u8 *integrity_metadata;
  68        bool integrity_metadata_from_pool;
  69        struct work_struct work;
  70
  71        struct convert_context ctx;
  72
  73        atomic_t io_pending;
  74        blk_status_t error;
  75        sector_t sector;
  76
  77        struct rb_node rb_node;
  78} CRYPTO_MINALIGN_ATTR;
  79
  80struct dm_crypt_request {
  81        struct convert_context *ctx;
  82        struct scatterlist sg_in[4];
  83        struct scatterlist sg_out[4];
  84        sector_t iv_sector;
  85};
  86
  87struct crypt_config;
  88
  89struct crypt_iv_operations {
  90        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  91                   const char *opts);
  92        void (*dtr)(struct crypt_config *cc);
  93        int (*init)(struct crypt_config *cc);
  94        int (*wipe)(struct crypt_config *cc);
  95        int (*generator)(struct crypt_config *cc, u8 *iv,
  96                         struct dm_crypt_request *dmreq);
  97        int (*post)(struct crypt_config *cc, u8 *iv,
  98                    struct dm_crypt_request *dmreq);
  99};
 100
 101struct iv_essiv_private {
 102        struct crypto_ahash *hash_tfm;
 103        u8 *salt;
 104};
 105
 106struct iv_benbi_private {
 107        int shift;
 108};
 109
 110#define LMK_SEED_SIZE 64 /* hash + 0 */
 111struct iv_lmk_private {
 112        struct crypto_shash *hash_tfm;
 113        u8 *seed;
 114};
 115
 116#define TCW_WHITENING_SIZE 16
 117struct iv_tcw_private {
 118        struct crypto_shash *crc32_tfm;
 119        u8 *iv_seed;
 120        u8 *whitening;
 121};
 122
 123/*
 124 * Crypt: maps a linear range of a block device
 125 * and encrypts / decrypts at the same time.
 126 */
 127enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 128             DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 129
 130enum cipher_flags {
 131        CRYPT_MODE_INTEGRITY_AEAD,      /* Use authenticated mode for cihper */
 132        CRYPT_IV_LARGE_SECTORS,         /* Calculate IV from sector_size, not 512B sectors */
 133};
 134
 135/*
 136 * The fields in here must be read only after initialization.
 137 */
 138struct crypt_config {
 139        struct dm_dev *dev;
 140        sector_t start;
 141
 142        /*
 143         * pool for per bio private data, crypto requests,
 144         * encryption requeusts/buffer pages and integrity tags
 145         */
 146        mempool_t *req_pool;
 147        mempool_t *page_pool;
 148        mempool_t *tag_pool;
 149        unsigned tag_pool_max_sectors;
 150
 151        struct bio_set *bs;
 152        struct mutex bio_alloc_lock;
 153
 154        struct workqueue_struct *io_queue;
 155        struct workqueue_struct *crypt_queue;
 156
 157        struct task_struct *write_thread;
 158        wait_queue_head_t write_thread_wait;
 159        struct rb_root write_tree;
 160
 161        char *cipher;
 162        char *cipher_string;
 163        char *cipher_auth;
 164        char *key_string;
 165
 166        const struct crypt_iv_operations *iv_gen_ops;
 167        union {
 168                struct iv_essiv_private essiv;
 169                struct iv_benbi_private benbi;
 170                struct iv_lmk_private lmk;
 171                struct iv_tcw_private tcw;
 172        } iv_gen_private;
 173        sector_t iv_offset;
 174        unsigned int iv_size;
 175        unsigned short int sector_size;
 176        unsigned char sector_shift;
 177
 178        /* ESSIV: struct crypto_cipher *essiv_tfm */
 179        void *iv_private;
 180        union {
 181                struct crypto_skcipher **tfms;
 182                struct crypto_aead **tfms_aead;
 183        } cipher_tfm;
 184        unsigned tfms_count;
 185        unsigned long cipher_flags;
 186
 187        /*
 188         * Layout of each crypto request:
 189         *
 190         *   struct skcipher_request
 191         *      context
 192         *      padding
 193         *   struct dm_crypt_request
 194         *      padding
 195         *   IV
 196         *
 197         * The padding is added so that dm_crypt_request and the IV are
 198         * correctly aligned.
 199         */
 200        unsigned int dmreq_start;
 201
 202        unsigned int per_bio_data_size;
 203
 204        unsigned long flags;
 205        unsigned int key_size;
 206        unsigned int key_parts;      /* independent parts in key buffer */
 207        unsigned int key_extra_size; /* additional keys length */
 208        unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 209
 210        unsigned int integrity_tag_size;
 211        unsigned int integrity_iv_size;
 212        unsigned int on_disk_tag_size;
 213
 214        u8 *authenc_key; /* space for keys in authenc() format (if used) */
 215        u8 key[0];
 216};
 217
 218#define MIN_IOS         64
 219#define MAX_TAG_SIZE    480
 220#define POOL_ENTRY_SIZE 512
 221
 222static void clone_init(struct dm_crypt_io *, struct bio *);
 223static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 224static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 225                                             struct scatterlist *sg);
 226
 227/*
 228 * Use this to access cipher attributes that are independent of the key.
 229 */
 230static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 231{
 232        return cc->cipher_tfm.tfms[0];
 233}
 234
 235static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 236{
 237        return cc->cipher_tfm.tfms_aead[0];
 238}
 239
 240/*
 241 * Different IV generation algorithms:
 242 *
 243 * plain: the initial vector is the 32-bit little-endian version of the sector
 244 *        number, padded with zeros if necessary.
 245 *
 246 * plain64: the initial vector is the 64-bit little-endian version of the sector
 247 *        number, padded with zeros if necessary.
 248 *
 249 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 250 *        number, padded with zeros if necessary.
 251 *
 252 * essiv: "encrypted sector|salt initial vector", the sector number is
 253 *        encrypted with the bulk cipher using a salt as key. The salt
 254 *        should be derived from the bulk cipher's key via hashing.
 255 *
 256 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 257 *        (needed for LRW-32-AES and possible other narrow block modes)
 258 *
 259 * null: the initial vector is always zero.  Provides compatibility with
 260 *       obsolete loop_fish2 devices.  Do not use for new devices.
 261 *
 262 * lmk:  Compatible implementation of the block chaining mode used
 263 *       by the Loop-AES block device encryption system
 264 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 265 *       It operates on full 512 byte sectors and uses CBC
 266 *       with an IV derived from the sector number, the data and
 267 *       optionally extra IV seed.
 268 *       This means that after decryption the first block
 269 *       of sector must be tweaked according to decrypted data.
 270 *       Loop-AES can use three encryption schemes:
 271 *         version 1: is plain aes-cbc mode
 272 *         version 2: uses 64 multikey scheme with lmk IV generator
 273 *         version 3: the same as version 2 with additional IV seed
 274 *                   (it uses 65 keys, last key is used as IV seed)
 275 *
 276 * tcw:  Compatible implementation of the block chaining mode used
 277 *       by the TrueCrypt device encryption system (prior to version 4.1).
 278 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 279 *       It operates on full 512 byte sectors and uses CBC
 280 *       with an IV derived from initial key and the sector number.
 281 *       In addition, whitening value is applied on every sector, whitening
 282 *       is calculated from initial key, sector number and mixed using CRC32.
 283 *       Note that this encryption scheme is vulnerable to watermarking attacks
 284 *       and should be used for old compatible containers access only.
 285 *
 286 * plumb: unimplemented, see:
 287 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 288 */
 289
 290static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 291                              struct dm_crypt_request *dmreq)
 292{
 293        memset(iv, 0, cc->iv_size);
 294        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 295
 296        return 0;
 297}
 298
 299static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 300                                struct dm_crypt_request *dmreq)
 301{
 302        memset(iv, 0, cc->iv_size);
 303        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 304
 305        return 0;
 306}
 307
 308static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 309                                  struct dm_crypt_request *dmreq)
 310{
 311        memset(iv, 0, cc->iv_size);
 312        /* iv_size is at least of size u64; usually it is 16 bytes */
 313        *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 314
 315        return 0;
 316}
 317
 318/* Initialise ESSIV - compute salt but no local memory allocations */
 319static int crypt_iv_essiv_init(struct crypt_config *cc)
 320{
 321        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 322        AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 323        struct scatterlist sg;
 324        struct crypto_cipher *essiv_tfm;
 325        int err;
 326
 327        sg_init_one(&sg, cc->key, cc->key_size);
 328        ahash_request_set_tfm(req, essiv->hash_tfm);
 329        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 330        ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 331
 332        err = crypto_ahash_digest(req);
 333        ahash_request_zero(req);
 334        if (err)
 335                return err;
 336
 337        essiv_tfm = cc->iv_private;
 338
 339        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 340                            crypto_ahash_digestsize(essiv->hash_tfm));
 341        if (err)
 342                return err;
 343
 344        return 0;
 345}
 346
 347/* Wipe salt and reset key derived from volume key */
 348static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 349{
 350        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 351        unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 352        struct crypto_cipher *essiv_tfm;
 353        int r, err = 0;
 354
 355        memset(essiv->salt, 0, salt_size);
 356
 357        essiv_tfm = cc->iv_private;
 358        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 359        if (r)
 360                err = r;
 361
 362        return err;
 363}
 364
 365/* Allocate the cipher for ESSIV */
 366static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
 367                                                struct dm_target *ti,
 368                                                const u8 *salt,
 369                                                unsigned int saltsize)
 370{
 371        struct crypto_cipher *essiv_tfm;
 372        int err;
 373
 374        /* Setup the essiv_tfm with the given salt */
 375        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 376        if (IS_ERR(essiv_tfm)) {
 377                ti->error = "Error allocating crypto tfm for ESSIV";
 378                return essiv_tfm;
 379        }
 380
 381        if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
 382                ti->error = "Block size of ESSIV cipher does "
 383                            "not match IV size of block cipher";
 384                crypto_free_cipher(essiv_tfm);
 385                return ERR_PTR(-EINVAL);
 386        }
 387
 388        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 389        if (err) {
 390                ti->error = "Failed to set key for ESSIV cipher";
 391                crypto_free_cipher(essiv_tfm);
 392                return ERR_PTR(err);
 393        }
 394
 395        return essiv_tfm;
 396}
 397
 398static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 399{
 400        struct crypto_cipher *essiv_tfm;
 401        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 402
 403        crypto_free_ahash(essiv->hash_tfm);
 404        essiv->hash_tfm = NULL;
 405
 406        kzfree(essiv->salt);
 407        essiv->salt = NULL;
 408
 409        essiv_tfm = cc->iv_private;
 410
 411        if (essiv_tfm)
 412                crypto_free_cipher(essiv_tfm);
 413
 414        cc->iv_private = NULL;
 415}
 416
 417static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 418                              const char *opts)
 419{
 420        struct crypto_cipher *essiv_tfm = NULL;
 421        struct crypto_ahash *hash_tfm = NULL;
 422        u8 *salt = NULL;
 423        int err;
 424
 425        if (!opts) {
 426                ti->error = "Digest algorithm missing for ESSIV mode";
 427                return -EINVAL;
 428        }
 429
 430        /* Allocate hash algorithm */
 431        hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 432        if (IS_ERR(hash_tfm)) {
 433                ti->error = "Error initializing ESSIV hash";
 434                err = PTR_ERR(hash_tfm);
 435                goto bad;
 436        }
 437
 438        salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 439        if (!salt) {
 440                ti->error = "Error kmallocing salt storage in ESSIV";
 441                err = -ENOMEM;
 442                goto bad;
 443        }
 444
 445        cc->iv_gen_private.essiv.salt = salt;
 446        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 447
 448        essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
 449                                       crypto_ahash_digestsize(hash_tfm));
 450        if (IS_ERR(essiv_tfm)) {
 451                crypt_iv_essiv_dtr(cc);
 452                return PTR_ERR(essiv_tfm);
 453        }
 454        cc->iv_private = essiv_tfm;
 455
 456        return 0;
 457
 458bad:
 459        if (hash_tfm && !IS_ERR(hash_tfm))
 460                crypto_free_ahash(hash_tfm);
 461        kfree(salt);
 462        return err;
 463}
 464
 465static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 466                              struct dm_crypt_request *dmreq)
 467{
 468        struct crypto_cipher *essiv_tfm = cc->iv_private;
 469
 470        memset(iv, 0, cc->iv_size);
 471        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 472        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 473
