linux/drivers/media/rc/rc-main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2// rc-main.c - Remote Controller core module
   3//
   4// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <media/rc-core.h>
   9#include <linux/bsearch.h>
  10#include <linux/spinlock.h>
  11#include <linux/delay.h>
  12#include <linux/input.h>
  13#include <linux/leds.h>
  14#include <linux/slab.h>
  15#include <linux/idr.h>
  16#include <linux/device.h>
  17#include <linux/module.h>
  18#include "rc-core-priv.h"
  19
  20/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  21#define IR_TAB_MIN_SIZE 256
  22#define IR_TAB_MAX_SIZE 8192
  23
  24static const struct {
  25        const char *name;
  26        unsigned int repeat_period;
  27        unsigned int scancode_bits;
  28} protocols[] = {
  29        [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
  30        [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
  31        [RC_PROTO_RC5] = { .name = "rc-5",
  32                .scancode_bits = 0x1f7f, .repeat_period = 250 },
  33        [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
  34                .scancode_bits = 0x1f7f3f, .repeat_period = 250 },
  35        [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
  36                .scancode_bits = 0x2fff, .repeat_period = 250 },
  37        [RC_PROTO_JVC] = { .name = "jvc",
  38                .scancode_bits = 0xffff, .repeat_period = 250 },
  39        [RC_PROTO_SONY12] = { .name = "sony-12",
  40                .scancode_bits = 0x1f007f, .repeat_period = 250 },
  41        [RC_PROTO_SONY15] = { .name = "sony-15",
  42                .scancode_bits = 0xff007f, .repeat_period = 250 },
  43        [RC_PROTO_SONY20] = { .name = "sony-20",
  44                .scancode_bits = 0x1fff7f, .repeat_period = 250 },
  45        [RC_PROTO_NEC] = { .name = "nec",
  46                .scancode_bits = 0xffff, .repeat_period = 250 },
  47        [RC_PROTO_NECX] = { .name = "nec-x",
  48                .scancode_bits = 0xffffff, .repeat_period = 250 },
  49        [RC_PROTO_NEC32] = { .name = "nec-32",
  50                .scancode_bits = 0xffffffff, .repeat_period = 250 },
  51        [RC_PROTO_SANYO] = { .name = "sanyo",
  52                .scancode_bits = 0x1fffff, .repeat_period = 250 },
  53        [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
  54                .scancode_bits = 0xffff, .repeat_period = 250 },
  55        [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
  56                .scancode_bits = 0x1fffff, .repeat_period = 250 },
  57        [RC_PROTO_RC6_0] = { .name = "rc-6-0",
  58                .scancode_bits = 0xffff, .repeat_period = 250 },
  59        [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
  60                .scancode_bits = 0xfffff, .repeat_period = 250 },
  61        [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
  62                .scancode_bits = 0xffffff, .repeat_period = 250 },
  63        [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
  64                .scancode_bits = 0xffffffff, .repeat_period = 250 },
  65        [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
  66                .scancode_bits = 0xffff7fff, .repeat_period = 250 },
  67        [RC_PROTO_SHARP] = { .name = "sharp",
  68                .scancode_bits = 0x1fff, .repeat_period = 250 },
  69        [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
  70        [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
  71};
  72
  73/* Used to keep track of known keymaps */
  74static LIST_HEAD(rc_map_list);
  75static DEFINE_SPINLOCK(rc_map_lock);
  76static struct led_trigger *led_feedback;
  77
  78/* Used to keep track of rc devices */
  79static DEFINE_IDA(rc_ida);
  80
  81static struct rc_map_list *seek_rc_map(const char *name)
  82{
  83        struct rc_map_list *map = NULL;
  84
  85        spin_lock(&rc_map_lock);
  86        list_for_each_entry(map, &rc_map_list, list) {
  87                if (!strcmp(name, map->map.name)) {
  88                        spin_unlock(&rc_map_lock);
  89                        return map;
  90                }
  91        }
  92        spin_unlock(&rc_map_lock);
  93
  94        return NULL;
  95}
  96
  97struct rc_map *rc_map_get(const char *name)
  98{
  99
 100        struct rc_map_list *map;
 101
 102        map = seek_rc_map(name);
 103#ifdef CONFIG_MODULES
 104        if (!map) {
 105                int rc = request_module("%s", name);
 106                if (rc < 0) {
 107                        pr_err("Couldn't load IR keymap %s\n", name);
 108                        return NULL;
 109                }
 110                msleep(20);     /* Give some time for IR to register */
 111
 112                map = seek_rc_map(name);
 113        }
 114#endif
 115        if (!map) {
 116                pr_err("IR keymap %s not found\n", name);
 117                return NULL;
 118        }
 119
 120        printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
 121
 122        return &map->map;
 123}
 124EXPORT_SYMBOL_GPL(rc_map_get);
 125
 126int rc_map_register(struct rc_map_list *map)
 127{
 128        spin_lock(&rc_map_lock);
 129        list_add_tail(&map->list, &rc_map_list);
 130        spin_unlock(&rc_map_lock);
 131        return 0;
 132}
 133EXPORT_SYMBOL_GPL(rc_map_register);
 134
 135void rc_map_unregister(struct rc_map_list *map)
 136{
 137        spin_lock(&rc_map_lock);
 138        list_del(&map->list);
 139        spin_unlock(&rc_map_lock);
 140}
 141EXPORT_SYMBOL_GPL(rc_map_unregister);
 142
 143
 144static struct rc_map_table empty[] = {
 145        { 0x2a, KEY_COFFEE },
 146};
 147
 148static struct rc_map_list empty_map = {
 149        .map = {
 150                .scan     = empty,
 151                .size     = ARRAY_SIZE(empty),
 152                .rc_proto = RC_PROTO_UNKNOWN,   /* Legacy IR type */
 153                .name     = RC_MAP_EMPTY,
 154        }
 155};
 156
 157/**
 158 * ir_create_table() - initializes a scancode table
 159 * @rc_map:     the rc_map to initialize
 160 * @name:       name to assign to the table
 161 * @rc_proto:   ir type to assign to the new table
 162 * @size:       initial size of the table
 163 *
 164 * This routine will initialize the rc_map and will allocate
 165 * memory to hold at least the specified number of elements.
 166 *
 167 * return:      zero on success or a negative error code
 168 */
 169static int ir_create_table(struct rc_map *rc_map,
 170                           const char *name, u64 rc_proto, size_t size)
 171{
 172        rc_map->name = kstrdup(name, GFP_KERNEL);
 173        if (!rc_map->name)
 174                return -ENOMEM;
 175        rc_map->rc_proto = rc_proto;
 176        rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 177        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 178        rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 179        if (!rc_map->scan) {
 180                kfree(rc_map->name);
 181                rc_map->name = NULL;
 182                return -ENOMEM;
 183        }
 184
 185        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 186                   rc_map->size, rc_map->alloc);
 187        return 0;
 188}
 189
 190/**
 191 * ir_free_table() - frees memory allocated by a scancode table
 192 * @rc_map:     the table whose mappings need to be freed
 193 *
 194 * This routine will free memory alloctaed for key mappings used by given
 195 * scancode table.
 196 */
 197static void ir_free_table(struct rc_map *rc_map)
 198{
 199        rc_map->size = 0;
 200        kfree(rc_map->name);
 201        rc_map->name = NULL;
 202        kfree(rc_map->scan);
 203        rc_map->scan = NULL;
 204}
 205
 206/**
 207 * ir_resize_table() - resizes a scancode table if necessary
 208 * @rc_map:     the rc_map to resize
 209 * @gfp_flags:  gfp flags to use when allocating memory
 210 *
 211 * This routine will shrink the rc_map if it has lots of
 212 * unused entries and grow it if it is full.
