linux/drivers/mtd/chips/cfi_cmdset_0002.c
<<
>>
Prefs
   1/*
   2 * Common Flash Interface support:
   3 *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
   4 *
   5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
   6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
   7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
   8 *
   9 * 2_by_8 routines added by Simon Munton
  10 *
  11 * 4_by_16 work by Carolyn J. Smith
  12 *
  13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
  14 * by Nicolas Pitre)
  15 *
  16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
  17 *
  18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
  19 *
  20 * This code is GPL
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/sched.h>
  27#include <asm/io.h>
  28#include <asm/byteorder.h>
  29
  30#include <linux/errno.h>
  31#include <linux/slab.h>
  32#include <linux/delay.h>
  33#include <linux/interrupt.h>
  34#include <linux/reboot.h>
  35#include <linux/of.h>
  36#include <linux/of_platform.h>
  37#include <linux/mtd/map.h>
  38#include <linux/mtd/mtd.h>
  39#include <linux/mtd/cfi.h>
  40#include <linux/mtd/xip.h>
  41
  42#define AMD_BOOTLOC_BUG
  43#define FORCE_WORD_WRITE 0
  44
  45#define MAX_WORD_RETRIES 3
  46
  47#define SST49LF004B             0x0060
  48#define SST49LF040B             0x0050
  49#define SST49LF008A             0x005a
  50#define AT49BV6416              0x00d6
  51
  52static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  53static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  54static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  55static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
  56static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
  57static void cfi_amdstd_sync (struct mtd_info *);
  58static int cfi_amdstd_suspend (struct mtd_info *);
  59static void cfi_amdstd_resume (struct mtd_info *);
  60static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
  61static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
  62                                         size_t *, struct otp_info *);
  63static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
  64                                         size_t *, struct otp_info *);
  65static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  66static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
  67                                         size_t *, u_char *);
  68static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
  69                                         size_t *, u_char *);
  70static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
  71                                          size_t *, u_char *);
  72static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
  73
  74static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  75                                  size_t *retlen, const u_char *buf);
  76
  77static void cfi_amdstd_destroy(struct mtd_info *);
  78
  79struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
  80static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
  81
  82static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
  83static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
  84#include "fwh_lock.h"
  85
  86static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  87static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  88
  89static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  90static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  91static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  92
  93static struct mtd_chip_driver cfi_amdstd_chipdrv = {
  94        .probe          = NULL, /* Not usable directly */
  95        .destroy        = cfi_amdstd_destroy,
  96        .name           = "cfi_cmdset_0002",
  97        .module         = THIS_MODULE
  98};
  99
 100
 101/* #define DEBUG_CFI_FEATURES */
 102
 103
 104#ifdef DEBUG_CFI_FEATURES
 105static void cfi_tell_features(struct cfi_pri_amdstd *extp)
 106{
 107        const char* erase_suspend[3] = {
 108                "Not supported", "Read only", "Read/write"
 109        };
 110        const char* top_bottom[6] = {
 111                "No WP", "8x8KiB sectors at top & bottom, no WP",
 112                "Bottom boot", "Top boot",
 113                "Uniform, Bottom WP", "Uniform, Top WP"
 114        };
 115
 116        printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
 117        printk("  Address sensitive unlock: %s\n",
 118               (extp->SiliconRevision & 1) ? "Not required" : "Required");
 119
 120        if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
 121                printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
 122        else
 123                printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
 124
 125        if (extp->BlkProt == 0)
 126                printk("  Block protection: Not supported\n");
 127        else
 128                printk("  Block protection: %d sectors per group\n", extp->BlkProt);
 129
 130
 131        printk("  Temporary block unprotect: %s\n",
 132               extp->TmpBlkUnprotect ? "Supported" : "Not supported");
 133        printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
 134        printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
 135        printk("  Burst mode: %s\n",
 136               extp->BurstMode ? "Supported" : "Not supported");
 137        if (extp->PageMode == 0)
 138                printk("  Page mode: Not supported\n");
 139        else
 140                printk("  Page mode: %d word page\n", extp->PageMode << 2);
 141
 142        printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
 143               extp->VppMin >> 4, extp->VppMin & 0xf);
 144        printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
 145               extp->VppMax >> 4, extp->VppMax & 0xf);
 146
 147        if (extp->TopBottom < ARRAY_SIZE(top_bottom))
 148                printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
 149        else
 150                printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
 151}
 152#endif
 153
 154#ifdef AMD_BOOTLOC_BUG
 155/* Wheee. Bring me the head of someone at AMD. */
 156static void fixup_amd_bootblock(struct mtd_info *mtd)
 157{
 158        struct map_info *map = mtd->priv;
 159        struct cfi_private *cfi = map->fldrv_priv;
 160        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 161        __u8 major = extp->MajorVersion;
 162        __u8 minor = extp->MinorVersion;
 163
 164        if (((major << 8) | minor) < 0x3131) {
 165                /* CFI version 1.0 => don't trust bootloc */
 166
 167                pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
 168                        map->name, cfi->mfr, cfi->id);
 169
 170                /* AFAICS all 29LV400 with a bottom boot block have a device ID
 171                 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
 172                 * These were badly detected as they have the 0x80 bit set
 173                 * so treat them as a special case.
 174                 */
 175                if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
 176
 177                        /* Macronix added CFI to their 2nd generation
 178                         * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
 179                         * Fujitsu, Spansion, EON, ESI and older Macronix)
 180                         * has CFI.
 181                         *
 182                         * Therefore also check the manufacturer.
 183                         * This reduces the risk of false detection due to
 184                         * the 8-bit device ID.
 185                         */
 186                        (cfi->mfr == CFI_MFR_MACRONIX)) {
 187                        pr_debug("%s: Macronix MX29LV400C with bottom boot block"
 188                                " detected\n", map->name);
 189                        extp->TopBottom = 2;    /* bottom boot */
 190                } else
 191                if (cfi->id & 0x80) {
 192                        printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
 193                        extp->TopBottom = 3;    /* top boot */
 194                } else {
 195                        extp->TopBottom = 2;    /* bottom boot */
 196                }
 197
 198                pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
 199                        " deduced %s from Device ID\n", map->name, major, minor,
 200                        extp->TopBottom == 2 ? "bottom" : "top");
 201        }
 202}
 203#endif
 204
 205static void fixup_use_write_buffers(struct mtd_info *mtd)
 206{
 207        struct map_info *map = mtd->priv;
 208        struct cfi_private *cfi = map->fldrv_priv;
 209        if (cfi->cfiq->BufWriteTimeoutTyp) {
 210                pr_debug("Using buffer write method\n" );
 211                mtd->_write = cfi_amdstd_write_buffers;
 212        }
 213}
 214
 215/* Atmel chips don't use the same PRI format as AMD chips */
 216static void fixup_convert_atmel_pri(struct mtd_info *mtd)
 217{
 218        struct map_info *map = mtd->priv;
 219        struct cfi_private *cfi = map->fldrv_priv;
 220        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 221        struct cfi_pri_atmel atmel_pri;
 222
 223        memcpy(&atmel_pri, extp, sizeof(atmel_pri));
 224        memset((char *)extp + 5, 0, sizeof(*extp) - 5);
 225
 226        if (atmel_pri.Features & 0x02)
 227                extp->EraseSuspend = 2;
 228
 229        /* Some chips got it backwards... */
 230        if (cfi->id == AT49BV6416) {
 231                if (atmel_pri.BottomBoot)
 232                        extp->TopBottom = 3;
 233                else
 234                        extp->TopBottom = 2;
 235        } else {
 236                if (atmel_pri.BottomBoot)
 237                        extp->TopBottom = 2;
 238                else
 239                        extp->TopBottom = 3;
 240        }
 241
 242        /* burst write mode not supported */
 243        cfi->cfiq->BufWriteTimeoutTyp = 0;
 244        cfi->cfiq->BufWriteTimeoutMax = 0;
 245}
 246
 247static void fixup_use_secsi(struct mtd_info *mtd)
 248{
 249        /* Setup for chips with a secsi area */
 250        mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
 251        mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
 252}
 253
 254static void fixup_use_erase_chip(struct mtd_info *mtd)
 255{
 256        struct map_info *map = mtd->priv;
 257        struct cfi_private *cfi = map->fldrv_priv;
 258        if ((cfi->cfiq->NumEraseRegions == 1) &&
 259                ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
 260                mtd->_erase = cfi_amdstd_erase_chip;
 261        }
 262
 263}
 264
 265/*
 266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
 267 * locked by default.
 268 */
 269static void fixup_use_atmel_lock(struct mtd_info *mtd)
 270{
 271        mtd->_lock = cfi_atmel_lock;
 272        mtd->_unlock = cfi_atmel_unlock;
 273        mtd->flags |= MTD_POWERUP_LOCK;
 274}
 275
 276static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
 277{
 278        struct map_info *map = mtd->priv;
 279        struct cfi_private *cfi = map->fldrv_priv;
 280
 281        /*
 282         * These flashes report two separate eraseblock regions based on the
 283         * sector_erase-size and block_erase-size, although they both operate on the
 284         * same memory. This is not allowed according to CFI, so we just pick the
 285         * sector_erase-size.
 286         */
 287        cfi->cfiq->NumEraseRegions = 1;
 288}
 289
 290static void fixup_sst39vf(struct mtd_info *mtd)
 291{
 292        struct map_info *map = mtd->priv;
 293        struct cfi_private *cfi = map->fldrv_priv;
 294
 295        fixup_old_sst_eraseregion(mtd);
 296
 297        cfi->addr_unlock1 = 0x5555;
 298        cfi->addr_unlock2 = 0x2AAA;
 299}
 300
 301static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
 302{
 303        struct map_info *map = mtd->priv;
 304        struct cfi_private *cfi = map->fldrv_priv;
 305
 306        fixup_old_sst_eraseregion(mtd);
 307
 308        cfi->addr_unlock1 = 0x555;
 309        cfi->addr_unlock2 = 0x2AA;
 310
 311        cfi->sector_erase_cmd = CMD(0x50);
 312}
 313
 314static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
 315{
 316        struct map_info *map = mtd->priv;
 317        struct cfi_private *cfi = map->fldrv_priv;
 318
 319        fixup_sst39vf_rev_b(mtd);
 320
 321        /*
 322         * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
 323         * it should report a size of 8KBytes (0x0020*256).
 324         */
 325        cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
 326        pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
 327                mtd->name);
 328}
 329
 330static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
 331{
 332        struct map_info *map = mtd->priv;
 333        struct cfi_private *cfi = map->fldrv_priv;
 334
 335        if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
 336                cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
 337                pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
 338                        mtd->name);
 339        }
 340}
 341
 342static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
 343{
 344        struct map_info *map = mtd->priv;
 345        struct cfi_private *cfi = map->fldrv_priv;
 346
 347        if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
 348                cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
 349                pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
 350                        mtd->name);
 351        }
 352}
 353
 354static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
 355{
 356        struct map_info *map = mtd->priv;
 357        struct cfi_private *cfi = map->fldrv_priv;
 358
 359        /*
 360         *  S29NS512P flash uses more than 8bits to report number of sectors,
 361         * which is not permitted by CFI.