 474        return 0;
 475}
 476
 477static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 478                              const char *opts)
 479{
 480        unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 481        int log = ilog2(bs);
 482
 483        /* we need to calculate how far we must shift the sector count
 484         * to get the cipher block count, we use this shift in _gen */
 485
 486        if (1 << log != bs) {
 487                ti->error = "cypher blocksize is not a power of 2";
 488                return -EINVAL;
 489        }
 490
 491        if (log > 9) {
 492                ti->error = "cypher blocksize is > 512";
 493                return -EINVAL;
 494        }
 495
 496        cc->iv_gen_private.benbi.shift = 9 - log;
 497
 498        return 0;
 499}
 500
 501static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 502{
 503}
 504
 505static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 506                              struct dm_crypt_request *dmreq)
 507{
 508        __be64 val;
 509
 510        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 511
 512        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 513        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 514
 515        return 0;
 516}
 517
 518static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 519                             struct dm_crypt_request *dmreq)
 520{
 521        memset(iv, 0, cc->iv_size);
 522
 523        return 0;
 524}
 525
 526static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 527{
 528        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 529
 530        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 531                crypto_free_shash(lmk->hash_tfm);
 532        lmk->hash_tfm = NULL;
 533
 534        kzfree(lmk->seed);
 535        lmk->seed = NULL;
 536}
 537
 538static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 539                            const char *opts)
 540{
 541        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 542
 543        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 544                ti->error = "Unsupported sector size for LMK";
 545                return -EINVAL;
 546        }
 547
 548        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 549        if (IS_ERR(lmk->hash_tfm)) {
 550                ti->error = "Error initializing LMK hash";
 551                return PTR_ERR(lmk->hash_tfm);
 552        }
 553
 554        /* No seed in LMK version 2 */
 555        if (cc->key_parts == cc->tfms_count) {
 556                lmk->seed = NULL;
 557                return 0;
 558        }
 559
 560        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 561        if (!lmk->seed) {
 562                crypt_iv_lmk_dtr(cc);
 563                ti->error = "Error kmallocing seed storage in LMK";
 564                return -ENOMEM;
 565        }
 566
 567        return 0;
 568}
 569
 570static int crypt_iv_lmk_init(struct crypt_config *cc)
 571{
 572        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 573        int subkey_size = cc->key_size / cc->key_parts;
 574
 575        /* LMK seed is on the position of LMK_KEYS + 1 key */
 576        if (lmk->seed)
 577                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 578                       crypto_shash_digestsize(lmk->hash_tfm));
 579
 580        return 0;
 581}
 582
 583static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 584{
 585        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 586
 587        if (lmk->seed)
 588                memset(lmk->seed, 0, LMK_SEED_SIZE);
 589
 590        return 0;
 591}
 592
 593static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 594                            struct dm_crypt_request *dmreq,
 595                            u8 *data)
 596{
 597        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 598        SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 599        struct md5_state md5state;
 600        __le32 buf[4];
 601        int i, r;
 602
 603        desc->tfm = lmk->hash_tfm;
 604        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 605
 606        r = crypto_shash_init(desc);
 607        if (r)
 608                return r;
 609
 610        if (lmk->seed) {
 611                r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 612                if (r)
 613                        return r;
 614        }
 615
 616        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 617        r = crypto_shash_update(desc, data + 16, 16 * 31);
 618        if (r)
 619                return r;
 620
 621        /* Sector is cropped to 56 bits here */
 622        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 623        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 624        buf[2] = cpu_to_le32(4024);
 625        buf[3] = 0;
 626        r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 627        if (r)
 628                return r;
 629
 630        /* No MD5 padding here */
 631        r = crypto_shash_export(desc, &md5state);
 632        if (r)
 633                return r;
 634
 635        for (i = 0; i < MD5_HASH_WORDS; i++)
 636                __cpu_to_le32s(&md5state.hash[i]);
 637        memcpy(iv, &md5state.hash, cc->iv_size);
 638
 639        return 0;
 640}
 641
 642static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 643                            struct dm_crypt_request *dmreq)
 644{
 645        struct scatterlist *sg;
 646        u8 *src;
 647        int r = 0;
 648
 649        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 650                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 651                src = kmap_atomic(sg_page(sg));
 652                r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 653                kunmap_atomic(src);
 654        } else
 655                memset(iv, 0, cc->iv_size);
 656
 657        return r;
 658}
 659
 660static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 661                             struct dm_crypt_request *dmreq)
 662{
 663        struct scatterlist *sg;
 664        u8 *dst;
 665        int r;
 666
 667        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 668                return 0;
 669
 670        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 671        dst = kmap_atomic(sg_page(sg));
 672        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 673
 674        /* Tweak the first block of plaintext sector */
 675        if (!r)
 676                crypto_xor(dst + sg->offset, iv, cc->iv_size);
 677
 678        kunmap_atomic(dst);
 679        return r;
 680}
 681
 682static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 683{
 684        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 685
 686        kzfree(tcw->iv_seed);
 687        tcw->iv_seed = NULL;
 688        kzfree(tcw->whitening);
 689        tcw->whitening = NULL;
 690
 691        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 692                crypto_free_shash(tcw->crc32_tfm);
 693        tcw->crc32_tfm = NULL;
 694}
 695
 696static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 697                            const char *opts)
 698{
 699        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 700
 701        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 702                ti->error = "Unsupported sector size for TCW";
 703                return -EINVAL;
 704        }
 705
 706        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 707                ti->error = "Wrong key size for TCW";
 708                return -EINVAL;
 709        }
 710
 711        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 712        if (IS_ERR(tcw->crc32_tfm)) {
 713                ti->error = "Error initializing CRC32 in TCW";
 714                return PTR_ERR(tcw->crc32_tfm);
 715        }
 716
 717        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 718        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 719        if (!tcw->iv_seed || !tcw->whitening) {
 720                crypt_iv_tcw_dtr(cc);
 721                ti->error = "Error allocating seed storage in TCW";
 722                return -ENOMEM;
 723        }
 724
 725        return 0;
 726}
 727
 728static int crypt_iv_tcw_init(struct crypt_config *cc)
 729{
 730        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 731        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 732
 733        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 734        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 735               TCW_WHITENING_SIZE);
 736
 737        return 0;
 738}
 739
 740static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 741{
 742        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 743
 744        memset(tcw->iv_seed, 0, cc->iv_size);
 745        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 746
 747        return 0;
 748}
 749
 750static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 751                                  struct dm_crypt_request *dmreq,
 752                                  u8 *data)
 753{
 754        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 755        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 756        u8 buf[TCW_WHITENING_SIZE];
 757        SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 758        int i, r;
 759
 760        /* xor whitening with sector number */
 761        crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 762        crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 763
 764        /* calculate crc32 for every 32bit part and xor it */
 765        desc->tfm = tcw->crc32_tfm;
 766        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 767        for (i = 0; i < 4; i++) {
 768                r = crypto_shash_init(desc);
 769                if (r)
 770                        goto out;
 771                r = crypto_shash_update(desc, &buf[i * 4], 4);
 772                if (r)
 773                        goto out;
 774                r = crypto_shash_final(desc, &buf[i * 4]);
 775                if (r)
 776                        goto out;
 777        }
 778        crypto_xor(&buf[0], &buf[12], 4);
 779        crypto_xor(&buf[4], &buf[8], 4);
 780
 781        /* apply whitening (8 bytes) to whole sector */
 782        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 783                crypto_xor(data + i * 8, buf, 8);
 784out:
 785        memzero_explicit(buf, sizeof(buf));
 786        return r;
 787}
 788
 789static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 790                            struct dm_crypt_request *dmreq)
 791{
 792        struct scatterlist *sg;
 793        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 794        __le64 sector = cpu_to_le64(dmreq->iv_sector);
 795        u8 *src;
 796        int r = 0;
 797
 798        /* Remove whitening from ciphertext */
 799        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 800                sg = crypt_get_sg_data(cc, dmreq->sg_in);
 801                src = kmap_atomic(sg_page(sg));
 802                r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 803                kunmap_atomic(src);
 804        }
 805
 806        /* Calculate IV */
 807        crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 808        if (cc->iv_size > 8)
 809                crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 810                               cc->iv_size - 8);
 811
 812        return r;
 813}
 814
 815static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 816                             struct dm_crypt_request *dmreq)
 817{
 818        struct scatterlist *sg;
 819        u8 *dst;
 820        int r;
 821
 822        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 823                return 0;
 824
 825        /* Apply whitening on ciphertext */
 826        sg = crypt_get_sg_data(cc, dmreq->sg_out);
 827        dst = kmap_atomic(sg_page(sg));
 828        r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 829        kunmap_atomic(dst);
 830
 831        return r;
 832}
 833
 834static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 835                                struct dm_crypt_request *dmreq)
 836{
 837        /* Used only for writes, there must be an additional space to store IV */
 838        get_random_bytes(iv, cc->iv_size);
 839        return 0;
 840}
 841
 842static const struct crypt_iv_operations crypt_iv_plain_ops = {
 843        .generator = crypt_iv_plain_gen
 844};
 845
 846static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 847        .generator = crypt_iv_plain64_gen
 848};
 849
 850static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
 851        .generator = crypt_iv_plain64be_gen
 852};
 853
 854static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 855        .ctr       = crypt_iv_essiv_ctr,
 856        .dtr       = crypt_iv_essiv_dtr,
 857        .init      = crypt_iv_essiv_init,
 858        .wipe      = crypt_iv_essiv_wipe,
 859        .generator = crypt_iv_essiv_gen
 860};
 861
 862static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 863        .ctr       = crypt_iv_benbi_ctr,
 864        .dtr       = crypt_iv_benbi_dtr,
 865        .generator = crypt_iv_benbi_gen
 866};
 867
 868static const struct crypt_iv_operations crypt_iv_null_ops = {
 869        .generator = crypt_iv_null_gen
 870};
 871
 872static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 873        .ctr       = crypt_iv_lmk_ctr,
 874        .dtr       = crypt_iv_lmk_dtr,
 875        .init      = crypt_iv_lmk_init,
 876        .wipe      = crypt_iv_lmk_wipe,
 877        .generator = crypt_iv_lmk_gen,
 878        .post      = crypt_iv_lmk_post
 879};
 880
 881static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 882        .ctr       = crypt_iv_tcw_ctr,
 883        .dtr       = crypt_iv_tcw_dtr,
 884        .init      = crypt_iv_tcw_init,
 885        .wipe      = crypt_iv_tcw_wipe,
 886        .generator = crypt_iv_tcw_gen,
 887        .post      = crypt_iv_tcw_post
 888};
 889
 890static struct crypt_iv_operations crypt_iv_random_ops = {
 891        .generator = crypt_iv_random_gen
 892};
 893
 894/*
