linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
  28
  29#define DM_MSG_PREFIX "core"
  30
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58        atomic_inc(&dm_global_event_nr);
  59        wake_up(&dm_global_eventq);
  60}
  61
  62/*
  63 * One of these is allocated (on-stack) per original bio.
  64 */
  65struct clone_info {
  66        struct dm_table *map;
  67        struct bio *bio;
  68        struct dm_io *io;
  69        sector_t sector;
  70        unsigned sector_count;
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78        unsigned magic;
  79        struct dm_io *io;
  80        struct dm_target *ti;
  81        unsigned target_bio_nr;
  82        unsigned *len_ptr;
  83        bool inside_dm_io;
  84        struct bio clone;
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93        unsigned magic;
  94        struct mapped_device *md;
  95        blk_status_t status;
  96        atomic_t io_count;
  97        struct bio *orig_bio;
  98        unsigned long start_time;
  99        spinlock_t endio_lock;
 100        struct dm_stats_aux stats_aux;
 101        /* last member of dm_target_io is 'struct bio' */
 102        struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108        if (!tio->inside_dm_io)
 109                return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110        return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116        struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 117        if (io->magic == DM_IO_MAGIC)
 118                return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119        BUG_ON(io->magic != DM_TIO_MAGIC);
 120        return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126        return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 143
 144#define DM_NUMA_NODE NUMA_NO_NODE
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 151        struct bio_set *bs;
 152        struct bio_set *io_bs;
 153};
 154
 155struct table_device {
 156        struct list_head list;
 157        refcount_t count;
 158        struct dm_dev dm_dev;
 159};
 160
 161static struct kmem_cache *_rq_tio_cache;
 162static struct kmem_cache *_rq_cache;
 163
 164/*
 165 * Bio-based DM's mempools' reserved IOs set by the user.
 166 */
 167#define RESERVED_BIO_BASED_IOS          16
 168static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 169
 170static int __dm_get_module_param_int(int *module_param, int min, int max)
 171{
 172        int param = READ_ONCE(*module_param);
 173        int modified_param = 0;
 174        bool modified = true;
 175
 176        if (param < min)
 177                modified_param = min;
 178        else if (param > max)
 179                modified_param = max;
 180        else
 181                modified = false;
 182
 183        if (modified) {
 184                (void)cmpxchg(module_param, param, modified_param);
 185                param = modified_param;
 186        }
 187
 188        return param;
 189}
 190
 191unsigned __dm_get_module_param(unsigned *module_param,
 192                               unsigned def, unsigned max)
 193{
 194        unsigned param = READ_ONCE(*module_param);
 195        unsigned modified_param = 0;
 196
 197        if (!param)
 198                modified_param = def;
 199        else if (param > max)
 200                modified_param = max;
 201
 202        if (modified_param) {
 203                (void)cmpxchg(module_param, param, modified_param);
 204                param = modified_param;
 205        }
 206
 207        return param;
 208}
 209
 210unsigned dm_get_reserved_bio_based_ios(void)
 211{
 212        return __dm_get_module_param(&reserved_bio_based_ios,
 213                                     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 214}
 215EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 216
 217static unsigned dm_get_numa_node(void)
 218{
 219        return __dm_get_module_param_int(&dm_numa_node,
 220                                         DM_NUMA_NODE, num_online_nodes() - 1);
 221}
 222
 223static int __init local_init(void)
 224{
 225        int r = -ENOMEM;
 226
 227        _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 228        if (!_rq_tio_cache)
 229                return r;
 230
 231        _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 232                                      __alignof__(struct request), 0, NULL);
 233        if (!_rq_cache)
 234                goto out_free_rq_tio_cache;
 235
 236        r = dm_uevent_init();
 237        if (r)
 238                goto out_free_rq_cache;
 239
 240        deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 241        if (!deferred_remove_workqueue) {
 242                r = -ENOMEM;
 243                goto out_uevent_exit;
 244        }
 245
 246        _major = major;
 247        r = register_blkdev(_major, _name);
 248        if (r < 0)
 249                goto out_free_workqueue;
 250
 251        if (!_major)
 252                _major = r;
 253
 254        return 0;
 255
 256out_free_workqueue:
 257        destroy_workqueue(deferred_remove_workqueue);
 258out_uevent_exit:
 259        dm_uevent_exit();
 260out_free_rq_cache:
 261        kmem_cache_destroy(_rq_cache);
 262out_free_rq_tio_cache:
 263        kmem_cache_destroy(_rq_tio_cache);
 264
 265        return r;
 266}
 267
 268static void local_exit(void)
 269{
 270        flush_scheduled_work();
 271        destroy_workqueue(deferred_remove_workqueue);
 272
 273        kmem_cache_destroy(_rq_cache);
 274        kmem_cache_destroy(_rq_tio_cache);
 275        unregister_blkdev(_major, _name);
 276        dm_uevent_exit();
 277
 278        _major = 0;
 279
 280        DMINFO("cleaned up");
 281}
 282
 283static int (*_inits[])(void) __initdata = {
 284        local_init,
 285        dm_target_init,
 286        dm_linear_init,
 287        dm_stripe_init,
 288        dm_io_init,
 289        dm_kcopyd_init,
 290        dm_interface_init,
 291        dm_statistics_init,
 292};
 293
 294static void (*_exits[])(void) = {
 295        local_exit,
 296        dm_target_exit,
 297        dm_linear_exit,
 298        dm_stripe_exit,
 299        dm_io_exit,
 300        dm_kcopyd_exit,
 301        dm_interface_exit,
 302        dm_statistics_exit,
 303};
 304
 305static int __init dm_init(void)
 306{
 307        const int count = ARRAY_SIZE(_inits);
 308
 309        int r, i;
 310
 311        for (i = 0; i < count; i++) {
 312                r = _inits[i]();
 313                if (r)
 314                        goto bad;
 315        }
 316
 317        return 0;
 318
 319      bad:
 320        while (i--)
 321                _exits[i]();
 322
 323        return r;
 324}
 325
 326static void __exit dm_exit(void)
 327{
 328        int i = ARRAY_SIZE(_exits);
 329
 330        while (i--)
 331                _exits[i]();
 332
 333        /*
 334         * Should be empty by this point.
 335         */
 336        idr_destroy(&_minor_idr);
 337}
 338
 339/*
 340 * Block device functions
 341 */
 342int dm_deleting_md(struct mapped_device *md)
 343{
 344        return test_bit(DMF_DELETING, &md->flags);
 345}
 346
 347static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 348{
 349        struct mapped_device *md;
 350
 351        spin_lock(&_minor_lock);
 352
 353        md = bdev->bd_disk->private_data;
 354        if (!md)
 355                goto out;
 356
 357        if (test_bit(DMF_FREEING, &md->flags) ||
 358            dm_deleting_md(md)) {
 359                md = NULL;
 360                goto out;
 361        }
 362
 363        dm_get(md);
 364        atomic_inc(&md->open_count);
 365out:
 366        spin_unlock(&_minor_lock);
 367
 368        return md ? 0 : -ENXIO;
 369}
 370
 371static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 372{
 373        struct mapped_device *md;
 374
 375        spin_lock(&_minor_lock);
 376
 377        md = disk->private_data;
 378        if (WARN_ON(!md))
 379                goto out;
 380
 381        if (atomic_dec_and_test(&md->open_count) &&
 382            (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 383                queue_work(deferred_remove_workqueue, &deferred_remove_work);
 384
 385        dm_put(md);
 386out:
 387        spin_unlock(&_minor_lock);
 388}
 389
 390int dm_open_count(struct mapped_device *md)
 391{
 392        return atomic_read(&md->open_count);
 393}
 394
 395/*
 396 * Guarantees nothing is using the device before it's deleted.
 397 */
 398int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 399{
 400        int r = 0;
 401
 402        spin_lock(&_minor_lock);
 403
 404        if (dm_open_count(md)) {
 405                r = -EBUSY;
 406                if (mark_deferred)
 407                        set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 408        } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 409                r = -EEXIST;
 410        else
 411                set_bit(DMF_DELETING, &md->flags);
 412
 413        spin_unlock(&_minor_lock);
 414
 415        return r;
 416}
 417
 418int dm_cancel_deferred_remove(struct mapped_device *md)
 419{
 420        int r = 0;
 421
 422        spin_lock(&_minor_lock);
 423
 424        if (test_bit(DMF_DELETING, &md->flags))
 425                r = -EBUSY;
 426        else
 427                clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 428
 429        spin_unlock(&_minor_lock);
 430
 431        return r;
 432}
 433
 434static void do_deferred_remove(struct work_struct *w)
 435{
 436        dm_deferred_remove();
 437}
 438
 439sector_t dm_get_size(struct mapped_device *md)
 440{
 441        return get_capacity(md->disk);
 442}
 443
 444struct request_queue *dm_get_md_queue(struct mapped_device *md)
 445{
 446        return md->queue;
 447}
 448
 449struct dm_stats *dm_get_stats(struct mapped_device *md)
 450{
 451        return &md->stats;
 452}
 453
 454static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 455{
 456        struct mapped_device *md = bdev->bd_disk->private_data;
 457
 458        return dm_get_geometry(md, geo);
 459}
 460
 461static char *_dm_claim_ptr = "I belong to device-mapper";
 462
 463static int dm_get_bdev_for_ioctl(struct mapped_device *md,
 464                                 struct block_device **bdev,
 465                                 fmode_t *mode)
 466{
 467        struct dm_target *tgt;
 468        struct dm_table *map;
 469        int srcu_idx, r, r2;
 470
 471retry:
 472        r = -ENOTTY;
 473        map = dm_get_live_table(md, &srcu_idx);
 474        if (!map || !dm_table_get_size(map))
 475                goto out;
 476
 477        /* We only support devices that have a single target */
 478        if (dm_table_get_num_targets(map) != 1)
 479                goto out;
 480
 481        tgt = dm_table_get_target(map, 0);
 482        if (!tgt->type->prepare_ioctl)
 483                goto out;
 484
 485        if (dm_suspended_md(md)) {
 486                r = -EAGAIN;
 487                goto out;
 488        }
 489
 490        r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 491        if (r < 0)
 492                goto out;
 493
 494        bdgrab(*bdev);
 495        r2 = blkdev_get(*bdev, *mode, _dm_claim_ptr);
 496        if (r2 < 0) {
 497                r = r2;
 498                goto out;
 499        }
 500
 501        dm_put_live_table(md, srcu_idx);
 502        return r;
 503
 504out:
 505        dm_put_live_table(md, srcu_idx);
 506        if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 507                msleep(10);
 508                goto retry;
 509        }
 510        return r;
 511}
 512
 513static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 514                        unsigned int cmd, unsigned long arg)
 515{
 516        struct mapped_device *md = bdev->bd_disk->private_data;
 517        int r;
 518
 519        r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
 520        if (r < 0)
 521                return r;
 522
 523        if (r > 0) {
 524                /*
 525                 * Target determined this ioctl is being issued against a
 526                 * subset of the parent bdev; require extra privileges.