 362         */
 363        cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
 364        pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
 365                mtd->name);
 366}
 367
 368/* Used to fix CFI-Tables of chips without Extended Query Tables */
 369static struct cfi_fixup cfi_nopri_fixup_table[] = {
 370        { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
 371        { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
 372        { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
 373        { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
 374        { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
 375        { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
 376        { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
 377        { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
 378        { 0, 0, NULL }
 379};
 380
 381static struct cfi_fixup cfi_fixup_table[] = {
 382        { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
 383#ifdef AMD_BOOTLOC_BUG
 384        { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
 385        { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
 386        { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
 387#endif
 388        { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
 389        { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
 390        { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
 391        { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
 392        { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
 393        { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
 394        { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
 395        { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
 396        { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
 397        { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
 398        { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
 399        { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
 400        { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
 401        { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
 402        { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
 403#if !FORCE_WORD_WRITE
 404        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
 405#endif
 406        { 0, 0, NULL }
 407};
 408static struct cfi_fixup jedec_fixup_table[] = {
 409        { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
 410        { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
 411        { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
 412        { 0, 0, NULL }
 413};
 414
 415static struct cfi_fixup fixup_table[] = {
 416        /* The CFI vendor ids and the JEDEC vendor IDs appear
 417         * to be common.  It is like the devices id's are as
 418         * well.  This table is to pick all cases where
 419         * we know that is the case.
 420         */
 421        { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
 422        { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
 423        { 0, 0, NULL }
 424};
 425
 426
 427static void cfi_fixup_major_minor(struct cfi_private *cfi,
 428                                  struct cfi_pri_amdstd *extp)
 429{
 430        if (cfi->mfr == CFI_MFR_SAMSUNG) {
 431                if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
 432                    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
 433                        /*
 434                         * Samsung K8P2815UQB and K8D6x16UxM chips
 435                         * report major=0 / minor=0.
 436                         * K8D3x16UxC chips report major=3 / minor=3.
 437                         */
 438                        printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
 439                               " Extended Query version to 1.%c\n",
 440                               extp->MinorVersion);
 441                        extp->MajorVersion = '1';
 442                }
 443        }
 444
 445        /*
 446         * SST 38VF640x chips report major=0xFF / minor=0xFF.
 447         */
 448        if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
 449                extp->MajorVersion = '1';
 450                extp->MinorVersion = '0';
 451        }
 452}
 453
 454static int is_m29ew(struct cfi_private *cfi)
 455{
 456        if (cfi->mfr == CFI_MFR_INTEL &&
 457            ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
 458             (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
 459                return 1;
 460        return 0;
 461}
 462
 463/*
 464 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
 465 * Some revisions of the M29EW suffer from erase suspend hang ups. In
 466 * particular, it can occur when the sequence
 467 * Erase Confirm -> Suspend -> Program -> Resume
 468 * causes a lockup due to internal timing issues. The consequence is that the
 469 * erase cannot be resumed without inserting a dummy command after programming
 470 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
 471 * that writes an F0 command code before the RESUME command.
 472 */
 473static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
 474                                          unsigned long adr)
 475{
 476        struct cfi_private *cfi = map->fldrv_priv;
 477        /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
 478        if (is_m29ew(cfi))
 479                map_write(map, CMD(0xF0), adr);
 480}
 481
 482/*
 483 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
 484 *
 485 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
 486 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
 487 * command is issued after an ERASE RESUME operation without waiting for a
 488 * minimum delay.  The result is that once the ERASE seems to be completed
 489 * (no bits are toggling), the contents of the Flash memory block on which
 490 * the erase was ongoing could be inconsistent with the expected values
 491 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
 492 * values), causing a consequent failure of the ERASE operation.
 493 * The occurrence of this issue could be high, especially when file system
 494 * operations on the Flash are intensive.  As a result, it is recommended
 495 * that a patch be applied.  Intensive file system operations can cause many
 496 * calls to the garbage routine to free Flash space (also by erasing physical
 497 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
 498 * commands can occur.  The problem disappears when a delay is inserted after
 499 * the RESUME command by using the udelay() function available in Linux.
 500 * The DELAY value must be tuned based on the customer's platform.
 501 * The maximum value that fixes the problem in all cases is 500us.
 502 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
 503 * in most cases.
 504 * We have chosen 500µs because this latency is acceptable.
 505 */
 506static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
 507{
 508        /*
 509         * Resolving the Delay After Resume Issue see Micron TN-13-07
 510         * Worst case delay must be 500µs but 30-50µs should be ok as well
 511         */
 512        if (is_m29ew(cfi))
 513                cfi_udelay(500);
 514}
 515
 516struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
 517{
 518        struct cfi_private *cfi = map->fldrv_priv;
 519        struct device_node __maybe_unused *np = map->device_node;
 520        struct mtd_info *mtd;
 521        int i;
 522
 523        mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
 524        if (!mtd)
 525                return NULL;
 526        mtd->priv = map;
 527        mtd->type = MTD_NORFLASH;
 528
 529        /* Fill in the default mtd operations */
 530        mtd->_erase   = cfi_amdstd_erase_varsize;
 531        mtd->_write   = cfi_amdstd_write_words;
 532        mtd->_read    = cfi_amdstd_read;
 533        mtd->_sync    = cfi_amdstd_sync;
 534        mtd->_suspend = cfi_amdstd_suspend;
 535        mtd->_resume  = cfi_amdstd_resume;
 536        mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
 537        mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
 538        mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
 539        mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
 540        mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
 541        mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
 542        mtd->flags   = MTD_CAP_NORFLASH;
 543        mtd->name    = map->name;
 544        mtd->writesize = 1;
 545        mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
 546
 547        pr_debug("MTD %s(): write buffer size %d\n", __func__,
 548                        mtd->writebufsize);
 549
 550        mtd->_panic_write = cfi_amdstd_panic_write;
 551        mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
 552
 553        if (cfi->cfi_mode==CFI_MODE_CFI){
 554                unsigned char bootloc;
 555                __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
 556                struct cfi_pri_amdstd *extp;
 557
 558                extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
 559                if (extp) {
 560                        /*
 561                         * It's a real CFI chip, not one for which the probe
 562                         * routine faked a CFI structure.
 563                         */
 564                        cfi_fixup_major_minor(cfi, extp);
 565
 566                        /*
 567                         * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
 568                         * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 
 569                         *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
 570                         *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
 571                         *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
 572                         */
 573                        if (extp->MajorVersion != '1' ||
 574                            (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
 575                                printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
 576                                       "version %c.%c (%#02x/%#02x).\n",
 577                                       extp->MajorVersion, extp->MinorVersion,
 578                                       extp->MajorVersion, extp->MinorVersion);
 579                                kfree(extp);
 580                                kfree(mtd);
 581                                return NULL;
 582                        }
 583
 584                        printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
 585                               extp->MajorVersion, extp->MinorVersion);
 586
 587                        /* Install our own private info structure */
 588                        cfi->cmdset_priv = extp;
 589
 590                        /* Apply cfi device specific fixups */
 591                        cfi_fixup(mtd, cfi_fixup_table);
 592
 593#ifdef DEBUG_CFI_FEATURES
 594                        /* Tell the user about it in lots of lovely detail */
 595                        cfi_tell_features(extp);
 596#endif
 597
 598#ifdef CONFIG_OF
 599                        if (np && of_property_read_bool(
 600                                    np, "use-advanced-sector-protection")
 601                            && extp->BlkProtUnprot == 8) {
 602                                printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
 603                                mtd->_lock = cfi_ppb_lock;
 604                                mtd->_unlock = cfi_ppb_unlock;
 605                                mtd->_is_locked = cfi_ppb_is_locked;
 606                        }
 607#endif
 608
 609                        bootloc = extp->TopBottom;
 610                        if ((bootloc < 2) || (bootloc > 5)) {
 611                                printk(KERN_WARNING "%s: CFI contains unrecognised boot "
 612                                       "bank location (%d). Assuming bottom.\n",
 613                                       map->name, bootloc);
 614                                bootloc = 2;
 615                        }
 616
 617                        if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
 618                                printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
 619
 620                                for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
 621                                        int j = (cfi->cfiq->NumEraseRegions-1)-i;
 622
 623                                        swap(cfi->cfiq->EraseRegionInfo[i],
 624                                             cfi->cfiq->EraseRegionInfo[j]);
 625                                }
 626                        }
 627                        /* Set the default CFI lock/unlock addresses */
 628                        cfi->addr_unlock1 = 0x555;
 629                        cfi->addr_unlock2 = 0x2aa;
 630                }
 631                cfi_fixup(mtd, cfi_nopri_fixup_table);
 632
 633                if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
 634                        kfree(mtd);
 635                        return NULL;
 636                }
 637
 638        } /* CFI mode */
 639        else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
 640                /* Apply jedec specific fixups */
 641                cfi_fixup(mtd, jedec_fixup_table);
 642        }
 643        /* Apply generic fixups */
 644        cfi_fixup(mtd, fixup_table);
 645
 646        for (i=0; i< cfi->numchips; i++) {
 647                cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
 648                cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
 649                cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
 650                /*
 651                 * First calculate the timeout max according to timeout field
 652                 * of struct cfi_ident that probed from chip's CFI aera, if
 653                 * available. Specify a minimum of 2000us, in case the CFI data
 654                 * is wrong.
 655                 */
 656                if (cfi->cfiq->BufWriteTimeoutTyp &&
 657                    cfi->cfiq->BufWriteTimeoutMax)
 658                        cfi->chips[i].buffer_write_time_max =
 659                                1 << (cfi->cfiq->BufWriteTimeoutTyp +
 660                                      cfi->cfiq->BufWriteTimeoutMax);
 661                else
 662                        cfi->chips[i].buffer_write_time_max = 0;
 663
 664                cfi->chips[i].buffer_write_time_max =
 665                        max(cfi->chips[i].buffer_write_time_max, 2000);
 666
 667                cfi->chips[i].ref_point_counter = 0;
 668                init_waitqueue_head(&(cfi->chips[i].wq));
 669        }
 670
 671        map->fldrv = &cfi_amdstd_chipdrv;
 672
 673        return cfi_amdstd_setup(mtd);
 674}
 675struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 676struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
 677EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
 678EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
 679EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
 680
 681static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
 682{
 683        struct map_info *map = mtd->priv;
 684        struct cfi_private *cfi = map->fldrv_priv;
 685        unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
 686        unsigned long offset = 0;
 687        int i,j;
 688
 689        printk(KERN_NOTICE "number of %s chips: %d\n",
 690               (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
 691        /* Select the correct geometry setup */
 692        mtd->size = devsize * cfi->numchips;
 693
 694        mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
 695        mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
 696                                    * mtd->numeraseregions, GFP_KERNEL);
 697        if (!mtd->eraseregions)
 698                goto setup_err;
 699
 700        for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
 701                unsigned long ernum, ersize;
 702                ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
 703                ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
 704
 705                if (mtd->erasesize < ersize) {
 706                        mtd->erasesize = ersize;
 707                }
 708                for (j=0; j<cfi->numchips; j++) {
 709                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
 710                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
 711                        mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
 712                }
 713                offset += (ersize * ernum);
 714        }
 715        if (offset != devsize) {
 716                /* Argh */
 717                printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
 718                goto setup_err;
 719        }
 720
 721        __module_get(THIS_MODULE);
 722        register_reboot_notifier(&mtd->reboot_notifier);
 723        return mtd;
 724
 725 setup_err:
 726        kfree(mtd->eraseregions);
 727        kfree(mtd);
 728        kfree(cfi->cmdset_priv);
 729        kfree(cfi->cfiq);
 730        return NULL;
 731}
 732
 733/*
 734 * Return true if the chip is ready.
