linux/drivers/mtd/devices/docg3.c
<<
>>
Prefs
   1/*
   2 * Handles the M-Systems DiskOnChip G3 chip
   3 *
   4 * Copyright (C) 2011 Robert Jarzmik
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  19 *
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/of.h>
  26#include <linux/platform_device.h>
  27#include <linux/string.h>
  28#include <linux/slab.h>
  29#include <linux/io.h>
  30#include <linux/delay.h>
  31#include <linux/mtd/mtd.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/bitmap.h>
  34#include <linux/bitrev.h>
  35#include <linux/bch.h>
  36
  37#include <linux/debugfs.h>
  38#include <linux/seq_file.h>
  39
  40#define CREATE_TRACE_POINTS
  41#include "docg3.h"
  42
  43/*
  44 * This driver handles the DiskOnChip G3 flash memory.
  45 *
  46 * As no specification is available from M-Systems/Sandisk, this drivers lacks
  47 * several functions available on the chip, as :
  48 *  - IPL write
  49 *
  50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
  51 * the driver assumes a 16bits data bus.
  52 *
  53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
  54 *  - a 1 byte Hamming code stored in the OOB for each page
  55 *  - a 7 bytes BCH code stored in the OOB for each page
  56 * The BCH ECC is :
  57 *  - BCH is in GF(2^14)
  58 *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
  59 *                                   + 1 hamming byte)
  60 *  - BCH can correct up to 4 bits (t = 4)
  61 *  - BCH syndroms are calculated in hardware, and checked in hardware as well
  62 *
  63 */
  64
  65static unsigned int reliable_mode;
  66module_param(reliable_mode, uint, 0);
  67MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
  68                 "2=reliable) : MLC normal operations are in normal mode");
  69
  70static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section,
  71                               struct mtd_oob_region *oobregion)
  72{
  73        if (section)
  74                return -ERANGE;
  75
  76        /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
  77        oobregion->offset = 7;
  78        oobregion->length = 8;
  79
  80        return 0;
  81}
  82
  83static int docg3_ooblayout_free(struct mtd_info *mtd, int section,
  84                                struct mtd_oob_region *oobregion)
  85{
  86        if (section > 1)
  87                return -ERANGE;
  88
  89        /* free bytes: byte 0 until byte 6, byte 15 */
  90        if (!section) {
  91                oobregion->offset = 0;
  92                oobregion->length = 7;
  93        } else {
  94                oobregion->offset = 15;
  95                oobregion->length = 1;
  96        }
  97
  98        return 0;
  99}
 100
 101static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = {
 102        .ecc = docg3_ooblayout_ecc,
 103        .free = docg3_ooblayout_free,
 104};
 105
 106static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
 107{
 108        u8 val = readb(docg3->cascade->base + reg);
 109
 110        trace_docg3_io(0, 8, reg, (int)val);
 111        return val;
 112}
 113
 114static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
 115{
 116        u16 val = readw(docg3->cascade->base + reg);
 117
 118        trace_docg3_io(0, 16, reg, (int)val);
 119        return val;
 120}
 121
 122static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
 123{
 124        writeb(val, docg3->cascade->base + reg);
 125        trace_docg3_io(1, 8, reg, val);
 126}
 127
 128static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
 129{
 130        writew(val, docg3->cascade->base + reg);
 131        trace_docg3_io(1, 16, reg, val);
 132}
 133
 134static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
 135{
 136        doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
 137}
 138
 139static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
 140{
 141        doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
 142}
 143
 144static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
 145{
 146        doc_writeb(docg3, addr, DOC_FLASHADDRESS);
 147}
 148
 149static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
 150
 151static int doc_register_readb(struct docg3 *docg3, int reg)
 152{
 153        u8 val;
 154
 155        doc_writew(docg3, reg, DOC_READADDRESS);
 156        val = doc_readb(docg3, reg);
 157        doc_vdbg("Read register %04x : %02x\n", reg, val);
 158        return val;
 159}
 160
 161static int doc_register_readw(struct docg3 *docg3, int reg)
 162{
 163        u16 val;
 164
 165        doc_writew(docg3, reg, DOC_READADDRESS);
 166        val = doc_readw(docg3, reg);
 167        doc_vdbg("Read register %04x : %04x\n", reg, val);
 168        return val;
 169}
 170
 171/**
 172 * doc_delay - delay docg3 operations
 173 * @docg3: the device
 174 * @nbNOPs: the number of NOPs to issue
 175 *
 176 * As no specification is available, the right timings between chip commands are
 177 * unknown. The only available piece of information are the observed nops on a
 178 * working docg3 chip.
 179 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
 180 * friendlier msleep() functions or blocking mdelay().