 527                 */
 528                if (!capable(CAP_SYS_RAWIO)) {
 529                        DMWARN_LIMIT(
 530        "%s: sending ioctl %x to DM device without required privilege.",
 531                                current->comm, cmd);
 532                        r = -ENOIOCTLCMD;
 533                        goto out;
 534                }
 535        }
 536
 537        r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 538out:
 539        blkdev_put(bdev, mode);
 540        return r;
 541}
 542
 543static void start_io_acct(struct dm_io *io);
 544
 545static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 546{
 547        struct dm_io *io;
 548        struct dm_target_io *tio;
 549        struct bio *clone;
 550
 551        clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
 552        if (!clone)
 553                return NULL;
 554
 555        tio = container_of(clone, struct dm_target_io, clone);
 556        tio->inside_dm_io = true;
 557        tio->io = NULL;
 558
 559        io = container_of(tio, struct dm_io, tio);
 560        io->magic = DM_IO_MAGIC;
 561        io->status = 0;
 562        atomic_set(&io->io_count, 1);
 563        io->orig_bio = bio;
 564        io->md = md;
 565        spin_lock_init(&io->endio_lock);
 566
 567        start_io_acct(io);
 568
 569        return io;
 570}
 571
 572static void free_io(struct mapped_device *md, struct dm_io *io)
 573{
 574        bio_put(&io->tio.clone);
 575}
 576
 577static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 578                                      unsigned target_bio_nr, gfp_t gfp_mask)
 579{
 580        struct dm_target_io *tio;
 581
 582        if (!ci->io->tio.io) {
 583                /* the dm_target_io embedded in ci->io is available */
 584                tio = &ci->io->tio;
 585        } else {
 586                struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
 587                if (!clone)
 588                        return NULL;
 589
 590                tio = container_of(clone, struct dm_target_io, clone);
 591                tio->inside_dm_io = false;
 592        }
 593
 594        tio->magic = DM_TIO_MAGIC;
 595        tio->io = ci->io;
 596        tio->ti = ti;
 597        tio->target_bio_nr = target_bio_nr;
 598
 599        return tio;
 600}
 601
 602static void free_tio(struct dm_target_io *tio)
 603{
 604        if (tio->inside_dm_io)
 605                return;
 606        bio_put(&tio->clone);
 607}
 608
 609int md_in_flight(struct mapped_device *md)
 610{
 611        return atomic_read(&md->pending[READ]) +
 612               atomic_read(&md->pending[WRITE]);
 613}
 614
 615static void start_io_acct(struct dm_io *io)
 616{
 617        struct mapped_device *md = io->md;
 618        struct bio *bio = io->orig_bio;
 619        int rw = bio_data_dir(bio);
 620
 621        io->start_time = jiffies;
 622
 623        generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
 624
 625        atomic_set(&dm_disk(md)->part0.in_flight[rw],
 626                   atomic_inc_return(&md->pending[rw]));
 627
 628        if (unlikely(dm_stats_used(&md->stats)))
 629                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 630                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 631                                    false, 0, &io->stats_aux);
 632}
 633
 634static void end_io_acct(struct dm_io *io)
 635{
 636        struct mapped_device *md = io->md;
 637        struct bio *bio = io->orig_bio;
 638        unsigned long duration = jiffies - io->start_time;
 639        int pending;
 640        int rw = bio_data_dir(bio);
 641
 642        generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
 643
 644        if (unlikely(dm_stats_used(&md->stats)))
 645                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 646                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 647                                    true, duration, &io->stats_aux);
 648
 649        /*
 650         * After this is decremented the bio must not be touched if it is
 651         * a flush.
 652         */
 653        pending = atomic_dec_return(&md->pending[rw]);
 654        atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 655        pending += atomic_read(&md->pending[rw^0x1]);
 656
 657        /* nudge anyone waiting on suspend queue */
 658        if (!pending)
 659                wake_up(&md->wait);
 660}
 661
 662/*
 663 * Add the bio to the list of deferred io.
 664 */
 665static void queue_io(struct mapped_device *md, struct bio *bio)
 666{
 667        unsigned long flags;
 668
 669        spin_lock_irqsave(&md->deferred_lock, flags);
 670        bio_list_add(&md->deferred, bio);
 671        spin_unlock_irqrestore(&md->deferred_lock, flags);
 672        queue_work(md->wq, &md->work);
 673}
 674
 675/*
 676 * Everyone (including functions in this file), should use this
 677 * function to access the md->map field, and make sure they call
 678 * dm_put_live_table() when finished.
 679 */
 680struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 681{
 682        *srcu_idx = srcu_read_lock(&md->io_barrier);
 683
 684        return srcu_dereference(md->map, &md->io_barrier);
 685}
 686
 687void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 688{
 689        srcu_read_unlock(&md->io_barrier, srcu_idx);
 690}
 691
 692void dm_sync_table(struct mapped_device *md)
 693{
 694        synchronize_srcu(&md->io_barrier);
 695        synchronize_rcu_expedited();
 696}
 697
 698/*
 699 * A fast alternative to dm_get_live_table/dm_put_live_table.
 700 * The caller must not block between these two functions.
 701 */
 702static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 703{
 704        rcu_read_lock();
 705        return rcu_dereference(md->map);
 706}
 707
 708static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 709{
 710        rcu_read_unlock();
 711}
 712
 713/*
 714 * Open a table device so we can use it as a map destination.
 715 */
 716static int open_table_device(struct table_device *td, dev_t dev,
 717                             struct mapped_device *md)
 718{
 719        struct block_device *bdev;
 720
 721        int r;
 722
 723        BUG_ON(td->dm_dev.bdev);
 724
 725        bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 726        if (IS_ERR(bdev))
 727                return PTR_ERR(bdev);
 728
 729        r = bd_link_disk_holder(bdev, dm_disk(md));
 730        if (r) {
 731                blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 732                return r;
 733        }
 734
 735        td->dm_dev.bdev = bdev;
 736        td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 737        return 0;
 738}
 739
 740/*
 741 * Close a table device that we've been using.
 742 */
 743static void close_table_device(struct table_device *td, struct mapped_device *md)
 744{
 745        if (!td->dm_dev.bdev)
 746                return;
 747
 748        bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 749        blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 750        put_dax(td->dm_dev.dax_dev);
 751        td->dm_dev.bdev = NULL;
 752        td->dm_dev.dax_dev = NULL;
 753}
 754
 755static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 756                                              fmode_t mode) {
 757        struct table_device *td;
 758
 759        list_for_each_entry(td, l, list)
 760                if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 761                        return td;
 762
 763        return NULL;
 764}
 765
 766int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 767                        struct dm_dev **result) {
 768        int r;
 769        struct table_device *td;
 770
 771        mutex_lock(&md->table_devices_lock);
 772        td = find_table_device(&md->table_devices, dev, mode);
 773        if (!td) {
 774                td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 775                if (!td) {
 776                        mutex_unlock(&md->table_devices_lock);
 777                        return -ENOMEM;
 778                }
 779
 780                td->dm_dev.mode = mode;
 781                td->dm_dev.bdev = NULL;
 782
 783                if ((r = open_table_device(td, dev, md))) {
 784                        mutex_unlock(&md->table_devices_lock);
 785                        kfree(td);
 786                        return r;
 787                }
 788
 789                format_dev_t(td->dm_dev.name, dev);
 790
 791                refcount_set(&td->count, 1);
 792                list_add(&td->list, &md->table_devices);
 793        } else {
 794                refcount_inc(&td->count);
 795        }
 796        mutex_unlock(&md->table_devices_lock);
 797
 798        *result = &td->dm_dev;
 799        return 0;
 800}
 801EXPORT_SYMBOL_GPL(dm_get_table_device);
 802
 803void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 804{
 805        struct table_device *td = container_of(d, struct table_device, dm_dev);
 806
 807        mutex_lock(&md->table_devices_lock);
 808        if (refcount_dec_and_test(&td->count)) {
 809                close_table_device(td, md);
 810                list_del(&td->list);
 811                kfree(td);
 812        }
 813        mutex_unlock(&md->table_devices_lock);
 814}
 815EXPORT_SYMBOL(dm_put_table_device);
 816
 817static void free_table_devices(struct list_head *devices)
 818{
 819        struct list_head *tmp, *next;
 820
 821        list_for_each_safe(tmp, next, devices) {
 822                struct table_device *td = list_entry(tmp, struct table_device, list);
 823
 824                DMWARN("dm_destroy: %s still exists with %d references",
 825                       td->dm_dev.name, refcount_read(&td->count));
 826                kfree(td);
 827        }
 828}
 829
 830/*
 831 * Get the geometry associated with a dm device
 832 */
 833int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 834{
 835        *geo = md->geometry;
 836
 837        return 0;
 838}
 839
 840/*
 841 * Set the geometry of a device.
 842 */
 843int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 844{
 845        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 846
 847        if (geo->start > sz) {
 848                DMWARN("Start sector is beyond the geometry limits.");
 849                return -EINVAL;
 850        }
 851
 852        md->geometry = *geo;
 853
 854        return 0;
 855}
 856
 857static int __noflush_suspending(struct mapped_device *md)
 858{
 859        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 860}
 861
 862/*
 863 * Decrements the number of outstanding ios that a bio has been
 864 * cloned into, completing the original io if necc.
 865 */
 866static void dec_pending(struct dm_io *io, blk_status_t error)
 867{
 868        unsigned long flags;
 869        blk_status_t io_error;
 870        struct bio *bio;
 871        struct mapped_device *md = io->md;
 872
 873        /* Push-back supersedes any I/O errors */
 874        if (unlikely(error)) {
 875                spin_lock_irqsave(&io->endio_lock, flags);
 876                if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 877                        io->status = error;
 878                spin_unlock_irqrestore(&io->endio_lock, flags);
 879        }
 880
 881        if (atomic_dec_and_test(&io->io_count)) {
 882                if (io->status == BLK_STS_DM_REQUEUE) {
 883                        /*
 884                         * Target requested pushing back the I/O.
 885                         */
 886                        spin_lock_irqsave(&md->deferred_lock, flags);
 887                        if (__noflush_suspending(md))
 888                                /* NOTE early return due to BLK_STS_DM_REQUEUE below */
 889                                bio_list_add_head(&md->deferred, io->orig_bio);
 890                        else
 891                                /* noflush suspend was interrupted. */
 892                                io->status = BLK_STS_IOERR;
 893                        spin_unlock_irqrestore(&md->deferred_lock, flags);
 894                }
 895
 896                io_error = io->status;
 897                bio = io->orig_bio;
 898                end_io_acct(io);
 899                free_io(md, io);
 900
 901                if (io_error == BLK_STS_DM_REQUEUE)
 902                        return;
 903
 904                if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 905                        /*
 906                         * Preflush done for flush with data, reissue
 907                         * without REQ_PREFLUSH.