 735 *
 736 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 737 * non-suspended sector) and is indicated by no toggle bits toggling.
 738 *
 739 * Note that anything more complicated than checking if no bits are toggling
 740 * (including checking DQ5 for an error status) is tricky to get working
 741 * correctly and is therefore not done  (particularly with interleaved chips
 742 * as each chip must be checked independently of the others).
 743 */
 744static int __xipram chip_ready(struct map_info *map, unsigned long addr)
 745{
 746        map_word d, t;
 747
 748        d = map_read(map, addr);
 749        t = map_read(map, addr);
 750
 751        return map_word_equal(map, d, t);
 752}
 753
 754/*
 755 * Return true if the chip is ready and has the correct value.
 756 *
 757 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
 758 * non-suspended sector) and it is indicated by no bits toggling.
 759 *
 760 * Error are indicated by toggling bits or bits held with the wrong value,
 761 * or with bits toggling.
 762 *
 763 * Note that anything more complicated than checking if no bits are toggling
 764 * (including checking DQ5 for an error status) is tricky to get working
 765 * correctly and is therefore not done  (particularly with interleaved chips
 766 * as each chip must be checked independently of the others).
 767 *
 768 */
 769static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
 770{
 771        map_word oldd, curd;
 772
 773        oldd = map_read(map, addr);
 774        curd = map_read(map, addr);
 775
 776        return  map_word_equal(map, oldd, curd) &&
 777                map_word_equal(map, curd, expected);
 778}
 779
 780static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
 781{
 782        DECLARE_WAITQUEUE(wait, current);
 783        struct cfi_private *cfi = map->fldrv_priv;
 784        unsigned long timeo;
 785        struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
 786
 787 resettime:
 788        timeo = jiffies + HZ;
 789 retry:
 790        switch (chip->state) {
 791
 792        case FL_STATUS:
 793                for (;;) {
 794                        if (chip_ready(map, adr))
 795                                break;
 796
 797                        if (time_after(jiffies, timeo)) {
 798                                printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
 799                                return -EIO;
 800                        }
 801                        mutex_unlock(&chip->mutex);
 802                        cfi_udelay(1);
 803                        mutex_lock(&chip->mutex);
 804                        /* Someone else might have been playing with it. */
 805                        goto retry;
 806                }
 807
 808        case FL_READY:
 809        case FL_CFI_QUERY:
 810        case FL_JEDEC_QUERY:
 811                return 0;
 812
 813        case FL_ERASING:
 814                if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
 815                    !(mode == FL_READY || mode == FL_POINT ||
 816                    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
 817                        goto sleep;
 818
 819                /* We could check to see if we're trying to access the sector
 820                 * that is currently being erased. However, no user will try
 821                 * anything like that so we just wait for the timeout. */
 822
 823                /* Erase suspend */
 824                /* It's harmless to issue the Erase-Suspend and Erase-Resume
 825                 * commands when the erase algorithm isn't in progress. */
 826                map_write(map, CMD(0xB0), chip->in_progress_block_addr);
 827                chip->oldstate = FL_ERASING;
 828                chip->state = FL_ERASE_SUSPENDING;
 829                chip->erase_suspended = 1;
 830                for (;;) {
 831                        if (chip_ready(map, adr))
 832                                break;
 833
 834                        if (time_after(jiffies, timeo)) {
 835                                /* Should have suspended the erase by now.
 836                                 * Send an Erase-Resume command as either
 837                                 * there was an error (so leave the erase
 838                                 * routine to recover from it) or we trying to
 839                                 * use the erase-in-progress sector. */
 840                                put_chip(map, chip, adr);
 841                                printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
 842                                return -EIO;
 843                        }
 844
 845                        mutex_unlock(&chip->mutex);
 846                        cfi_udelay(1);
 847                        mutex_lock(&chip->mutex);
 848                        /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
 849                           So we can just loop here. */
 850                }
 851                chip->state = FL_READY;
 852                return 0;
 853
 854        case FL_XIP_WHILE_ERASING:
 855                if (mode != FL_READY && mode != FL_POINT &&
 856                    (!cfip || !(cfip->EraseSuspend&2)))
 857                        goto sleep;
 858                chip->oldstate = chip->state;
 859                chip->state = FL_READY;
 860                return 0;
 861
 862        case FL_SHUTDOWN:
 863                /* The machine is rebooting */
 864                return -EIO;
 865
 866        case FL_POINT:
 867                /* Only if there's no operation suspended... */
 868                if (mode == FL_READY && chip->oldstate == FL_READY)
 869                        return 0;
 870
 871        default:
 872        sleep:
 873                set_current_state(TASK_UNINTERRUPTIBLE);
 874                add_wait_queue(&chip->wq, &wait);
 875                mutex_unlock(&chip->mutex);
 876                schedule();
 877                remove_wait_queue(&chip->wq, &wait);
 878                mutex_lock(&chip->mutex);
 879                goto resettime;
 880        }
 881}
 882
 883
 884static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
 885{
 886        struct cfi_private *cfi = map->fldrv_priv;
 887
 888        switch(chip->oldstate) {
 889        case FL_ERASING:
 890                cfi_fixup_m29ew_erase_suspend(map,
 891                        chip->in_progress_block_addr);
 892                map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
 893                cfi_fixup_m29ew_delay_after_resume(cfi);
 894                chip->oldstate = FL_READY;
 895                chip->state = FL_ERASING;
 896                break;
 897
 898        case FL_XIP_WHILE_ERASING:
 899                chip->state = chip->oldstate;
 900                chip->oldstate = FL_READY;
 901                break;
 902
 903        case FL_READY:
 904        case FL_STATUS:
 905                break;
 906        default:
 907                printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
 908        }
 909        wake_up(&chip->wq);
 910}
 911
 912#ifdef CONFIG_MTD_XIP
 913
 914/*
 915 * No interrupt what so ever can be serviced while the flash isn't in array
 916 * mode.  This is ensured by the xip_disable() and xip_enable() functions
 917 * enclosing any code path where the flash is known not to be in array mode.
 918 * And within a XIP disabled code path, only functions marked with __xipram
 919 * may be called and nothing else (it's a good thing to inspect generated
 920 * assembly to make sure inline functions were actually inlined and that gcc
 921 * didn't emit calls to its own support functions). Also configuring MTD CFI
 922 * support to a single buswidth and a single interleave is also recommended.
 923 */
 924
 925static void xip_disable(struct map_info *map, struct flchip *chip,
 926                        unsigned long adr)
 927{
 928        /* TODO: chips with no XIP use should ignore and return */
 929        (void) map_read(map, adr); /* ensure mmu mapping is up to date */
 930        local_irq_disable();
 931}
 932
 933static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
 934                                unsigned long adr)
 935{
 936        struct cfi_private *cfi = map->fldrv_priv;
 937
 938        if (chip->state != FL_POINT && chip->state != FL_READY) {
 939                map_write(map, CMD(0xf0), adr);
 940                chip->state = FL_READY;
 941        }
 942        (void) map_read(map, adr);
 943        xip_iprefetch();
 944        local_irq_enable();
 945}
 946
 947/*
 948 * When a delay is required for the flash operation to complete, the
 949 * xip_udelay() function is polling for both the given timeout and pending
 950 * (but still masked) hardware interrupts.  Whenever there is an interrupt
 951 * pending then the flash erase operation is suspended, array mode restored
 952 * and interrupts unmasked.  Task scheduling might also happen at that
 953 * point.  The CPU eventually returns from the interrupt or the call to
 954 * schedule() and the suspended flash operation is resumed for the remaining
 955 * of the delay period.
 956 *
 957 * Warning: this function _will_ fool interrupt latency tracing tools.
 958 */
 959
 960static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
 961                                unsigned long adr, int usec)
 962{
 963        struct cfi_private *cfi = map->fldrv_priv;
 964        struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
 965        map_word status, OK = CMD(0x80);
 966        unsigned long suspended, start = xip_currtime();
 967        flstate_t oldstate;
 968
 969        do {
 970                cpu_relax();
 971                if (xip_irqpending() && extp &&
 972                    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
 973                    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
 974                        /*
 975                         * Let's suspend the erase operation when supported.
 976                         * Note that we currently don't try to suspend
 977                         * interleaved chips if there is already another
 978                         * operation suspended (imagine what happens
 979                         * when one chip was already done with the current
 980                         * operation while another chip suspended it, then
 981                         * we resume the whole thing at once).  Yes, it
 982                         * can happen!
 983                         */
 984                        map_write(map, CMD(0xb0), adr);
 985                        usec -= xip_elapsed_since(start);
 986                        suspended = xip_currtime();
 987                        do {
 988                                if (xip_elapsed_since(suspended) > 100000) {
 989                                        /*
 990                                         * The chip doesn't want to suspend
 991                                         * after waiting for 100 msecs.
 992                                         * This is a critical error but there
 993                                         * is not much we can do here.
 994                                         */
 995                                        return;
 996                                }
 997                                status = map_read(map, adr);
 998                        } while (!map_word_andequal(map, status, OK, OK));
 999
1000                        /* Suspend succeeded */
1001                        oldstate = chip->state;
1002                        if (!map_word_bitsset(map, status, CMD(0x40)))
1003                                break;
1004                        chip->state = FL_XIP_WHILE_ERASING;
1005                        chip->erase_suspended = 1;
1006                        map_write(map, CMD(0xf0), adr);
1007                        (void) map_read(map, adr);
1008                        xip_iprefetch();
1009                        local_irq_enable();
1010                        mutex_unlock(&chip->mutex);
1011                        xip_iprefetch();
1012                        cond_resched();
1013
1014                        /*
1015                         * We're back.  However someone else might have
1016                         * decided to go write to the chip if we are in
1017                         * a suspended erase state.  If so let's wait
1018                         * until it's done.
1019                         */
1020                        mutex_lock(&chip->mutex);
1021                        while (chip->state != FL_XIP_WHILE_ERASING) {
1022                                DECLARE_WAITQUEUE(wait, current);
1023                                set_current_state(TASK_UNINTERRUPTIBLE);
1024                                add_wait_queue(&chip->wq, &wait);
1025                                mutex_unlock(&chip->mutex);
1026                                schedule();
1027                                remove_wait_queue(&chip->wq, &wait);
1028                                mutex_lock(&chip->mutex);
1029                        }
1030                        /* Disallow XIP again */
1031                        local_irq_disable();
1032
1033                        /* Correct Erase Suspend Hangups for M29EW */
1034                        cfi_fixup_m29ew_erase_suspend(map, adr);
1035                        /* Resume the write or erase operation */
1036                        map_write(map, cfi->sector_erase_cmd, adr);
1037                        chip->state = oldstate;
1038                        start = xip_currtime();
1039                } else if (usec >= 1000000/HZ) {
1040                        /*
1041                         * Try to save on CPU power when waiting delay
1042                         * is at least a system timer tick period.
1043                         * No need to be extremely accurate here.