 181 */
 182static void doc_delay(struct docg3 *docg3, int nbNOPs)
 183{
 184        int i;
 185
 186        doc_vdbg("NOP x %d\n", nbNOPs);
 187        for (i = 0; i < nbNOPs; i++)
 188                doc_writeb(docg3, 0, DOC_NOP);
 189}
 190
 191static int is_prot_seq_error(struct docg3 *docg3)
 192{
 193        int ctrl;
 194
 195        ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 196        return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
 197}
 198
 199static int doc_is_ready(struct docg3 *docg3)
 200{
 201        int ctrl;
 202
 203        ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 204        return ctrl & DOC_CTRL_FLASHREADY;
 205}
 206
 207static int doc_wait_ready(struct docg3 *docg3)
 208{
 209        int maxWaitCycles = 100;
 210
 211        do {
 212                doc_delay(docg3, 4);
 213                cpu_relax();
 214        } while (!doc_is_ready(docg3) && maxWaitCycles--);
 215        doc_delay(docg3, 2);
 216        if (maxWaitCycles > 0)
 217                return 0;
 218        else
 219                return -EIO;
 220}
 221
 222static int doc_reset_seq(struct docg3 *docg3)
 223{
 224        int ret;
 225
 226        doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
 227        doc_flash_sequence(docg3, DOC_SEQ_RESET);
 228        doc_flash_command(docg3, DOC_CMD_RESET);
 229        doc_delay(docg3, 2);
 230        ret = doc_wait_ready(docg3);
 231
 232        doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
 233        return ret;
 234}
 235
 236/**
 237 * doc_read_data_area - Read data from data area
 238 * @docg3: the device
 239 * @buf: the buffer to fill in (might be NULL is dummy reads)
 240 * @len: the length to read
 241 * @first: first time read, DOC_READADDRESS should be set
 242 *
 243 * Reads bytes from flash data. Handles the single byte / even bytes reads.
 244 */
 245static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
 246                               int first)
 247{
 248        int i, cdr, len4;
 249        u16 data16, *dst16;
 250        u8 data8, *dst8;
 251
 252        doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
 253        cdr = len & 0x1;
 254        len4 = len - cdr;
 255
 256        if (first)
 257                doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
 258        dst16 = buf;
 259        for (i = 0; i < len4; i += 2) {
 260                data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
 261                if (dst16) {
 262                        *dst16 = data16;
 263                        dst16++;
 264                }
 265        }
 266
 267        if (cdr) {
 268                doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
 269                           DOC_READADDRESS);
 270                doc_delay(docg3, 1);
 271                dst8 = (u8 *)dst16;
 272                for (i = 0; i < cdr; i++) {
 273                        data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
 274                        if (dst8) {
 275                                *dst8 = data8;
 276                                dst8++;
 277                        }
 278                }
 279        }
 280}
 281
 282/**
 283 * doc_write_data_area - Write data into data area
 284 * @docg3: the device
 285 * @buf: the buffer to get input bytes from
 286 * @len: the length to write
 287 *
 288 * Writes bytes into flash data. Handles the single byte / even bytes writes.
 289 */
 290static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
 291{
 292        int i, cdr, len4;
 293        u16 *src16;
 294        u8 *src8;
 295
 296        doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
 297        cdr = len & 0x3;
 298        len4 = len - cdr;
 299
 300        doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
 301        src16 = (u16 *)buf;
 302        for (i = 0; i < len4; i += 2) {
 303                doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
 304                src16++;
 305        }
 306
 307        src8 = (u8 *)src16;
 308        for (i = 0; i < cdr; i++) {
 309                doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
 310                           DOC_READADDRESS);
 311                doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
 312                src8++;
 313        }
 314}
 315
 316/**
 317 * doc_set_data_mode - Sets the flash to normal or reliable data mode
 318 * @docg3: the device
 319 *
 320 * The reliable data mode is a bit slower than the fast mode, but less errors
 321 * occur.  Entering the reliable mode cannot be done without entering the fast
 322 * mode first.
 323 *
 324 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
 325 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
 326 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
 327 * result, which is a logical and between bytes from page 0 and page 1 (which is
 328 * consistent with the fact that writing to a page is _clearing_ bits of that
 329 * page).