 908                         */
 909                        bio->bi_opf &= ~REQ_PREFLUSH;
 910                        queue_io(md, bio);
 911                } else {
 912                        /* done with normal IO or empty flush */
 913                        if (io_error)
 914                                bio->bi_status = io_error;
 915                        bio_endio(bio);
 916                }
 917        }
 918}
 919
 920void disable_write_same(struct mapped_device *md)
 921{
 922        struct queue_limits *limits = dm_get_queue_limits(md);
 923
 924        /* device doesn't really support WRITE SAME, disable it */
 925        limits->max_write_same_sectors = 0;
 926}
 927
 928void disable_write_zeroes(struct mapped_device *md)
 929{
 930        struct queue_limits *limits = dm_get_queue_limits(md);
 931
 932        /* device doesn't really support WRITE ZEROES, disable it */
 933        limits->max_write_zeroes_sectors = 0;
 934}
 935
 936static void clone_endio(struct bio *bio)
 937{
 938        blk_status_t error = bio->bi_status;
 939        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 940        struct dm_io *io = tio->io;
 941        struct mapped_device *md = tio->io->md;
 942        dm_endio_fn endio = tio->ti->type->end_io;
 943
 944        if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 945                if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 946                    !bio->bi_disk->queue->limits.max_write_same_sectors)
 947                        disable_write_same(md);
 948                if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 949                    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 950                        disable_write_zeroes(md);
 951        }
 952
 953        if (endio) {
 954                int r = endio(tio->ti, bio, &error);
 955                switch (r) {
 956                case DM_ENDIO_REQUEUE:
 957                        error = BLK_STS_DM_REQUEUE;
 958                        /*FALLTHRU*/
 959                case DM_ENDIO_DONE:
 960                        break;
 961                case DM_ENDIO_INCOMPLETE:
 962                        /* The target will handle the io */
 963                        return;
 964                default:
 965                        DMWARN("unimplemented target endio return value: %d", r);
 966                        BUG();
 967                }
 968        }
 969
 970        free_tio(tio);
 971        dec_pending(io, error);
 972}
 973
 974/*
 975 * Return maximum size of I/O possible at the supplied sector up to the current
 976 * target boundary.
 977 */
 978static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 979{
 980        sector_t target_offset = dm_target_offset(ti, sector);
 981
 982        return ti->len - target_offset;
 983}
 984
 985static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 986{
 987        sector_t len = max_io_len_target_boundary(sector, ti);
 988        sector_t offset, max_len;
 989
 990        /*
 991         * Does the target need to split even further?
 992         */
 993        if (ti->max_io_len) {
 994                offset = dm_target_offset(ti, sector);
 995                if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 996                        max_len = sector_div(offset, ti->max_io_len);
 997                else
 998                        max_len = offset & (ti->max_io_len - 1);
 999                max_len = ti->max_io_len - max_len;
1000
1001                if (len > max_len)
1002                        len = max_len;
1003        }
1004
1005        return len;
1006}
1007
1008int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1009{
1010        if (len > UINT_MAX) {
1011                DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1012                      (unsigned long long)len, UINT_MAX);
1013                ti->error = "Maximum size of target IO is too large";
1014                return -EINVAL;
1015        }
1016
1017        /*
1018         * BIO based queue uses its own splitting. When multipage bvecs
1019         * is switched on, size of the incoming bio may be too big to
1020         * be handled in some targets, such as crypt.
1021         *
1022         * When these targets are ready for the big bio, we can remove
1023         * the limit.
1024         */
1025        ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1026
1027        return 0;
1028}
1029EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1030
1031static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1032                sector_t sector, int *srcu_idx)
1033{
1034        struct dm_table *map;
1035        struct dm_target *ti;
1036
1037        map = dm_get_live_table(md, srcu_idx);
1038        if (!map)
1039                return NULL;
1040
1041        ti = dm_table_find_target(map, sector);
1042        if (!dm_target_is_valid(ti))
1043                return NULL;
1044
1045        return ti;
1046}
1047
1048static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1049                long nr_pages, void **kaddr, pfn_t *pfn)
1050{
1051        struct mapped_device *md = dax_get_private(dax_dev);
1052        sector_t sector = pgoff * PAGE_SECTORS;
1053        struct dm_target *ti;
1054        long len, ret = -EIO;
1055        int srcu_idx;
1056
1057        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1058
1059        if (!ti)
1060                goto out;
1061        if (!ti->type->direct_access)
1062                goto out;
1063        len = max_io_len(sector, ti) / PAGE_SECTORS;
1064        if (len < 1)
1065                goto out;
1066        nr_pages = min(len, nr_pages);
1067        if (ti->type->direct_access)
1068                ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1069
1070 out:
1071        dm_put_live_table(md, srcu_idx);
1072
1073        return ret;
1074}
1075
1076static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1077                void *addr, size_t bytes, struct iov_iter *i)
1078{
1079        struct mapped_device *md = dax_get_private(dax_dev);
1080        sector_t sector = pgoff * PAGE_SECTORS;
1081        struct dm_target *ti;
1082        long ret = 0;
1083        int srcu_idx;
1084
1085        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1086
1087        if (!ti)
1088                goto out;
1089        if (!ti->type->dax_copy_from_iter) {
1090                ret = copy_from_iter(addr, bytes, i);
1091                goto out;
1092        }
1093        ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1094 out:
1095        dm_put_live_table(md, srcu_idx);
1096
1097        return ret;
1098}
1099
1100/*
1101 * A target may call dm_accept_partial_bio only from the map routine.  It is
1102 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1103 *
1104 * dm_accept_partial_bio informs the dm that the target only wants to process
1105 * additional n_sectors sectors of the bio and the rest of the data should be
1106 * sent in a next bio.
1107 *
1108 * A diagram that explains the arithmetics:
1109 * +--------------------+---------------+-------+
1110 * |         1          |       2       |   3   |
1111 * +--------------------+---------------+-------+
1112 *
1113 * <-------------- *tio->len_ptr --------------->
1114 *                      <------- bi_size ------->
1115 *                      <-- n_sectors -->
1116 *
1117 * Region 1 was already iterated over with bio_advance or similar function.
1118 *      (it may be empty if the target doesn't use bio_advance)
1119 * Region 2 is the remaining bio size that the target wants to process.
1120 *      (it may be empty if region 1 is non-empty, although there is no reason
1121 *       to make it empty)
1122 * The target requires that region 3 is to be sent in the next bio.
1123 *
1124 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1125 * the partially processed part (the sum of regions 1+2) must be the same for all
1126 * copies of the bio.
1127 */
1128void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1129{
1130        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1131        unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1132        BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1133        BUG_ON(bi_size > *tio->len_ptr);
1134        BUG_ON(n_sectors > bi_size);
1135        *tio->len_ptr -= bi_size - n_sectors;
1136        bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1137}
1138EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1139
1140/*
1141 * The zone descriptors obtained with a zone report indicate
1142 * zone positions within the target device. The zone descriptors
1143 * must be remapped to match their position within the dm device.
1144 * A target may call dm_remap_zone_report after completion of a
1145 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1146 * from the target device mapping to the dm device.
1147 */
1148void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1149{
1150#ifdef CONFIG_BLK_DEV_ZONED
1151        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1152        struct bio *report_bio = tio->io->orig_bio;
1153        struct blk_zone_report_hdr *hdr = NULL;
1154        struct blk_zone *zone;
1155        unsigned int nr_rep = 0;
1156        unsigned int ofst;
1157        struct bio_vec bvec;
1158        struct bvec_iter iter;
1159        void *addr;
1160
1161        if (bio->bi_status)
1162                return;
1163
1164        /*
1165         * Remap the start sector of the reported zones. For sequential zones,
1166         * also remap the write pointer position.
1167         */
1168        bio_for_each_segment(bvec, report_bio, iter) {
1169                addr = kmap_atomic(bvec.bv_page);
1170
1171                /* Remember the report header in the first page */
1172                if (!hdr) {
1173                        hdr = addr;
1174                        ofst = sizeof(struct blk_zone_report_hdr);
1175                } else
1176                        ofst = 0;
1177
1178                /* Set zones start sector */
1179                while (hdr->nr_zones && ofst < bvec.bv_len) {
1180                        zone = addr + ofst;
1181                        if (zone->start >= start + ti->len) {
1182                                hdr->nr_zones = 0;
1183                                break;
1184                        }
1185                        zone->start = zone->start + ti->begin - start;
1186                        if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1187                                if (zone->cond == BLK_ZONE_COND_FULL)
1188                                        zone->wp = zone->start + zone->len;
1189                                else if (zone->cond == BLK_ZONE_COND_EMPTY)
1190                                        zone->wp = zone->start;
1191                                else
1192                                        zone->wp = zone->wp + ti->begin - start;
1193                        }
1194                        ofst += sizeof(struct blk_zone);
1195                        hdr->nr_zones--;
1196                        nr_rep++;
1197                }
1198
1199                if (addr != hdr)
1200                        kunmap_atomic(addr);
1201
1202                if (!hdr->nr_zones)
1203                        break;
1204        }
1205
1206        if (hdr) {
1207                hdr->nr_zones = nr_rep;
1208                kunmap_atomic(hdr);
1209        }
1210
1211        bio_advance(report_bio, report_bio->bi_iter.bi_size);
1212
1213#else /* !CONFIG_BLK_DEV_ZONED */
1214        bio->bi_status = BLK_STS_NOTSUPP;
1215#endif
1216}
1217EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1218
1219static blk_qc_t __map_bio(struct dm_target_io *tio)
1220{
1221        int r;
1222        sector_t sector;
1223        struct bio *clone = &tio->clone;
1224        struct dm_io *io = tio->io;
1225        struct mapped_device *md = io->md;
1226        struct dm_target *ti = tio->ti;
1227        blk_qc_t ret = BLK_QC_T_NONE;
1228
1229        clone->bi_end_io = clone_endio;
1230
1231        /*
1232         * Map the clone.  If r == 0 we don't need to do
1233         * anything, the target has assumed ownership of
1234         * this io.