1044                         */
1045                        xip_cpu_idle();
1046                }
1047                status = map_read(map, adr);
1048        } while (!map_word_andequal(map, status, OK, OK)
1049                 && xip_elapsed_since(start) < usec);
1050}
1051
1052#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1053
1054/*
1055 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1056 * the flash is actively programming or erasing since we have to poll for
1057 * the operation to complete anyway.  We can't do that in a generic way with
1058 * a XIP setup so do it before the actual flash operation in this case
1059 * and stub it out from INVALIDATE_CACHE_UDELAY.
1060 */
1061#define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1062        INVALIDATE_CACHED_RANGE(map, from, size)
1063
1064#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1065        UDELAY(map, chip, adr, usec)
1066
1067/*
1068 * Extra notes:
1069 *
1070 * Activating this XIP support changes the way the code works a bit.  For
1071 * example the code to suspend the current process when concurrent access
1072 * happens is never executed because xip_udelay() will always return with the
1073 * same chip state as it was entered with.  This is why there is no care for
1074 * the presence of add_wait_queue() or schedule() calls from within a couple
1075 * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1076 * The queueing and scheduling are always happening within xip_udelay().
1077 *
1078 * Similarly, get_chip() and put_chip() just happen to always be executed
1079 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1080 * is in array mode, therefore never executing many cases therein and not
1081 * causing any problem with XIP.
1082 */
1083
1084#else
1085
1086#define xip_disable(map, chip, adr)
1087#define xip_enable(map, chip, adr)
1088#define XIP_INVAL_CACHED_RANGE(x...)
1089
1090#define UDELAY(map, chip, adr, usec)  \
1091do {  \
1092        mutex_unlock(&chip->mutex);  \
1093        cfi_udelay(usec);  \
1094        mutex_lock(&chip->mutex);  \
1095} while (0)
1096
1097#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1098do {  \
1099        mutex_unlock(&chip->mutex);  \
1100        INVALIDATE_CACHED_RANGE(map, adr, len);  \
1101        cfi_udelay(usec);  \
1102        mutex_lock(&chip->mutex);  \
1103} while (0)
1104
1105#endif
1106
1107static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1108{
1109        unsigned long cmd_addr;
1110        struct cfi_private *cfi = map->fldrv_priv;
1111        int ret;
1112
1113        adr += chip->start;
1114
1115        /* Ensure cmd read/writes are aligned. */
1116        cmd_addr = adr & ~(map_bankwidth(map)-1);
1117
1118        mutex_lock(&chip->mutex);
1119        ret = get_chip(map, chip, cmd_addr, FL_READY);
1120        if (ret) {
1121                mutex_unlock(&chip->mutex);
1122                return ret;
1123        }
1124
1125        if (chip->state != FL_POINT && chip->state != FL_READY) {
1126                map_write(map, CMD(0xf0), cmd_addr);
1127                chip->state = FL_READY;
1128        }
1129
1130        map_copy_from(map, buf, adr, len);
1131
1132        put_chip(map, chip, cmd_addr);
1133
1134        mutex_unlock(&chip->mutex);
1135        return 0;
1136}
1137
1138
1139static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1140{
1141        struct map_info *map = mtd->priv;
1142        struct cfi_private *cfi = map->fldrv_priv;
1143        unsigned long ofs;
1144        int chipnum;
1145        int ret = 0;
1146
1147        /* ofs: offset within the first chip that the first read should start */
1148        chipnum = (from >> cfi->chipshift);
1149        ofs = from - (chipnum <<  cfi->chipshift);
1150
1151        while (len) {
1152                unsigned long thislen;
1153
1154                if (chipnum >= cfi->numchips)
1155                        break;
1156
1157                if ((len + ofs -1) >> cfi->chipshift)
1158                        thislen = (1<<cfi->chipshift) - ofs;
1159                else
1160                        thislen = len;
1161
1162                ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1163                if (ret)
1164                        break;
1165
1166                *retlen += thislen;
1167                len -= thislen;
1168                buf += thislen;
1169
1170                ofs = 0;
1171                chipnum++;
1172        }
1173        return ret;
1174}
1175
1176typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1177                        loff_t adr, size_t len, u_char *buf, size_t grouplen);
1178
1179static inline void otp_enter(struct map_info *map, struct flchip *chip,
1180                             loff_t adr, size_t len)
1181{
1182        struct cfi_private *cfi = map->fldrv_priv;
1183
1184        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1185                         cfi->device_type, NULL);
1186        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1187                         cfi->device_type, NULL);
1188        cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1189                         cfi->device_type, NULL);
1190
1191        INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1192}
1193
1194static inline void otp_exit(struct map_info *map, struct flchip *chip,
1195                            loff_t adr, size_t len)
1196{
1197        struct cfi_private *cfi = map->fldrv_priv;
1198
1199        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1200                         cfi->device_type, NULL);
1201        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1202                         cfi->device_type, NULL);
1203        cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1204                         cfi->device_type, NULL);
1205        cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1206                         cfi->device_type, NULL);
1207
1208        INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1209}
1210
1211static inline int do_read_secsi_onechip(struct map_info *map,
1212                                        struct flchip *chip, loff_t adr,
1213                                        size_t len, u_char *buf,
1214                                        size_t grouplen)
1215{
1216        DECLARE_WAITQUEUE(wait, current);
1217        unsigned long timeo = jiffies + HZ;
1218
1219 retry:
1220        mutex_lock(&chip->mutex);
1221
1222        if (chip->state != FL_READY){
1223                set_current_state(TASK_UNINTERRUPTIBLE);
1224                add_wait_queue(&chip->wq, &wait);
1225
1226                mutex_unlock(&chip->mutex);
1227
1228                schedule();
1229                remove_wait_queue(&chip->wq, &wait);
1230                timeo = jiffies + HZ;
1231
1232                goto retry;
1233        }
1234
1235        adr += chip->start;
1236
1237        chip->state = FL_READY;
1238
1239        otp_enter(map, chip, adr, len);
1240        map_copy_from(map, buf, adr, len);
1241        otp_exit(map, chip, adr, len);
1242
1243        wake_up(&chip->wq);
1244        mutex_unlock(&chip->mutex);
1245
1246        return 0;
1247}
1248
1249static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1250{
1251        struct map_info *map = mtd->priv;
1252        struct cfi_private *cfi = map->fldrv_priv;
1253        unsigned long ofs;
1254        int chipnum;
1255        int ret = 0;
1256
1257        /* ofs: offset within the first chip that the first read should start */
1258        /* 8 secsi bytes per chip */
1259        chipnum=from>>3;
1260        ofs=from & 7;
1261
1262        while (len) {
1263                unsigned long thislen;
1264
1265                if (chipnum >= cfi->numchips)
1266                        break;
1267
1268                if ((len + ofs -1) >> 3)
1269                        thislen = (1<<3) - ofs;
1270                else
1271                        thislen = len;
1272
1273                ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1274                                            thislen, buf, 0);
1275                if (ret)
1276                        break;
1277
1278                *retlen += thislen;
1279                len -= thislen;
1280                buf += thislen;
1281
1282                ofs = 0;
1283                chipnum++;
1284        }
1285        return ret;
1286}
1287
1288static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1289                                     unsigned long adr, map_word datum,
1290                                     int mode);
1291
1292static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1293                        size_t len, u_char *buf, size_t grouplen)
1294{
1295        int ret;
1296        while (len) {
1297                unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1298                int gap = adr - bus_ofs;
1299                int n = min_t(int, len, map_bankwidth(map) - gap);
1300                map_word datum = map_word_ff(map);
1301
1302                if (n != map_bankwidth(map)) {
1303                        /* partial write of a word, load old contents */
1304                        otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1305                        datum = map_read(map, bus_ofs);
1306                        otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1307                }
1308
1309                datum = map_word_load_partial(map, datum, buf, gap, n);
1310                ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1311                if (ret)
1312                        return ret;
1313
1314                adr += n;
1315                buf += n;
1316                len -= n;
1317        }
1318
1319        return 0;
1320}
1321
1322static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1323                       size_t len, u_char *buf, size_t grouplen)
1324{
1325        struct cfi_private *cfi = map->fldrv_priv;
1326        uint8_t lockreg;
1327        unsigned long timeo;
1328        int ret;
1329
1330        /* make sure area matches group boundaries */
1331        if ((adr != 0) || (len != grouplen))
1332                return -EINVAL;
1333
1334        mutex_lock(&chip->mutex);
1335        ret = get_chip(map, chip, chip->start, FL_LOCKING);
1336        if (ret) {
1337                mutex_unlock(&chip->mutex);
1338                return ret;
1339        }
1340        chip->state = FL_LOCKING;
1341
1342        /* Enter lock register command */
1343        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1344                         cfi->device_type, NULL);
1345        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1346                         cfi->device_type, NULL);
1347        cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1348                         cfi->device_type, NULL);
1349
1350        /* read lock register */
1351        lockreg = cfi_read_query(map, 0);
1352
1353        /* set bit 0 to protect extended memory block */
1354        lockreg &= ~0x01;
1355
1356        /* set bit 0 to protect extended memory block */
1357        /* write lock register */
1358        map_write(map, CMD(0xA0), chip->start);
1359        map_write(map, CMD(lockreg), chip->start);
1360
1361        /* wait for chip to become ready */
1362        timeo = jiffies + msecs_to_jiffies(2);
1363        for (;;) {
1364                if (chip_ready(map, adr))
1365                        break;
1366
1367                if (time_after(jiffies, timeo)) {
1368                        pr_err("Waiting for chip to be ready timed out.\n");
1369                        ret = -EIO;
1370                        break;
1371                }
1372                UDELAY(map, chip, 0, 1);
1373        }
1374
1375        /* exit protection commands */
1376        map_write(map, CMD(0x90), chip->start);
1377        map_write(map, CMD(0x00), chip->start);
1378
1379        chip->state = FL_READY;
1380        put_chip(map, chip, chip->start);
1381        mutex_unlock(&chip->mutex);
1382
1383        return ret;
1384}
1385
1386static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1387                               size_t *retlen, u_char *buf,
1388                               otp_op_t action, int user_regs)
1389{
1390        struct map_info *map = mtd->priv;
1391        struct cfi_private *cfi = map->fldrv_priv;
1392        int ofs_factor = cfi->interleave * cfi->device_type;
1393        unsigned long base;
1394        int chipnum;
1395        struct flchip *chip;
1396        uint8_t otp, lockreg;
1397        int ret;
1398
1399        size_t user_size, factory_size, otpsize;
1400        loff_t user_offset, factory_offset, otpoffset;
1401        int user_locked = 0, otplocked;
1402
1403        *retlen = 0;
1404
1405        for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1406                chip = &cfi->chips[chipnum];
1407                factory_size = 0;
1408                user_size = 0;
1409
1410                /* Micron M29EW family */
1411                if (is_m29ew(cfi)) {
1412                        base = chip->start;
1413
1414                        /* check whether secsi area is factory locked
1415                           or user lockable */
1416                        mutex_lock(&chip->mutex);
1417                        ret = get_chip(map, chip, base, FL_CFI_QUERY);
1418                        if (ret) {
1419                                mutex_unlock(&chip->mutex);
1420                                return ret;
1421                        }
1422                        cfi_qry_mode_on(base, map, cfi);
1423                        otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1424                        cfi_qry_mode_off(base, map, cfi);
1425                        put_chip(map, chip, base);
1426                        mutex_unlock(&chip->mutex);
1427
1428                        if (otp & 0x80) {
1429                                /* factory locked */
1430                                factory_offset = 0;
1431                                factory_size = 0x100;
1432                        } else {
1433                                /* customer lockable */
1434                                user_offset = 0;
1435                                user_size = 0x100;
1436
1437                                mutex_lock(&chip->mutex);
1438                                ret = get_chip(map, chip, base, FL_LOCKING);
1439                                if (ret) {
1440                                        mutex_unlock(&chip->mutex);