 330 */
 331static void doc_set_reliable_mode(struct docg3 *docg3)
 332{
 333        static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
 334
 335        doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
 336        switch (docg3->reliable) {
 337        case 0:
 338                break;
 339        case 1:
 340                doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
 341                doc_flash_command(docg3, DOC_CMD_FAST_MODE);
 342                break;
 343        case 2:
 344                doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
 345                doc_flash_command(docg3, DOC_CMD_FAST_MODE);
 346                doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
 347                break;
 348        default:
 349                doc_err("doc_set_reliable_mode(): invalid mode\n");
 350                break;
 351        }
 352        doc_delay(docg3, 2);
 353}
 354
 355/**
 356 * doc_set_asic_mode - Set the ASIC mode
 357 * @docg3: the device
 358 * @mode: the mode
 359 *
 360 * The ASIC can work in 3 modes :
 361 *  - RESET: all registers are zeroed
 362 *  - NORMAL: receives and handles commands
 363 *  - POWERDOWN: minimal poweruse, flash parts shut off
 364 */
 365static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
 366{
 367        int i;
 368
 369        for (i = 0; i < 12; i++)
 370                doc_readb(docg3, DOC_IOSPACE_IPL);
 371
 372        mode |= DOC_ASICMODE_MDWREN;
 373        doc_dbg("doc_set_asic_mode(%02x)\n", mode);
 374        doc_writeb(docg3, mode, DOC_ASICMODE);
 375        doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
 376        doc_delay(docg3, 1);
 377}
 378
 379/**
 380 * doc_set_device_id - Sets the devices id for cascaded G3 chips
 381 * @docg3: the device
 382 * @id: the chip to select (amongst 0, 1, 2, 3)
 383 *
 384 * There can be 4 cascaded G3 chips. This function selects the one which will
 385 * should be the active one.
 386 */
 387static void doc_set_device_id(struct docg3 *docg3, int id)
 388{
 389        u8 ctrl;
 390
 391        doc_dbg("doc_set_device_id(%d)\n", id);
 392        doc_writeb(docg3, id, DOC_DEVICESELECT);
 393        ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 394
 395        ctrl &= ~DOC_CTRL_VIOLATION;
 396        ctrl |= DOC_CTRL_CE;
 397        doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
 398}
 399
 400/**
 401 * doc_set_extra_page_mode - Change flash page layout
 402 * @docg3: the device
 403 *
 404 * Normally, the flash page is split into the data (512 bytes) and the out of
 405 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
 406 * leveling counters are stored.  To access this last area of 4 bytes, a special
 407 * mode must be input to the flash ASIC.
 408 *
 409 * Returns 0 if no error occurred, -EIO else.
 410 */
 411static int doc_set_extra_page_mode(struct docg3 *docg3)
 412{
 413        int fctrl;
 414
 415        doc_dbg("doc_set_extra_page_mode()\n");
 416        doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
 417        doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
 418        doc_delay(docg3, 2);
 419
 420        fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
 421        if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
 422                return -EIO;
 423        else
 424                return 0;
 425}
 426
 427/**
 428 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
 429 * @docg3: the device
 430 * @sector: the sector
 431 */
 432static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
 433{
 434        doc_delay(docg3, 1);
 435        doc_flash_address(docg3, sector & 0xff);
 436        doc_flash_address(docg3, (sector >> 8) & 0xff);
 437        doc_flash_address(docg3, (sector >> 16) & 0xff);
 438        doc_delay(docg3, 1);
 439}
 440
 441/**
 442 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
 443 * @docg3: the device
 444 * @sector: the sector
 445 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
 446 */
 447static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
 448{
 449        ofs = ofs >> 2;
 450        doc_delay(docg3, 1);
 451        doc_flash_address(docg3, ofs & 0xff);
 452        doc_flash_address(docg3, sector & 0xff);
 453        doc_flash_address(docg3, (sector >> 8) & 0xff);
 454        doc_flash_address(docg3, (sector >> 16) & 0xff);
 455        doc_delay(docg3, 1);
 456}
 457
 458/**
 459 * doc_seek - Set both flash planes to the specified block, page for reading
 460 * @docg3: the device
 461 * @block0: the first plane block index
 462 * @block1: the second plane block index
 463 * @page: the page index within the block
 464 * @wear: if true, read will occur on the 4 extra bytes of the wear area
 465 * @ofs: offset in page to read
 466 *
 467 * Programs the flash even and odd planes to the specific block and page.
 468 * Alternatively, programs the flash to the wear area of the specified page.
 469 */
 470static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
 471                         int wear, int ofs)
 472{
 473        int sector, ret = 0;
 474
 475        doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
 476                block0, block1, page, ofs, wear);
 477
 478        if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
 479                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
 480                doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
 481                doc_delay(docg3, 2);
 482        } else {
 483                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
 484                doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
 485                doc_delay(docg3, 2);
 486        }
 487
 488        doc_set_reliable_mode(docg3);
 489        if (wear)
 490                ret = doc_set_extra_page_mode(docg3);
 491        if (ret)
 492                goto out;
 493
 494        doc_flash_sequence(docg3, DOC_SEQ_READ);
 495        sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 496        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
 497        doc_setup_addr_sector(docg3, sector);
 498
 499        sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 500        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
 501        doc_setup_addr_sector(docg3, sector);
 502        doc_delay(docg3, 1);
 503
 504out:
 505        return ret;
 506}
 507
 508/**
 509 * doc_write_seek - Set both flash planes to the specified block, page for writing
 510 * @docg3: the device
 511 * @block0: the first plane block index
 512 * @block1: the second plane block index
 513 * @page: the page index within the block
 514 * @ofs: offset in page to write
 515 *
 516 * Programs the flash even and odd planes to the specific block and page.