1235         */
1236        atomic_inc(&io->io_count);
1237        sector = clone->bi_iter.bi_sector;
1238
1239        r = ti->type->map(ti, clone);
1240        switch (r) {
1241        case DM_MAPIO_SUBMITTED:
1242                break;
1243        case DM_MAPIO_REMAPPED:
1244                /* the bio has been remapped so dispatch it */
1245                trace_block_bio_remap(clone->bi_disk->queue, clone,
1246                                      bio_dev(io->orig_bio), sector);
1247                if (md->type == DM_TYPE_NVME_BIO_BASED)
1248                        ret = direct_make_request(clone);
1249                else
1250                        ret = generic_make_request(clone);
1251                break;
1252        case DM_MAPIO_KILL:
1253                free_tio(tio);
1254                dec_pending(io, BLK_STS_IOERR);
1255                break;
1256        case DM_MAPIO_REQUEUE:
1257                free_tio(tio);
1258                dec_pending(io, BLK_STS_DM_REQUEUE);
1259                break;
1260        default:
1261                DMWARN("unimplemented target map return value: %d", r);
1262                BUG();
1263        }
1264
1265        return ret;
1266}
1267
1268static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1269{
1270        bio->bi_iter.bi_sector = sector;
1271        bio->bi_iter.bi_size = to_bytes(len);
1272}
1273
1274/*
1275 * Creates a bio that consists of range of complete bvecs.
1276 */
1277static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1278                     sector_t sector, unsigned len)
1279{
1280        struct bio *clone = &tio->clone;
1281
1282        __bio_clone_fast(clone, bio);
1283
1284        if (unlikely(bio_integrity(bio) != NULL)) {
1285                int r;
1286
1287                if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1288                             !dm_target_passes_integrity(tio->ti->type))) {
1289                        DMWARN("%s: the target %s doesn't support integrity data.",
1290                                dm_device_name(tio->io->md),
1291                                tio->ti->type->name);
1292                        return -EIO;
1293                }
1294
1295                r = bio_integrity_clone(clone, bio, GFP_NOIO);
1296                if (r < 0)
1297                        return r;
1298        }
1299
1300        if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1301                bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1302        clone->bi_iter.bi_size = to_bytes(len);
1303
1304        if (unlikely(bio_integrity(bio) != NULL))
1305                bio_integrity_trim(clone);
1306
1307        return 0;
1308}
1309
1310static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1311                                struct dm_target *ti, unsigned num_bios)
1312{
1313        struct dm_target_io *tio;
1314        int try;
1315
1316        if (!num_bios)
1317                return;
1318
1319        if (num_bios == 1) {
1320                tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1321                bio_list_add(blist, &tio->clone);
1322                return;
1323        }
1324
1325        for (try = 0; try < 2; try++) {
1326                int bio_nr;
1327                struct bio *bio;
1328
1329                if (try)
1330                        mutex_lock(&ci->io->md->table_devices_lock);
1331                for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1332                        tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1333                        if (!tio)
1334                                break;
1335
1336                        bio_list_add(blist, &tio->clone);
1337                }
1338                if (try)
1339                        mutex_unlock(&ci->io->md->table_devices_lock);
1340                if (bio_nr == num_bios)
1341                        return;
1342
1343                while ((bio = bio_list_pop(blist))) {
1344                        tio = container_of(bio, struct dm_target_io, clone);
1345                        free_tio(tio);
1346                }
1347        }
1348}
1349
1350static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1351                                           struct dm_target_io *tio, unsigned *len)
1352{
1353        struct bio *clone = &tio->clone;
1354
1355        tio->len_ptr = len;
1356
1357        __bio_clone_fast(clone, ci->bio);
1358        if (len)
1359                bio_setup_sector(clone, ci->sector, *len);
1360
1361        return __map_bio(tio);
1362}
1363
1364static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1365                                  unsigned num_bios, unsigned *len)
1366{
1367        struct bio_list blist = BIO_EMPTY_LIST;
1368        struct bio *bio;
1369        struct dm_target_io *tio;
1370
1371        alloc_multiple_bios(&blist, ci, ti, num_bios);
1372
1373        while ((bio = bio_list_pop(&blist))) {
1374                tio = container_of(bio, struct dm_target_io, clone);
1375                (void) __clone_and_map_simple_bio(ci, tio, len);
1376        }
1377}
1378
1379static int __send_empty_flush(struct clone_info *ci)
1380{
1381        unsigned target_nr = 0;
1382        struct dm_target *ti;
1383
1384        BUG_ON(bio_has_data(ci->bio));
1385        while ((ti = dm_table_get_target(ci->map, target_nr++)))
1386                __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1387
1388        return 0;
1389}
1390
1391static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1392                                    sector_t sector, unsigned *len)
1393{
1394        struct bio *bio = ci->bio;
1395        struct dm_target_io *tio;
1396        int r;
1397
1398        tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1399        tio->len_ptr = len;
1400        r = clone_bio(tio, bio, sector, *len);
1401        if (r < 0) {
1402                free_tio(tio);
1403                return r;
1404        }
1405        (void) __map_bio(tio);
1406
1407        return 0;
1408}
1409
1410typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1411
1412static unsigned get_num_discard_bios(struct dm_target *ti)
1413{
1414        return ti->num_discard_bios;
1415}
1416
1417static unsigned get_num_write_same_bios(struct dm_target *ti)
1418{
1419        return ti->num_write_same_bios;
1420}
1421
1422static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1423{
1424        return ti->num_write_zeroes_bios;
1425}
1426
1427typedef bool (*is_split_required_fn)(struct dm_target *ti);
1428
1429static bool is_split_required_for_discard(struct dm_target *ti)
1430{
1431        return ti->split_discard_bios;
1432}
1433
1434static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1435                                       get_num_bios_fn get_num_bios,
1436                                       is_split_required_fn is_split_required)
1437{
1438        unsigned len;
1439        unsigned num_bios;
1440
1441        /*
1442         * Even though the device advertised support for this type of
1443         * request, that does not mean every target supports it, and
1444         * reconfiguration might also have changed that since the
1445         * check was performed.
1446         */
1447        num_bios = get_num_bios ? get_num_bios(ti) : 0;
1448        if (!num_bios)
1449                return -EOPNOTSUPP;
1450
1451        if (is_split_required && !is_split_required(ti))
1452                len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1453        else
1454                len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1455
1456        __send_duplicate_bios(ci, ti, num_bios, &len);
1457
1458        ci->sector += len;
1459        ci->sector_count -= len;
1460
1461        return 0;
1462}
1463
1464static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1465{
1466        return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1467                                           is_split_required_for_discard);
1468}
1469
1470static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1471{
1472        return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1473}
1474
1475static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1476{
1477        return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1478}
1479
1480/*
1481 * Select the correct strategy for processing a non-flush bio.
1482 */
1483static int __split_and_process_non_flush(struct clone_info *ci)
1484{
1485        struct bio *bio = ci->bio;
1486        struct dm_target *ti;
1487        unsigned len;
1488        int r;
1489
1490        ti = dm_table_find_target(ci->map, ci->sector);
1491        if (!dm_target_is_valid(ti))
1492                return -EIO;
1493
1494        if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1495                return __send_discard(ci, ti);
1496        else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1497                return __send_write_same(ci, ti);
1498        else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1499                return __send_write_zeroes(ci, ti);
1500
1501        if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1502                len = ci->sector_count;
1503        else
1504                len = min_t(sector_t, max_io_len(ci->sector, ti),
1505                            ci->sector_count);
1506
1507        r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1508        if (r < 0)
1509                return r;
1510
1511        ci->sector += len;
1512        ci->sector_count -= len;
1513
1514        return 0;
1515}
1516
1517static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1518                            struct dm_table *map, struct bio *bio)
1519{
1520        ci->map = map;
1521        ci->io = alloc_io(md, bio);
1522        ci->sector = bio->bi_iter.bi_sector;
1523}
1524
1525/*
1526 * Entry point to split a bio into clones and submit them to the targets.
1527 */
1528static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1529                                        struct dm_table *map, struct bio *bio)
1530{
1531        struct clone_info ci;
1532        blk_qc_t ret = BLK_QC_T_NONE;
1533        int error = 0;
1534
1535        if (unlikely(!map)) {
1536                bio_io_error(bio);
1537                return ret;
1538        }
1539
1540        init_clone_info(&ci, md, map, bio);
1541
1542        if (bio->bi_opf & REQ_PREFLUSH) {
1543                ci.bio = &ci.io->md->flush_bio;
1544                ci.sector_count = 0;
1545                error = __send_empty_flush(&ci);
1546                /* dec_pending submits any data associated with flush */
1547        } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1548                ci.bio = bio;
1549                ci.sector_count = 0;
1550                error = __split_and_process_non_flush(&ci);
1551        } else {
1552                ci.bio = bio;
1553                ci.sector_count = bio_sectors(bio);
1554                while (ci.sector_count && !error) {
1555                        error = __split_and_process_non_flush(&ci);
1556                        if (current->bio_list && ci.sector_count && !error) {
1557                                /*
1558                                 * Remainder must be passed to generic_make_request()
1559                                 * so that it gets handled *after* bios already submitted
1560                                 * have been completely processed.
1561                                 * We take a clone of the original to store in
1562                                 * ci.io->orig_bio to be used by end_io_acct() and
1563                                 * for dec_pending to use for completion handling.
1564                                 * As this path is not used for REQ_OP_ZONE_REPORT,
1565                                 * the usage of io->orig_bio in dm_remap_zone_report()
1566                                 * won't be affected by this reassignment.
1567                                 */
1568                                struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1569                                                                 md->queue->bio_split);
1570                                ci.io->orig_bio = b;
1571                                bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1572                                bio_chain(b, bio);
1573                                ret = generic_make_request(bio);
1574                                break;
1575                        }
1576                }
1577        }
1578
1579        /* drop the extra reference count */
1580        dec_pending(ci.io, errno_to_blk_status(error));
1581        return ret;
1582}
1583
1584/*
1585 * Optimized variant of __split_and_process_bio that leverages the
1586 * fact that targets that use it do _not_ have a need to split bios.
1587 */
1588static blk_qc_t __process_bio(struct mapped_device *md,
1589                              struct dm_table *map, struct bio *bio)
1590{
1591        struct clone_info ci;
1592        blk_qc_t ret = BLK_QC_T_NONE;
1593        int error = 0;
1594
1595        if (unlikely(!map)) {
1596                bio_io_error(bio);
1597                return ret;
1598        }
1599
1600        init_clone_info(&ci, md, map, bio);
1601
1602        if (bio->bi_opf & REQ_PREFLUSH) {
1603                ci.bio = &ci.io->md->flush_bio;
1604                ci.sector_count = 0;
1605                error = __send_empty_flush(&ci);
1606                /* dec_pending submits any data associated with flush */
1607        } else {
1608                struct dm_target *ti = md->immutable_target;
1609                struct dm_target_io *tio;
1610
1611                /*
1612                 * Defend against IO still getting in during teardown
1613                 * - as was seen for a time with nvme-fcloop
1614                 */
1615                if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1616                        error = -EIO;
1617                        goto out;
1618                }
1619
1620                tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1621                ci.bio = bio;
1622                ci.sector_count = bio_sectors(bio);
1623                ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1624        }
1625out:
1626        /* drop the extra reference count */
1627        dec_pending(ci.io, errno_to_blk_status(error));
1628        return ret;
1629}
1630
1631typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1632
1633static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1634                                  process_bio_fn process_bio)
1635{
1636        struct mapped_device *md = q->queuedata;
1637        blk_qc_t ret = BLK_QC_T_NONE;
1638        int srcu_idx;
1639        struct dm_table *map;
1640
1641        map = dm_get_live_table(md, &srcu_idx);
1642
1643        /* if we're suspended, we have to queue this io for later */
1644        if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1645                dm_put_live_table(md, srcu_idx);
1646
1647                if (!(bio->bi_opf & REQ_RAHEAD))
1648                        queue_io(md, bio);
1649                else
1650                        bio_io_error(bio);
1651                return ret;
1652        }
1653
1654        ret = process_bio(md, map, bio);
1655
1656        dm_put_live_table(md, srcu_idx);
1657        return ret;
1658}
1659
1660/*
1661 * The request function that remaps the bio to one target and
1662 * splits off any remainder.