 213 *
 214 * return:      zero on success or a negative error code
 215 */
 216static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
 217{
 218        unsigned int oldalloc = rc_map->alloc;
 219        unsigned int newalloc = oldalloc;
 220        struct rc_map_table *oldscan = rc_map->scan;
 221        struct rc_map_table *newscan;
 222
 223        if (rc_map->size == rc_map->len) {
 224                /* All entries in use -> grow keytable */
 225                if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 226                        return -ENOMEM;
 227
 228                newalloc *= 2;
 229                IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
 230        }
 231
 232        if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 233                /* Less than 1/3 of entries in use -> shrink keytable */
 234                newalloc /= 2;
 235                IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
 236        }
 237
 238        if (newalloc == oldalloc)
 239                return 0;
 240
 241        newscan = kmalloc(newalloc, gfp_flags);
 242        if (!newscan) {
 243                IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
 244                return -ENOMEM;
 245        }
 246
 247        memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 248        rc_map->scan = newscan;
 249        rc_map->alloc = newalloc;
 250        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 251        kfree(oldscan);
 252        return 0;
 253}
 254
 255/**
 256 * ir_update_mapping() - set a keycode in the scancode->keycode table
 257 * @dev:        the struct rc_dev device descriptor
 258 * @rc_map:     scancode table to be adjusted
 259 * @index:      index of the mapping that needs to be updated
 260 * @new_keycode: the desired keycode
 261 *
 262 * This routine is used to update scancode->keycode mapping at given
 263 * position.
 264 *
 265 * return:      previous keycode assigned to the mapping
 266 *
 267 */
 268static unsigned int ir_update_mapping(struct rc_dev *dev,
 269                                      struct rc_map *rc_map,
 270                                      unsigned int index,
 271                                      unsigned int new_keycode)
 272{
 273        int old_keycode = rc_map->scan[index].keycode;
 274        int i;
 275
 276        /* Did the user wish to remove the mapping? */
 277        if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 278                IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
 279                           index, rc_map->scan[index].scancode);
 280                rc_map->len--;
 281                memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 282                        (rc_map->len - index) * sizeof(struct rc_map_table));
 283        } else {
 284                IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
 285                           index,
 286                           old_keycode == KEY_RESERVED ? "New" : "Replacing",
 287                           rc_map->scan[index].scancode, new_keycode);
 288                rc_map->scan[index].keycode = new_keycode;
 289                __set_bit(new_keycode, dev->input_dev->keybit);
 290        }
 291
 292        if (old_keycode != KEY_RESERVED) {
 293                /* A previous mapping was updated... */
 294                __clear_bit(old_keycode, dev->input_dev->keybit);
 295                /* ... but another scancode might use the same keycode */
 296                for (i = 0; i < rc_map->len; i++) {
 297                        if (rc_map->scan[i].keycode == old_keycode) {
 298                                __set_bit(old_keycode, dev->input_dev->keybit);
 299                                break;
 300                        }
 301                }
 302
 303                /* Possibly shrink the keytable, failure is not a problem */
 304                ir_resize_table(rc_map, GFP_ATOMIC);
 305        }
 306
 307        return old_keycode;
 308}
 309
 310/**
 311 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 312 * @dev:        the struct rc_dev device descriptor
 313 * @rc_map:     scancode table to be searched
 314 * @scancode:   the desired scancode
 315 * @resize:     controls whether we allowed to resize the table to
 316 *              accommodate not yet present scancodes
 317 *
 318 * This routine is used to locate given scancode in rc_map.
 319 * If scancode is not yet present the routine will allocate a new slot
 320 * for it.
 321 *
 322 * return:      index of the mapping containing scancode in question
 323 *              or -1U in case of failure.
 324 */
 325static unsigned int ir_establish_scancode(struct rc_dev *dev,
 326                                          struct rc_map *rc_map,
 327                                          unsigned int scancode,
 328                                          bool resize)
 329{
 330        unsigned int i;
 331
 332        /*
 333         * Unfortunately, some hardware-based IR decoders don't provide
 334         * all bits for the complete IR code. In general, they provide only
 335         * the command part of the IR code. Yet, as it is possible to replace
 336         * the provided IR with another one, it is needed to allow loading
 337         * IR tables from other remotes. So, we support specifying a mask to
 338         * indicate the valid bits of the scancodes.
 339         */
 340        if (dev->scancode_mask)
 341                scancode &= dev->scancode_mask;
 342
 343        /* First check if we already have a mapping for this ir command */
 344        for (i = 0; i < rc_map->len; i++) {
 345                if (rc_map->scan[i].scancode == scancode)
 346                        return i;
 347
 348                /* Keytable is sorted from lowest to highest scancode */
 349                if (rc_map->scan[i].scancode >= scancode)
 350                        break;
 351        }
 352
 353        /* No previous mapping found, we might need to grow the table */
 354        if (rc_map->size == rc_map->len) {
 355                if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
 356                        return -1U;
 357        }
 358
 359        /* i is the proper index to insert our new keycode */
 360        if (i < rc_map->len)
 361                memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 362                        (rc_map->len - i) * sizeof(struct rc_map_table));
 363        rc_map->scan[i].scancode = scancode;
 364        rc_map->scan[i].keycode = KEY_RESERVED;
 365        rc_map->len++;
 366
 367        return i;
 368}
 369
 370/**
 371 * ir_setkeycode() - set a keycode in the scancode->keycode table
 372 * @idev:       the struct input_dev device descriptor
 373 * @ke:         Input keymap entry
 374 * @old_keycode: result
 375 *
 376 * This routine is used to handle evdev EVIOCSKEY ioctl.
 377 *
 378 * return:      -EINVAL if the keycode could not be inserted, otherwise zero.
 379 */
 380static int ir_setkeycode(struct input_dev *idev,
 381                         const struct input_keymap_entry *ke,
 382                         unsigned int *old_keycode)
 383{
 384        struct rc_dev *rdev = input_get_drvdata(idev);
 385        struct rc_map *rc_map = &rdev->rc_map;
 386        unsigned int index;
 387        unsigned int scancode;
 388        int retval = 0;
 389        unsigned long flags;
 390
 391        spin_lock_irqsave(&rc_map->lock, flags);
 392
 393        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 394                index = ke->index;
 395                if (index >= rc_map->len) {
 396                        retval = -EINVAL;
 397                        goto out;
 398                }
 399        } else {
 400                retval = input_scancode_to_scalar(ke, &scancode);
 401                if (retval)
 402                        goto out;
 403
 404                index = ir_establish_scancode(rdev, rc_map, scancode, true);
 405                if (index >= rc_map->len) {
 406                        retval = -ENOMEM;
 407                        goto out;
 408                }
 409        }
 410
 411        *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 412
 413out:
 414        spin_unlock_irqrestore(&rc_map->lock, flags);
 415        return retval;
 416}
 417
 418/**
 419 * ir_setkeytable() - sets several entries in the scancode->keycode table
 420 * @dev:        the struct rc_dev device descriptor
 421 * @from:       the struct rc_map to copy entries from
 422 *
 423 * This routine is used to handle table initialization.
 424 *
 425 * return:      -ENOMEM if all keycodes could not be inserted, otherwise zero.
 426 */
 427static int ir_setkeytable(struct rc_dev *dev,
 428                          const struct rc_map *from)
 429{
 430        struct rc_map *rc_map = &dev->rc_map;
 431        unsigned int i, index;
 432        int rc;
 433
 434        rc = ir_create_table(rc_map, from->name,
 435                             from->rc_proto, from->size);
 436        if (rc)
 437                return rc;
 438
 439        for (i = 0; i < from->size; i++) {
 440                index = ir_establish_scancode(dev, rc_map,
 441                                              from->scan[i].scancode, false);
 442                if (index >= rc_map->len) {
 443                        rc = -ENOMEM;
 444                        break;
 445                }
 446
 447                ir_update_mapping(dev, rc_map, index,
 448                                  from->scan[i].keycode);
 449        }
 450
 451        if (rc)
 452                ir_free_table(rc_map);
 453
 454        return rc;
 455}
 456
 457static int rc_map_cmp(const void *key, const void *elt)
 458{
 459        const unsigned int *scancode = key;
 460        const struct rc_map_table *e = elt;
 461
 462        if (*scancode < e->scancode)
 463                return -1;
 464        else if (*scancode > e->scancode)
 465                return 1;
 466        return 0;
 467}
 468
 469/**
 470 * ir_lookup_by_scancode() - locate mapping by scancode
 471 * @rc_map:     the struct rc_map to search
 472 * @scancode:   scancode to look for in the table
 473 *
 474 * This routine performs binary search in RC keykeymap table for
 475 * given scancode.