 517 * Alternatively, programs the flash to the wear area of the specified page.
 518 */
 519static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
 520                         int ofs)
 521{
 522        int ret = 0, sector;
 523
 524        doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
 525                block0, block1, page, ofs);
 526
 527        doc_set_reliable_mode(docg3);
 528
 529        if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
 530                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
 531                doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
 532                doc_delay(docg3, 2);
 533        } else {
 534                doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
 535                doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
 536                doc_delay(docg3, 2);
 537        }
 538
 539        doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
 540        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
 541
 542        sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 543        doc_setup_writeaddr_sector(docg3, sector, ofs);
 544
 545        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
 546        doc_delay(docg3, 2);
 547        ret = doc_wait_ready(docg3);
 548        if (ret)
 549                goto out;
 550
 551        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
 552        sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
 553        doc_setup_writeaddr_sector(docg3, sector, ofs);
 554        doc_delay(docg3, 1);
 555
 556out:
 557        return ret;
 558}
 559
 560
 561/**
 562 * doc_read_page_ecc_init - Initialize hardware ECC engine
 563 * @docg3: the device
 564 * @len: the number of bytes covered by the ECC (BCH covered)
 565 *
 566 * The function does initialize the hardware ECC engine to compute the Hamming
 567 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
 568 *
 569 * Return 0 if succeeded, -EIO on error
 570 */
 571static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
 572{
 573        doc_writew(docg3, DOC_ECCCONF0_READ_MODE
 574                   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
 575                   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
 576                   DOC_ECCCONF0);
 577        doc_delay(docg3, 4);
 578        doc_register_readb(docg3, DOC_FLASHCONTROL);
 579        return doc_wait_ready(docg3);
 580}
 581
 582/**
 583 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
 584 * @docg3: the device
 585 * @len: the number of bytes covered by the ECC (BCH covered)
 586 *
 587 * The function does initialize the hardware ECC engine to compute the Hamming
 588 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
 589 *
 590 * Return 0 if succeeded, -EIO on error
 591 */
 592static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
 593{
 594        doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
 595                   | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
 596                   | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
 597                   DOC_ECCCONF0);
 598        doc_delay(docg3, 4);
 599        doc_register_readb(docg3, DOC_FLASHCONTROL);
 600        return doc_wait_ready(docg3);
 601}
 602
 603/**
 604 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
 605 * @docg3: the device
 606 *
 607 * Disables the hardware ECC generator and checker, for unchecked reads (as when
 608 * reading OOB only or write status byte).
 609 */
 610static void doc_ecc_disable(struct docg3 *docg3)
 611{
 612        doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
 613        doc_delay(docg3, 4);
 614}
 615
 616/**
 617 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
 618 * @docg3: the device
 619 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
 620 *
 621 * This function programs the ECC hardware to compute the hamming code on the
 622 * last provided N bytes to the hardware generator.
 623 */
 624static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
 625{
 626        u8 ecc_conf1;
 627
 628        ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
 629        ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
 630        ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
 631        doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
 632}
 633
 634/**
 635 * doc_ecc_bch_fix_data - Fix if need be read data from flash
 636 * @docg3: the device
 637 * @buf: the buffer of read data (512 + 7 + 1 bytes)
 638 * @hwecc: the hardware calculated ECC.
 639 *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
 640 *         area data, and calc_ecc the ECC calculated by the hardware generator.
 641 *
 642 * Checks if the received data matches the ECC, and if an error is detected,
 643 * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
 644 * understands the (data, ecc, syndroms) in an inverted order in comparison to
 645 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
 646 * bit6 and bit 1, ...) for all ECC data.
 647 *
 648 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
 649 * algorithm is used to decode this.  However the hw operates on page
 650 * data in a bit order that is the reverse of that of the bch alg,
 651 * requiring that the bits be reversed on the result.  Thanks to Ivan
 652 * Djelic for his analysis.
 653 *
 654 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
 655 * errors were detected and cannot be fixed.