1663 */
1664static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1665{
1666        return __dm_make_request(q, bio, __split_and_process_bio);
1667}
1668
1669static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1670{
1671        return __dm_make_request(q, bio, __process_bio);
1672}
1673
1674static int dm_any_congested(void *congested_data, int bdi_bits)
1675{
1676        int r = bdi_bits;
1677        struct mapped_device *md = congested_data;
1678        struct dm_table *map;
1679
1680        if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1681                if (dm_request_based(md)) {
1682                        /*
1683                         * With request-based DM we only need to check the
1684                         * top-level queue for congestion.
1685                         */
1686                        r = md->queue->backing_dev_info->wb.state & bdi_bits;
1687                } else {
1688                        map = dm_get_live_table_fast(md);
1689                        if (map)
1690                                r = dm_table_any_congested(map, bdi_bits);
1691                        dm_put_live_table_fast(md);
1692                }
1693        }
1694
1695        return r;
1696}
1697
1698/*-----------------------------------------------------------------
1699 * An IDR is used to keep track of allocated minor numbers.
1700 *---------------------------------------------------------------*/
1701static void free_minor(int minor)
1702{
1703        spin_lock(&_minor_lock);
1704        idr_remove(&_minor_idr, minor);
1705        spin_unlock(&_minor_lock);
1706}
1707
1708/*
1709 * See if the device with a specific minor # is free.
1710 */
1711static int specific_minor(int minor)
1712{
1713        int r;
1714
1715        if (minor >= (1 << MINORBITS))
1716                return -EINVAL;
1717
1718        idr_preload(GFP_KERNEL);
1719        spin_lock(&_minor_lock);
1720
1721        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1722
1723        spin_unlock(&_minor_lock);
1724        idr_preload_end();
1725        if (r < 0)
1726                return r == -ENOSPC ? -EBUSY : r;
1727        return 0;
1728}
1729
1730static int next_free_minor(int *minor)
1731{
1732        int r;
1733
1734        idr_preload(GFP_KERNEL);
1735        spin_lock(&_minor_lock);
1736
1737        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1738
1739        spin_unlock(&_minor_lock);
1740        idr_preload_end();
1741        if (r < 0)
1742                return r;
1743        *minor = r;
1744        return 0;
1745}
1746
1747static const struct block_device_operations dm_blk_dops;
1748static const struct dax_operations dm_dax_ops;
1749
1750static void dm_wq_work(struct work_struct *work);
1751
1752static void dm_init_normal_md_queue(struct mapped_device *md)
1753{
1754        md->use_blk_mq = false;
1755
1756        /*
1757         * Initialize aspects of queue that aren't relevant for blk-mq
1758         */
1759        md->queue->backing_dev_info->congested_fn = dm_any_congested;
1760}
1761
1762static void cleanup_mapped_device(struct mapped_device *md)
1763{
1764        if (md->wq)
1765                destroy_workqueue(md->wq);
1766        if (md->kworker_task)
1767                kthread_stop(md->kworker_task);
1768        if (md->bs)
1769                bioset_free(md->bs);
1770        if (md->io_bs)
1771                bioset_free(md->io_bs);
1772
1773        if (md->dax_dev) {
1774                kill_dax(md->dax_dev);
1775                put_dax(md->dax_dev);
1776                md->dax_dev = NULL;
1777        }
1778
1779        if (md->disk) {
1780                spin_lock(&_minor_lock);
1781                md->disk->private_data = NULL;
1782                spin_unlock(&_minor_lock);
1783                del_gendisk(md->disk);
1784                put_disk(md->disk);
1785        }
1786
1787        if (md->queue)
1788                blk_cleanup_queue(md->queue);
1789
1790        cleanup_srcu_struct(&md->io_barrier);
1791
1792        if (md->bdev) {
1793                bdput(md->bdev);
1794                md->bdev = NULL;
1795        }
1796
1797        mutex_destroy(&md->suspend_lock);
1798        mutex_destroy(&md->type_lock);
1799        mutex_destroy(&md->table_devices_lock);
1800
1801        dm_mq_cleanup_mapped_device(md);
1802}
1803
1804/*
1805 * Allocate and initialise a blank device with a given minor.
1806 */
1807static struct mapped_device *alloc_dev(int minor)
1808{
1809        int r, numa_node_id = dm_get_numa_node();
1810        struct dax_device *dax_dev;
1811        struct mapped_device *md;
1812        void *old_md;
1813
1814        md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1815        if (!md) {
1816                DMWARN("unable to allocate device, out of memory.");
1817                return NULL;
1818        }
1819
1820        if (!try_module_get(THIS_MODULE))
1821                goto bad_module_get;
1822
1823        /* get a minor number for the dev */
1824        if (minor == DM_ANY_MINOR)
1825                r = next_free_minor(&minor);
1826        else
1827                r = specific_minor(minor);
1828        if (r < 0)
1829                goto bad_minor;
1830
1831        r = init_srcu_struct(&md->io_barrier);
1832        if (r < 0)
1833                goto bad_io_barrier;
1834
1835        md->numa_node_id = numa_node_id;
1836        md->use_blk_mq = dm_use_blk_mq_default();
1837        md->init_tio_pdu = false;
1838        md->type = DM_TYPE_NONE;
1839        mutex_init(&md->suspend_lock);
1840        mutex_init(&md->type_lock);
1841        mutex_init(&md->table_devices_lock);
1842        spin_lock_init(&md->deferred_lock);
1843        atomic_set(&md->holders, 1);
1844        atomic_set(&md->open_count, 0);
1845        atomic_set(&md->event_nr, 0);
1846        atomic_set(&md->uevent_seq, 0);
1847        INIT_LIST_HEAD(&md->uevent_list);
1848        INIT_LIST_HEAD(&md->table_devices);
1849        spin_lock_init(&md->uevent_lock);
1850
1851        md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1852        if (!md->queue)
1853                goto bad;
1854        md->queue->queuedata = md;
1855        md->queue->backing_dev_info->congested_data = md;
1856
1857        md->disk = alloc_disk_node(1, md->numa_node_id);
1858        if (!md->disk)
1859                goto bad;
1860
1861        atomic_set(&md->pending[0], 0);
1862        atomic_set(&md->pending[1], 0);
1863        init_waitqueue_head(&md->wait);
1864        INIT_WORK(&md->work, dm_wq_work);
1865        init_waitqueue_head(&md->eventq);
1866        init_completion(&md->kobj_holder.completion);
1867        md->kworker_task = NULL;
1868
1869        md->disk->major = _major;
1870        md->disk->first_minor = minor;
1871        md->disk->fops = &dm_blk_dops;
1872        md->disk->queue = md->queue;
1873        md->disk->private_data = md;
1874        sprintf(md->disk->disk_name, "dm-%d", minor);
1875
1876        dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1877        if (!dax_dev)
1878                goto bad;
1879        md->dax_dev = dax_dev;
1880
1881        add_disk_no_queue_reg(md->disk);
1882        format_dev_t(md->name, MKDEV(_major, minor));
1883
1884        md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1885        if (!md->wq)
1886                goto bad;
1887
1888        md->bdev = bdget_disk(md->disk, 0);
1889        if (!md->bdev)
1890                goto bad;
1891
1892        bio_init(&md->flush_bio, NULL, 0);
1893        bio_set_dev(&md->flush_bio, md->bdev);
1894        md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1895
1896        dm_stats_init(&md->stats);
1897
1898        /* Populate the mapping, nobody knows we exist yet */
1899        spin_lock(&_minor_lock);
1900        old_md = idr_replace(&_minor_idr, md, minor);
1901        spin_unlock(&_minor_lock);
1902
1903        BUG_ON(old_md != MINOR_ALLOCED);
1904
1905        return md;
1906
1907bad:
1908        cleanup_mapped_device(md);
1909bad_io_barrier:
1910        free_minor(minor);
1911bad_minor:
1912        module_put(THIS_MODULE);
1913bad_module_get:
1914        kvfree(md);
1915        return NULL;
1916}
1917
1918static void unlock_fs(struct mapped_device *md);
1919
1920static void free_dev(struct mapped_device *md)
1921{
1922        int minor = MINOR(disk_devt(md->disk));
1923
1924        unlock_fs(md);
1925
1926        cleanup_mapped_device(md);
1927
1928        free_table_devices(&md->table_devices);
1929        dm_stats_cleanup(&md->stats);
1930        free_minor(minor);
1931
1932        module_put(THIS_MODULE);
1933        kvfree(md);
1934}
1935
1936static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1937{
1938        struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1939
1940        if (dm_table_bio_based(t)) {
1941                /*
1942                 * The md may already have mempools that need changing.
1943                 * If so, reload bioset because front_pad may have changed
1944                 * because a different table was loaded.
1945                 */
1946                if (md->bs) {
1947                        bioset_free(md->bs);
1948                        md->bs = NULL;
1949                }
1950                if (md->io_bs) {
1951                        bioset_free(md->io_bs);
1952                        md->io_bs = NULL;
1953                }
1954
1955        } else if (md->bs) {
1956                /*
1957                 * There's no need to reload with request-based dm
1958                 * because the size of front_pad doesn't change.
1959                 * Note for future: If you are to reload bioset,
1960                 * prep-ed requests in the queue may refer
1961                 * to bio from the old bioset, so you must walk
1962                 * through the queue to unprep.
1963                 */
1964                goto out;
1965        }
1966
1967        BUG_ON(!p || md->bs || md->io_bs);
1968
1969        md->bs = p->bs;
1970        p->bs = NULL;
1971        md->io_bs = p->io_bs;
1972        p->io_bs = NULL;
1973out:
1974        /* mempool bind completed, no longer need any mempools in the table */
1975        dm_table_free_md_mempools(t);
1976}
1977
1978/*
1979 * Bind a table to the device.