 895 * Integrity extensions
 896 */
 897static bool crypt_integrity_aead(struct crypt_config *cc)
 898{
 899        return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
 900}
 901
 902static bool crypt_integrity_hmac(struct crypt_config *cc)
 903{
 904        return crypt_integrity_aead(cc) && cc->key_mac_size;
 905}
 906
 907/* Get sg containing data */
 908static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 909                                             struct scatterlist *sg)
 910{
 911        if (unlikely(crypt_integrity_aead(cc)))
 912                return &sg[2];
 913
 914        return sg;
 915}
 916
 917static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
 918{
 919        struct bio_integrity_payload *bip;
 920        unsigned int tag_len;
 921        int ret;
 922
 923        if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
 924                return 0;
 925
 926        bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
 927        if (IS_ERR(bip))
 928                return PTR_ERR(bip);
 929
 930        tag_len = io->cc->on_disk_tag_size * bio_sectors(bio);
 931
 932        bip->bip_iter.bi_size = tag_len;
 933        bip->bip_iter.bi_sector = io->cc->start + io->sector;
 934
 935        ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
 936                                     tag_len, offset_in_page(io->integrity_metadata));
 937        if (unlikely(ret != tag_len))
 938                return -ENOMEM;
 939
 940        return 0;
 941}
 942
 943static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
 944{
 945#ifdef CONFIG_BLK_DEV_INTEGRITY
 946        struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
 947
 948        /* From now we require underlying device with our integrity profile */
 949        if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
 950                ti->error = "Integrity profile not supported.";
 951                return -EINVAL;
 952        }
 953
 954        if (bi->tag_size != cc->on_disk_tag_size ||
 955            bi->tuple_size != cc->on_disk_tag_size) {
 956                ti->error = "Integrity profile tag size mismatch.";
 957                return -EINVAL;
 958        }
 959        if (1 << bi->interval_exp != cc->sector_size) {
 960                ti->error = "Integrity profile sector size mismatch.";
 961                return -EINVAL;
 962        }
 963
 964        if (crypt_integrity_aead(cc)) {
 965                cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
 966                DMINFO("Integrity AEAD, tag size %u, IV size %u.",
 967                       cc->integrity_tag_size, cc->integrity_iv_size);
 968
 969                if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
 970                        ti->error = "Integrity AEAD auth tag size is not supported.";
 971                        return -EINVAL;
 972                }
 973        } else if (cc->integrity_iv_size)
 974                DMINFO("Additional per-sector space %u bytes for IV.",
 975                       cc->integrity_iv_size);
 976
 977        if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
 978                ti->error = "Not enough space for integrity tag in the profile.";
 979                return -EINVAL;
 980        }
 981
 982        return 0;
 983#else
 984        ti->error = "Integrity profile not supported.";
 985        return -EINVAL;
 986#endif
 987}
 988
 989static void crypt_convert_init(struct crypt_config *cc,
 990                               struct convert_context *ctx,
 991                               struct bio *bio_out, struct bio *bio_in,
 992                               sector_t sector)
 993{
 994        ctx->bio_in = bio_in;
 995        ctx->bio_out = bio_out;
 996        if (bio_in)
 997                ctx->iter_in = bio_in->bi_iter;
 998        if (bio_out)
 999                ctx->iter_out = bio_out->bi_iter;
1000        ctx->cc_sector = sector + cc->iv_offset;
1001        init_completion(&ctx->restart);
1002}
1003
1004static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1005                                             void *req)
1006{
1007        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1008}
1009
1010static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1011{
1012        return (void *)((char *)dmreq - cc->dmreq_start);
1013}
1014
1015static u8 *iv_of_dmreq(struct crypt_config *cc,
1016                       struct dm_crypt_request *dmreq)
1017{
1018        if (crypt_integrity_aead(cc))
1019                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1020                        crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1021        else
1022                return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1023                        crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1024}
1025
1026static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1027                       struct dm_crypt_request *dmreq)
1028{
1029        return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1030}
1031
1032static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1033                       struct dm_crypt_request *dmreq)
1034{
1035        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1036        return (uint64_t*) ptr;
1037}
1038
1039static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1040                       struct dm_crypt_request *dmreq)
1041{
1042        u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1043                  cc->iv_size + sizeof(uint64_t);
1044        return (unsigned int*)ptr;
1045}
1046
1047static void *tag_from_dmreq(struct crypt_config *cc,
1048                                struct dm_crypt_request *dmreq)
1049{
1050        struct convert_context *ctx = dmreq->ctx;
1051        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1052
1053        return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1054                cc->on_disk_tag_size];
1055}
1056
1057static void *iv_tag_from_dmreq(struct crypt_config *cc,
1058                               struct dm_crypt_request *dmreq)
1059{
1060        return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1061}
1062
1063static int crypt_convert_block_aead(struct crypt_config *cc,
1064                                     struct convert_context *ctx,
1065                                     struct aead_request *req,
1066                                     unsigned int tag_offset)
1067{
1068        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1069        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1070        struct dm_crypt_request *dmreq;
1071        u8 *iv, *org_iv, *tag_iv, *tag;
1072        uint64_t *sector;
1073        int r = 0;
1074
1075        BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1076
1077        /* Reject unexpected unaligned bio. */
1078        if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1079                return -EIO;
1080
1081        dmreq = dmreq_of_req(cc, req);
1082        dmreq->iv_sector = ctx->cc_sector;
1083        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1084                dmreq->iv_sector >>= cc->sector_shift;
1085        dmreq->ctx = ctx;
1086
1087        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1088
1089        sector = org_sector_of_dmreq(cc, dmreq);
1090        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1091
1092        iv = iv_of_dmreq(cc, dmreq);
1093        org_iv = org_iv_of_dmreq(cc, dmreq);
1094        tag = tag_from_dmreq(cc, dmreq);
1095        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1096
1097        /* AEAD request:
1098         *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1099         *  | (authenticated) | (auth+encryption) |              |
1100         *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1101         */
1102        sg_init_table(dmreq->sg_in, 4);
1103        sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1104        sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1105        sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1106        sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1107
1108        sg_init_table(dmreq->sg_out, 4);
1109        sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1110        sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1111        sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1112        sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1113
1114        if (cc->iv_gen_ops) {
1115                /* For READs use IV stored in integrity metadata */
1116                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1117                        memcpy(org_iv, tag_iv, cc->iv_size);
1118                } else {
1119                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1120                        if (r < 0)
1121                                return r;
1122                        /* Store generated IV in integrity metadata */
1123                        if (cc->integrity_iv_size)
1124                                memcpy(tag_iv, org_iv, cc->iv_size);
1125                }
1126                /* Working copy of IV, to be modified in crypto API */
1127                memcpy(iv, org_iv, cc->iv_size);
1128        }
1129
1130        aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1131        if (bio_data_dir(ctx->bio_in) == WRITE) {
1132                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1133                                       cc->sector_size, iv);
1134                r = crypto_aead_encrypt(req);
1135                if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1136                        memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1137                               cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1138        } else {
1139                aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1140                                       cc->sector_size + cc->integrity_tag_size, iv);
1141                r = crypto_aead_decrypt(req);
1142        }
1143
1144        if (r == -EBADMSG)
1145                DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1146                            (unsigned long long)le64_to_cpu(*sector));
1147
1148        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1149                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1150
1151        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1152        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1153
1154        return r;
1155}
1156
1157static int crypt_convert_block_skcipher(struct crypt_config *cc,
1158                                        struct convert_context *ctx,
1159                                        struct skcipher_request *req,
1160                                        unsigned int tag_offset)
1161{
1162        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1163        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1164        struct scatterlist *sg_in, *sg_out;
1165        struct dm_crypt_request *dmreq;
1166        u8 *iv, *org_iv, *tag_iv;
1167        uint64_t *sector;
1168        int r = 0;
1169
1170        /* Reject unexpected unaligned bio. */
1171        if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1172                return -EIO;
1173
1174        dmreq = dmreq_of_req(cc, req);
1175        dmreq->iv_sector = ctx->cc_sector;
1176        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1177                dmreq->iv_sector >>= cc->sector_shift;
1178        dmreq->ctx = ctx;
1179
1180        *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1181
1182        iv = iv_of_dmreq(cc, dmreq);
1183        org_iv = org_iv_of_dmreq(cc, dmreq);
1184        tag_iv = iv_tag_from_dmreq(cc, dmreq);
1185
1186        sector = org_sector_of_dmreq(cc, dmreq);
1187        *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1188
1189        /* For skcipher we use only the first sg item */
1190        sg_in  = &dmreq->sg_in[0];
1191        sg_out = &dmreq->sg_out[0];
1192
1193        sg_init_table(sg_in, 1);
1194        sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1195
1196        sg_init_table(sg_out, 1);
1197        sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1198
1199        if (cc->iv_gen_ops) {
1200                /* For READs use IV stored in integrity metadata */
1201                if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1202                        memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1203                } else {
1204                        r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1205                        if (r < 0)
1206                                return r;
1207                        /* Store generated IV in integrity metadata */
1208                        if (cc->integrity_iv_size)
1209                                memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1210                }
1211                /* Working copy of IV, to be modified in crypto API */
1212                memcpy(iv, org_iv, cc->iv_size);
1213        }
1214
1215        skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1216
1217        if (bio_data_dir(ctx->bio_in) == WRITE)
1218                r = crypto_skcipher_encrypt(req);
1219        else
1220                r = crypto_skcipher_decrypt(req);
1221
1222        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1223                r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1224
1225        bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1226        bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1227
1228        return r;
1229}
1230
1231static void kcryptd_async_done(struct crypto_async_request *async_req,
1232                               int error);
1233
1234static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1235                                     struct convert_context *ctx)
1236{
1237        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1238
1239        if (!ctx->r.req)
1240                ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1241
1242        skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1243
1244        /*
1245         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1246         * requests if driver request queue is full.