 656 */
 657static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
 658{
 659        u8 ecc[DOC_ECC_BCH_SIZE];
 660        int errorpos[DOC_ECC_BCH_T], i, numerrs;
 661
 662        for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
 663                ecc[i] = bitrev8(hwecc[i]);
 664        numerrs = decode_bch(docg3->cascade->bch, NULL,
 665                             DOC_ECC_BCH_COVERED_BYTES,
 666                             NULL, ecc, NULL, errorpos);
 667        BUG_ON(numerrs == -EINVAL);
 668        if (numerrs < 0)
 669                goto out;
 670
 671        for (i = 0; i < numerrs; i++)
 672                errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
 673        for (i = 0; i < numerrs; i++)
 674                if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
 675                        /* error is located in data, correct it */
 676                        change_bit(errorpos[i], buf);
 677out:
 678        doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
 679        return numerrs;
 680}
 681
 682
 683/**
 684 * doc_read_page_prepare - Prepares reading data from a flash page
 685 * @docg3: the device
 686 * @block0: the first plane block index on flash memory
 687 * @block1: the second plane block index on flash memory
 688 * @page: the page index in the block
 689 * @offset: the offset in the page (must be a multiple of 4)
 690 *
 691 * Prepares the page to be read in the flash memory :
 692 *   - tell ASIC to map the flash pages
 693 *   - tell ASIC to be in read mode
 694 *
 695 * After a call to this method, a call to doc_read_page_finish is mandatory,
 696 * to end the read cycle of the flash.
 697 *
 698 * Read data from a flash page. The length to be read must be between 0 and
 699 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
 700 * the extra bytes reading is not implemented).
 701 *
 702 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
 703 * in two steps:
 704 *  - one read of 512 bytes at offset 0
 705 *  - one read of 512 bytes at offset 512 + 16
 706 *
 707 * Returns 0 if successful, -EIO if a read error occurred.
 708 */
 709static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
 710                                 int page, int offset)
 711{
 712        int wear_area = 0, ret = 0;
 713
 714        doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
 715                block0, block1, page, offset);
 716        if (offset >= DOC_LAYOUT_WEAR_OFFSET)
 717                wear_area = 1;
 718        if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
 719                return -EINVAL;
 720
 721        doc_set_device_id(docg3, docg3->device_id);
 722        ret = doc_reset_seq(docg3);
 723        if (ret)
 724                goto err;
 725
 726        /* Program the flash address block and page */
 727        ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
 728        if (ret)
 729                goto err;
 730
 731        doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
 732        doc_delay(docg3, 2);
 733        doc_wait_ready(docg3);
 734
 735        doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
 736        doc_delay(docg3, 1);
 737        if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
 738                offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
 739        doc_flash_address(docg3, offset >> 2);
 740        doc_delay(docg3, 1);
 741        doc_wait_ready(docg3);
 742
 743        doc_flash_command(docg3, DOC_CMD_READ_FLASH);
 744
 745        return 0;
 746err:
 747        doc_writeb(docg3, 0, DOC_DATAEND);
 748        doc_delay(docg3, 2);
 749        return -EIO;
 750}
 751
 752/**
 753 * doc_read_page_getbytes - Reads bytes from a prepared page
 754 * @docg3: the device
 755 * @len: the number of bytes to be read (must be a multiple of 4)
 756 * @buf: the buffer to be filled in (or NULL is forget bytes)
 757 * @first: 1 if first time read, DOC_READADDRESS should be set
 758 * @last_odd: 1 if last read ended up on an odd byte
 759 *
 760 * Reads bytes from a prepared page. There is a trickery here : if the last read
 761 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
 762 * planes, the first byte must be read apart. If a word (16bit) read was used,
 763 * the read would return the byte of plane 2 as low *and* high endian, which
 764 * will mess the read.
 765 *
 766 */
 767static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
 768                                  int first, int last_odd)
 769{
 770        if (last_odd && len > 0) {
 771                doc_read_data_area(docg3, buf, 1, first);
 772                doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
 773        } else {
 774                doc_read_data_area(docg3, buf, len, first);
 775        }
 776        doc_delay(docg3, 2);
 777        return len;
 778}
 779
 780/**
 781 * doc_write_page_putbytes - Writes bytes into a prepared page
 782 * @docg3: the device
 783 * @len: the number of bytes to be written
 784 * @buf: the buffer of input bytes
 785 *
 786 */
 787static void doc_write_page_putbytes(struct docg3 *docg3, int len,
 788                                    const u_char *buf)
 789{
 790        doc_write_data_area(docg3, buf, len);
 791        doc_delay(docg3, 2);
 792}
 793
 794/**
 795 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
 796 * @docg3: the device
 797 * @hwecc:  the array of 7 integers where the hardware ecc will be stored
 798 */
 799static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
 800{
 801        int i;
 802
 803        for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
 804                hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
 805}
 806
 807/**
 808 * doc_page_finish - Ends reading/writing of a flash page
 809 * @docg3: the device
 810 */
 811static void doc_page_finish(struct docg3 *docg3)
 812{
 813        doc_writeb(docg3, 0, DOC_DATAEND);
 814        doc_delay(docg3, 2);
 815}
 816
 817/**
 818 * doc_read_page_finish - Ends reading of a flash page
 819 * @docg3: the device
 820 *
 821 * As a side effect, resets the chip selector to 0. This ensures that after each
 822 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
 823 * reboot will boot on floor 0, where the IPL is.