1441                                        return ret;
1442                                }
1443
1444                                /* Enter lock register command */
1445                                cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1446                                                 chip->start, map, cfi,
1447                                                 cfi->device_type, NULL);
1448                                cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1449                                                 chip->start, map, cfi,
1450                                                 cfi->device_type, NULL);
1451                                cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1452                                                 chip->start, map, cfi,
1453                                                 cfi->device_type, NULL);
1454                                /* read lock register */
1455                                lockreg = cfi_read_query(map, 0);
1456                                /* exit protection commands */
1457                                map_write(map, CMD(0x90), chip->start);
1458                                map_write(map, CMD(0x00), chip->start);
1459                                put_chip(map, chip, chip->start);
1460                                mutex_unlock(&chip->mutex);
1461
1462                                user_locked = ((lockreg & 0x01) == 0x00);
1463                        }
1464                }
1465
1466                otpsize = user_regs ? user_size : factory_size;
1467                if (!otpsize)
1468                        continue;
1469                otpoffset = user_regs ? user_offset : factory_offset;
1470                otplocked = user_regs ? user_locked : 1;
1471
1472                if (!action) {
1473                        /* return otpinfo */
1474                        struct otp_info *otpinfo;
1475                        len -= sizeof(*otpinfo);
1476                        if (len <= 0)
1477                                return -ENOSPC;
1478                        otpinfo = (struct otp_info *)buf;
1479                        otpinfo->start = from;
1480                        otpinfo->length = otpsize;
1481                        otpinfo->locked = otplocked;
1482                        buf += sizeof(*otpinfo);
1483                        *retlen += sizeof(*otpinfo);
1484                        from += otpsize;
1485                } else if ((from < otpsize) && (len > 0)) {
1486                        size_t size;
1487                        size = (len < otpsize - from) ? len : otpsize - from;
1488                        ret = action(map, chip, otpoffset + from, size, buf,
1489                                     otpsize);
1490                        if (ret < 0)
1491                                return ret;
1492
1493                        buf += size;
1494                        len -= size;
1495                        *retlen += size;
1496                        from = 0;
1497                } else {
1498                        from -= otpsize;
1499                }
1500        }
1501        return 0;
1502}
1503
1504static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1505                                         size_t *retlen, struct otp_info *buf)
1506{
1507        return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1508                                   NULL, 0);
1509}
1510
1511static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1512                                         size_t *retlen, struct otp_info *buf)
1513{
1514        return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1515                                   NULL, 1);
1516}
1517
1518static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1519                                         size_t len, size_t *retlen,
1520                                         u_char *buf)
1521{
1522        return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1523                                   buf, do_read_secsi_onechip, 0);
1524}
1525
1526static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1527                                         size_t len, size_t *retlen,
1528                                         u_char *buf)
1529{
1530        return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1531                                   buf, do_read_secsi_onechip, 1);
1532}
1533
1534static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1535                                          size_t len, size_t *retlen,
1536                                          u_char *buf)
1537{
1538        return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1539                                   do_otp_write, 1);
1540}
1541
1542static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1543                                         size_t len)
1544{
1545        size_t retlen;
1546        return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1547                                   do_otp_lock, 1);
1548}
1549
1550static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1551                                     unsigned long adr, map_word datum,
1552                                     int mode)
1553{
1554        struct cfi_private *cfi = map->fldrv_priv;
1555        unsigned long timeo = jiffies + HZ;
1556        /*
1557         * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1558         * have a max write time of a few hundreds usec). However, we should
1559         * use the maximum timeout value given by the chip at probe time
1560         * instead.  Unfortunately, struct flchip does have a field for
1561         * maximum timeout, only for typical which can be far too short
1562         * depending of the conditions.  The ' + 1' is to avoid having a
1563         * timeout of 0 jiffies if HZ is smaller than 1000.
1564         */
1565        unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1566        int ret = 0;
1567        map_word oldd;
1568        int retry_cnt = 0;
1569
1570        adr += chip->start;
1571
1572        mutex_lock(&chip->mutex);
1573        ret = get_chip(map, chip, adr, mode);
1574        if (ret) {
1575                mutex_unlock(&chip->mutex);
1576                return ret;
1577        }
1578
1579        pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1580               __func__, adr, datum.x[0] );
1581
1582        if (mode == FL_OTP_WRITE)
1583                otp_enter(map, chip, adr, map_bankwidth(map));
1584
1585        /*
1586         * Check for a NOP for the case when the datum to write is already
1587         * present - it saves time and works around buggy chips that corrupt
1588         * data at other locations when 0xff is written to a location that
1589         * already contains 0xff.
1590         */
1591        oldd = map_read(map, adr);
1592        if (map_word_equal(map, oldd, datum)) {
1593                pr_debug("MTD %s(): NOP\n",
1594                       __func__);
1595                goto op_done;
1596        }
1597
1598        XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1599        ENABLE_VPP(map);
1600        xip_disable(map, chip, adr);
1601
1602 retry:
1603        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1604        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1605        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1606        map_write(map, datum, adr);
1607        chip->state = mode;
1608
1609        INVALIDATE_CACHE_UDELAY(map, chip,
1610                                adr, map_bankwidth(map),
1611                                chip->word_write_time);
1612
1613        /* See comment above for timeout value. */
1614        timeo = jiffies + uWriteTimeout;
1615        for (;;) {
1616                if (chip->state != mode) {
1617                        /* Someone's suspended the write. Sleep */
1618                        DECLARE_WAITQUEUE(wait, current);
1619
1620                        set_current_state(TASK_UNINTERRUPTIBLE);
1621                        add_wait_queue(&chip->wq, &wait);
1622                        mutex_unlock(&chip->mutex);
1623                        schedule();
1624                        remove_wait_queue(&chip->wq, &wait);
1625                        timeo = jiffies + (HZ / 2); /* FIXME */
1626                        mutex_lock(&chip->mutex);
1627                        continue;
1628                }
1629
1630                if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1631                        xip_enable(map, chip, adr);
1632                        printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1633                        xip_disable(map, chip, adr);
1634                        break;
1635                }
1636
1637                if (chip_ready(map, adr))
1638                        break;
1639
1640                /* Latency issues. Drop the lock, wait a while and retry */
1641                UDELAY(map, chip, adr, 1);
1642        }
1643        /* Did we succeed? */
1644        if (!chip_good(map, adr, datum)) {
1645                /* reset on all failures. */
1646                map_write( map, CMD(0xF0), chip->start );
1647                /* FIXME - should have reset delay before continuing */
1648
1649                if (++retry_cnt <= MAX_WORD_RETRIES)
1650                        goto retry;
1651
1652                ret = -EIO;
1653        }
1654        xip_enable(map, chip, adr);
1655 op_done:
1656        if (mode == FL_OTP_WRITE)
1657                otp_exit(map, chip, adr, map_bankwidth(map));
1658        chip->state = FL_READY;
1659        DISABLE_VPP(map);
1660        put_chip(map, chip, adr);
1661        mutex_unlock(&chip->mutex);
1662
1663        return ret;
1664}
1665
1666
1667static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1668                                  size_t *retlen, const u_char *buf)
1669{
1670        struct map_info *map = mtd->priv;
1671        struct cfi_private *cfi = map->fldrv_priv;
1672        int ret = 0;
1673        int chipnum;
1674        unsigned long ofs, chipstart;
1675        DECLARE_WAITQUEUE(wait, current);
1676
1677        chipnum = to >> cfi->chipshift;
1678        ofs = to  - (chipnum << cfi->chipshift);
1679        chipstart = cfi->chips[chipnum].start;
1680
1681        /* If it's not bus-aligned, do the first byte write */
1682        if (ofs & (map_bankwidth(map)-1)) {
1683                unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1684                int i = ofs - bus_ofs;
1685                int n = 0;
1686                map_word tmp_buf;
1687
1688 retry:
1689                mutex_lock(&cfi->chips[chipnum].mutex);
1690
1691                if (cfi->chips[chipnum].state != FL_READY) {
1692                        set_current_state(TASK_UNINTERRUPTIBLE);
1693                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1694
1695                        mutex_unlock(&cfi->chips[chipnum].mutex);
1696
1697                        schedule();
1698                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1699                        goto retry;
1700                }
1701
1702                /* Load 'tmp_buf' with old contents of flash */
1703                tmp_buf = map_read(map, bus_ofs+chipstart);
1704
1705                mutex_unlock(&cfi->chips[chipnum].mutex);
1706
1707                /* Number of bytes to copy from buffer */
1708                n = min_t(int, len, map_bankwidth(map)-i);
1709
1710                tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1711
1712                ret = do_write_oneword(map, &cfi->chips[chipnum],
1713                                       bus_ofs, tmp_buf, FL_WRITING);
1714                if (ret)
1715                        return ret;
1716
1717                ofs += n;
1718                buf += n;
1719                (*retlen) += n;
1720                len -= n;
1721
1722                if (ofs >> cfi->chipshift) {
1723                        chipnum ++;
1724                        ofs = 0;
1725                        if (chipnum == cfi->numchips)
1726                                return 0;
1727                }
1728        }
1729
1730        /* We are now aligned, write as much as possible */
1731        while(len >= map_bankwidth(map)) {
1732                map_word datum;
1733
1734                datum = map_word_load(map, buf);
1735
1736                ret = do_write_oneword(map, &cfi->chips[chipnum],
1737                                       ofs, datum, FL_WRITING);
1738                if (ret)
1739                        return ret;
1740
1741                ofs += map_bankwidth(map);
1742                buf += map_bankwidth(map);
1743                (*retlen) += map_bankwidth(map);
1744                len -= map_bankwidth(map);
1745
1746                if (ofs >> cfi->chipshift) {
1747                        chipnum ++;
1748                        ofs = 0;
1749                        if (chipnum == cfi->numchips)
1750                                return 0;
1751                        chipstart = cfi->chips[chipnum].start;
1752                }
1753        }
1754
1755        /* Write the trailing bytes if any */
1756        if (len & (map_bankwidth(map)-1)) {
1757                map_word tmp_buf;
1758
1759 retry1:
1760                mutex_lock(&cfi->chips[chipnum].mutex);
1761
1762                if (cfi->chips[chipnum].state != FL_READY) {
1763                        set_current_state(TASK_UNINTERRUPTIBLE);
1764                        add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1765
1766                        mutex_unlock(&cfi->chips[chipnum].mutex);
1767
1768                        schedule();
1769                        remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1770                        goto retry1;
1771                }
1772
1773                tmp_buf = map_read(map, ofs + chipstart);
1774
1775                mutex_unlock(&cfi->chips[chipnum].mutex);
1776
1777                tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1778
1779                ret = do_write_oneword(map, &cfi->chips[chipnum],
1780                                       ofs, tmp_buf, FL_WRITING);
1781                if (ret)
1782                        return ret;
1783
1784                (*retlen) += len;
1785        }
1786
1787        return 0;
1788}
1789
1790
1791/*
1792 * FIXME: interleaved mode not tested, and probably not supported!