1247         */
1248        skcipher_request_set_callback(ctx->r.req,
1249            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1250            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1251}
1252
1253static void crypt_alloc_req_aead(struct crypt_config *cc,
1254                                 struct convert_context *ctx)
1255{
1256        if (!ctx->r.req_aead)
1257                ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1258
1259        aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1260
1261        /*
1262         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1263         * requests if driver request queue is full.
1264         */
1265        aead_request_set_callback(ctx->r.req_aead,
1266            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
1267            kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1268}
1269
1270static void crypt_alloc_req(struct crypt_config *cc,
1271                            struct convert_context *ctx)
1272{
1273        if (crypt_integrity_aead(cc))
1274                crypt_alloc_req_aead(cc, ctx);
1275        else
1276                crypt_alloc_req_skcipher(cc, ctx);
1277}
1278
1279static void crypt_free_req_skcipher(struct crypt_config *cc,
1280                                    struct skcipher_request *req, struct bio *base_bio)
1281{
1282        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1283
1284        if ((struct skcipher_request *)(io + 1) != req)
1285                mempool_free(req, cc->req_pool);
1286}
1287
1288static void crypt_free_req_aead(struct crypt_config *cc,
1289                                struct aead_request *req, struct bio *base_bio)
1290{
1291        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1292
1293        if ((struct aead_request *)(io + 1) != req)
1294                mempool_free(req, cc->req_pool);
1295}
1296
1297static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1298{
1299        if (crypt_integrity_aead(cc))
1300                crypt_free_req_aead(cc, req, base_bio);
1301        else
1302                crypt_free_req_skcipher(cc, req, base_bio);
1303}
1304
1305/*
1306 * Encrypt / decrypt data from one bio to another one (can be the same one)
1307 */
1308static blk_status_t crypt_convert(struct crypt_config *cc,
1309                         struct convert_context *ctx)
1310{
1311        unsigned int tag_offset = 0;
1312        unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1313        int r;
1314
1315        atomic_set(&ctx->cc_pending, 1);
1316
1317        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1318
1319                crypt_alloc_req(cc, ctx);
1320                atomic_inc(&ctx->cc_pending);
1321
1322                if (crypt_integrity_aead(cc))
1323                        r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1324                else
1325                        r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1326
1327                switch (r) {
1328                /*
1329                 * The request was queued by a crypto driver
1330                 * but the driver request queue is full, let's wait.
1331                 */
1332                case -EBUSY:
1333                        wait_for_completion(&ctx->restart);
1334                        reinit_completion(&ctx->restart);
1335                        /* fall through */
1336                /*
1337                 * The request is queued and processed asynchronously,
1338                 * completion function kcryptd_async_done() will be called.
1339                 */
1340                case -EINPROGRESS:
1341                        ctx->r.req = NULL;
1342                        ctx->cc_sector += sector_step;
1343                        tag_offset++;
1344                        continue;
1345                /*
1346                 * The request was already processed (synchronously).
1347                 */
1348                case 0:
1349                        atomic_dec(&ctx->cc_pending);
1350                        ctx->cc_sector += sector_step;
1351                        tag_offset++;
1352                        cond_resched();
1353                        continue;
1354                /*
1355                 * There was a data integrity error.
1356                 */
1357                case -EBADMSG:
1358                        atomic_dec(&ctx->cc_pending);
1359                        return BLK_STS_PROTECTION;
1360                /*
1361                 * There was an error while processing the request.
1362                 */
1363                default:
1364                        atomic_dec(&ctx->cc_pending);
1365                        return BLK_STS_IOERR;
1366                }
1367        }
1368
1369        return 0;
1370}
1371
1372static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1373
1374/*
1375 * Generate a new unfragmented bio with the given size
1376 * This should never violate the device limitations (but only because
1377 * max_segment_size is being constrained to PAGE_SIZE).
1378 *
1379 * This function may be called concurrently. If we allocate from the mempool
1380 * concurrently, there is a possibility of deadlock. For example, if we have
1381 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1382 * the mempool concurrently, it may deadlock in a situation where both processes
1383 * have allocated 128 pages and the mempool is exhausted.
1384 *
1385 * In order to avoid this scenario we allocate the pages under a mutex.
1386 *
1387 * In order to not degrade performance with excessive locking, we try
1388 * non-blocking allocations without a mutex first but on failure we fallback
1389 * to blocking allocations with a mutex.
1390 */
1391static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1392{
1393        struct crypt_config *cc = io->cc;
1394        struct bio *clone;
1395        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1396        gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1397        unsigned i, len, remaining_size;
1398        struct page *page;
1399
1400retry:
1401        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1402                mutex_lock(&cc->bio_alloc_lock);
1403
1404        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1405        if (!clone)
1406                goto out;
1407
1408        clone_init(io, clone);
1409
1410        remaining_size = size;
1411
1412        for (i = 0; i < nr_iovecs; i++) {
1413                page = mempool_alloc(cc->page_pool, gfp_mask);
1414                if (!page) {
1415                        crypt_free_buffer_pages(cc, clone);
1416                        bio_put(clone);
1417                        gfp_mask |= __GFP_DIRECT_RECLAIM;
1418                        goto retry;
1419                }
1420
1421                len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1422
1423                bio_add_page(clone, page, len, 0);
1424
1425                remaining_size -= len;
1426        }
1427
1428        /* Allocate space for integrity tags */
1429        if (dm_crypt_integrity_io_alloc(io, clone)) {
1430                crypt_free_buffer_pages(cc, clone);
1431                bio_put(clone);
1432                clone = NULL;
1433        }
1434out:
1435        if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1436                mutex_unlock(&cc->bio_alloc_lock);
1437
1438        return clone;
1439}
1440
1441static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1442{
1443        unsigned int i;
1444        struct bio_vec *bv;
1445
1446        bio_for_each_segment_all(bv, clone, i) {
1447                BUG_ON(!bv->bv_page);
1448                mempool_free(bv->bv_page, cc->page_pool);
1449        }
1450}
1451
1452static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1453                          struct bio *bio, sector_t sector)
1454{
1455        io->cc = cc;
1456        io->base_bio = bio;
1457        io->sector = sector;
1458        io->error = 0;
1459        io->ctx.r.req = NULL;
1460        io->integrity_metadata = NULL;
1461        io->integrity_metadata_from_pool = false;
1462        atomic_set(&io->io_pending, 0);
1463}
1464
1465static void crypt_inc_pending(struct dm_crypt_io *io)
1466{
1467        atomic_inc(&io->io_pending);
1468}
1469
1470/*
1471 * One of the bios was finished. Check for completion of
1472 * the whole request and correctly clean up the buffer.
1473 */
1474static void crypt_dec_pending(struct dm_crypt_io *io)
1475{
1476        struct crypt_config *cc = io->cc;
1477        struct bio *base_bio = io->base_bio;
1478        blk_status_t error = io->error;
1479
1480        if (!atomic_dec_and_test(&io->io_pending))
1481                return;
1482
1483        if (io->ctx.r.req)
1484                crypt_free_req(cc, io->ctx.r.req, base_bio);
1485
1486        if (unlikely(io->integrity_metadata_from_pool))
1487                mempool_free(io->integrity_metadata, io->cc->tag_pool);
1488        else
1489                kfree(io->integrity_metadata);
1490
1491        base_bio->bi_status = error;
1492        bio_endio(base_bio);
1493}
1494
1495/*
1496 * kcryptd/kcryptd_io:
1497 *
1498 * Needed because it would be very unwise to do decryption in an
1499 * interrupt context.
1500 *
1501 * kcryptd performs the actual encryption or decryption.
1502 *
1503 * kcryptd_io performs the IO submission.
1504 *
1505 * They must be separated as otherwise the final stages could be
1506 * starved by new requests which can block in the first stages due
1507 * to memory allocation.
1508 *
1509 * The work is done per CPU global for all dm-crypt instances.
1510 * They should not depend on each other and do not block.
1511 */
1512static void crypt_endio(struct bio *clone)
1513{
1514        struct dm_crypt_io *io = clone->bi_private;
1515        struct crypt_config *cc = io->cc;
1516        unsigned rw = bio_data_dir(clone);
1517        blk_status_t error;
1518
1519        /*
1520         * free the processed pages
1521         */
1522        if (rw == WRITE)
1523                crypt_free_buffer_pages(cc, clone);
1524
1525        error = clone->bi_status;
1526        bio_put(clone);
1527
1528        if (rw == READ && !error) {
1529                kcryptd_queue_crypt(io);
1530                return;
1531        }
1532
1533        if (unlikely(error))
1534                io->error = error;
1535
1536        crypt_dec_pending(io);
1537}
1538
1539static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1540{
1541        struct crypt_config *cc = io->cc;
1542
1543        clone->bi_private = io;
1544        clone->bi_end_io  = crypt_endio;
1545        bio_set_dev(clone, cc->dev->bdev);
1546        clone->bi_opf     = io->base_bio->bi_opf;
1547}
1548
1549static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1550{
1551        struct crypt_config *cc = io->cc;
1552        struct bio *clone;
1553
1554        /*
1555         * We need the original biovec array in order to decrypt
1556         * the whole bio data *afterwards* -- thanks to immutable
1557         * biovecs we don't need to worry about the block layer
1558         * modifying the biovec array; so leverage bio_clone_fast().