 476 *
 477 * return:      index in the table, -1U if not found
 478 */
 479static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 480                                          unsigned int scancode)
 481{
 482        struct rc_map_table *res;
 483
 484        res = bsearch(&scancode, rc_map->scan, rc_map->len,
 485                      sizeof(struct rc_map_table), rc_map_cmp);
 486        if (!res)
 487                return -1U;
 488        else
 489                return res - rc_map->scan;
 490}
 491
 492/**
 493 * ir_getkeycode() - get a keycode from the scancode->keycode table
 494 * @idev:       the struct input_dev device descriptor
 495 * @ke:         Input keymap entry
 496 *
 497 * This routine is used to handle evdev EVIOCGKEY ioctl.
 498 *
 499 * return:      always returns zero.
 500 */
 501static int ir_getkeycode(struct input_dev *idev,
 502                         struct input_keymap_entry *ke)
 503{
 504        struct rc_dev *rdev = input_get_drvdata(idev);
 505        struct rc_map *rc_map = &rdev->rc_map;
 506        struct rc_map_table *entry;
 507        unsigned long flags;
 508        unsigned int index;
 509        unsigned int scancode;
 510        int retval;
 511
 512        spin_lock_irqsave(&rc_map->lock, flags);
 513
 514        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 515                index = ke->index;
 516        } else {
 517                retval = input_scancode_to_scalar(ke, &scancode);
 518                if (retval)
 519                        goto out;
 520
 521                index = ir_lookup_by_scancode(rc_map, scancode);
 522        }
 523
 524        if (index < rc_map->len) {
 525                entry = &rc_map->scan[index];
 526
 527                ke->index = index;
 528                ke->keycode = entry->keycode;
 529                ke->len = sizeof(entry->scancode);
 530                memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 531
 532        } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 533                /*
 534                 * We do not really know the valid range of scancodes
 535                 * so let's respond with KEY_RESERVED to anything we
 536                 * do not have mapping for [yet].
 537                 */
 538                ke->index = index;
 539                ke->keycode = KEY_RESERVED;
 540        } else {
 541                retval = -EINVAL;
 542                goto out;
 543        }
 544
 545        retval = 0;
 546
 547out:
 548        spin_unlock_irqrestore(&rc_map->lock, flags);
 549        return retval;
 550}
 551
 552/**
 553 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 554 * @dev:        the struct rc_dev descriptor of the device
 555 * @scancode:   the scancode to look for
 556 *
 557 * This routine is used by drivers which need to convert a scancode to a
 558 * keycode. Normally it should not be used since drivers should have no
 559 * interest in keycodes.
 560 *
 561 * return:      the corresponding keycode, or KEY_RESERVED
 562 */
 563u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
 564{
 565        struct rc_map *rc_map = &dev->rc_map;
 566        unsigned int keycode;
 567        unsigned int index;
 568        unsigned long flags;
 569
 570        spin_lock_irqsave(&rc_map->lock, flags);
 571
 572        index = ir_lookup_by_scancode(rc_map, scancode);
 573        keycode = index < rc_map->len ?
 574                        rc_map->scan[index].keycode : KEY_RESERVED;
 575
 576        spin_unlock_irqrestore(&rc_map->lock, flags);
 577
 578        if (keycode != KEY_RESERVED)
 579                IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
 580                           dev->device_name, scancode, keycode);
 581
 582        return keycode;
 583}
 584EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 585
 586/**
 587 * ir_do_keyup() - internal function to signal the release of a keypress
 588 * @dev:        the struct rc_dev descriptor of the device
 589 * @sync:       whether or not to call input_sync
 590 *
 591 * This function is used internally to release a keypress, it must be
 592 * called with keylock held.
 593 */
 594static void ir_do_keyup(struct rc_dev *dev, bool sync)
 595{
 596        if (!dev->keypressed)
 597                return;
 598
 599        IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
 600        del_timer(&dev->timer_repeat);
 601        input_report_key(dev->input_dev, dev->last_keycode, 0);
 602        led_trigger_event(led_feedback, LED_OFF);
 603        if (sync)
 604                input_sync(dev->input_dev);
 605        dev->keypressed = false;
 606}
 607
 608/**
 609 * rc_keyup() - signals the release of a keypress
 610 * @dev:        the struct rc_dev descriptor of the device
 611 *
 612 * This routine is used to signal that a key has been released on the
 613 * remote control.
 614 */
 615void rc_keyup(struct rc_dev *dev)
 616{
 617        unsigned long flags;
 618
 619        spin_lock_irqsave(&dev->keylock, flags);
 620        ir_do_keyup(dev, true);
 621        spin_unlock_irqrestore(&dev->keylock, flags);
 622}
 623EXPORT_SYMBOL_GPL(rc_keyup);
 624
 625/**
 626 * ir_timer_keyup() - generates a keyup event after a timeout
 627 *
 628 * @t:          a pointer to the struct timer_list
 629 *
 630 * This routine will generate a keyup event some time after a keydown event
 631 * is generated when no further activity has been detected.
 632 */
 633static void ir_timer_keyup(struct timer_list *t)
 634{
 635        struct rc_dev *dev = from_timer(dev, t, timer_keyup);
 636        unsigned long flags;
 637
 638        /*
 639         * ir->keyup_jiffies is used to prevent a race condition if a
 640         * hardware interrupt occurs at this point and the keyup timer
 641         * event is moved further into the future as a result.
 642         *
 643         * The timer will then be reactivated and this function called
 644         * again in the future. We need to exit gracefully in that case
 645         * to allow the input subsystem to do its auto-repeat magic or
 646         * a keyup event might follow immediately after the keydown.
 647         */
 648        spin_lock_irqsave(&dev->keylock, flags);
 649        if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 650                ir_do_keyup(dev, true);
 651        spin_unlock_irqrestore(&dev->keylock, flags);
 652}
 653
 654/**
 655 * ir_timer_repeat() - generates a repeat event after a timeout
 656 *
 657 * @t:          a pointer to the struct timer_list
 658 *
 659 * This routine will generate a soft repeat event every REP_PERIOD
 660 * milliseconds.
 661 */
 662static void ir_timer_repeat(struct timer_list *t)
 663{
 664        struct rc_dev *dev = from_timer(dev, t, timer_repeat);
 665        struct input_dev *input = dev->input_dev;
 666        unsigned long flags;
 667
 668        spin_lock_irqsave(&dev->keylock, flags);
 669        if (dev->keypressed) {
 670                input_event(input, EV_KEY, dev->last_keycode, 2);
 671                input_sync(input);
 672                if (input->rep[REP_PERIOD])
 673                        mod_timer(&dev->timer_repeat, jiffies +
 674                                  msecs_to_jiffies(input->rep[REP_PERIOD]));
 675        }
 676        spin_unlock_irqrestore(&dev->keylock, flags);
 677}
 678
 679/**
 680 * rc_repeat() - signals that a key is still pressed
 681 * @dev:        the struct rc_dev descriptor of the device
 682 *
 683 * This routine is used by IR decoders when a repeat message which does
 684 * not include the necessary bits to reproduce the scancode has been
 685 * received.
 686 */
 687void rc_repeat(struct rc_dev *dev)
 688{
 689        unsigned long flags;
 690        unsigned int timeout = protocols[dev->last_protocol].repeat_period;
 691        struct lirc_scancode sc = {
 692                .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
 693                .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
 694                .flags = LIRC_SCANCODE_FLAG_REPEAT |
 695                         (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
 696        };
 697
 698        ir_lirc_scancode_event(dev, &sc);
 699
 700        spin_lock_irqsave(&dev->keylock, flags);
 701
 702        input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
 703        input_sync(dev->input_dev);
 704
 705        if (dev->keypressed) {
 706                dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
 707                mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 708        }
 709
 710        spin_unlock_irqrestore(&dev->keylock, flags);
 711}
 712EXPORT_SYMBOL_GPL(rc_repeat);
 713
 714/**
 715 * ir_do_keydown() - internal function to process a keypress
 716 * @dev:        the struct rc_dev descriptor of the device
 717 * @protocol:   the protocol of the keypress
 718 * @scancode:   the scancode of the keypress
 719 * @keycode:    the keycode of the keypress
 720 * @toggle:     the toggle value of the keypress
 721 *
 722 * This function is used internally to register a keypress, it must be
 723 * called with keylock held.