1793 */
1794static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1795                                    unsigned long adr, const u_char *buf,
1796                                    int len)
1797{
1798        struct cfi_private *cfi = map->fldrv_priv;
1799        unsigned long timeo = jiffies + HZ;
1800        /*
1801         * Timeout is calculated according to CFI data, if available.
1802         * See more comments in cfi_cmdset_0002().
1803         */
1804        unsigned long uWriteTimeout =
1805                                usecs_to_jiffies(chip->buffer_write_time_max);
1806        int ret = -EIO;
1807        unsigned long cmd_adr;
1808        int z, words;
1809        map_word datum;
1810
1811        adr += chip->start;
1812        cmd_adr = adr;
1813
1814        mutex_lock(&chip->mutex);
1815        ret = get_chip(map, chip, adr, FL_WRITING);
1816        if (ret) {
1817                mutex_unlock(&chip->mutex);
1818                return ret;
1819        }
1820
1821        datum = map_word_load(map, buf);
1822
1823        pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1824               __func__, adr, datum.x[0] );
1825
1826        XIP_INVAL_CACHED_RANGE(map, adr, len);
1827        ENABLE_VPP(map);
1828        xip_disable(map, chip, cmd_adr);
1829
1830        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1831        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1832
1833        /* Write Buffer Load */
1834        map_write(map, CMD(0x25), cmd_adr);
1835
1836        chip->state = FL_WRITING_TO_BUFFER;
1837
1838        /* Write length of data to come */
1839        words = len / map_bankwidth(map);
1840        map_write(map, CMD(words - 1), cmd_adr);
1841        /* Write data */
1842        z = 0;
1843        while(z < words * map_bankwidth(map)) {
1844                datum = map_word_load(map, buf);
1845                map_write(map, datum, adr + z);
1846
1847                z += map_bankwidth(map);
1848                buf += map_bankwidth(map);
1849        }
1850        z -= map_bankwidth(map);
1851
1852        adr += z;
1853
1854        /* Write Buffer Program Confirm: GO GO GO */
1855        map_write(map, CMD(0x29), cmd_adr);
1856        chip->state = FL_WRITING;
1857
1858        INVALIDATE_CACHE_UDELAY(map, chip,
1859                                adr, map_bankwidth(map),
1860                                chip->word_write_time);
1861
1862        timeo = jiffies + uWriteTimeout;
1863
1864        for (;;) {
1865                if (chip->state != FL_WRITING) {
1866                        /* Someone's suspended the write. Sleep */
1867                        DECLARE_WAITQUEUE(wait, current);
1868
1869                        set_current_state(TASK_UNINTERRUPTIBLE);
1870                        add_wait_queue(&chip->wq, &wait);
1871                        mutex_unlock(&chip->mutex);
1872                        schedule();
1873                        remove_wait_queue(&chip->wq, &wait);
1874                        timeo = jiffies + (HZ / 2); /* FIXME */
1875                        mutex_lock(&chip->mutex);
1876                        continue;
1877                }
1878
1879                if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1880                        break;
1881
1882                if (chip_ready(map, adr)) {
1883                        xip_enable(map, chip, adr);
1884                        goto op_done;
1885                }
1886
1887                /* Latency issues. Drop the lock, wait a while and retry */
1888                UDELAY(map, chip, adr, 1);
1889        }
1890
1891        /*
1892         * Recovery from write-buffer programming failures requires
1893         * the write-to-buffer-reset sequence.  Since the last part
1894         * of the sequence also works as a normal reset, we can run
1895         * the same commands regardless of why we are here.
1896         * See e.g.
1897         * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1898         */
1899        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1900                         cfi->device_type, NULL);
1901        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1902                         cfi->device_type, NULL);
1903        cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1904                         cfi->device_type, NULL);
1905        xip_enable(map, chip, adr);
1906        /* FIXME - should have reset delay before continuing */
1907
1908        printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1909               __func__, adr);
1910
1911        ret = -EIO;
1912 op_done:
1913        chip->state = FL_READY;
1914        DISABLE_VPP(map);
1915        put_chip(map, chip, adr);
1916        mutex_unlock(&chip->mutex);
1917
1918        return ret;
1919}
1920
1921
1922static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1923                                    size_t *retlen, const u_char *buf)
1924{
1925        struct map_info *map = mtd->priv;
1926        struct cfi_private *cfi = map->fldrv_priv;
1927        int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1928        int ret = 0;
1929        int chipnum;
1930        unsigned long ofs;
1931
1932        chipnum = to >> cfi->chipshift;
1933        ofs = to  - (chipnum << cfi->chipshift);
1934
1935        /* If it's not bus-aligned, do the first word write */
1936        if (ofs & (map_bankwidth(map)-1)) {
1937                size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1938                if (local_len > len)
1939                        local_len = len;
1940                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1941                                             local_len, retlen, buf);
1942                if (ret)
1943                        return ret;
1944                ofs += local_len;
1945                buf += local_len;
1946                len -= local_len;
1947
1948                if (ofs >> cfi->chipshift) {
1949                        chipnum ++;
1950                        ofs = 0;
1951                        if (chipnum == cfi->numchips)
1952                                return 0;
1953                }
1954        }
1955
1956        /* Write buffer is worth it only if more than one word to write... */
1957        while (len >= map_bankwidth(map) * 2) {
1958                /* We must not cross write block boundaries */
1959                int size = wbufsize - (ofs & (wbufsize-1));
1960
1961                if (size > len)
1962                        size = len;
1963                if (size % map_bankwidth(map))
1964                        size -= size % map_bankwidth(map);
1965
1966                ret = do_write_buffer(map, &cfi->chips[chipnum],
1967                                      ofs, buf, size);
1968                if (ret)
1969                        return ret;
1970
1971                ofs += size;
1972                buf += size;
1973                (*retlen) += size;
1974                len -= size;
1975
1976                if (ofs >> cfi->chipshift) {
1977                        chipnum ++;
1978                        ofs = 0;
1979                        if (chipnum == cfi->numchips)
1980                                return 0;
1981                }
1982        }
1983
1984        if (len) {
1985                size_t retlen_dregs = 0;
1986
1987                ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1988                                             len, &retlen_dregs, buf);
1989
1990                *retlen += retlen_dregs;
1991                return ret;
1992        }
1993
1994        return 0;
1995}
1996
1997/*
1998 * Wait for the flash chip to become ready to write data
1999 *
2000 * This is only called during the panic_write() path. When panic_write()
2001 * is called, the kernel is in the process of a panic, and will soon be
2002 * dead. Therefore we don't take any locks, and attempt to get access
2003 * to the chip as soon as possible.
2004 */
2005static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2006                                 unsigned long adr)
2007{
2008        struct cfi_private *cfi = map->fldrv_priv;
2009        int retries = 10;
2010        int i;
2011
2012        /*
2013         * If the driver thinks the chip is idle, and no toggle bits
2014         * are changing, then the chip is actually idle for sure.
2015         */
2016        if (chip->state == FL_READY && chip_ready(map, adr))
2017                return 0;
2018
2019        /*
2020         * Try several times to reset the chip and then wait for it
2021         * to become idle. The upper limit of a few milliseconds of
2022         * delay isn't a big problem: the kernel is dying anyway. It
2023         * is more important to save the messages.
2024         */
2025        while (retries > 0) {
2026                const unsigned long timeo = (HZ / 1000) + 1;
2027
2028                /* send the reset command */
2029                map_write(map, CMD(0xF0), chip->start);
2030
2031                /* wait for the chip to become ready */
2032                for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2033                        if (chip_ready(map, adr))
2034                                return 0;
2035
2036                        udelay(1);
2037                }
2038
2039                retries--;
2040        }
2041
2042        /* the chip never became ready */
2043        return -EBUSY;
2044}
2045
2046/*
2047 * Write out one word of data to a single flash chip during a kernel panic
2048 *
2049 * This is only called during the panic_write() path. When panic_write()
2050 * is called, the kernel is in the process of a panic, and will soon be
2051 * dead. Therefore we don't take any locks, and attempt to get access
2052 * to the chip as soon as possible.
2053 *
2054 * The implementation of this routine is intentionally similar to
2055 * do_write_oneword(), in order to ease code maintenance.
2056 */
2057static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2058                                  unsigned long adr, map_word datum)
2059{
2060        const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2061        struct cfi_private *cfi = map->fldrv_priv;
2062        int retry_cnt = 0;
2063        map_word oldd;
2064        int ret = 0;
2065        int i;
2066
2067        adr += chip->start;
2068
2069        ret = cfi_amdstd_panic_wait(map, chip, adr);
2070        if (ret)
2071                return ret;
2072
2073        pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2074                        __func__, adr, datum.x[0]);
2075
2076        /*
2077         * Check for a NOP for the case when the datum to write is already
2078         * present - it saves time and works around buggy chips that corrupt
2079         * data at other locations when 0xff is written to a location that
2080         * already contains 0xff.
2081         */
2082        oldd = map_read(map, adr);
2083        if (map_word_equal(map, oldd, datum)) {
2084                pr_debug("MTD %s(): NOP\n", __func__);
2085                goto op_done;
2086        }
2087
2088        ENABLE_VPP(map);
2089
2090retry:
2091        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2092        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2093        cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2094        map_write(map, datum, adr);
2095
2096        for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2097                if (chip_ready(map, adr))
2098                        break;
2099
2100                udelay(1);
2101        }
2102
2103        if (!chip_good(map, adr, datum)) {
2104                /* reset on all failures. */
2105                map_write(map, CMD(0xF0), chip->start);
2106                /* FIXME - should have reset delay before continuing */
2107
2108                if (++retry_cnt <= MAX_WORD_RETRIES)
2109                        goto retry;
2110
2111                ret = -EIO;
2112        }
2113
2114op_done:
2115        DISABLE_VPP(map);
2116        return ret;
2117}
2118
2119/*
2120 * Write out some data during a kernel panic
2121 *
2122 * This is used by the mtdoops driver to save the dying messages from a
2123 * kernel which has panic'd.
2124 *
2125 * This routine ignores all of the locking used throughout the rest of the
2126 * driver, in order to ensure that the data gets written out no matter what
2127 * state this driver (and the flash chip itself) was in when the kernel crashed.
2128 *
2129 * The implementation of this routine is intentionally similar to
2130 * cfi_amdstd_write_words(), in order to ease code maintenance.