1559         */
1560        clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1561        if (!clone)
1562                return 1;
1563
1564        crypt_inc_pending(io);
1565
1566        clone_init(io, clone);
1567        clone->bi_iter.bi_sector = cc->start + io->sector;
1568
1569        if (dm_crypt_integrity_io_alloc(io, clone)) {
1570                crypt_dec_pending(io);
1571                bio_put(clone);
1572                return 1;
1573        }
1574
1575        generic_make_request(clone);
1576        return 0;
1577}
1578
1579static void kcryptd_io_read_work(struct work_struct *work)
1580{
1581        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1582
1583        crypt_inc_pending(io);
1584        if (kcryptd_io_read(io, GFP_NOIO))
1585                io->error = BLK_STS_RESOURCE;
1586        crypt_dec_pending(io);
1587}
1588
1589static void kcryptd_queue_read(struct dm_crypt_io *io)
1590{
1591        struct crypt_config *cc = io->cc;
1592
1593        INIT_WORK(&io->work, kcryptd_io_read_work);
1594        queue_work(cc->io_queue, &io->work);
1595}
1596
1597static void kcryptd_io_write(struct dm_crypt_io *io)
1598{
1599        struct bio *clone = io->ctx.bio_out;
1600
1601        generic_make_request(clone);
1602}
1603
1604#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1605
1606static int dmcrypt_write(void *data)
1607{
1608        struct crypt_config *cc = data;
1609        struct dm_crypt_io *io;
1610
1611        while (1) {
1612                struct rb_root write_tree;
1613                struct blk_plug plug;
1614
1615                DECLARE_WAITQUEUE(wait, current);
1616
1617                spin_lock_irq(&cc->write_thread_wait.lock);
1618continue_locked:
1619
1620                if (!RB_EMPTY_ROOT(&cc->write_tree))
1621                        goto pop_from_list;
1622
1623                set_current_state(TASK_INTERRUPTIBLE);
1624                __add_wait_queue(&cc->write_thread_wait, &wait);
1625
1626                spin_unlock_irq(&cc->write_thread_wait.lock);
1627
1628                if (unlikely(kthread_should_stop())) {
1629                        set_current_state(TASK_RUNNING);
1630                        remove_wait_queue(&cc->write_thread_wait, &wait);
1631                        break;
1632                }
1633
1634                schedule();
1635
1636                set_current_state(TASK_RUNNING);
1637                spin_lock_irq(&cc->write_thread_wait.lock);
1638                __remove_wait_queue(&cc->write_thread_wait, &wait);
1639                goto continue_locked;
1640
1641pop_from_list:
1642                write_tree = cc->write_tree;
1643                cc->write_tree = RB_ROOT;
1644                spin_unlock_irq(&cc->write_thread_wait.lock);
1645
1646                BUG_ON(rb_parent(write_tree.rb_node));
1647
1648                /*
1649                 * Note: we cannot walk the tree here with rb_next because
1650                 * the structures may be freed when kcryptd_io_write is called.
1651                 */
1652                blk_start_plug(&plug);
1653                do {
1654                        io = crypt_io_from_node(rb_first(&write_tree));
1655                        rb_erase(&io->rb_node, &write_tree);
1656                        kcryptd_io_write(io);
1657                } while (!RB_EMPTY_ROOT(&write_tree));
1658                blk_finish_plug(&plug);
1659        }
1660        return 0;
1661}
1662
1663static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1664{
1665        struct bio *clone = io->ctx.bio_out;
1666        struct crypt_config *cc = io->cc;
1667        unsigned long flags;
1668        sector_t sector;
1669        struct rb_node **rbp, *parent;
1670
1671        if (unlikely(io->error)) {
1672                crypt_free_buffer_pages(cc, clone);
1673                bio_put(clone);
1674                crypt_dec_pending(io);
1675                return;
1676        }
1677
1678        /* crypt_convert should have filled the clone bio */
1679        BUG_ON(io->ctx.iter_out.bi_size);
1680
1681        clone->bi_iter.bi_sector = cc->start + io->sector;
1682
1683        if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1684                generic_make_request(clone);
1685                return;
1686        }
1687
1688        spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1689        rbp = &cc->write_tree.rb_node;
1690        parent = NULL;
1691        sector = io->sector;
1692        while (*rbp) {
1693                parent = *rbp;
1694                if (sector < crypt_io_from_node(parent)->sector)
1695                        rbp = &(*rbp)->rb_left;
1696                else
1697                        rbp = &(*rbp)->rb_right;
1698        }
1699        rb_link_node(&io->rb_node, parent, rbp);
1700        rb_insert_color(&io->rb_node, &cc->write_tree);
1701
1702        wake_up_locked(&cc->write_thread_wait);
1703        spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1704}
1705
1706static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1707{
1708        struct crypt_config *cc = io->cc;
1709        struct bio *clone;
1710        int crypt_finished;
1711        sector_t sector = io->sector;
1712        blk_status_t r;
1713
1714        /*
1715         * Prevent io from disappearing until this function completes.
1716         */
1717        crypt_inc_pending(io);
1718        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1719
1720        clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1721        if (unlikely(!clone)) {
1722                io->error = BLK_STS_IOERR;
1723                goto dec;
1724        }
1725
1726        io->ctx.bio_out = clone;
1727        io->ctx.iter_out = clone->bi_iter;
1728
1729        sector += bio_sectors(clone);
1730
1731        crypt_inc_pending(io);
1732        r = crypt_convert(cc, &io->ctx);
1733        if (r)
1734                io->error = r;
1735        crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1736
1737        /* Encryption was already finished, submit io now */
1738        if (crypt_finished) {
1739                kcryptd_crypt_write_io_submit(io, 0);
1740                io->sector = sector;
1741        }
1742
1743dec:
1744        crypt_dec_pending(io);
1745}
1746
1747static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1748{
1749        crypt_dec_pending(io);
1750}
1751
1752static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1753{
1754        struct crypt_config *cc = io->cc;
1755        blk_status_t r;
1756
1757        crypt_inc_pending(io);
1758
1759        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1760                           io->sector);
1761
1762        r = crypt_convert(cc, &io->ctx);
1763        if (r)
1764                io->error = r;
1765
1766        if (atomic_dec_and_test(&io->ctx.cc_pending))
1767                kcryptd_crypt_read_done(io);
1768
1769        crypt_dec_pending(io);
1770}
1771
1772static void kcryptd_async_done(struct crypto_async_request *async_req,
1773                               int error)
1774{
1775        struct dm_crypt_request *dmreq = async_req->data;
1776        struct convert_context *ctx = dmreq->ctx;
1777        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1778        struct crypt_config *cc = io->cc;
1779
1780        /*
1781         * A request from crypto driver backlog is going to be processed now,
1782         * finish the completion and continue in crypt_convert().
1783         * (Callback will be called for the second time for this request.)
1784         */
1785        if (error == -EINPROGRESS) {
1786                complete(&ctx->restart);
1787                return;
1788        }
1789
1790        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1791                error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1792
1793        if (error == -EBADMSG) {
1794                DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1795                            (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1796                io->error = BLK_STS_PROTECTION;
1797        } else if (error < 0)
1798                io->error = BLK_STS_IOERR;
1799
1800        crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1801
1802        if (!atomic_dec_and_test(&ctx->cc_pending))
1803                return;
1804
1805        if (bio_data_dir(io->base_bio) == READ)
1806                kcryptd_crypt_read_done(io);
1807        else
1808                kcryptd_crypt_write_io_submit(io, 1);
1809}
1810
1811static void kcryptd_crypt(struct work_struct *work)
1812{
1813        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1814
1815        if (bio_data_dir(io->base_bio) == READ)
1816                kcryptd_crypt_read_convert(io);
1817        else
1818                kcryptd_crypt_write_convert(io);
1819}
1820
1821static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1822{
1823        struct crypt_config *cc = io->cc;
1824
1825        INIT_WORK(&io->work, kcryptd_crypt);
1826        queue_work(cc->crypt_queue, &io->work);
1827}
1828
1829static void crypt_free_tfms_aead(struct crypt_config *cc)
1830{
1831        if (!cc->cipher_tfm.tfms_aead)
1832                return;
1833
1834        if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1835                crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1836                cc->cipher_tfm.tfms_aead[0] = NULL;
1837        }
1838
1839        kfree(cc->cipher_tfm.tfms_aead);
1840        cc->cipher_tfm.tfms_aead = NULL;
1841}
1842
1843static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1844{
1845        unsigned i;
1846
1847        if (!cc->cipher_tfm.tfms)
1848                return;
1849
1850        for (i = 0; i < cc->tfms_count; i++)
1851                if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1852                        crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1853                        cc->cipher_tfm.tfms[i] = NULL;
1854                }
1855
1856        kfree(cc->cipher_tfm.tfms);
1857        cc->cipher_tfm.tfms = NULL;
1858}
1859
1860static void crypt_free_tfms(struct crypt_config *cc)
1861{
1862        if (crypt_integrity_aead(cc))
1863                crypt_free_tfms_aead(cc);
1864        else
1865                crypt_free_tfms_skcipher(cc);
1866}
1867
1868static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1869{
1870        unsigned i;
1871        int err;
1872
1873        cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1874                                      sizeof(struct crypto_skcipher *), GFP_KERNEL);
1875        if (!cc->cipher_tfm.tfms)
1876                return -ENOMEM;
1877
1878        for (i = 0; i < cc->tfms_count; i++) {
1879                cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1880                if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1881                        err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1882                        crypt_free_tfms(cc);
1883                        return err;
1884                }
1885        }
1886
1887        return 0;
1888}
1889
1890static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1891{
1892        int err;
1893
1894        cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1895        if (!cc->cipher_tfm.tfms)
1896                return -ENOMEM;
1897
1898        cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1899        if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1900                err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1901                crypt_free_tfms(cc);
1902                return err;
1903        }
1904
1905        return 0;
1906}
1907
1908static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1909{
1910        if (crypt_integrity_aead(cc))
1911                return crypt_alloc_tfms_aead(cc, ciphermode);
1912        else
1913                return crypt_alloc_tfms_skcipher(cc, ciphermode);
1914}
1915
1916static unsigned crypt_subkey_size(struct crypt_config *cc)
1917{
1918        return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1919}
1920
1921static unsigned crypt_authenckey_size(struct crypt_config *cc)
1922{
1923        return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1924}
1925
1926/*
1927 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1928 * the key must be for some reason in special format.
1929 * This funcion converts cc->key to this special format.