 724 */
 725static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
 726                          u32 scancode, u32 keycode, u8 toggle)
 727{
 728        bool new_event = (!dev->keypressed               ||
 729                          dev->last_protocol != protocol ||
 730                          dev->last_scancode != scancode ||
 731                          dev->last_toggle   != toggle);
 732        struct lirc_scancode sc = {
 733                .scancode = scancode, .rc_proto = protocol,
 734                .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
 735                .keycode = keycode
 736        };
 737
 738        ir_lirc_scancode_event(dev, &sc);
 739
 740        if (new_event && dev->keypressed)
 741                ir_do_keyup(dev, false);
 742
 743        input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 744
 745        dev->last_protocol = protocol;
 746        dev->last_scancode = scancode;
 747        dev->last_toggle = toggle;
 748        dev->last_keycode = keycode;
 749
 750        if (new_event && keycode != KEY_RESERVED) {
 751                /* Register a keypress */
 752                dev->keypressed = true;
 753
 754                IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
 755                           dev->device_name, keycode, protocol, scancode);
 756                input_report_key(dev->input_dev, keycode, 1);
 757
 758                led_trigger_event(led_feedback, LED_FULL);
 759        }
 760
 761        /*
 762         * For CEC, start sending repeat messages as soon as the first
 763         * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
 764         * is non-zero. Otherwise, the input layer will generate repeat
 765         * messages.
 766         */
 767        if (!new_event && keycode != KEY_RESERVED &&
 768            dev->allowed_protocols == RC_PROTO_BIT_CEC &&
 769            !timer_pending(&dev->timer_repeat) &&
 770            dev->input_dev->rep[REP_PERIOD] &&
 771            !dev->input_dev->rep[REP_DELAY]) {
 772                input_event(dev->input_dev, EV_KEY, keycode, 2);
 773                mod_timer(&dev->timer_repeat, jiffies +
 774                          msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
 775        }
 776
 777        input_sync(dev->input_dev);
 778}
 779
 780/**
 781 * rc_keydown() - generates input event for a key press
 782 * @dev:        the struct rc_dev descriptor of the device
 783 * @protocol:   the protocol for the keypress
 784 * @scancode:   the scancode for the keypress
 785 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 786 *              support toggle values, this should be set to zero)
 787 *
 788 * This routine is used to signal that a key has been pressed on the
 789 * remote control.
 790 */
 791void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
 792                u8 toggle)
 793{
 794        unsigned long flags;
 795        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 796
 797        spin_lock_irqsave(&dev->keylock, flags);
 798        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 799
 800        if (dev->keypressed) {
 801                dev->keyup_jiffies = jiffies +
 802                        msecs_to_jiffies(protocols[protocol].repeat_period);
 803                mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 804        }
 805        spin_unlock_irqrestore(&dev->keylock, flags);
 806}
 807EXPORT_SYMBOL_GPL(rc_keydown);
 808
 809/**
 810 * rc_keydown_notimeout() - generates input event for a key press without
 811 *                          an automatic keyup event at a later time
 812 * @dev:        the struct rc_dev descriptor of the device
 813 * @protocol:   the protocol for the keypress
 814 * @scancode:   the scancode for the keypress
 815 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 816 *              support toggle values, this should be set to zero)
 817 *
 818 * This routine is used to signal that a key has been pressed on the
 819 * remote control. The driver must manually call rc_keyup() at a later stage.
 820 */
 821void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
 822                          u32 scancode, u8 toggle)
 823{
 824        unsigned long flags;
 825        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 826
 827        spin_lock_irqsave(&dev->keylock, flags);
 828        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 829        spin_unlock_irqrestore(&dev->keylock, flags);
 830}
 831EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 832
 833/**
 834 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
 835 *      For nec, it should do the opposite of ir_nec_bytes_to_scancode()
 836 * @proto:      protocol
 837 * @scancode:   scancode
 838 */
 839bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
 840{
 841        switch (proto) {
 842        /*
 843         * NECX has a 16-bit address; if the lower 8 bits match the upper
 844         * 8 bits inverted, then the address would match regular nec.
 845         */
 846        case RC_PROTO_NECX:
 847                if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
 848                        return false;
 849                break;
 850        /*
 851         * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
 852         * of the command match the upper 8 bits inverted, then it would
 853         * be either NEC or NECX.
 854         */
 855        case RC_PROTO_NEC32:
 856                if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
 857                        return false;
 858                break;
 859        /*
 860         * If the customer code (top 32-bit) is 0x800f, it is MCE else it
 861         * is regular mode-6a 32 bit
 862         */
 863        case RC_PROTO_RC6_MCE:
 864                if ((scancode & 0xffff0000) != 0x800f0000)
 865                        return false;
 866                break;
 867        case RC_PROTO_RC6_6A_32:
 868                if ((scancode & 0xffff0000) == 0x800f0000)
 869                        return false;
 870                break;
 871        default:
 872                break;
 873        }
 874
 875        return true;
 876}
 877
 878/**
 879 * rc_validate_filter() - checks that the scancode and mask are valid and
 880 *                        provides sensible defaults
 881 * @dev:        the struct rc_dev descriptor of the device
 882 * @filter:     the scancode and mask
 883 *
 884 * return:      0 or -EINVAL if the filter is not valid
 885 */
 886static int rc_validate_filter(struct rc_dev *dev,
 887                              struct rc_scancode_filter *filter)
 888{
 889        u32 mask, s = filter->data;
 890        enum rc_proto protocol = dev->wakeup_protocol;
 891
 892        if (protocol >= ARRAY_SIZE(protocols))
 893                return -EINVAL;
 894
 895        mask = protocols[protocol].scancode_bits;
 896
 897        if (!rc_validate_scancode(protocol, s))
 898                return -EINVAL;
 899
 900        filter->data &= mask;
 901        filter->mask &= mask;
 902
 903        /*
 904         * If we have to raw encode the IR for wakeup, we cannot have a mask
 905         */
 906        if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
 907                return -EINVAL;
 908
 909        return 0;
 910}
 911
 912int rc_open(struct rc_dev *rdev)
 913{
 914        int rval = 0;
 915
 916        if (!rdev)
 917                return -EINVAL;
 918
 919        mutex_lock(&rdev->lock);
 920
 921        if (!rdev->registered) {
 922                rval = -ENODEV;
 923        } else {
 924                if (!rdev->users++ && rdev->open)
 925                        rval = rdev->open(rdev);
 926
 927                if (rval)
 928                        rdev->users--;
 929        }
 930
 931        mutex_unlock(&rdev->lock);
 932
 933        return rval;
 934}
 935
 936static int ir_open(struct input_dev *idev)
 937{
 938        struct rc_dev *rdev = input_get_drvdata(idev);
 939
 940        return rc_open(rdev);
 941}
 942
 943void rc_close(struct rc_dev *rdev)
 944{
 945        if (rdev) {
 946                mutex_lock(&rdev->lock);
 947
 948                if (!--rdev->users && rdev->close && rdev->registered)
 949                        rdev->close(rdev);
 950
 951                mutex_unlock(&rdev->lock);
 952        }
 953}
 954
 955static void ir_close(struct input_dev *idev)
 956{
 957        struct rc_dev *rdev = input_get_drvdata(idev);
 958        rc_close(rdev);
 959}
 960
 961/* class for /sys/class/rc */
 962static char *rc_devnode(struct device *dev, umode_t *mode)
 963{
 964        return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
 965}
 966
 967static struct class rc_class = {
 968        .name           = "rc",
 969        .devnode        = rc_devnode,
 970};
 971
 972/*
 973 * These are the protocol textual descriptions that are
 974 * used by the sysfs protocols file. Note that the order
 975 * of the entries is relevant.