2131 */
2132static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2133                                  size_t *retlen, const u_char *buf)
2134{
2135        struct map_info *map = mtd->priv;
2136        struct cfi_private *cfi = map->fldrv_priv;
2137        unsigned long ofs, chipstart;
2138        int ret = 0;
2139        int chipnum;
2140
2141        chipnum = to >> cfi->chipshift;
2142        ofs = to - (chipnum << cfi->chipshift);
2143        chipstart = cfi->chips[chipnum].start;
2144
2145        /* If it's not bus aligned, do the first byte write */
2146        if (ofs & (map_bankwidth(map) - 1)) {
2147                unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2148                int i = ofs - bus_ofs;
2149                int n = 0;
2150                map_word tmp_buf;
2151
2152                ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2153                if (ret)
2154                        return ret;
2155
2156                /* Load 'tmp_buf' with old contents of flash */
2157                tmp_buf = map_read(map, bus_ofs + chipstart);
2158
2159                /* Number of bytes to copy from buffer */
2160                n = min_t(int, len, map_bankwidth(map) - i);
2161
2162                tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2163
2164                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2165                                             bus_ofs, tmp_buf);
2166                if (ret)
2167                        return ret;
2168
2169                ofs += n;
2170                buf += n;
2171                (*retlen) += n;
2172                len -= n;
2173
2174                if (ofs >> cfi->chipshift) {
2175                        chipnum++;
2176                        ofs = 0;
2177                        if (chipnum == cfi->numchips)
2178                                return 0;
2179                }
2180        }
2181
2182        /* We are now aligned, write as much as possible */
2183        while (len >= map_bankwidth(map)) {
2184                map_word datum;
2185
2186                datum = map_word_load(map, buf);
2187
2188                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2189                                             ofs, datum);
2190                if (ret)
2191                        return ret;
2192
2193                ofs += map_bankwidth(map);
2194                buf += map_bankwidth(map);
2195                (*retlen) += map_bankwidth(map);
2196                len -= map_bankwidth(map);
2197
2198                if (ofs >> cfi->chipshift) {
2199                        chipnum++;
2200                        ofs = 0;
2201                        if (chipnum == cfi->numchips)
2202                                return 0;
2203
2204                        chipstart = cfi->chips[chipnum].start;
2205                }
2206        }
2207
2208        /* Write the trailing bytes if any */
2209        if (len & (map_bankwidth(map) - 1)) {
2210                map_word tmp_buf;
2211
2212                ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2213                if (ret)
2214                        return ret;
2215
2216                tmp_buf = map_read(map, ofs + chipstart);
2217
2218                tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2219
2220                ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2221                                             ofs, tmp_buf);
2222                if (ret)
2223                        return ret;
2224
2225                (*retlen) += len;
2226        }
2227
2228        return 0;
2229}
2230
2231
2232/*
2233 * Handle devices with one erase region, that only implement
2234 * the chip erase command.
2235 */
2236static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2237{
2238        struct cfi_private *cfi = map->fldrv_priv;
2239        unsigned long timeo = jiffies + HZ;
2240        unsigned long int adr;
2241        DECLARE_WAITQUEUE(wait, current);
2242        int ret = 0;
2243
2244        adr = cfi->addr_unlock1;
2245
2246        mutex_lock(&chip->mutex);
2247        ret = get_chip(map, chip, adr, FL_WRITING);
2248        if (ret) {
2249                mutex_unlock(&chip->mutex);
2250                return ret;
2251        }
2252
2253        pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2254               __func__, chip->start );
2255
2256        XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2257        ENABLE_VPP(map);
2258        xip_disable(map, chip, adr);
2259
2260        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2261        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2262        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2263        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2264        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2265        cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2266
2267        chip->state = FL_ERASING;
2268        chip->erase_suspended = 0;
2269        chip->in_progress_block_addr = adr;
2270
2271        INVALIDATE_CACHE_UDELAY(map, chip,
2272                                adr, map->size,
2273                                chip->erase_time*500);
2274
2275        timeo = jiffies + (HZ*20);
2276
2277        for (;;) {
2278                if (chip->state != FL_ERASING) {
2279                        /* Someone's suspended the erase. Sleep */
2280                        set_current_state(TASK_UNINTERRUPTIBLE);
2281                        add_wait_queue(&chip->wq, &wait);
2282                        mutex_unlock(&chip->mutex);
2283                        schedule();
2284                        remove_wait_queue(&chip->wq, &wait);
2285                        mutex_lock(&chip->mutex);
2286                        continue;
2287                }
2288                if (chip->erase_suspended) {
2289                        /* This erase was suspended and resumed.
2290                           Adjust the timeout */
2291                        timeo = jiffies + (HZ*20); /* FIXME */
2292                        chip->erase_suspended = 0;
2293                }
2294
2295                if (chip_ready(map, adr))
2296                        break;
2297
2298                if (time_after(jiffies, timeo)) {
2299                        printk(KERN_WARNING "MTD %s(): software timeout\n",
2300                                __func__ );
2301                        break;
2302                }
2303
2304                /* Latency issues. Drop the lock, wait a while and retry */
2305                UDELAY(map, chip, adr, 1000000/HZ);
2306        }
2307        /* Did we succeed? */
2308        if (!chip_good(map, adr, map_word_ff(map))) {
2309                /* reset on all failures. */
2310                map_write( map, CMD(0xF0), chip->start );
2311                /* FIXME - should have reset delay before continuing */
2312
2313                ret = -EIO;
2314        }
2315
2316        chip->state = FL_READY;
2317        xip_enable(map, chip, adr);
2318        DISABLE_VPP(map);
2319        put_chip(map, chip, adr);
2320        mutex_unlock(&chip->mutex);
2321
2322        return ret;
2323}
2324
2325
2326static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2327{
2328        struct cfi_private *cfi = map->fldrv_priv;
2329        unsigned long timeo = jiffies + HZ;
2330        DECLARE_WAITQUEUE(wait, current);
2331        int ret = 0;
2332
2333        adr += chip->start;
2334
2335        mutex_lock(&chip->mutex);
2336        ret = get_chip(map, chip, adr, FL_ERASING);
2337        if (ret) {
2338                mutex_unlock(&chip->mutex);
2339                return ret;
2340        }
2341
2342        pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2343               __func__, adr );
2344
2345        XIP_INVAL_CACHED_RANGE(map, adr, len);
2346        ENABLE_VPP(map);
2347        xip_disable(map, chip, adr);
2348
2349        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2350        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2351        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2352        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2353        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2354        map_write(map, cfi->sector_erase_cmd, adr);
2355
2356        chip->state = FL_ERASING;
2357        chip->erase_suspended = 0;
2358        chip->in_progress_block_addr = adr;
2359
2360        INVALIDATE_CACHE_UDELAY(map, chip,
2361                                adr, len,
2362                                chip->erase_time*500);
2363
2364        timeo = jiffies + (HZ*20);
2365
2366        for (;;) {
2367                if (chip->state != FL_ERASING) {
2368                        /* Someone's suspended the erase. Sleep */
2369                        set_current_state(TASK_UNINTERRUPTIBLE);
2370                        add_wait_queue(&chip->wq, &wait);
2371                        mutex_unlock(&chip->mutex);
2372                        schedule();
2373                        remove_wait_queue(&chip->wq, &wait);
2374                        mutex_lock(&chip->mutex);
2375                        continue;
2376                }
2377                if (chip->erase_suspended) {
2378                        /* This erase was suspended and resumed.
2379                           Adjust the timeout */
2380                        timeo = jiffies + (HZ*20); /* FIXME */
2381                        chip->erase_suspended = 0;
2382                }
2383
2384                if (chip_ready(map, adr)) {
2385                        xip_enable(map, chip, adr);
2386                        break;
2387                }
2388
2389                if (time_after(jiffies, timeo)) {
2390                        xip_enable(map, chip, adr);
2391                        printk(KERN_WARNING "MTD %s(): software timeout\n",
2392                                __func__ );
2393                        break;
2394                }
2395
2396                /* Latency issues. Drop the lock, wait a while and retry */
2397                UDELAY(map, chip, adr, 1000000/HZ);
2398        }
2399        /* Did we succeed? */
2400        if (!chip_good(map, adr, map_word_ff(map))) {
2401                /* reset on all failures. */
2402                map_write( map, CMD(0xF0), chip->start );
2403                /* FIXME - should have reset delay before continuing */
2404
2405                ret = -EIO;
2406        }
2407
2408        chip->state = FL_READY;
2409        DISABLE_VPP(map);
2410        put_chip(map, chip, adr);
2411        mutex_unlock(&chip->mutex);
2412        return ret;
2413}
2414
2415
2416static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2417{
2418        unsigned long ofs, len;
2419        int ret;
2420
2421        ofs = instr->addr;
2422        len = instr->len;
2423
2424        ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
2425        if (ret)
2426                return ret;
2427
2428        instr->state = MTD_ERASE_DONE;
2429        mtd_erase_callback(instr);
2430
2431        return 0;
2432}
2433
2434
2435static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2436{
2437        struct map_info *map = mtd->priv;
2438        struct cfi_private *cfi = map->fldrv_priv;
2439        int ret = 0;
2440
2441        if (instr->addr != 0)
2442                return -EINVAL;
2443
2444        if (instr->len != mtd->size)
2445                return -EINVAL;
2446
2447        ret = do_erase_chip(map, &cfi->chips[0]);
2448        if (ret)
2449                return ret;
2450
2451        instr->state = MTD_ERASE_DONE;
2452        mtd_erase_callback(instr);
2453
2454        return 0;
2455}
2456
2457static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2458                         unsigned long adr, int len, void *thunk)
2459{
2460        struct cfi_private *cfi = map->fldrv_priv;
2461        int ret;
2462
2463        mutex_lock(&chip->mutex);
2464        ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2465        if (ret)
2466                goto out_unlock;
2467        chip->state = FL_LOCKING;
2468
2469        pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2470
2471        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2472                         cfi->device_type, NULL);
2473        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2474                         cfi->device_type, NULL);
2475        cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2476                         cfi->device_type, NULL);
2477        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2478                         cfi->device_type, NULL);
2479        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2480                         cfi->device_type, NULL);
2481        map_write(map, CMD(0x40), chip->start + adr);
2482
2483        chip->state = FL_READY;
2484        put_chip(map, chip, adr + chip->start);
2485        ret = 0;
2486
2487out_unlock:
2488        mutex_unlock(&chip->mutex);
2489        return ret;
2490}
2491
2492static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2493                           unsigned long adr, int len, void *thunk)
2494{
2495        struct cfi_private *cfi = map->fldrv_priv;
2496        int ret;
2497
2498        mutex_lock(&chip->mutex);
2499        ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2500        if (ret)
2501                goto out_unlock;
2502        chip->state = FL_UNLOCKING;
2503
2504        pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2505
2506        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2507                         cfi->device_type, NULL);
2508        map_write(map, CMD(0x70), adr);
2509
2510        chip->state = FL_READY;
2511        put_chip(map, chip, adr + chip->start);
2512        ret = 0;
2513
2514out_unlock:
2515        mutex_unlock(&chip->mutex);
2516        return ret;
2517}
2518
2519static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2520{
2521        return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2522}
2523
2524static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2525{
2526        return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2527}
2528
2529/*
2530 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2531 */
2532
2533struct ppb_lock {
2534        struct flchip *chip;
2535        loff_t offset;
2536        int locked;
2537};
2538
2539#define MAX_SECTORS                     512
2540
2541#define DO_XXLOCK_ONEBLOCK_LOCK         ((void *)1)
2542#define DO_XXLOCK_ONEBLOCK_UNLOCK       ((void *)2)
2543#define DO_XXLOCK_ONEBLOCK_GETLOCK      ((void *)3)
2544
2545static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2546                                        struct flchip *chip,
2547                                        unsigned long adr, int len, void *thunk)
2548{
2549        struct cfi_private *cfi = map->fldrv_priv;
2550        unsigned long timeo;
2551        int ret;
2552
2553        mutex_lock(&chip->mutex);
2554        ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2555        if (ret) {
2556                mutex_unlock(&chip->mutex);
2557                return ret;
2558        }
2559
2560        pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2561
2562        cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2563                         cfi->device_type, NULL);
2564        cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2565                         cfi->device_type, NULL);
2566        /* PPB entry command */
2567        cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2568                         cfi->device_type, NULL);
2569
2570        if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2571                chip->state = FL_LOCKING;
2572                map_write(map, CMD(0xA0), chip->start + adr);
2573                map_write(map, CMD(0x00), chip->start + adr);
2574        } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2575                /*
2576                 * Unlocking of one specific sector is not supported, so we
2577                 * have to unlock all sectors of this device instead
2578                 */
2579                chip->state = FL_UNLOCKING;
2580                map_write(map, CMD(0x80), chip->start);
2581                map_write(map, CMD(0x30), chip->start);
2582        } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2583                chip->state = FL_JEDEC_QUERY;
2584                /* Return locked status: 0->locked, 1->unlocked */
2585                ret = !cfi_read_query(map, adr);
2586        } else
2587                BUG();
2588
2589        /*
2590         * Wait for some time as unlocking of all sectors takes quite long
2591         */
2592        timeo = jiffies + msecs_to_jiffies(2000);       /* 2s max (un)locking */
2593        for (;;) {
2594                if (chip_ready(map, adr))
2595                        break;
2596
2597                if (time_after(jiffies, timeo)) {
2598                        printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2599                        ret = -EIO;
2600                        break;
2601                }
2602
2603                UDELAY(map, chip, adr, 1);
2604        }
2605
2606        /* Exit BC commands */
2607        map_write(map, CMD(0x90), chip->start);
2608        map_write(map, CMD(0x00), chip->start);
2609
2610        chip->state = FL_READY;
2611        put_chip(map, chip, adr + chip->start);
2612        mutex_unlock(&chip->mutex);
2613
2614        return ret;
2615}
2616
2617static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2618                                       uint64_t len)
2619{
2620        return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2621                                DO_XXLOCK_ONEBLOCK_LOCK);
2622}
2623
2624static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2625                                         uint64_t len)
2626{
2627        struct mtd_erase_region_info *regions = mtd->eraseregions;
2628        struct map_info *map = mtd->priv;
2629        struct cfi_private *cfi = map->fldrv_priv;
2630        struct ppb_lock *sect;
2631        unsigned long adr;
2632        loff_t offset;
2633        uint64_t length;
2634        int chipnum;
2635        int i;
2636        int sectors;
2637        int ret;
2638
2639        /*
2640         * PPB unlocking always unlocks all sectors of the flash chip.