1980 */
1981static void event_callback(void *context)
1982{
1983        unsigned long flags;
1984        LIST_HEAD(uevents);
1985        struct mapped_device *md = (struct mapped_device *) context;
1986
1987        spin_lock_irqsave(&md->uevent_lock, flags);
1988        list_splice_init(&md->uevent_list, &uevents);
1989        spin_unlock_irqrestore(&md->uevent_lock, flags);
1990
1991        dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1992
1993        atomic_inc(&md->event_nr);
1994        wake_up(&md->eventq);
1995        dm_issue_global_event();
1996}
1997
1998/*
1999 * Protected by md->suspend_lock obtained by dm_swap_table().
2000 */
2001static void __set_size(struct mapped_device *md, sector_t size)
2002{
2003        lockdep_assert_held(&md->suspend_lock);
2004
2005        set_capacity(md->disk, size);
2006
2007        i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2008}
2009
2010/*
2011 * Returns old map, which caller must destroy.
2012 */
2013static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2014                               struct queue_limits *limits)
2015{
2016        struct dm_table *old_map;
2017        struct request_queue *q = md->queue;
2018        bool request_based = dm_table_request_based(t);
2019        sector_t size;
2020
2021        lockdep_assert_held(&md->suspend_lock);
2022
2023        size = dm_table_get_size(t);
2024
2025        /*
2026         * Wipe any geometry if the size of the table changed.
2027         */
2028        if (size != dm_get_size(md))
2029                memset(&md->geometry, 0, sizeof(md->geometry));
2030
2031        __set_size(md, size);
2032
2033        dm_table_event_callback(t, event_callback, md);
2034
2035        /*
2036         * The queue hasn't been stopped yet, if the old table type wasn't
2037         * for request-based during suspension.  So stop it to prevent
2038         * I/O mapping before resume.
2039         * This must be done before setting the queue restrictions,
2040         * because request-based dm may be run just after the setting.
2041         */
2042        if (request_based)
2043                dm_stop_queue(q);
2044
2045        if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2046                /*
2047                 * Leverage the fact that request-based DM targets and
2048                 * NVMe bio based targets are immutable singletons
2049                 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2050                 *   and __process_bio.
2051                 */
2052                md->immutable_target = dm_table_get_immutable_target(t);
2053        }
2054
2055        __bind_mempools(md, t);
2056
2057        old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2058        rcu_assign_pointer(md->map, (void *)t);
2059        md->immutable_target_type = dm_table_get_immutable_target_type(t);
2060
2061        dm_table_set_restrictions(t, q, limits);
2062        if (old_map)
2063                dm_sync_table(md);
2064
2065        return old_map;
2066}
2067
2068/*
2069 * Returns unbound table for the caller to free.
2070 */
2071static struct dm_table *__unbind(struct mapped_device *md)
2072{
2073        struct dm_table *map = rcu_dereference_protected(md->map, 1);
2074
2075        if (!map)
2076                return NULL;
2077
2078        dm_table_event_callback(map, NULL, NULL);
2079        RCU_INIT_POINTER(md->map, NULL);
2080        dm_sync_table(md);
2081
2082        return map;
2083}
2084
2085/*
2086 * Constructor for a new device.
2087 */
2088int dm_create(int minor, struct mapped_device **result)
2089{
2090        int r;
2091        struct mapped_device *md;
2092
2093        md = alloc_dev(minor);
2094        if (!md)
2095                return -ENXIO;
2096
2097        r = dm_sysfs_init(md);
2098        if (r) {
2099                free_dev(md);
2100                return r;
2101        }
2102
2103        *result = md;
2104        return 0;
2105}
2106
2107/*
2108 * Functions to manage md->type.
2109 * All are required to hold md->type_lock.
2110 */
2111void dm_lock_md_type(struct mapped_device *md)
2112{
2113        mutex_lock(&md->type_lock);
2114}
2115
2116void dm_unlock_md_type(struct mapped_device *md)
2117{
2118        mutex_unlock(&md->type_lock);
2119}
2120
2121void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2122{
2123        BUG_ON(!mutex_is_locked(&md->type_lock));
2124        md->type = type;
2125}
2126
2127enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2128{
2129        return md->type;
2130}
2131
2132struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2133{
2134        return md->immutable_target_type;
2135}
2136
2137/*
2138 * The queue_limits are only valid as long as you have a reference
2139 * count on 'md'.
2140 */
2141struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2142{
2143        BUG_ON(!atomic_read(&md->holders));
2144        return &md->queue->limits;
2145}
2146EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2147
2148/*
2149 * Setup the DM device's queue based on md's type
2150 */
2151int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2152{
2153        int r;
2154        struct queue_limits limits;
2155        enum dm_queue_mode type = dm_get_md_type(md);
2156
2157        switch (type) {
2158        case DM_TYPE_REQUEST_BASED:
2159                dm_init_normal_md_queue(md);
2160                r = dm_old_init_request_queue(md, t);
2161                if (r) {
2162                        DMERR("Cannot initialize queue for request-based mapped device");
2163                        return r;
2164                }
2165                break;
2166        case DM_TYPE_MQ_REQUEST_BASED:
2167                r = dm_mq_init_request_queue(md, t);
2168                if (r) {
2169                        DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2170                        return r;
2171                }
2172                break;
2173        case DM_TYPE_BIO_BASED:
2174        case DM_TYPE_DAX_BIO_BASED:
2175                dm_init_normal_md_queue(md);
2176                blk_queue_make_request(md->queue, dm_make_request);
2177                break;
2178        case DM_TYPE_NVME_BIO_BASED:
2179                dm_init_normal_md_queue(md);
2180                blk_queue_make_request(md->queue, dm_make_request_nvme);
2181                break;
2182        case DM_TYPE_NONE:
2183                WARN_ON_ONCE(true);
2184                break;
2185        }
2186
2187        r = dm_calculate_queue_limits(t, &limits);
2188        if (r) {
2189                DMERR("Cannot calculate initial queue limits");
2190                return r;
2191        }
2192        dm_table_set_restrictions(t, md->queue, &limits);
2193        blk_register_queue(md->disk);
2194
2195        return 0;
2196}
2197
2198struct mapped_device *dm_get_md(dev_t dev)
2199{
2200        struct mapped_device *md;
2201        unsigned minor = MINOR(dev);
2202
2203        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2204                return NULL;
2205
2206        spin_lock(&_minor_lock);
2207
2208        md = idr_find(&_minor_idr, minor);
2209        if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2210            test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2211                md = NULL;
2212                goto out;
2213        }
2214        dm_get(md);
2215out:
2216        spin_unlock(&_minor_lock);
2217
2218        return md;
2219}
2220EXPORT_SYMBOL_GPL(dm_get_md);
2221
2222void *dm_get_mdptr(struct mapped_device *md)
2223{
2224        return md->interface_ptr;
2225}
2226
2227void dm_set_mdptr(struct mapped_device *md, void *ptr)
2228{
2229        md->interface_ptr = ptr;
2230}
2231
2232void dm_get(struct mapped_device *md)
2233{
2234        atomic_inc(&md->holders);
2235        BUG_ON(test_bit(DMF_FREEING, &md->flags));
2236}
2237
2238int dm_hold(struct mapped_device *md)
2239{
2240        spin_lock(&_minor_lock);
2241        if (test_bit(DMF_FREEING, &md->flags)) {
2242                spin_unlock(&_minor_lock);
2243                return -EBUSY;
2244        }
2245        dm_get(md);
2246        spin_unlock(&_minor_lock);
2247        return 0;
2248}
2249EXPORT_SYMBOL_GPL(dm_hold);
2250
2251const char *dm_device_name(struct mapped_device *md)
2252{
2253        return md->name;
2254}
2255EXPORT_SYMBOL_GPL(dm_device_name);
2256
2257static void __dm_destroy(struct mapped_device *md, bool wait)
2258{
2259        struct dm_table *map;
2260        int srcu_idx;
2261
2262        might_sleep();
2263
2264        spin_lock(&_minor_lock);
2265        idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266        set_bit(DMF_FREEING, &md->flags);
2267        spin_unlock(&_minor_lock);
2268
2269        blk_set_queue_dying(md->queue);
2270
2271        if (dm_request_based(md) && md->kworker_task)
2272                kthread_flush_worker(&md->kworker);
2273
2274        /*
2275         * Take suspend_lock so that presuspend and postsuspend methods
2276         * do not race with internal suspend.
2277         */
2278        mutex_lock(&md->suspend_lock);
2279        map = dm_get_live_table(md, &srcu_idx);
2280        if (!dm_suspended_md(md)) {
2281                dm_table_presuspend_targets(map);
2282                dm_table_postsuspend_targets(map);
2283        }
2284        /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2285        dm_put_live_table(md, srcu_idx);
2286        mutex_unlock(&md->suspend_lock);
2287
2288        /*
2289         * Rare, but there may be I/O requests still going to complete,
2290         * for example.  Wait for all references to disappear.
2291         * No one should increment the reference count of the mapped_device,
2292         * after the mapped_device state becomes DMF_FREEING.
2293         */
2294        if (wait)
2295                while (atomic_read(&md->holders))
2296                        msleep(1);
2297        else if (atomic_read(&md->holders))
2298                DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2299                       dm_device_name(md), atomic_read(&md->holders));
2300
2301        dm_sysfs_exit(md);
2302        dm_table_destroy(__unbind(md));
2303        free_dev(md);
2304}
2305
2306void dm_destroy(struct mapped_device *md)
2307{
2308        __dm_destroy(md, true);
2309}
2310
2311void dm_destroy_immediate(struct mapped_device *md)
2312{
2313        __dm_destroy(md, false);
2314}
2315
2316void dm_put(struct mapped_device *md)
2317{
2318        atomic_dec(&md->holders);
2319}
2320EXPORT_SYMBOL_GPL(dm_put);
2321
2322static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2323{
2324        int r = 0;
2325        DEFINE_WAIT(wait);
2326
2327        while (1) {
2328                prepare_to_wait(&md->wait, &wait, task_state);
2329
2330                if (!md_in_flight(md))
2331                        break;
2332
2333                if (signal_pending_state(task_state, current)) {
2334                        r = -EINTR;
2335                        break;
2336                }
2337
2338                io_schedule();
2339        }
2340        finish_wait(&md->wait, &wait);
2341
2342        return r;
2343}
2344
2345/*
2346 * Process the deferred bios
2347 */
2348static void dm_wq_work(struct work_struct *work)
2349{
2350        struct mapped_device *md = container_of(work, struct mapped_device,
2351                                                work);
2352        struct bio *c;
2353        int srcu_idx;
2354        struct dm_table *map;
2355
2356        map = dm_get_live_table(md, &srcu_idx);
2357
2358        while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2359                spin_lock_irq(&md->deferred_lock);
2360                c = bio_list_pop(&md->deferred);
2361                spin_unlock_irq(&md->deferred_lock);
2362
2363                if (!c)
2364                        break;
2365
2366                if (dm_request_based(md))
2367                        generic_make_request(c);
2368                else
2369                        __split_and_process_bio(md, map, c);
2370        }
2371
2372        dm_put_live_table(md, srcu_idx);
2373}
2374
2375static void dm_queue_flush(struct mapped_device *md)
2376{
2377        clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2378        smp_mb__after_atomic();
2379        queue_work(md->wq, &md->work);
2380}
2381
2382/*
2383 * Swap in a new table, returning the old one for the caller to destroy.