 976 */
 977static const struct {
 978        u64     type;
 979        const char      *name;
 980        const char      *module_name;
 981} proto_names[] = {
 982        { RC_PROTO_BIT_NONE,    "none",         NULL                    },
 983        { RC_PROTO_BIT_OTHER,   "other",        NULL                    },
 984        { RC_PROTO_BIT_UNKNOWN, "unknown",      NULL                    },
 985        { RC_PROTO_BIT_RC5 |
 986          RC_PROTO_BIT_RC5X_20, "rc-5",         "ir-rc5-decoder"        },
 987        { RC_PROTO_BIT_NEC |
 988          RC_PROTO_BIT_NECX |
 989          RC_PROTO_BIT_NEC32,   "nec",          "ir-nec-decoder"        },
 990        { RC_PROTO_BIT_RC6_0 |
 991          RC_PROTO_BIT_RC6_6A_20 |
 992          RC_PROTO_BIT_RC6_6A_24 |
 993          RC_PROTO_BIT_RC6_6A_32 |
 994          RC_PROTO_BIT_RC6_MCE, "rc-6",         "ir-rc6-decoder"        },
 995        { RC_PROTO_BIT_JVC,     "jvc",          "ir-jvc-decoder"        },
 996        { RC_PROTO_BIT_SONY12 |
 997          RC_PROTO_BIT_SONY15 |
 998          RC_PROTO_BIT_SONY20,  "sony",         "ir-sony-decoder"       },
 999        { RC_PROTO_BIT_RC5_SZ,  "rc-5-sz",      "ir-rc5-decoder"        },
1000        { RC_PROTO_BIT_SANYO,   "sanyo",        "ir-sanyo-decoder"      },
1001        { RC_PROTO_BIT_SHARP,   "sharp",        "ir-sharp-decoder"      },
1002        { RC_PROTO_BIT_MCIR2_KBD |
1003          RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",    "ir-mce_kbd-decoder"    },
1004        { RC_PROTO_BIT_XMP,     "xmp",          "ir-xmp-decoder"        },
1005        { RC_PROTO_BIT_CEC,     "cec",          NULL                    },
1006};
1007
1008/**
1009 * struct rc_filter_attribute - Device attribute relating to a filter type.
1010 * @attr:       Device attribute.
1011 * @type:       Filter type.
1012 * @mask:       false for filter value, true for filter mask.
1013 */
1014struct rc_filter_attribute {
1015        struct device_attribute         attr;
1016        enum rc_filter_type             type;
1017        bool                            mask;
1018};
1019#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1020
1021#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)       \
1022        struct rc_filter_attribute dev_attr_##_name = {                 \
1023                .attr = __ATTR(_name, _mode, _show, _store),            \
1024                .type = (_type),                                        \
1025                .mask = (_mask),                                        \
1026        }
1027
1028/**
1029 * show_protocols() - shows the current IR protocol(s)
1030 * @device:     the device descriptor
1031 * @mattr:      the device attribute struct
1032 * @buf:        a pointer to the output buffer
1033 *
1034 * This routine is a callback routine for input read the IR protocol type(s).
1035 * it is trigged by reading /sys/class/rc/rc?/protocols.
1036 * It returns the protocol names of supported protocols.
1037 * Enabled protocols are printed in brackets.
1038 *
1039 * dev->lock is taken to guard against races between
1040 * store_protocols and show_protocols.
1041 */
1042static ssize_t show_protocols(struct device *device,
1043                              struct device_attribute *mattr, char *buf)
1044{
1045        struct rc_dev *dev = to_rc_dev(device);
1046        u64 allowed, enabled;
1047        char *tmp = buf;
1048        int i;
1049
1050        mutex_lock(&dev->lock);
1051
1052        enabled = dev->enabled_protocols;
1053        allowed = dev->allowed_protocols;
1054        if (dev->raw && !allowed)
1055                allowed = ir_raw_get_allowed_protocols();
1056
1057        mutex_unlock(&dev->lock);
1058
1059        IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1060                   __func__, (long long)allowed, (long long)enabled);
1061
1062        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1063                if (allowed & enabled & proto_names[i].type)
1064                        tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1065                else if (allowed & proto_names[i].type)
1066                        tmp += sprintf(tmp, "%s ", proto_names[i].name);
1067
1068                if (allowed & proto_names[i].type)
1069                        allowed &= ~proto_names[i].type;
1070        }
1071
1072#ifdef CONFIG_LIRC
1073        if (dev->driver_type == RC_DRIVER_IR_RAW)
1074                tmp += sprintf(tmp, "[lirc] ");
1075#endif
1076
1077        if (tmp != buf)
1078                tmp--;
1079        *tmp = '\n';
1080
1081        return tmp + 1 - buf;
1082}
1083
1084/**
1085 * parse_protocol_change() - parses a protocol change request
1086 * @protocols:  pointer to the bitmask of current protocols
1087 * @buf:        pointer to the buffer with a list of changes
1088 *
1089 * Writing "+proto" will add a protocol to the protocol mask.
1090 * Writing "-proto" will remove a protocol from protocol mask.
1091 * Writing "proto" will enable only "proto".
1092 * Writing "none" will disable all protocols.
1093 * Returns the number of changes performed or a negative error code.
1094 */
1095static int parse_protocol_change(u64 *protocols, const char *buf)
1096{
1097        const char *tmp;
1098        unsigned count = 0;
1099        bool enable, disable;
1100        u64 mask;
1101        int i;
1102
1103        while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1104                if (!*tmp)
1105                        break;
1106
1107                if (*tmp == '+') {
1108                        enable = true;
1109                        disable = false;
1110                        tmp++;
1111                } else if (*tmp == '-') {
1112                        enable = false;
1113                        disable = true;
1114                        tmp++;
1115                } else {
1116                        enable = false;
1117                        disable = false;
1118                }
1119
1120                for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1121                        if (!strcasecmp(tmp, proto_names[i].name)) {
1122                                mask = proto_names[i].type;
1123                                break;
1124                        }
1125                }
1126
1127                if (i == ARRAY_SIZE(proto_names)) {
1128                        if (!strcasecmp(tmp, "lirc"))
1129                                mask = 0;
1130                        else {
1131                                IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1132                                return -EINVAL;
1133                        }
1134                }
1135
1136                count++;
1137
1138                if (enable)
1139                        *protocols |= mask;
1140                else if (disable)
1141                        *protocols &= ~mask;
1142                else
1143                        *protocols = mask;
1144        }
1145
1146        if (!count) {
1147                IR_dprintk(1, "Protocol not specified\n");
1148                return -EINVAL;
1149        }
1150
1151        return count;
1152}
1153
1154void ir_raw_load_modules(u64 *protocols)
1155{
1156        u64 available;
1157        int i, ret;
1158
1159        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1160                if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1161                    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1162                                           RC_PROTO_BIT_UNKNOWN))
1163                        continue;
1164
1165                available = ir_raw_get_allowed_protocols();
1166                if (!(*protocols & proto_names[i].type & ~available))
1167                        continue;
1168
1169                if (!proto_names[i].module_name) {
1170                        pr_err("Can't enable IR protocol %s\n",
1171                               proto_names[i].name);
1172                        *protocols &= ~proto_names[i].type;
1173                        continue;
1174                }
1175
1176                ret = request_module("%s", proto_names[i].module_name);
1177                if (ret < 0) {
1178                        pr_err("Couldn't load IR protocol module %s\n",
1179                               proto_names[i].module_name);
1180                        *protocols &= ~proto_names[i].type;
1181                        continue;
1182                }
1183                msleep(20);
1184                available = ir_raw_get_allowed_protocols();
1185                if (!(*protocols & proto_names[i].type & ~available))
1186                        continue;
1187
1188                pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1189                       proto_names[i].module_name,
1190                       proto_names[i].name);
1191                *protocols &= ~proto_names[i].type;
1192        }
1193}
1194
1195/**
1196 * store_protocols() - changes the current/wakeup IR protocol(s)
1197 * @device:     the device descriptor
1198 * @mattr:      the device attribute struct
1199 * @buf:        a pointer to the input buffer
1200 * @len:        length of the input buffer
1201 *
1202 * This routine is for changing the IR protocol type.