 824 */
 825static void doc_read_page_finish(struct docg3 *docg3)
 826{
 827        doc_page_finish(docg3);
 828        doc_set_device_id(docg3, 0);
 829}
 830
 831/**
 832 * calc_block_sector - Calculate blocks, pages and ofs.
 833
 834 * @from: offset in flash
 835 * @block0: first plane block index calculated
 836 * @block1: second plane block index calculated
 837 * @page: page calculated
 838 * @ofs: offset in page
 839 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
 840 * reliable mode.
 841 *
 842 * The calculation is based on the reliable/normal mode. In normal mode, the 64
 843 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
 844 * clones, only 32 pages per block are available.
 845 */
 846static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
 847                              int *ofs, int reliable)
 848{
 849        uint sector, pages_biblock;
 850
 851        pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
 852        if (reliable == 1 || reliable == 2)
 853                pages_biblock /= 2;
 854
 855        sector = from / DOC_LAYOUT_PAGE_SIZE;
 856        *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
 857        *block1 = *block0 + 1;
 858        *page = sector % pages_biblock;
 859        *page /= DOC_LAYOUT_NBPLANES;
 860        if (reliable == 1 || reliable == 2)
 861                *page *= 2;
 862        if (sector % 2)
 863                *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
 864        else
 865                *ofs = 0;
 866}
 867
 868/**
 869 * doc_read_oob - Read out of band bytes from flash
 870 * @mtd: the device
 871 * @from: the offset from first block and first page, in bytes, aligned on page
 872 *        size
 873 * @ops: the mtd oob structure
 874 *
 875 * Reads flash memory OOB area of pages.
 876 *
 877 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
 878 */
 879static int doc_read_oob(struct mtd_info *mtd, loff_t from,
 880                        struct mtd_oob_ops *ops)
 881{
 882        struct docg3 *docg3 = mtd->priv;
 883        int block0, block1, page, ret, skip, ofs = 0;
 884        u8 *oobbuf = ops->oobbuf;
 885        u8 *buf = ops->datbuf;
 886        size_t len, ooblen, nbdata, nboob;
 887        u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
 888        int max_bitflips = 0;
 889
 890        if (buf)
 891                len = ops->len;
 892        else
 893                len = 0;
 894        if (oobbuf)
 895                ooblen = ops->ooblen;
 896        else
 897                ooblen = 0;
 898
 899        if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
 900                oobbuf += ops->ooboffs;
 901
 902        doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
 903                from, ops->mode, buf, len, oobbuf, ooblen);
 904        if (ooblen % DOC_LAYOUT_OOB_SIZE)
 905                return -EINVAL;
 906
 907        ops->oobretlen = 0;
 908        ops->retlen = 0;
 909        ret = 0;
 910        skip = from % DOC_LAYOUT_PAGE_SIZE;
 911        mutex_lock(&docg3->cascade->lock);
 912        while (ret >= 0 && (len > 0 || ooblen > 0)) {
 913                calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
 914                        docg3->reliable);
 915                nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
 916                nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
 917                ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
 918                if (ret < 0)
 919                        goto out;
 920                ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
 921                if (ret < 0)
 922                        goto err_in_read;
 923                ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
 924                if (ret < skip)
 925                        goto err_in_read;
 926                ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
 927                if (ret < nbdata)
 928                        goto err_in_read;
 929                doc_read_page_getbytes(docg3,
 930                                       DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
 931                                       NULL, 0, (skip + nbdata) % 2);
 932                ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
 933                if (ret < nboob)
 934                        goto err_in_read;
 935                doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
 936                                       NULL, 0, nboob % 2);
 937
 938                doc_get_bch_hw_ecc(docg3, hwecc);
 939                eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
 940
 941                if (nboob >= DOC_LAYOUT_OOB_SIZE) {
 942                        doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
 943                        doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
 944                        doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
 945                        doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
 946                }
 947                doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
 948                doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
 949
 950                ret = -EIO;
 951                if (is_prot_seq_error(docg3))
 952                        goto err_in_read;
 953                ret = 0;
 954                if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
 955                    (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
 956                    (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
 957                    (ops->mode != MTD_OPS_RAW) &&