1930 */
1931static void crypt_copy_authenckey(char *p, const void *key,
1932                                  unsigned enckeylen, unsigned authkeylen)
1933{
1934        struct crypto_authenc_key_param *param;
1935        struct rtattr *rta;
1936
1937        rta = (struct rtattr *)p;
1938        param = RTA_DATA(rta);
1939        param->enckeylen = cpu_to_be32(enckeylen);
1940        rta->rta_len = RTA_LENGTH(sizeof(*param));
1941        rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1942        p += RTA_SPACE(sizeof(*param));
1943        memcpy(p, key + enckeylen, authkeylen);
1944        p += authkeylen;
1945        memcpy(p, key, enckeylen);
1946}
1947
1948static int crypt_setkey(struct crypt_config *cc)
1949{
1950        unsigned subkey_size;
1951        int err = 0, i, r;
1952
1953        /* Ignore extra keys (which are used for IV etc) */
1954        subkey_size = crypt_subkey_size(cc);
1955
1956        if (crypt_integrity_hmac(cc)) {
1957                if (subkey_size < cc->key_mac_size)
1958                        return -EINVAL;
1959
1960                crypt_copy_authenckey(cc->authenc_key, cc->key,
1961                                      subkey_size - cc->key_mac_size,
1962                                      cc->key_mac_size);
1963        }
1964
1965        for (i = 0; i < cc->tfms_count; i++) {
1966                if (crypt_integrity_hmac(cc))
1967                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1968                                cc->authenc_key, crypt_authenckey_size(cc));
1969                else if (crypt_integrity_aead(cc))
1970                        r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1971                                               cc->key + (i * subkey_size),
1972                                               subkey_size);
1973                else
1974                        r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1975                                                   cc->key + (i * subkey_size),
1976                                                   subkey_size);
1977                if (r)
1978                        err = r;
1979        }
1980
1981        if (crypt_integrity_hmac(cc))
1982                memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1983
1984        return err;
1985}
1986
1987#ifdef CONFIG_KEYS
1988
1989static bool contains_whitespace(const char *str)
1990{
1991        while (*str)
1992                if (isspace(*str++))
1993                        return true;
1994        return false;
1995}
1996
1997static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1998{
1999        char *new_key_string, *key_desc;
2000        int ret;
2001        struct key *key;
2002        const struct user_key_payload *ukp;
2003
2004        /*
2005         * Reject key_string with whitespace. dm core currently lacks code for
2006         * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2007         */
2008        if (contains_whitespace(key_string)) {
2009                DMERR("whitespace chars not allowed in key string");
2010                return -EINVAL;
2011        }
2012
2013        /* look for next ':' separating key_type from key_description */
2014        key_desc = strpbrk(key_string, ":");
2015        if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2016                return -EINVAL;
2017
2018        if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2019            strncmp(key_string, "user:", key_desc - key_string + 1))
2020                return -EINVAL;
2021
2022        new_key_string = kstrdup(key_string, GFP_KERNEL);
2023        if (!new_key_string)
2024                return -ENOMEM;
2025
2026        key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2027                          key_desc + 1, NULL);
2028        if (IS_ERR(key)) {
2029                kzfree(new_key_string);
2030                return PTR_ERR(key);
2031        }
2032
2033        down_read(&key->sem);
2034
2035        ukp = user_key_payload_locked(key);
2036        if (!ukp) {
2037                up_read(&key->sem);
2038                key_put(key);
2039                kzfree(new_key_string);
2040                return -EKEYREVOKED;
2041        }
2042
2043        if (cc->key_size != ukp->datalen) {
2044                up_read(&key->sem);
2045                key_put(key);
2046                kzfree(new_key_string);
2047                return -EINVAL;
2048        }
2049
2050        memcpy(cc->key, ukp->data, cc->key_size);
2051
2052        up_read(&key->sem);
2053        key_put(key);
2054
2055        /* clear the flag since following operations may invalidate previously valid key */
2056        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2057
2058        ret = crypt_setkey(cc);
2059
2060        if (!ret) {
2061                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2062                kzfree(cc->key_string);
2063                cc->key_string = new_key_string;
2064        } else
2065                kzfree(new_key_string);
2066
2067        return ret;
2068}
2069
2070static int get_key_size(char **key_string)
2071{
2072        char *colon, dummy;
2073        int ret;
2074
2075        if (*key_string[0] != ':')
2076                return strlen(*key_string) >> 1;
2077
2078        /* look for next ':' in key string */
2079        colon = strpbrk(*key_string + 1, ":");
2080        if (!colon)
2081                return -EINVAL;
2082
2083        if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2084                return -EINVAL;
2085
2086        *key_string = colon;
2087
2088        /* remaining key string should be :<logon|user>:<key_desc> */
2089
2090        return ret;
2091}
2092
2093#else
2094
2095static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2096{
2097        return -EINVAL;
2098}
2099
2100static int get_key_size(char **key_string)
2101{
2102        return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2103}
2104
2105#endif
2106
2107static int crypt_set_key(struct crypt_config *cc, char *key)
2108{
2109        int r = -EINVAL;
2110        int key_string_len = strlen(key);
2111
2112        /* Hyphen (which gives a key_size of zero) means there is no key. */
2113        if (!cc->key_size && strcmp(key, "-"))
2114                goto out;
2115
2116        /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2117        if (key[0] == ':') {
2118                r = crypt_set_keyring_key(cc, key + 1);
2119                goto out;
2120        }
2121
2122        /* clear the flag since following operations may invalidate previously valid key */
2123        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2124
2125        /* wipe references to any kernel keyring key */
2126        kzfree(cc->key_string);
2127        cc->key_string = NULL;
2128
2129        /* Decode key from its hex representation. */
2130        if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2131                goto out;
2132
2133        r = crypt_setkey(cc);
2134        if (!r)
2135                set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2136
2137out:
2138        /* Hex key string not needed after here, so wipe it. */
2139        memset(key, '0', key_string_len);
2140
2141        return r;
2142}
2143
2144static int crypt_wipe_key(struct crypt_config *cc)
2145{
2146        int r;
2147
2148        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2149        get_random_bytes(&cc->key, cc->key_size);
2150        kzfree(cc->key_string);
2151        cc->key_string = NULL;
2152        r = crypt_setkey(cc);
2153        memset(&cc->key, 0, cc->key_size * sizeof(u8));
2154
2155        return r;
2156}
2157
2158static void crypt_dtr(struct dm_target *ti)
2159{
2160        struct crypt_config *cc = ti->private;
2161
2162        ti->private = NULL;
2163
2164        if (!cc)
2165                return;
2166
2167        if (cc->write_thread)
2168                kthread_stop(cc->write_thread);
2169
2170        if (cc->io_queue)
2171                destroy_workqueue(cc->io_queue);
2172        if (cc->crypt_queue)
2173                destroy_workqueue(cc->crypt_queue);
2174
2175        crypt_free_tfms(cc);
2176
2177        if (cc->bs)
2178                bioset_free(cc->bs);
2179
2180        mempool_destroy(cc->page_pool);
2181        mempool_destroy(cc->req_pool);
2182        mempool_destroy(cc->tag_pool);
2183
2184        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2185                cc->iv_gen_ops->dtr(cc);
2186
2187        if (cc->dev)
2188                dm_put_device(ti, cc->dev);
2189
2190        kzfree(cc->cipher);
2191        kzfree(cc->cipher_string);
2192        kzfree(cc->key_string);
2193        kzfree(cc->cipher_auth);
2194        kzfree(cc->authenc_key);
2195
2196        mutex_destroy(&cc->bio_alloc_lock);
2197
2198        /* Must zero key material before freeing */
2199        kzfree(cc);
2200}
2201
2202static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2203{
2204        struct crypt_config *cc = ti->private;
2205
2206        if (crypt_integrity_aead(cc))
2207                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2208        else
2209                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2210
2211        if (cc->iv_size)
2212                /* at least a 64 bit sector number should fit in our buffer */
2213                cc->iv_size = max(cc->iv_size,
2214                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
2215        else if (ivmode) {
2216                DMWARN("Selected cipher does not support IVs");
2217                ivmode = NULL;
2218        }
2219
2220        /* Choose ivmode, see comments at iv code. */
2221        if (ivmode == NULL)
2222                cc->iv_gen_ops = NULL;
2223        else if (strcmp(ivmode, "plain") == 0)
2224                cc->iv_gen_ops = &crypt_iv_plain_ops;
2225        else if (strcmp(ivmode, "plain64") == 0)
2226                cc->iv_gen_ops = &crypt_iv_plain64_ops;
2227        else if (strcmp(ivmode, "plain64be") == 0)
2228                cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2229        else if (strcmp(ivmode, "essiv") == 0)
2230                cc->iv_gen_ops = &crypt_iv_essiv_ops;
2231        else if (strcmp(ivmode, "benbi") == 0)
2232                cc->iv_gen_ops = &crypt_iv_benbi_ops;
2233        else if (strcmp(ivmode, "null") == 0)
2234                cc->iv_gen_ops = &crypt_iv_null_ops;
2235        else if (strcmp(ivmode, "lmk") == 0) {
2236                cc->iv_gen_ops = &crypt_iv_lmk_ops;
2237                /*
2238                 * Version 2 and 3 is recognised according
2239                 * to length of provided multi-key string.
2240                 * If present (version 3), last key is used as IV seed.
2241                 * All keys (including IV seed) are always the same size.
2242                 */
2243                if (cc->key_size % cc->key_parts) {
2244                        cc->key_parts++;
2245                        cc->key_extra_size = cc->key_size / cc->key_parts;
2246                }
2247        } else if (strcmp(ivmode, "tcw") == 0) {
2248                cc->iv_gen_ops = &crypt_iv_tcw_ops;
2249                cc->key_parts += 2; /* IV + whitening */
2250                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2251        } else if (strcmp(ivmode, "random") == 0) {
2252                cc->iv_gen_ops = &crypt_iv_random_ops;
2253                /* Need storage space in integrity fields. */
2254                cc->integrity_iv_size = cc->iv_size;
2255        } else {
2256                ti->error = "Invalid IV mode";
2257                return -EINVAL;
2258        }
2259
2260        return 0;
2261}
2262
2263/*
2264 * Workaround to parse cipher algorithm from crypto API spec.
2265 * The cc->cipher is currently used only in ESSIV.
2266 * This should be probably done by crypto-api calls (once available...)
2267 */
2268static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2269{
2270        const char *alg_name = NULL;
2271        char *start, *end;
2272
2273        if (crypt_integrity_aead(cc)) {
2274                alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2275                if (!alg_name)
2276                        return -EINVAL;
2277                if (crypt_integrity_hmac(cc)) {
2278                        alg_name = strchr(alg_name, ',');
2279                        if (!alg_name)
2280                                return -EINVAL;
2281                }
2282                alg_name++;
2283        } else {
2284                alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2285                if (!alg_name)
2286                        return -EINVAL;
2287        }
2288
2289        start = strchr(alg_name, '(');
2290        end = strchr(alg_name, ')');
2291
2292        if (!start && !end) {
2293                cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2294                return cc->cipher ? 0 : -ENOMEM;
2295        }
2296
2297        if (!start || !end || ++start >= end)
2298                return -EINVAL;
2299
2300        cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2301        if (!cc->cipher)
2302                return -ENOMEM;
2303
2304        strncpy(cc->cipher, start, end - start);
2305
2306        return 0;
2307}
2308
2309/*
2310 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2311 * The HMAC is needed to calculate tag size (HMAC digest size).
2312 * This should be probably done by crypto-api calls (once available...)