2641         * We need to re-lock all previously locked sectors. So lets
2642         * first check the locking status of all sectors and save
2643         * it for future use.
2644         */
2645        sect = kzalloc(MAX_SECTORS * sizeof(struct ppb_lock), GFP_KERNEL);
2646        if (!sect)
2647                return -ENOMEM;
2648
2649        /*
2650         * This code to walk all sectors is a slightly modified version
2651         * of the cfi_varsize_frob() code.
2652         */
2653        i = 0;
2654        chipnum = 0;
2655        adr = 0;
2656        sectors = 0;
2657        offset = 0;
2658        length = mtd->size;
2659
2660        while (length) {
2661                int size = regions[i].erasesize;
2662
2663                /*
2664                 * Only test sectors that shall not be unlocked. The other
2665                 * sectors shall be unlocked, so lets keep their locking
2666                 * status at "unlocked" (locked=0) for the final re-locking.
2667                 */
2668                if ((adr < ofs) || (adr >= (ofs + len))) {
2669                        sect[sectors].chip = &cfi->chips[chipnum];
2670                        sect[sectors].offset = offset;
2671                        sect[sectors].locked = do_ppb_xxlock(
2672                                map, &cfi->chips[chipnum], adr, 0,
2673                                DO_XXLOCK_ONEBLOCK_GETLOCK);
2674                }
2675
2676                adr += size;
2677                offset += size;
2678                length -= size;
2679
2680                if (offset == regions[i].offset + size * regions[i].numblocks)
2681                        i++;
2682
2683                if (adr >> cfi->chipshift) {
2684                        adr = 0;
2685                        chipnum++;
2686
2687                        if (chipnum >= cfi->numchips)
2688                                break;
2689                }
2690
2691                sectors++;
2692                if (sectors >= MAX_SECTORS) {
2693                        printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2694                               MAX_SECTORS);
2695                        kfree(sect);
2696                        return -EINVAL;
2697                }
2698        }
2699
2700        /* Now unlock the whole chip */
2701        ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2702                               DO_XXLOCK_ONEBLOCK_UNLOCK);
2703        if (ret) {
2704                kfree(sect);
2705                return ret;
2706        }
2707
2708        /*
2709         * PPB unlocking always unlocks all sectors of the flash chip.
2710         * We need to re-lock all previously locked sectors.
2711         */
2712        for (i = 0; i < sectors; i++) {
2713                if (sect[i].locked)
2714                        do_ppb_xxlock(map, sect[i].chip, sect[i].offset, 0,
2715                                      DO_XXLOCK_ONEBLOCK_LOCK);
2716        }
2717
2718        kfree(sect);
2719        return ret;
2720}
2721
2722static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2723                                            uint64_t len)
2724{
2725        return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2726                                DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2727}
2728
2729static void cfi_amdstd_sync (struct mtd_info *mtd)
2730{
2731        struct map_info *map = mtd->priv;
2732        struct cfi_private *cfi = map->fldrv_priv;
2733        int i;
2734        struct flchip *chip;
2735        int ret = 0;
2736        DECLARE_WAITQUEUE(wait, current);
2737
2738        for (i=0; !ret && i<cfi->numchips; i++) {
2739                chip = &cfi->chips[i];
2740
2741        retry:
2742                mutex_lock(&chip->mutex);
2743
2744                switch(chip->state) {
2745                case FL_READY:
2746                case FL_STATUS:
2747                case FL_CFI_QUERY:
2748                case FL_JEDEC_QUERY:
2749                        chip->oldstate = chip->state;
2750                        chip->state = FL_SYNCING;
2751                        /* No need to wake_up() on this state change -
2752                         * as the whole point is that nobody can do anything
2753                         * with the chip now anyway.
2754                         */
2755                case FL_SYNCING:
2756                        mutex_unlock(&chip->mutex);
2757                        break;
2758
2759                default:
2760                        /* Not an idle state */
2761                        set_current_state(TASK_UNINTERRUPTIBLE);
2762                        add_wait_queue(&chip->wq, &wait);
2763
2764                        mutex_unlock(&chip->mutex);
2765
2766                        schedule();
2767
2768                        remove_wait_queue(&chip->wq, &wait);
2769
2770                        goto retry;
2771                }
2772        }
2773
2774        /* Unlock the chips again */
2775
2776        for (i--; i >=0; i--) {
2777                chip = &cfi->chips[i];
2778
2779                mutex_lock(&chip->mutex);
2780
2781                if (chip->state == FL_SYNCING) {
2782                        chip->state = chip->oldstate;
2783                        wake_up(&chip->wq);
2784                }
2785                mutex_unlock(&chip->mutex);
2786        }
2787}
2788
2789
2790static int cfi_amdstd_suspend(struct mtd_info *mtd)
2791{
2792        struct map_info *map = mtd->priv;
2793        struct cfi_private *cfi = map->fldrv_priv;
2794        int i;
2795        struct flchip *chip;
2796        int ret = 0;
2797
2798        for (i=0; !ret && i<cfi->numchips; i++) {
2799                chip = &cfi->chips[i];
2800
2801                mutex_lock(&chip->mutex);
2802
2803                switch(chip->state) {
2804                case FL_READY:
2805                case FL_STATUS:
2806                case FL_CFI_QUERY:
2807                case FL_JEDEC_QUERY:
2808                        chip->oldstate = chip->state;
2809                        chip->state = FL_PM_SUSPENDED;
2810                        /* No need to wake_up() on this state change -
2811                         * as the whole point is that nobody can do anything
2812                         * with the chip now anyway.
2813                         */
2814                case FL_PM_SUSPENDED:
2815                        break;
2816
2817                default:
2818                        ret = -EAGAIN;
2819                        break;
2820                }
2821                mutex_unlock(&chip->mutex);
2822        }
2823
2824        /* Unlock the chips again */
2825
2826        if (ret) {
2827                for (i--; i >=0; i--) {
2828                        chip = &cfi->chips[i];
2829
2830                        mutex_lock(&chip->mutex);
2831
2832                        if (chip->state == FL_PM_SUSPENDED) {
2833                                chip->state = chip->oldstate;
2834                                wake_up(&chip->wq);
2835                        }
2836                        mutex_unlock(&chip->mutex);
2837                }
2838        }
2839
2840        return ret;
2841}
2842
2843
2844static void cfi_amdstd_resume(struct mtd_info *mtd)
2845{
2846        struct map_info *map = mtd->priv;
2847        struct cfi_private *cfi = map->fldrv_priv;
2848        int i;
2849        struct flchip *chip;
2850
2851        for (i=0; i<cfi->numchips; i++) {
2852
2853                chip = &cfi->chips[i];
2854
2855                mutex_lock(&chip->mutex);
2856
2857                if (chip->state == FL_PM_SUSPENDED) {
2858                        chip->state = FL_READY;
2859                        map_write(map, CMD(0xF0), chip->start);
2860                        wake_up(&chip->wq);
2861                }
2862                else
2863                        printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2864
2865                mutex_unlock(&chip->mutex);
2866        }
2867}
2868
2869
2870/*
2871 * Ensure that the flash device is put back into read array mode before
2872 * unloading the driver or rebooting.  On some systems, rebooting while
2873 * the flash is in query/program/erase mode will prevent the CPU from
2874 * fetching the bootloader code, requiring a hard reset or power cycle.
2875 */
2876static int cfi_amdstd_reset(struct mtd_info *mtd)
2877{
2878        struct map_info *map = mtd->priv;
2879        struct cfi_private *cfi = map->fldrv_priv;
2880        int i, ret;
2881        struct flchip *chip;
2882
2883        for (i = 0; i < cfi->numchips; i++) {
2884
2885                chip = &cfi->chips[i];
2886
2887                mutex_lock(&chip->mutex);
2888
2889                ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2890                if (!ret) {
2891                        map_write(map, CMD(0xF0), chip->start);
2892                        chip->state = FL_SHUTDOWN;
2893                        put_chip(map, chip, chip->start);
2894                }
2895
2896                mutex_unlock(&chip->mutex);
2897        }
2898
2899        return 0;
2900}
2901
2902
2903static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2904                               void *v)
2905{
2906        struct mtd_info *mtd;
2907
2908        mtd = container_of(nb, struct mtd_info, reboot_notifier);
2909        cfi_amdstd_reset(mtd);
2910        return NOTIFY_DONE;
2911}
2912
2913
2914static void cfi_amdstd_destroy(struct mtd_info *mtd)
2915{
2916        struct map_info *map = mtd->priv;
2917        struct cfi_private *cfi = map->fldrv_priv;
2918
2919        cfi_amdstd_reset(mtd);
2920        unregister_reboot_notifier(&mtd->reboot_notifier);
2921        kfree(cfi->cmdset_priv);
2922        kfree(cfi->cfiq);
2923        kfree(cfi);
2924        kfree(mtd->eraseregions);
2925}
2926
2927MODULE_LICENSE("GPL");
2928MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2929MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2930MODULE_ALIAS("cfi_cmdset_0006");
2931MODULE_ALIAS("cfi_cmdset_0701");
2932