1203 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1204 * See parse_protocol_change() for the valid commands.
1205 * Returns @len on success or a negative error code.
1206 *
1207 * dev->lock is taken to guard against races between
1208 * store_protocols and show_protocols.
1209 */
1210static ssize_t store_protocols(struct device *device,
1211                               struct device_attribute *mattr,
1212                               const char *buf, size_t len)
1213{
1214        struct rc_dev *dev = to_rc_dev(device);
1215        u64 *current_protocols;
1216        struct rc_scancode_filter *filter;
1217        u64 old_protocols, new_protocols;
1218        ssize_t rc;
1219
1220        IR_dprintk(1, "Normal protocol change requested\n");
1221        current_protocols = &dev->enabled_protocols;
1222        filter = &dev->scancode_filter;
1223
1224        if (!dev->change_protocol) {
1225                IR_dprintk(1, "Protocol switching not supported\n");
1226                return -EINVAL;
1227        }
1228
1229        mutex_lock(&dev->lock);
1230
1231        old_protocols = *current_protocols;
1232        new_protocols = old_protocols;
1233        rc = parse_protocol_change(&new_protocols, buf);
1234        if (rc < 0)
1235                goto out;
1236
1237        rc = dev->change_protocol(dev, &new_protocols);
1238        if (rc < 0) {
1239                IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1240                           (long long)new_protocols);
1241                goto out;
1242        }
1243
1244        if (dev->driver_type == RC_DRIVER_IR_RAW)
1245                ir_raw_load_modules(&new_protocols);
1246
1247        if (new_protocols != old_protocols) {
1248                *current_protocols = new_protocols;
1249                IR_dprintk(1, "Protocols changed to 0x%llx\n",
1250                           (long long)new_protocols);
1251        }
1252
1253        /*
1254         * If a protocol change was attempted the filter may need updating, even
1255         * if the actual protocol mask hasn't changed (since the driver may have
1256         * cleared the filter).
1257         * Try setting the same filter with the new protocol (if any).
1258         * Fall back to clearing the filter.
1259         */
1260        if (dev->s_filter && filter->mask) {
1261                if (new_protocols)
1262                        rc = dev->s_filter(dev, filter);
1263                else
1264                        rc = -1;
1265
1266                if (rc < 0) {
1267                        filter->data = 0;
1268                        filter->mask = 0;
1269                        dev->s_filter(dev, filter);
1270                }
1271        }
1272
1273        rc = len;
1274
1275out:
1276        mutex_unlock(&dev->lock);
1277        return rc;
1278}
1279
1280/**
1281 * show_filter() - shows the current scancode filter value or mask
1282 * @device:     the device descriptor
1283 * @attr:       the device attribute struct
1284 * @buf:        a pointer to the output buffer
1285 *
1286 * This routine is a callback routine to read a scancode filter value or mask.
1287 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1288 * It prints the current scancode filter value or mask of the appropriate filter
1289 * type in hexadecimal into @buf and returns the size of the buffer.
1290 *
1291 * Bits of the filter value corresponding to set bits in the filter mask are
1292 * compared against input scancodes and non-matching scancodes are discarded.
1293 *
1294 * dev->lock is taken to guard against races between
1295 * store_filter and show_filter.
1296 */
1297static ssize_t show_filter(struct device *device,
1298                           struct device_attribute *attr,
1299                           char *buf)
1300{
1301        struct rc_dev *dev = to_rc_dev(device);
1302        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1303        struct rc_scancode_filter *filter;
1304        u32 val;
1305
1306        mutex_lock(&dev->lock);
1307
1308        if (fattr->type == RC_FILTER_NORMAL)
1309                filter = &dev->scancode_filter;
1310        else
1311                filter = &dev->scancode_wakeup_filter;
1312
1313        if (fattr->mask)
1314                val = filter->mask;
1315        else
1316                val = filter->data;
1317        mutex_unlock(&dev->lock);
1318
1319        return sprintf(buf, "%#x\n", val);
1320}
1321
1322/**
1323 * store_filter() - changes the scancode filter value
1324 * @device:     the device descriptor
1325 * @attr:       the device attribute struct
1326 * @buf:        a pointer to the input buffer
1327 * @len:        length of the input buffer
1328 *
1329 * This routine is for changing a scancode filter value or mask.
1330 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1331 * Returns -EINVAL if an invalid filter value for the current protocol was
1332 * specified or if scancode filtering is not supported by the driver, otherwise
1333 * returns @len.
1334 *
1335 * Bits of the filter value corresponding to set bits in the filter mask are
1336 * compared against input scancodes and non-matching scancodes are discarded.
1337 *
1338 * dev->lock is taken to guard against races between
1339 * store_filter and show_filter.
1340 */
1341static ssize_t store_filter(struct device *device,
1342                            struct device_attribute *attr,
1343                            const char *buf, size_t len)
1344{
1345        struct rc_dev *dev = to_rc_dev(device);
1346        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1347        struct rc_scancode_filter new_filter, *filter;
1348        int ret;
1349        unsigned long val;
1350        int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1351
1352        ret = kstrtoul(buf, 0, &val);
1353        if (ret < 0)
1354                return ret;
1355
1356        if (fattr->type == RC_FILTER_NORMAL) {
1357                set_filter = dev->s_filter;
1358                filter = &dev->scancode_filter;
1359        } else {
1360                set_filter = dev->s_wakeup_filter;
1361                filter = &dev->scancode_wakeup_filter;
1362        }
1363
1364        if (!set_filter)
1365                return -EINVAL;
1366
1367        mutex_lock(&dev->lock);
1368
1369        new_filter = *filter;
1370        if (fattr->mask)
1371                new_filter.mask = val;
1372        else
1373                new_filter.data = val;
1374
1375        if (fattr->type == RC_FILTER_WAKEUP) {
1376                /*
1377                 * Refuse to set a filter unless a protocol is enabled
1378                 * and the filter is valid for that protocol
1379                 */
1380                if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1381                        ret = rc_validate_filter(dev, &new_filter);
1382                else
1383                        ret = -EINVAL;
1384
1385                if (ret != 0)
1386                        goto unlock;
1387        }
1388
1389        if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1390            val) {
1391                /* refuse to set a filter unless a protocol is enabled */
1392                ret = -EINVAL;
1393                goto unlock;
1394        }
1395
1396        ret = set_filter(dev, &new_filter);
1397        if (ret < 0)
1398                goto unlock;
1399
1400        *filter = new_filter;
1401
1402unlock:
1403        mutex_unlock(&dev->lock);
1404        return (ret < 0) ? ret : len;
1405}
1406
1407/**
1408 * show_wakeup_protocols() - shows the wakeup IR protocol
1409 * @device:     the device descriptor
1410 * @mattr:      the device attribute struct
1411 * @buf:        a pointer to the output buffer
1412 *
1413 * This routine is a callback routine for input read the IR protocol type(s).
1414 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1415 * It returns the protocol names of supported protocols.
1416 * The enabled protocols are printed in brackets.
1417 *
1418 * dev->lock is taken to guard against races between
1419 * store_wakeup_protocols and show_wakeup_protocols.
1420 */
1421static ssize_t show_wakeup_protocols(struct device *device,
1422                                     struct device_attribute *mattr,
1423                                     char *buf)
1424{
1425        struct rc_dev *dev = to_rc_dev(device);
1426        u64 allowed;
1427        enum rc_proto enabled;
1428        char *tmp = buf;
1429        int i;
1430
1431        mutex_lock(&dev->lock);
1432
1433        allowed = dev->allowed_wakeup_protocols;
1434        enabled = dev->wakeup_protocol;
1435
1436        mutex_unlock(&dev->lock);
1437
1438        IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1439                   __func__, (long long)allowed, enabled);
1440
1441        for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1442                if (allowed & (1ULL << i)) {
1443                        if (i == enabled)
1444                                tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1445                        else
1446                                tmp += sprintf(tmp, "%s ", protocols[i].name);
1447                }
1448        }
1449
1450        if (tmp != buf)
1451                tmp--;
1452        *tmp = '\n';
1453
1454        return tmp + 1 - buf;
1455}
1456
1457/**
1458 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1459 * @device:     the device descriptor
1460 * @mattr:      the device attribute struct
1461 * @buf:        a pointer to the input buffer
1462 * @len:        length of the input buffer
1463 *
1464 * This routine is for changing the IR protocol type.