2313 */
2314static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2315{
2316        char *start, *end, *mac_alg = NULL;
2317        struct crypto_ahash *mac;
2318
2319        if (!strstarts(cipher_api, "authenc("))
2320                return 0;
2321
2322        start = strchr(cipher_api, '(');
2323        end = strchr(cipher_api, ',');
2324        if (!start || !end || ++start > end)
2325                return -EINVAL;
2326
2327        mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2328        if (!mac_alg)
2329                return -ENOMEM;
2330        strncpy(mac_alg, start, end - start);
2331
2332        mac = crypto_alloc_ahash(mac_alg, 0, 0);
2333        kfree(mac_alg);
2334
2335        if (IS_ERR(mac))
2336                return PTR_ERR(mac);
2337
2338        cc->key_mac_size = crypto_ahash_digestsize(mac);
2339        crypto_free_ahash(mac);
2340
2341        cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2342        if (!cc->authenc_key)
2343                return -ENOMEM;
2344
2345        return 0;
2346}
2347
2348static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2349                                char **ivmode, char **ivopts)
2350{
2351        struct crypt_config *cc = ti->private;
2352        char *tmp, *cipher_api;
2353        int ret = -EINVAL;
2354
2355        cc->tfms_count = 1;
2356
2357        /*
2358         * New format (capi: prefix)
2359         * capi:cipher_api_spec-iv:ivopts
2360         */
2361        tmp = &cipher_in[strlen("capi:")];
2362        cipher_api = strsep(&tmp, "-");
2363        *ivmode = strsep(&tmp, ":");
2364        *ivopts = tmp;
2365
2366        if (*ivmode && !strcmp(*ivmode, "lmk"))
2367                cc->tfms_count = 64;
2368
2369        cc->key_parts = cc->tfms_count;
2370
2371        /* Allocate cipher */
2372        ret = crypt_alloc_tfms(cc, cipher_api);
2373        if (ret < 0) {
2374                ti->error = "Error allocating crypto tfm";
2375                return ret;
2376        }
2377
2378        /* Alloc AEAD, can be used only in new format. */
2379        if (crypt_integrity_aead(cc)) {
2380                ret = crypt_ctr_auth_cipher(cc, cipher_api);
2381                if (ret < 0) {
2382                        ti->error = "Invalid AEAD cipher spec";
2383                        return -ENOMEM;
2384                }
2385                cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2386        } else
2387                cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2388
2389        ret = crypt_ctr_blkdev_cipher(cc);
2390        if (ret < 0) {
2391                ti->error = "Cannot allocate cipher string";
2392                return -ENOMEM;
2393        }
2394
2395        return 0;
2396}
2397
2398static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2399                                char **ivmode, char **ivopts)
2400{
2401        struct crypt_config *cc = ti->private;
2402        char *tmp, *cipher, *chainmode, *keycount;
2403        char *cipher_api = NULL;
2404        int ret = -EINVAL;
2405        char dummy;
2406
2407        if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2408                ti->error = "Bad cipher specification";
2409                return -EINVAL;
2410        }
2411
2412        /*
2413         * Legacy dm-crypt cipher specification
2414         * cipher[:keycount]-mode-iv:ivopts
2415         */
2416        tmp = cipher_in;
2417        keycount = strsep(&tmp, "-");
2418        cipher = strsep(&keycount, ":");
2419
2420        if (!keycount)
2421                cc->tfms_count = 1;
2422        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2423                 !is_power_of_2(cc->tfms_count)) {
2424                ti->error = "Bad cipher key count specification";
2425                return -EINVAL;
2426        }
2427        cc->key_parts = cc->tfms_count;
2428
2429        cc->cipher = kstrdup(cipher, GFP_KERNEL);
2430        if (!cc->cipher)
2431                goto bad_mem;
2432
2433        chainmode = strsep(&tmp, "-");
2434        *ivopts = strsep(&tmp, "-");
2435        *ivmode = strsep(&*ivopts, ":");
2436
2437        if (tmp)
2438                DMWARN("Ignoring unexpected additional cipher options");
2439
2440        /*
2441         * For compatibility with the original dm-crypt mapping format, if
2442         * only the cipher name is supplied, use cbc-plain.
2443         */
2444        if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2445                chainmode = "cbc";
2446                *ivmode = "plain";
2447        }
2448
2449        if (strcmp(chainmode, "ecb") && !*ivmode) {
2450                ti->error = "IV mechanism required";
2451                return -EINVAL;
2452        }
2453
2454        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2455        if (!cipher_api)
2456                goto bad_mem;
2457
2458        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2459                       "%s(%s)", chainmode, cipher);
2460        if (ret < 0) {
2461                kfree(cipher_api);
2462                goto bad_mem;
2463        }
2464
2465        /* Allocate cipher */
2466        ret = crypt_alloc_tfms(cc, cipher_api);
2467        if (ret < 0) {
2468                ti->error = "Error allocating crypto tfm";
2469                kfree(cipher_api);
2470                return ret;
2471        }
2472        kfree(cipher_api);
2473
2474        return 0;
2475bad_mem:
2476        ti->error = "Cannot allocate cipher strings";
2477        return -ENOMEM;
2478}
2479
2480static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2481{
2482        struct crypt_config *cc = ti->private;
2483        char *ivmode = NULL, *ivopts = NULL;
2484        int ret;
2485
2486        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2487        if (!cc->cipher_string) {
2488                ti->error = "Cannot allocate cipher strings";
2489                return -ENOMEM;
2490        }
2491
2492        if (strstarts(cipher_in, "capi:"))
2493                ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2494        else
2495                ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2496        if (ret)
2497                return ret;
2498
2499        /* Initialize IV */
2500        ret = crypt_ctr_ivmode(ti, ivmode);
2501        if (ret < 0)
2502                return ret;
2503
2504        /* Initialize and set key */
2505        ret = crypt_set_key(cc, key);
2506        if (ret < 0) {
2507                ti->error = "Error decoding and setting key";
2508                return ret;
2509        }
2510
2511        /* Allocate IV */
2512        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2513                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2514                if (ret < 0) {
2515                        ti->error = "Error creating IV";
2516                        return ret;
2517                }
2518        }
2519
2520        /* Initialize IV (set keys for ESSIV etc) */
2521        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2522                ret = cc->iv_gen_ops->init(cc);
2523                if (ret < 0) {
2524                        ti->error = "Error initialising IV";
2525                        return ret;
2526                }
2527        }
2528
2529        /* wipe the kernel key payload copy */
2530        if (cc->key_string)
2531                memset(cc->key, 0, cc->key_size * sizeof(u8));
2532
2533        return ret;
2534}
2535
2536static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2537{
2538        struct crypt_config *cc = ti->private;
2539        struct dm_arg_set as;
2540        static const struct dm_arg _args[] = {
2541                {0, 6, "Invalid number of feature args"},
2542        };
2543        unsigned int opt_params, val;
2544        const char *opt_string, *sval;
2545        char dummy;
2546        int ret;
2547
2548        /* Optional parameters */
2549        as.argc = argc;
2550        as.argv = argv;
2551
2552        ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2553        if (ret)
2554                return ret;
2555
2556        while (opt_params--) {
2557                opt_string = dm_shift_arg(&as);
2558                if (!opt_string) {
2559                        ti->error = "Not enough feature arguments";
2560                        return -EINVAL;
2561                }
2562
2563                if (!strcasecmp(opt_string, "allow_discards"))
2564                        ti->num_discard_bios = 1;
2565
2566                else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2567                        set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2568
2569                else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2570                        set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2571                else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2572                        if (val == 0 || val > MAX_TAG_SIZE) {
2573                                ti->error = "Invalid integrity arguments";
2574                                return -EINVAL;
2575                        }
2576                        cc->on_disk_tag_size = val;
2577                        sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2578                        if (!strcasecmp(sval, "aead")) {
2579                                set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2580                        } else  if (strcasecmp(sval, "none")) {
2581                                ti->error = "Unknown integrity profile";
2582                                return -EINVAL;
2583                        }
2584
2585                        cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2586                        if (!cc->cipher_auth)
2587                                return -ENOMEM;
2588                } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2589                        if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2590                            cc->sector_size > 4096 ||
2591                            (cc->sector_size & (cc->sector_size - 1))) {
2592                                ti->error = "Invalid feature value for sector_size";
2593                                return -EINVAL;
2594                        }
2595                        if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2596                                ti->error = "Device size is not multiple of sector_size feature";
2597                                return -EINVAL;
2598                        }
2599                        cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2600                } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2601                        set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2602                else {
2603                        ti->error = "Invalid feature arguments";
2604                        return -EINVAL;
2605                }
2606        }
2607
2608        return 0;
2609}
2610
2611/*
2612 * Construct an encryption mapping:
2613 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2614 */
2615static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2616{
2617        struct crypt_config *cc;
2618        int key_size;
2619        unsigned int align_mask;
2620        unsigned long long tmpll;
2621        int ret;
2622        size_t iv_size_padding, additional_req_size;
2623        char dummy;
2624
2625        if (argc < 5) {
2626                ti->error = "Not enough arguments";
2627                return -EINVAL;
2628        }
2629
2630        key_size = get_key_size(&argv[1]);
2631        if (key_size < 0) {
2632                ti->error = "Cannot parse key size";
2633                return -EINVAL;
2634        }
2635
2636        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2637        if (!cc) {
2638                ti->error = "Cannot allocate encryption context";
2639                return -ENOMEM;
2640        }
2641        cc->key_size = key_size;
2642        cc->sector_size = (1 << SECTOR_SHIFT);
2643        cc->sector_shift = 0;
2644
2645        ti->private = cc;
2646
2647        /* Optional parameters need to be read before cipher constructor */
2648        if (argc > 5) {
2649                ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2650                if (ret)
2651                        goto bad;
2652        }
2653
2654        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2655        if (ret < 0)
2656                goto bad;
2657
2658        if (crypt_integrity_aead(cc)) {
2659                cc->dmreq_start = sizeof(struct aead_request);
2660                cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2661                align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2662        } else {
2663                cc->dmreq_start = sizeof(struct skcipher_request);
2664                cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2665                align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2666        }
2667        cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2668
2669        if (align_mask < CRYPTO_MINALIGN) {
2670                /* Allocate the padding exactly */
2671                iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2672                                & align_mask;
2673        } else {
2674                /*
2675                 * If the cipher requires greater alignment than kmalloc
2676                 * alignment, we don't know the exact position of the
2677                 * initialization vector. We must assume worst case.