 958                    (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
 959                        ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
 960                        if (ret < 0) {
 961                                mtd->ecc_stats.failed++;
 962                                ret = -EBADMSG;
 963                        }
 964                        if (ret > 0) {
 965                                mtd->ecc_stats.corrected += ret;
 966                                max_bitflips = max(max_bitflips, ret);
 967                                ret = max_bitflips;
 968                        }
 969                }
 970
 971                doc_read_page_finish(docg3);
 972                ops->retlen += nbdata;
 973                ops->oobretlen += nboob;
 974                buf += nbdata;
 975                oobbuf += nboob;
 976                len -= nbdata;
 977                ooblen -= nboob;
 978                from += DOC_LAYOUT_PAGE_SIZE;
 979                skip = 0;
 980        }
 981
 982out:
 983        mutex_unlock(&docg3->cascade->lock);
 984        return ret;
 985err_in_read:
 986        doc_read_page_finish(docg3);
 987        goto out;
 988}
 989
 990static int doc_reload_bbt(struct docg3 *docg3)
 991{
 992        int block = DOC_LAYOUT_BLOCK_BBT;
 993        int ret = 0, nbpages, page;
 994        u_char *buf = docg3->bbt;
 995
 996        nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
 997        for (page = 0; !ret && (page < nbpages); page++) {
 998                ret = doc_read_page_prepare(docg3, block, block + 1,
 999                                            page + DOC_LAYOUT_PAGE_BBT, 0);
1000                if (!ret)
1001                        ret = doc_read_page_ecc_init(docg3,
1002                                                     DOC_LAYOUT_PAGE_SIZE);
1003                if (!ret)
1004                        doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1005                                               buf, 1, 0);
1006                buf += DOC_LAYOUT_PAGE_SIZE;
1007        }
1008        doc_read_page_finish(docg3);
1009        return ret;
1010}
1011
1012/**
1013 * doc_block_isbad - Checks whether a block is good or not
1014 * @mtd: the device
1015 * @from: the offset to find the correct block
1016 *
1017 * Returns 1 if block is bad, 0 if block is good
1018 */
1019static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1020{
1021        struct docg3 *docg3 = mtd->priv;
1022        int block0, block1, page, ofs, is_good;
1023
1024        calc_block_sector(from, &block0, &block1, &page, &ofs,
1025                docg3->reliable);
1026        doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1027                from, block0, block1, page, ofs);
1028
1029        if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1030                return 0;
1031        if (block1 > docg3->max_block)
1032                return -EINVAL;
1033
1034        is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1035        return !is_good;
1036}
1037
1038#if 0
1039/**
1040 * doc_get_erase_count - Get block erase count
1041 * @docg3: the device
1042 * @from: the offset in which the block is.
1043 *
1044 * Get the number of times a block was erased. The number is the maximum of
1045 * erase times between first and second plane (which should be equal normally).
1046 *
1047 * Returns The number of erases, or -EINVAL or -EIO on error.
1048 */
1049static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1050{
1051        u8 buf[DOC_LAYOUT_WEAR_SIZE];
1052        int ret, plane1_erase_count, plane2_erase_count;
1053        int block0, block1, page, ofs;
1054
1055        doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1056        if (from % DOC_LAYOUT_PAGE_SIZE)
1057                return -EINVAL;
1058        calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1059        if (block1 > docg3->max_block)
1060                return -EINVAL;
1061
1062        ret = doc_reset_seq(docg3);
1063        if (!ret)
1064                ret = doc_read_page_prepare(docg3, block0, block1, page,
1065                                            ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1066        if (!ret)
1067                ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1068                                             buf, 1, 0);
1069        doc_read_page_finish(docg3);
1070
1071        if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1072                return -EIO;
1073        plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1074                | ((u8)(~buf[5]) << 16);
1075        plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1076                | ((u8)(~buf[7]) << 16);
1077
1078        return max(plane1_erase_count, plane2_erase_count);
1079}
1080#endif
1081
1082/**
1083 * doc_get_op_status - get erase/write operation status
1084 * @docg3: the device
1085 *
1086 * Queries the status from the chip, and returns it
1087 *
1088 * Returns the status (bits DOC_PLANES_STATUS_*)
1089 */
1090static int doc_get_op_status(struct docg3 *docg3)
1091{
1092        u8 status;
1093
1094        doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1095        doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1096        doc_delay(docg3, 5);
1097
1098        doc_ecc_disable(docg3);
1099        doc_read_data_area(docg3, &status, 1, 1);
1100        return status;
1101}
1102
1103/**
1104 * doc_write_erase_wait_status - wait for write or erase completion
1105 * @docg3: the device
1106 *
1107 * Wait for the chip to be ready again after erase or write operation, and check
1108 * erase/write status.