1465 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1466 * Returns @len on success or a negative error code.
1467 *
1468 * dev->lock is taken to guard against races between
1469 * store_wakeup_protocols and show_wakeup_protocols.
1470 */
1471static ssize_t store_wakeup_protocols(struct device *device,
1472                                      struct device_attribute *mattr,
1473                                      const char *buf, size_t len)
1474{
1475        struct rc_dev *dev = to_rc_dev(device);
1476        enum rc_proto protocol;
1477        ssize_t rc;
1478        u64 allowed;
1479        int i;
1480
1481        mutex_lock(&dev->lock);
1482
1483        allowed = dev->allowed_wakeup_protocols;
1484
1485        if (sysfs_streq(buf, "none")) {
1486                protocol = RC_PROTO_UNKNOWN;
1487        } else {
1488                for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1489                        if ((allowed & (1ULL << i)) &&
1490                            sysfs_streq(buf, protocols[i].name)) {
1491                                protocol = i;
1492                                break;
1493                        }
1494                }
1495
1496                if (i == ARRAY_SIZE(protocols)) {
1497                        rc = -EINVAL;
1498                        goto out;
1499                }
1500
1501                if (dev->encode_wakeup) {
1502                        u64 mask = 1ULL << protocol;
1503
1504                        ir_raw_load_modules(&mask);
1505                        if (!mask) {
1506                                rc = -EINVAL;
1507                                goto out;
1508                        }
1509                }
1510        }
1511
1512        if (dev->wakeup_protocol != protocol) {
1513                dev->wakeup_protocol = protocol;
1514                IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1515
1516                if (protocol == RC_PROTO_RC6_MCE)
1517                        dev->scancode_wakeup_filter.data = 0x800f0000;
1518                else
1519                        dev->scancode_wakeup_filter.data = 0;
1520                dev->scancode_wakeup_filter.mask = 0;
1521
1522                rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1523                if (rc == 0)
1524                        rc = len;
1525        } else {
1526                rc = len;
1527        }
1528
1529out:
1530        mutex_unlock(&dev->lock);
1531        return rc;
1532}
1533
1534static void rc_dev_release(struct device *device)
1535{
1536        struct rc_dev *dev = to_rc_dev(device);
1537
1538        kfree(dev);
1539}
1540
1541#define ADD_HOTPLUG_VAR(fmt, val...)                                    \
1542        do {                                                            \
1543                int err = add_uevent_var(env, fmt, val);                \
1544                if (err)                                                \
1545                        return err;                                     \
1546        } while (0)
1547
1548static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1549{
1550        struct rc_dev *dev = to_rc_dev(device);
1551
1552        if (dev->rc_map.name)
1553                ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1554        if (dev->driver_name)
1555                ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1556        if (dev->device_name)
1557                ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1558
1559        return 0;
1560}
1561
1562/*
1563 * Static device attribute struct with the sysfs attributes for IR's
1564 */
1565static struct device_attribute dev_attr_ro_protocols =
1566__ATTR(protocols, 0444, show_protocols, NULL);
1567static struct device_attribute dev_attr_rw_protocols =
1568__ATTR(protocols, 0644, show_protocols, store_protocols);
1569static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1570                   store_wakeup_protocols);
1571static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1572                      show_filter, store_filter, RC_FILTER_NORMAL, false);
1573static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1574                      show_filter, store_filter, RC_FILTER_NORMAL, true);
1575static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1576                      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1577static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1578                      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1579
1580static struct attribute *rc_dev_rw_protocol_attrs[] = {
1581        &dev_attr_rw_protocols.attr,
1582        NULL,
1583};
1584
1585static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1586        .attrs  = rc_dev_rw_protocol_attrs,
1587};
1588
1589static struct attribute *rc_dev_ro_protocol_attrs[] = {
1590        &dev_attr_ro_protocols.attr,
1591        NULL,
1592};
1593
1594static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1595        .attrs  = rc_dev_ro_protocol_attrs,
1596};
1597
1598static struct attribute *rc_dev_filter_attrs[] = {
1599        &dev_attr_filter.attr.attr,
1600        &dev_attr_filter_mask.attr.attr,
1601        NULL,
1602};
1603
1604static const struct attribute_group rc_dev_filter_attr_grp = {
1605        .attrs  = rc_dev_filter_attrs,
1606};
1607
1608static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1609        &dev_attr_wakeup_filter.attr.attr,
1610        &dev_attr_wakeup_filter_mask.attr.attr,
1611        &dev_attr_wakeup_protocols.attr,
1612        NULL,
1613};
1614
1615static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1616        .attrs  = rc_dev_wakeup_filter_attrs,
1617};
1618
1619static const struct device_type rc_dev_type = {
1620        .release        = rc_dev_release,
1621        .uevent         = rc_dev_uevent,
1622};
1623
1624struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1625{
1626        struct rc_dev *dev;
1627
1628        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1629        if (!dev)
1630                return NULL;
1631
1632        if (type != RC_DRIVER_IR_RAW_TX) {
1633                dev->input_dev = input_allocate_device();
1634                if (!dev->input_dev) {
1635                        kfree(dev);
1636                        return NULL;
1637                }
1638
1639                dev->input_dev->getkeycode = ir_getkeycode;
1640                dev->input_dev->setkeycode = ir_setkeycode;
1641                input_set_drvdata(dev->input_dev, dev);
1642
1643                timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1644                timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1645
1646                spin_lock_init(&dev->rc_map.lock);
1647                spin_lock_init(&dev->keylock);
1648        }
1649        mutex_init(&dev->lock);
1650
1651        dev->dev.type = &rc_dev_type;
1652        dev->dev.class = &rc_class;
1653        device_initialize(&dev->dev);
1654
1655        dev->driver_type = type;
1656
1657        __module_get(THIS_MODULE);
1658        return dev;
1659}
1660EXPORT_SYMBOL_GPL(rc_allocate_device);
1661
1662void rc_free_device(struct rc_dev *dev)
1663{
1664        if (!dev)
1665                return;
1666
1667        input_free_device(dev->input_dev);
1668
1669        put_device(&dev->dev);
1670
1671        /* kfree(dev) will be called by the callback function
1672           rc_dev_release() */
1673
1674        module_put(THIS_MODULE);
1675}
1676EXPORT_SYMBOL_GPL(rc_free_device);
1677
1678static void devm_rc_alloc_release(struct device *dev, void *res)
1679{
1680        rc_free_device(*(struct rc_dev **)res);
1681}
1682
1683struct rc_dev *devm_rc_allocate_device(struct device *dev,
1684                                       enum rc_driver_type type)
1685{
1686        struct rc_dev **dr, *rc;
1687
1688        dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1689        if (!dr)
1690                return NULL;
1691
1692        rc = rc_allocate_device(type);
1693        if (!rc) {
1694                devres_free(dr);
1695                return NULL;
1696        }
1697
1698        rc->dev.parent = dev;
1699        rc->managed_alloc = true;
1700        *dr = rc;
1701        devres_add(dev, dr);
1702
1703        return rc;
1704}
1705EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1706
1707static int rc_prepare_rx_device(struct rc_dev *dev)
1708{
1709        int rc;
1710        struct rc_map *rc_map;
1711        u64 rc_proto;
1712
1713        if (!dev->map_name)
1714                return -EINVAL;
1715
1716        rc_map = rc_map_get(dev->map_name);
1717        if (!rc_map)
1718                rc_map = rc_map_get(RC_MAP_EMPTY);
1719        if (!rc_map || !rc_map->scan || rc_map->size == 0)
1720                return -EINVAL;
1721
1722        rc = ir_setkeytable(dev, rc_map);
1723        if (rc)
1724                return rc;
1725
1726        rc_proto = BIT_ULL(rc_map->rc_proto);
1727
1728        if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1729                dev->enabled_protocols = dev->allowed_protocols;
1730
1731        if (dev->change_protocol) {
1732                rc = dev->change_protocol(dev, &rc_proto);
1733                if (rc < 0)
1734                        goto out_table;
1735                dev->enabled_protocols = rc_proto;
1736        }
1737
1738        if (dev->driver_type == RC_DRIVER_IR_RAW)
1739                ir_raw_load_modules(&rc_proto);
1740
1741        set_bit(EV_KEY, dev->input_dev->evbit);
1742        set_bit(EV_REP, dev->input_dev->evbit);
1743        set_bit(EV_MSC, dev->input_dev->evbit);
1744        set_bit(MSC_SCAN, dev->input_dev->mscbit);
1745        if (dev->open)
1746                dev->input_dev->open = ir_open;
1747        if (dev->close)
1748                dev->input_dev->close = ir_close;
1749
1750        dev->input_dev->dev.parent = &dev->dev;
1751        memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1752        dev->input_dev->phys = dev->input_phys;
1753        dev->input_dev->name = dev->device_name;
1754
1755        return 0;
1756
1757out_table:
1758        ir_free_table(&dev->rc_map);
1759
1760        return rc;
1761}
1762
1763static int rc_setup_rx_device(struct rc_dev *dev)
1764{
1765        int rc;
1766
1767        /* rc_open will be called here */
1768        rc = input_register_device(dev->input_dev);
1769        if (rc)
1770                return rc;
1771
1772        /*
1773         * Default delay of 250ms is too short for some protocols, especially
1774         * since the timeout is currently set to 250ms. Increase it to 500ms,
1775         * to avoid wrong repetition of the keycodes. Note that this must be
1776         * set after the call to input_register_device().