2384 */
2385struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2386{
2387        struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2388        struct queue_limits limits;
2389        int r;
2390
2391        mutex_lock(&md->suspend_lock);
2392
2393        /* device must be suspended */
2394        if (!dm_suspended_md(md))
2395                goto out;
2396
2397        /*
2398         * If the new table has no data devices, retain the existing limits.
2399         * This helps multipath with queue_if_no_path if all paths disappear,
2400         * then new I/O is queued based on these limits, and then some paths
2401         * reappear.
2402         */
2403        if (dm_table_has_no_data_devices(table)) {
2404                live_map = dm_get_live_table_fast(md);
2405                if (live_map)
2406                        limits = md->queue->limits;
2407                dm_put_live_table_fast(md);
2408        }
2409
2410        if (!live_map) {
2411                r = dm_calculate_queue_limits(table, &limits);
2412                if (r) {
2413                        map = ERR_PTR(r);
2414                        goto out;
2415                }
2416        }
2417
2418        map = __bind(md, table, &limits);
2419        dm_issue_global_event();
2420
2421out:
2422        mutex_unlock(&md->suspend_lock);
2423        return map;
2424}
2425
2426/*
2427 * Functions to lock and unlock any filesystem running on the
2428 * device.
2429 */
2430static int lock_fs(struct mapped_device *md)
2431{
2432        int r;
2433
2434        WARN_ON(md->frozen_sb);
2435
2436        md->frozen_sb = freeze_bdev(md->bdev);
2437        if (IS_ERR(md->frozen_sb)) {
2438                r = PTR_ERR(md->frozen_sb);
2439                md->frozen_sb = NULL;
2440                return r;
2441        }
2442
2443        set_bit(DMF_FROZEN, &md->flags);
2444
2445        return 0;
2446}
2447
2448static void unlock_fs(struct mapped_device *md)
2449{
2450        if (!test_bit(DMF_FROZEN, &md->flags))
2451                return;
2452
2453        thaw_bdev(md->bdev, md->frozen_sb);
2454        md->frozen_sb = NULL;
2455        clear_bit(DMF_FROZEN, &md->flags);
2456}
2457
2458/*
2459 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2460 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2461 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2462 *
2463 * If __dm_suspend returns 0, the device is completely quiescent
2464 * now. There is no request-processing activity. All new requests
2465 * are being added to md->deferred list.
2466 */
2467static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2468                        unsigned suspend_flags, long task_state,
2469                        int dmf_suspended_flag)
2470{
2471        bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2472        bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2473        int r;
2474
2475        lockdep_assert_held(&md->suspend_lock);
2476
2477        /*
2478         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2479         * This flag is cleared before dm_suspend returns.
2480         */
2481        if (noflush)
2482                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2483        else
2484                pr_debug("%s: suspending with flush\n", dm_device_name(md));
2485
2486        /*
2487         * This gets reverted if there's an error later and the targets
2488         * provide the .presuspend_undo hook.
2489         */
2490        dm_table_presuspend_targets(map);
2491
2492        /*
2493         * Flush I/O to the device.
2494         * Any I/O submitted after lock_fs() may not be flushed.
2495         * noflush takes precedence over do_lockfs.
2496         * (lock_fs() flushes I/Os and waits for them to complete.)
2497         */
2498        if (!noflush && do_lockfs) {
2499                r = lock_fs(md);
2500                if (r) {
2501                        dm_table_presuspend_undo_targets(map);
2502                        return r;
2503                }
2504        }
2505
2506        /*
2507         * Here we must make sure that no processes are submitting requests
2508         * to target drivers i.e. no one may be executing
2509         * __split_and_process_bio. This is called from dm_request and
2510         * dm_wq_work.
2511         *
2512         * To get all processes out of __split_and_process_bio in dm_request,
2513         * we take the write lock. To prevent any process from reentering
2514         * __split_and_process_bio from dm_request and quiesce the thread
2515         * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2516         * flush_workqueue(md->wq).
2517         */
2518        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2519        if (map)
2520                synchronize_srcu(&md->io_barrier);
2521
2522        /*
2523         * Stop md->queue before flushing md->wq in case request-based
2524         * dm defers requests to md->wq from md->queue.
2525         */
2526        if (dm_request_based(md)) {
2527                dm_stop_queue(md->queue);
2528                if (md->kworker_task)
2529                        kthread_flush_worker(&md->kworker);
2530        }
2531
2532        flush_workqueue(md->wq);
2533
2534        /*
2535         * At this point no more requests are entering target request routines.
2536         * We call dm_wait_for_completion to wait for all existing requests
2537         * to finish.
2538         */
2539        r = dm_wait_for_completion(md, task_state);
2540        if (!r)
2541                set_bit(dmf_suspended_flag, &md->flags);
2542
2543        if (noflush)
2544                clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2545        if (map)
2546                synchronize_srcu(&md->io_barrier);
2547
2548        /* were we interrupted ? */
2549        if (r < 0) {
2550                dm_queue_flush(md);
2551
2552                if (dm_request_based(md))
2553                        dm_start_queue(md->queue);
2554
2555                unlock_fs(md);
2556                dm_table_presuspend_undo_targets(map);
2557                /* pushback list is already flushed, so skip flush */
2558        }
2559
2560        return r;
2561}
2562
2563/*
2564 * We need to be able to change a mapping table under a mounted
2565 * filesystem.  For example we might want to move some data in
2566 * the background.  Before the table can be swapped with
2567 * dm_bind_table, dm_suspend must be called to flush any in
2568 * flight bios and ensure that any further io gets deferred.
2569 */
2570/*
2571 * Suspend mechanism in request-based dm.
2572 *
2573 * 1. Flush all I/Os by lock_fs() if needed.
2574 * 2. Stop dispatching any I/O by stopping the request_queue.
2575 * 3. Wait for all in-flight I/Os to be completed or requeued.
2576 *
2577 * To abort suspend, start the request_queue.
2578 */
2579int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2580{
2581        struct dm_table *map = NULL;
2582        int r = 0;
2583
2584retry:
2585        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2586
2587        if (dm_suspended_md(md)) {
2588                r = -EINVAL;
2589                goto out_unlock;
2590        }
2591
2592        if (dm_suspended_internally_md(md)) {
2593                /* already internally suspended, wait for internal resume */
2594                mutex_unlock(&md->suspend_lock);
2595                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2596                if (r)
2597                        return r;
2598                goto retry;
2599        }
2600
2601        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2602
2603        r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2604        if (r)
2605                goto out_unlock;
2606
2607        dm_table_postsuspend_targets(map);
2608
2609out_unlock:
2610        mutex_unlock(&md->suspend_lock);
2611        return r;
2612}
2613
2614static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2615{
2616        if (map) {
2617                int r = dm_table_resume_targets(map);
2618                if (r)
2619                        return r;
2620        }
2621
2622        dm_queue_flush(md);
2623
2624        /*
2625         * Flushing deferred I/Os must be done after targets are resumed
2626         * so that mapping of targets can work correctly.
2627         * Request-based dm is queueing the deferred I/Os in its request_queue.
2628         */
2629        if (dm_request_based(md))
2630                dm_start_queue(md->queue);
2631
2632        unlock_fs(md);
2633
2634        return 0;
2635}
2636
2637int dm_resume(struct mapped_device *md)
2638{
2639        int r;
2640        struct dm_table *map = NULL;
2641
2642retry:
2643        r = -EINVAL;
2644        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2645
2646        if (!dm_suspended_md(md))
2647                goto out;
2648
2649        if (dm_suspended_internally_md(md)) {
2650                /* already internally suspended, wait for internal resume */
2651                mutex_unlock(&md->suspend_lock);
2652                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2653                if (r)
2654                        return r;
2655                goto retry;
2656        }
2657
2658        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2659        if (!map || !dm_table_get_size(map))
2660                goto out;
2661
2662        r = __dm_resume(md, map);
2663        if (r)
2664                goto out;
2665
2666        clear_bit(DMF_SUSPENDED, &md->flags);
2667out:
2668        mutex_unlock(&md->suspend_lock);
2669
2670        return r;
2671}
2672
2673/*
2674 * Internal suspend/resume works like userspace-driven suspend. It waits
2675 * until all bios finish and prevents issuing new bios to the target drivers.
2676 * It may be used only from the kernel.
2677 */
2678
2679static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2680{
2681        struct dm_table *map = NULL;
2682
2683        lockdep_assert_held(&md->suspend_lock);
2684
2685        if (md->internal_suspend_count++)
2686                return; /* nested internal suspend */
2687
2688        if (dm_suspended_md(md)) {
2689                set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2690                return; /* nest suspend */
2691        }
2692
2693        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2694
2695        /*
2696         * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2697         * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2698         * would require changing .presuspend to return an error -- avoid this
2699         * until there is a need for more elaborate variants of internal suspend.
2700         */
2701        (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2702                            DMF_SUSPENDED_INTERNALLY);
2703
2704        dm_table_postsuspend_targets(map);
2705}
2706
2707static void __dm_internal_resume(struct mapped_device *md)
2708{
2709        BUG_ON(!md->internal_suspend_count);
2710
2711        if (--md->internal_suspend_count)
2712                return; /* resume from nested internal suspend */
2713
2714        if (dm_suspended_md(md))
2715                goto done; /* resume from nested suspend */
2716
2717        /*
2718         * NOTE: existing callers don't need to call dm_table_resume_targets
2719         * (which may fail -- so best to avoid it for now by passing NULL map)
2720         */
2721        (void) __dm_resume(md, NULL);
2722
2723done:
2724        clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2725        smp_mb__after_atomic();
2726        wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2727}
2728
2729void dm_internal_suspend_noflush(struct mapped_device *md)
2730{
2731        mutex_lock(&md->suspend_lock);
2732        __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2733        mutex_unlock(&md->suspend_lock);
2734}
2735EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2736
2737void dm_internal_resume(struct mapped_device *md)
2738{
2739        mutex_lock(&md->suspend_lock);
2740        __dm_internal_resume(md);
2741        mutex_unlock(&md->suspend_lock);
2742}
2743EXPORT_SYMBOL_GPL(dm_internal_resume);
2744
2745/*
2746 * Fast variants of internal suspend/resume hold md->suspend_lock,
2747 * which prevents interaction with userspace-driven suspend.