2678                 */
2679                iv_size_padding = align_mask;
2680        }
2681
2682        ret = -ENOMEM;
2683
2684        /*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2685        additional_req_size = sizeof(struct dm_crypt_request) +
2686                iv_size_padding + cc->iv_size +
2687                cc->iv_size +
2688                sizeof(uint64_t) +
2689                sizeof(unsigned int);
2690
2691        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2692        if (!cc->req_pool) {
2693                ti->error = "Cannot allocate crypt request mempool";
2694                goto bad;
2695        }
2696
2697        cc->per_bio_data_size = ti->per_io_data_size =
2698                ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2699                      ARCH_KMALLOC_MINALIGN);
2700
2701        cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
2702        if (!cc->page_pool) {
2703                ti->error = "Cannot allocate page mempool";
2704                goto bad;
2705        }
2706
2707        cc->bs = bioset_create(MIN_IOS, 0, BIOSET_NEED_BVECS);
2708        if (!cc->bs) {
2709                ti->error = "Cannot allocate crypt bioset";
2710                goto bad;
2711        }
2712
2713        mutex_init(&cc->bio_alloc_lock);
2714
2715        ret = -EINVAL;
2716        if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2717            (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2718                ti->error = "Invalid iv_offset sector";
2719                goto bad;
2720        }
2721        cc->iv_offset = tmpll;
2722
2723        ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2724        if (ret) {
2725                ti->error = "Device lookup failed";
2726                goto bad;
2727        }
2728
2729        ret = -EINVAL;
2730        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2731                ti->error = "Invalid device sector";
2732                goto bad;
2733        }
2734        cc->start = tmpll;
2735
2736        if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2737                ret = crypt_integrity_ctr(cc, ti);
2738                if (ret)
2739                        goto bad;
2740
2741                cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2742                if (!cc->tag_pool_max_sectors)
2743                        cc->tag_pool_max_sectors = 1;
2744
2745                cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2746                        cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2747                if (!cc->tag_pool) {
2748                        ti->error = "Cannot allocate integrity tags mempool";
2749                        ret = -ENOMEM;
2750                        goto bad;
2751                }
2752
2753                cc->tag_pool_max_sectors <<= cc->sector_shift;
2754        }
2755
2756        ret = -ENOMEM;
2757        cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2758        if (!cc->io_queue) {
2759                ti->error = "Couldn't create kcryptd io queue";
2760                goto bad;
2761        }
2762
2763        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2764                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2765        else
2766                cc->crypt_queue = alloc_workqueue("kcryptd",
2767                                                  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2768                                                  num_online_cpus());
2769        if (!cc->crypt_queue) {
2770                ti->error = "Couldn't create kcryptd queue";
2771                goto bad;
2772        }
2773
2774        init_waitqueue_head(&cc->write_thread_wait);
2775        cc->write_tree = RB_ROOT;
2776
2777        cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2778        if (IS_ERR(cc->write_thread)) {
2779                ret = PTR_ERR(cc->write_thread);
2780                cc->write_thread = NULL;
2781                ti->error = "Couldn't spawn write thread";
2782                goto bad;
2783        }
2784        wake_up_process(cc->write_thread);
2785
2786        ti->num_flush_bios = 1;
2787
2788        return 0;
2789
2790bad:
2791        crypt_dtr(ti);
2792        return ret;
2793}
2794
2795static int crypt_map(struct dm_target *ti, struct bio *bio)
2796{
2797        struct dm_crypt_io *io;
2798        struct crypt_config *cc = ti->private;
2799
2800        /*
2801         * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2802         * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2803         * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2804         */
2805        if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2806            bio_op(bio) == REQ_OP_DISCARD)) {
2807                bio_set_dev(bio, cc->dev->bdev);
2808                if (bio_sectors(bio))
2809                        bio->bi_iter.bi_sector = cc->start +
2810                                dm_target_offset(ti, bio->bi_iter.bi_sector);
2811                return DM_MAPIO_REMAPPED;
2812        }
2813
2814        /*
2815         * Check if bio is too large, split as needed.
2816         */
2817        if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2818            (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2819                dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2820
2821        /*
2822         * Ensure that bio is a multiple of internal sector encryption size
2823         * and is aligned to this size as defined in IO hints.
2824         */
2825        if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2826                return DM_MAPIO_KILL;
2827
2828        if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2829                return DM_MAPIO_KILL;
2830
2831        io = dm_per_bio_data(bio, cc->per_bio_data_size);
2832        crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2833
2834        if (cc->on_disk_tag_size) {
2835                unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2836
2837                if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2838                    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2839                                GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2840                        if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2841                                dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2842                        io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2843                        io->integrity_metadata_from_pool = true;
2844                }
2845        }
2846
2847        if (crypt_integrity_aead(cc))
2848                io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2849        else
2850                io->ctx.r.req = (struct skcipher_request *)(io + 1);
2851
2852        if (bio_data_dir(io->base_bio) == READ) {
2853                if (kcryptd_io_read(io, GFP_NOWAIT))
2854                        kcryptd_queue_read(io);
2855        } else
2856                kcryptd_queue_crypt(io);
2857
2858        return DM_MAPIO_SUBMITTED;
2859}
2860
2861static void crypt_status(struct dm_target *ti, status_type_t type,
2862                         unsigned status_flags, char *result, unsigned maxlen)
2863{
2864        struct crypt_config *cc = ti->private;
2865        unsigned i, sz = 0;
2866        int num_feature_args = 0;
2867
2868        switch (type) {
2869        case STATUSTYPE_INFO:
2870                result[0] = '\0';
2871                break;
2872
2873        case STATUSTYPE_TABLE:
2874                DMEMIT("%s ", cc->cipher_string);
2875
2876                if (cc->key_size > 0) {
2877                        if (cc->key_string)
2878                                DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2879                        else
2880                                for (i = 0; i < cc->key_size; i++)
2881                                        DMEMIT("%02x", cc->key[i]);
2882                } else
2883                        DMEMIT("-");
2884
2885                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2886                                cc->dev->name, (unsigned long long)cc->start);
2887
2888                num_feature_args += !!ti->num_discard_bios;
2889                num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2890                num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2891                num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2892                num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2893                if (cc->on_disk_tag_size)
2894                        num_feature_args++;
2895                if (num_feature_args) {
2896                        DMEMIT(" %d", num_feature_args);
2897                        if (ti->num_discard_bios)
2898                                DMEMIT(" allow_discards");
2899                        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2900                                DMEMIT(" same_cpu_crypt");
2901                        if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2902                                DMEMIT(" submit_from_crypt_cpus");
2903                        if (cc->on_disk_tag_size)
2904                                DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2905                        if (cc->sector_size != (1 << SECTOR_SHIFT))
2906                                DMEMIT(" sector_size:%d", cc->sector_size);
2907                        if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2908                                DMEMIT(" iv_large_sectors");
2909                }
2910
2911                break;
2912        }
2913}
2914
2915static void crypt_postsuspend(struct dm_target *ti)
2916{
2917        struct crypt_config *cc = ti->private;
2918
2919        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2920}
2921
2922static int crypt_preresume(struct dm_target *ti)
2923{
2924        struct crypt_config *cc = ti->private;
2925
2926        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2927                DMERR("aborting resume - crypt key is not set.");
2928                return -EAGAIN;
2929        }
2930
2931        return 0;
2932}
2933
2934static void crypt_resume(struct dm_target *ti)
2935{
2936        struct crypt_config *cc = ti->private;
2937
2938        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2939}
2940
2941/* Message interface
2942 *      key set <key>
2943 *      key wipe
2944 */
2945static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2946{
2947        struct crypt_config *cc = ti->private;
2948        int key_size, ret = -EINVAL;
2949
2950        if (argc < 2)
2951                goto error;
2952
2953        if (!strcasecmp(argv[0], "key")) {
2954                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2955                        DMWARN("not suspended during key manipulation.");
2956                        return -EINVAL;
2957                }
2958                if (argc == 3 && !strcasecmp(argv[1], "set")) {
2959                        /* The key size may not be changed. */
2960                        key_size = get_key_size(&argv[2]);
2961                        if (key_size < 0 || cc->key_size != key_size) {
2962                                memset(argv[2], '0', strlen(argv[2]));
2963                                return -EINVAL;
2964                        }
2965
2966                        ret = crypt_set_key(cc, argv[2]);
2967                        if (ret)
2968                                return ret;
2969                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2970                                ret = cc->iv_gen_ops->init(cc);
2971                        /* wipe the kernel key payload copy */
2972                        if (cc->key_string)
2973                                memset(cc->key, 0, cc->key_size * sizeof(u8));
2974                        return ret;
2975                }
2976                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2977                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2978                                ret = cc->iv_gen_ops->wipe(cc);
2979                                if (ret)
2980                                        return ret;
2981                        }
2982                        return crypt_wipe_key(cc);
2983                }
2984        }
2985
2986error:
2987        DMWARN("unrecognised message received.");
2988        return -EINVAL;
2989}
2990
2991static int crypt_iterate_devices(struct dm_target *ti,
2992                                 iterate_devices_callout_fn fn, void *data)
2993{
2994        struct crypt_config *cc = ti->private;
2995
2996        return fn(ti, cc->dev, cc->start, ti->len, data);
2997}
2998
2999static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3000{
3001        struct crypt_config *cc = ti->private;
3002
3003        /*
3004         * Unfortunate constraint that is required to avoid the potential
3005         * for exceeding underlying device's max_segments limits -- due to
3006         * crypt_alloc_buffer() possibly allocating pages for the encryption
3007         * bio that are not as physically contiguous as the original bio.
3008         */
3009        limits->max_segment_size = PAGE_SIZE;
3010
3011        if (cc->sector_size != (1 << SECTOR_SHIFT)) {
3012                limits->logical_block_size = cc->sector_size;
3013                limits->physical_block_size = cc->sector_size;
3014                blk_limits_io_min(limits, cc->sector_size);
3015        }
3016}
3017
3018static struct target_type crypt_target = {
3019        .name   = "crypt",
3020        .version = {1, 18, 1},
3021        .module = THIS_MODULE,
3022        .ctr    = crypt_ctr,
3023        .dtr    = crypt_dtr,
3024        .map    = crypt_map,
3025        .status = crypt_status,
3026        .postsuspend = crypt_postsuspend,
3027        .preresume = crypt_preresume,
3028        .resume = crypt_resume,
3029        .message = crypt_message,
3030        .iterate_devices = crypt_iterate_devices,
3031        .io_hints = crypt_io_hints,
3032};
3033
3034static int __init dm_crypt_init(void)
3035{
3036        int r;
3037
3038        r = dm_register_target(&crypt_target);
3039        if (r < 0)
3040                DMERR("register failed %d", r);
3041
3042        return r;
3043}
3044
3045static void __exit dm_crypt_exit(void)
3046{
3047        dm_unregister_target(&crypt_target);
3048}
3049
3050module_init(dm_crypt_init);
3051module_exit(dm_crypt_exit);
3052
3053MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3054MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3055MODULE_LICENSE("GPL");
3056