1777         */
1778        if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1779                dev->input_dev->rep[REP_DELAY] = 0;
1780        else
1781                dev->input_dev->rep[REP_DELAY] = 500;
1782
1783        /*
1784         * As a repeat event on protocols like RC-5 and NEC take as long as
1785         * 110/114ms, using 33ms as a repeat period is not the right thing
1786         * to do.
1787         */
1788        dev->input_dev->rep[REP_PERIOD] = 125;
1789
1790        return 0;
1791}
1792
1793static void rc_free_rx_device(struct rc_dev *dev)
1794{
1795        if (!dev)
1796                return;
1797
1798        if (dev->input_dev) {
1799                input_unregister_device(dev->input_dev);
1800                dev->input_dev = NULL;
1801        }
1802
1803        ir_free_table(&dev->rc_map);
1804}
1805
1806int rc_register_device(struct rc_dev *dev)
1807{
1808        const char *path;
1809        int attr = 0;
1810        int minor;
1811        int rc;
1812
1813        if (!dev)
1814                return -EINVAL;
1815
1816        minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1817        if (minor < 0)
1818                return minor;
1819
1820        dev->minor = minor;
1821        dev_set_name(&dev->dev, "rc%u", dev->minor);
1822        dev_set_drvdata(&dev->dev, dev);
1823
1824        dev->dev.groups = dev->sysfs_groups;
1825        if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1826                dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1827        else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1828                dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1829        if (dev->s_filter)
1830                dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1831        if (dev->s_wakeup_filter)
1832                dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1833        dev->sysfs_groups[attr++] = NULL;
1834
1835        if (dev->driver_type == RC_DRIVER_IR_RAW) {
1836                rc = ir_raw_event_prepare(dev);
1837                if (rc < 0)
1838                        goto out_minor;
1839        }
1840
1841        if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1842                rc = rc_prepare_rx_device(dev);
1843                if (rc)
1844                        goto out_raw;
1845        }
1846
1847        rc = device_add(&dev->dev);
1848        if (rc)
1849                goto out_rx_free;
1850
1851        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1852        dev_info(&dev->dev, "%s as %s\n",
1853                 dev->device_name ?: "Unspecified device", path ?: "N/A");
1854        kfree(path);
1855
1856        if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1857                rc = rc_setup_rx_device(dev);
1858                if (rc)
1859                        goto out_dev;
1860        }
1861
1862        /* Ensure that the lirc kfifo is setup before we start the thread */
1863        if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1864                rc = ir_lirc_register(dev);
1865                if (rc < 0)
1866                        goto out_rx;
1867        }
1868
1869        if (dev->driver_type == RC_DRIVER_IR_RAW) {
1870                rc = ir_raw_event_register(dev);
1871                if (rc < 0)
1872                        goto out_lirc;
1873        }
1874
1875        dev->registered = true;
1876
1877        IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1878                   dev->minor,
1879                   dev->driver_name ? dev->driver_name : "unknown");
1880
1881        return 0;
1882
1883out_lirc:
1884        if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1885                ir_lirc_unregister(dev);
1886out_rx:
1887        rc_free_rx_device(dev);
1888out_dev:
1889        device_del(&dev->dev);
1890out_rx_free:
1891        ir_free_table(&dev->rc_map);
1892out_raw:
1893        ir_raw_event_free(dev);
1894out_minor:
1895        ida_simple_remove(&rc_ida, minor);
1896        return rc;
1897}
1898EXPORT_SYMBOL_GPL(rc_register_device);
1899
1900static void devm_rc_release(struct device *dev, void *res)
1901{
1902        rc_unregister_device(*(struct rc_dev **)res);
1903}
1904
1905int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1906{
1907        struct rc_dev **dr;
1908        int ret;
1909
1910        dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1911        if (!dr)
1912                return -ENOMEM;
1913
1914        ret = rc_register_device(dev);
1915        if (ret) {
1916                devres_free(dr);
1917                return ret;
1918        }
1919
1920        *dr = dev;
1921        devres_add(parent, dr);
1922
1923        return 0;
1924}
1925EXPORT_SYMBOL_GPL(devm_rc_register_device);
1926
1927void rc_unregister_device(struct rc_dev *dev)
1928{
1929        if (!dev)
1930                return;
1931
1932        del_timer_sync(&dev->timer_keyup);
1933        del_timer_sync(&dev->timer_repeat);
1934
1935        if (dev->driver_type == RC_DRIVER_IR_RAW)
1936                ir_raw_event_unregister(dev);
1937
1938        rc_free_rx_device(dev);
1939
1940        mutex_lock(&dev->lock);
1941        dev->registered = false;
1942        mutex_unlock(&dev->lock);
1943
1944        /*
1945         * lirc device should be freed with dev->registered = false, so
1946         * that userspace polling will get notified.
1947         */
1948        if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1949                ir_lirc_unregister(dev);
1950
1951        device_del(&dev->dev);
1952
1953        ida_simple_remove(&rc_ida, dev->minor);
1954
1955        if (!dev->managed_alloc)
1956                rc_free_device(dev);
1957}
1958
1959EXPORT_SYMBOL_GPL(rc_unregister_device);
1960
1961/*
1962 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1963 */
1964
1965static int __init rc_core_init(void)
1966{
1967        int rc = class_register(&rc_class);
1968        if (rc) {
1969                pr_err("rc_core: unable to register rc class\n");
1970                return rc;
1971        }
1972
1973        rc = lirc_dev_init();
1974        if (rc) {
1975                pr_err("rc_core: unable to init lirc\n");
1976                class_unregister(&rc_class);
1977                return 0;
1978        }
1979
1980        led_trigger_register_simple("rc-feedback", &led_feedback);
1981        rc_map_register(&empty_map);
1982
1983        return 0;
1984}
1985
1986static void __exit rc_core_exit(void)
1987{
1988        lirc_dev_exit();
1989        class_unregister(&rc_class);
1990        led_trigger_unregister_simple(led_feedback);
1991        rc_map_unregister(&empty_map);
1992}
1993
1994subsys_initcall(rc_core_init);
1995module_exit(rc_core_exit);
1996
1997int rc_core_debug;    /* ir_debug level (0,1,2) */
1998EXPORT_SYMBOL_GPL(rc_core_debug);
1999module_param_named(debug, rc_core_debug, int, 0644);
2000
2001MODULE_AUTHOR("Mauro Carvalho Chehab");
2002MODULE_LICENSE("GPL v2");
2003