2748 */
2749
2750void dm_internal_suspend_fast(struct mapped_device *md)
2751{
2752        mutex_lock(&md->suspend_lock);
2753        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2754                return;
2755
2756        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2757        synchronize_srcu(&md->io_barrier);
2758        flush_workqueue(md->wq);
2759        dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2760}
2761EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2762
2763void dm_internal_resume_fast(struct mapped_device *md)
2764{
2765        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2766                goto done;
2767
2768        dm_queue_flush(md);
2769
2770done:
2771        mutex_unlock(&md->suspend_lock);
2772}
2773EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2774
2775/*-----------------------------------------------------------------
2776 * Event notification.
2777 *---------------------------------------------------------------*/
2778int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2779                       unsigned cookie)
2780{
2781        char udev_cookie[DM_COOKIE_LENGTH];
2782        char *envp[] = { udev_cookie, NULL };
2783
2784        if (!cookie)
2785                return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2786        else {
2787                snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2788                         DM_COOKIE_ENV_VAR_NAME, cookie);
2789                return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2790                                          action, envp);
2791        }
2792}
2793
2794uint32_t dm_next_uevent_seq(struct mapped_device *md)
2795{
2796        return atomic_add_return(1, &md->uevent_seq);
2797}
2798
2799uint32_t dm_get_event_nr(struct mapped_device *md)
2800{
2801        return atomic_read(&md->event_nr);
2802}
2803
2804int dm_wait_event(struct mapped_device *md, int event_nr)
2805{
2806        return wait_event_interruptible(md->eventq,
2807                        (event_nr != atomic_read(&md->event_nr)));
2808}
2809
2810void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2811{
2812        unsigned long flags;
2813
2814        spin_lock_irqsave(&md->uevent_lock, flags);
2815        list_add(elist, &md->uevent_list);
2816        spin_unlock_irqrestore(&md->uevent_lock, flags);
2817}
2818
2819/*
2820 * The gendisk is only valid as long as you have a reference
2821 * count on 'md'.
2822 */
2823struct gendisk *dm_disk(struct mapped_device *md)
2824{
2825        return md->disk;
2826}
2827EXPORT_SYMBOL_GPL(dm_disk);
2828
2829struct kobject *dm_kobject(struct mapped_device *md)
2830{
2831        return &md->kobj_holder.kobj;
2832}
2833
2834struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2835{
2836        struct mapped_device *md;
2837
2838        md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2839
2840        spin_lock(&_minor_lock);
2841        if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2842                md = NULL;
2843                goto out;
2844        }
2845        dm_get(md);
2846out:
2847        spin_unlock(&_minor_lock);
2848
2849        return md;
2850}
2851
2852int dm_suspended_md(struct mapped_device *md)
2853{
2854        return test_bit(DMF_SUSPENDED, &md->flags);
2855}
2856
2857int dm_suspended_internally_md(struct mapped_device *md)
2858{
2859        return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2860}
2861
2862int dm_test_deferred_remove_flag(struct mapped_device *md)
2863{
2864        return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2865}
2866
2867int dm_suspended(struct dm_target *ti)
2868{
2869        return dm_suspended_md(dm_table_get_md(ti->table));
2870}
2871EXPORT_SYMBOL_GPL(dm_suspended);
2872
2873int dm_noflush_suspending(struct dm_target *ti)
2874{
2875        return __noflush_suspending(dm_table_get_md(ti->table));
2876}
2877EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2878
2879struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2880                                            unsigned integrity, unsigned per_io_data_size,
2881                                            unsigned min_pool_size)
2882{
2883        struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2884        unsigned int pool_size = 0;
2885        unsigned int front_pad, io_front_pad;
2886
2887        if (!pools)
2888                return NULL;
2889
2890        switch (type) {
2891        case DM_TYPE_BIO_BASED:
2892        case DM_TYPE_DAX_BIO_BASED:
2893        case DM_TYPE_NVME_BIO_BASED:
2894                pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2895                front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2896                io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2897                pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2898                if (!pools->io_bs)
2899                        goto out;
2900                if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2901                        goto out;
2902                break;
2903        case DM_TYPE_REQUEST_BASED:
2904        case DM_TYPE_MQ_REQUEST_BASED:
2905                pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2906                front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2907                /* per_io_data_size is used for blk-mq pdu at queue allocation */
2908                break;
2909        default:
2910                BUG();
2911        }
2912
2913        pools->bs = bioset_create(pool_size, front_pad, 0);
2914        if (!pools->bs)
2915                goto out;
2916
2917        if (integrity && bioset_integrity_create(pools->bs, pool_size))
2918                goto out;
2919
2920        return pools;
2921
2922out:
2923        dm_free_md_mempools(pools);
2924
2925        return NULL;
2926}
2927
2928void dm_free_md_mempools(struct dm_md_mempools *pools)
2929{
2930        if (!pools)
2931                return;
2932
2933        if (pools->bs)
2934                bioset_free(pools->bs);
2935        if (pools->io_bs)
2936                bioset_free(pools->io_bs);
2937
2938        kfree(pools);
2939}
2940
2941struct dm_pr {
2942        u64     old_key;
2943        u64     new_key;
2944        u32     flags;
2945        bool    fail_early;
2946};
2947
2948static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2949                      void *data)
2950{
2951        struct mapped_device *md = bdev->bd_disk->private_data;
2952        struct dm_table *table;
2953        struct dm_target *ti;
2954        int ret = -ENOTTY, srcu_idx;
2955
2956        table = dm_get_live_table(md, &srcu_idx);
2957        if (!table || !dm_table_get_size(table))
2958                goto out;
2959
2960        /* We only support devices that have a single target */
2961        if (dm_table_get_num_targets(table) != 1)
2962                goto out;
2963        ti = dm_table_get_target(table, 0);
2964
2965        ret = -EINVAL;
2966        if (!ti->type->iterate_devices)
2967                goto out;
2968
2969        ret = ti->type->iterate_devices(ti, fn, data);
2970out:
2971        dm_put_live_table(md, srcu_idx);
2972        return ret;
2973}
2974
2975/*
2976 * For register / unregister we need to manually call out to every path.
2977 */
2978static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2979                            sector_t start, sector_t len, void *data)
2980{
2981        struct dm_pr *pr = data;
2982        const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2983
2984        if (!ops || !ops->pr_register)
2985                return -EOPNOTSUPP;
2986        return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2987}
2988
2989static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2990                          u32 flags)
2991{
2992        struct dm_pr pr = {
2993                .old_key        = old_key,
2994                .new_key        = new_key,
2995                .flags          = flags,
2996                .fail_early     = true,
2997        };
2998        int ret;
2999
3000        ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3001        if (ret && new_key) {
3002                /* unregister all paths if we failed to register any path */
3003                pr.old_key = new_key;
3004                pr.new_key = 0;
3005                pr.flags = 0;
3006                pr.fail_early = false;
3007                dm_call_pr(bdev, __dm_pr_register, &pr);
3008        }
3009
3010        return ret;
3011}
3012
3013static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3014                         u32 flags)
3015{
3016        struct mapped_device *md = bdev->bd_disk->private_data;
3017        const struct pr_ops *ops;
3018        fmode_t mode;
3019        int r;
3020
3021        r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3022        if (r < 0)
3023                return r;
3024
3025        ops = bdev->bd_disk->fops->pr_ops;
3026        if (ops && ops->pr_reserve)
3027                r = ops->pr_reserve(bdev, key, type, flags);
3028        else
3029                r = -EOPNOTSUPP;
3030
3031        blkdev_put(bdev, mode);
3032        return r;
3033}
3034
3035static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3036{
3037        struct mapped_device *md = bdev->bd_disk->private_data;
3038        const struct pr_ops *ops;
3039        fmode_t mode;
3040        int r;
3041
3042        r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3043        if (r < 0)
3044                return r;
3045
3046        ops = bdev->bd_disk->fops->pr_ops;
3047        if (ops && ops->pr_release)
3048                r = ops->pr_release(bdev, key, type);
3049        else
3050                r = -EOPNOTSUPP;
3051
3052        blkdev_put(bdev, mode);
3053        return r;
3054}
3055
3056static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3057                         enum pr_type type, bool abort)
3058{
3059        struct mapped_device *md = bdev->bd_disk->private_data;
3060        const struct pr_ops *ops;
3061        fmode_t mode;
3062        int r;
3063
3064        r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3065        if (r < 0)
3066                return r;
3067
3068        ops = bdev->bd_disk->fops->pr_ops;
3069        if (ops && ops->pr_preempt)
3070                r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3071        else
3072                r = -EOPNOTSUPP;
3073
3074        blkdev_put(bdev, mode);
3075        return r;
3076}
3077
3078static int dm_pr_clear(struct block_device *bdev, u64 key)
3079{
3080        struct mapped_device *md = bdev->bd_disk->private_data;
3081        const struct pr_ops *ops;
3082        fmode_t mode;
3083        int r;
3084
3085        r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3086        if (r < 0)
3087                return r;
3088
3089        ops = bdev->bd_disk->fops->pr_ops;
3090        if (ops && ops->pr_clear)
3091                r = ops->pr_clear(bdev, key);
3092        else
3093                r = -EOPNOTSUPP;
3094
3095        blkdev_put(bdev, mode);
3096        return r;
3097}
3098
3099static const struct pr_ops dm_pr_ops = {
3100        .pr_register    = dm_pr_register,
3101        .pr_reserve     = dm_pr_reserve,
3102        .pr_release     = dm_pr_release,
3103        .pr_preempt     = dm_pr_preempt,
3104        .pr_clear       = dm_pr_clear,
3105};
3106
3107static const struct block_device_operations dm_blk_dops = {
3108        .open = dm_blk_open,
3109        .release = dm_blk_close,
3110        .ioctl = dm_blk_ioctl,
3111        .getgeo = dm_blk_getgeo,
3112        .pr_ops = &dm_pr_ops,
3113        .owner = THIS_MODULE
3114};
3115
3116static const struct dax_operations dm_dax_ops = {
3117        .direct_access = dm_dax_direct_access,
3118        .copy_from_iter = dm_dax_copy_from_iter,
3119};
3120
3121/*
3122 * module hooks
3123 */
3124module_init(dm_init);
3125module_exit(dm_exit);
3126
3127module_param(major, uint, 0);
3128MODULE_PARM_DESC(major, "The major number of the device mapper");
3129
3130module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3131MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3132
3133module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3134MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3135
3136MODULE_DESCRIPTION(DM_NAME " driver");
3137MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3138MODULE_LICENSE("GPL");
3139