1109 *
1110 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1111 * timeout
1112 */
1113static int doc_write_erase_wait_status(struct docg3 *docg3)
1114{
1115        int i, status, ret = 0;
1116
1117        for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1118                msleep(20);
1119        if (!doc_is_ready(docg3)) {
1120                doc_dbg("Timeout reached and the chip is still not ready\n");
1121                ret = -EAGAIN;
1122                goto out;
1123        }
1124
1125        status = doc_get_op_status(docg3);
1126        if (status & DOC_PLANES_STATUS_FAIL) {
1127                doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1128                        status);
1129                ret = -EIO;
1130        }
1131
1132out:
1133        doc_page_finish(docg3);
1134        return ret;
1135}
1136
1137/**
1138 * doc_erase_block - Erase a couple of blocks
1139 * @docg3: the device
1140 * @block0: the first block to erase (leftmost plane)
1141 * @block1: the second block to erase (rightmost plane)
1142 *
1143 * Erase both blocks, and return operation status
1144 *
1145 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1146 * ready for too long
1147 */
1148static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1149{
1150        int ret, sector;
1151
1152        doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1153        ret = doc_reset_seq(docg3);
1154        if (ret)
1155                return -EIO;
1156
1157        doc_set_reliable_mode(docg3);
1158        doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1159
1160        sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1161        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1162        doc_setup_addr_sector(docg3, sector);
1163        sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1164        doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1165        doc_setup_addr_sector(docg3, sector);
1166        doc_delay(docg3, 1);
1167
1168        doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1169        doc_delay(docg3, 2);
1170
1171        if (is_prot_seq_error(docg3)) {
1172                doc_err("Erase blocks %d,%d error\n", block0, block1);
1173                return -EIO;
1174        }
1175
1176        return doc_write_erase_wait_status(docg3);
1177}
1178
1179/**
1180 * doc_erase - Erase a portion of the chip
1181 * @mtd: the device
1182 * @info: the erase info
1183 *
1184 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1185 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1186 *
1187 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1188 * issue
1189 */
1190static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1191{
1192        struct docg3 *docg3 = mtd->priv;
1193        uint64_t len;
1194        int block0, block1, page, ret, ofs = 0;
1195
1196        doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1197
1198        info->state = MTD_ERASE_PENDING;
1199        calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1200                          &ofs, docg3->reliable);
1201        ret = -EINVAL;
1202        if (info->addr + info->len > mtd->size || page || ofs)
1203                goto reset_err;
1204
1205        ret = 0;
1206        calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1207                          docg3->reliable);
1208        mutex_lock(&docg3->cascade->lock);
1209        doc_set_device_id(docg3, docg3->device_id);
1210        doc_set_reliable_mode(docg3);
1211        for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1212                info->state = MTD_ERASING;
1213                ret = doc_erase_block(docg3, block0, block1);
1214                block0 += 2;
1215                block1 += 2;
1216        }
1217        mutex_unlock(&docg3->cascade->lock);
1218
1219        if (ret)
1220                goto reset_err;
1221
1222        info->state = MTD_ERASE_DONE;
1223        return 0;
1224
1225reset_err:
1226        info->state = MTD_ERASE_FAILED;
1227        return ret;
1228}
1229
1230/**
1231 * doc_write_page - Write a single page to the chip
1232 * @docg3: the device
1233 * @to: the offset from first block and first page, in bytes, aligned on page
1234 *      size
1235 * @buf: buffer to get bytes from
1236 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1237 *       written)
1238 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1239 *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1240 *           remaining ones are filled with hardware Hamming and BCH
1241 *           computations. Its value is not meaningfull is oob == NULL.
1242 *
1243 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1244 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1245 * BCH generator if autoecc is not null.
1246 *
1247 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1248 */
1249static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1250                          const u_char *oob, int autoecc)
1251{
1252        int block0, block1, page, ret, ofs = 0;
1253        u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1254
1255        doc_dbg("doc_write_page(to=%lld)\n", to);
1256        calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1257
1258        doc_set_device_id(docg3, docg3->device_id);
1259        ret = doc_reset_seq(docg3);
1260        if (ret)
1261                goto err;
1262
1263        /* Program the flash address block and page */
1264        ret = doc_write_seek(docg3, block0, block1, page, ofs);
1265        if (ret)
1266                goto err;
1267
1268        doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1269        doc_delay(docg3, 2);
1270        doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1271
1272        if (oob && autoecc) {
1273                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1274                doc_delay(docg3, 2);
1275                oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1276
1277                hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1278                doc_delay(docg3, 2);
1279                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1280                                        &hamming);
1281                doc_delay(docg3, 2);
1282
1283                doc_get_bch_hw_ecc(docg3, hwecc);
1284                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1285                doc_delay(docg3, 2);
1286
1287                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1288        }
1289        if (oob && !autoecc)
1290                doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1291
1292        doc_delay(docg3, 2);
1293        doc_page_finish(docg3);
1294        doc_delay(docg3, 2);
1295        doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1296        doc_delay(docg3, 2);
1297
1298        /*
1299         * The wait status will perform another doc_page_finish() call, but that
1300         * seems to please the docg3, so leave it.
1301         */
1302        ret = doc_write_erase_wait_status(docg3);
1303        return ret;
1304err:
1305        doc_read_page_finish(docg3);
1306        return ret;
1307}
1308
1309/**
1310 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1311 * @ops: the oob operations
1312 *
1313 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1314 */
1315static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1316{
1317        int autoecc;
1318
1319        switch (ops->mode) {
1320        case MTD_OPS_PLACE_OOB:
1321        case MTD_OPS_AUTO_OOB:
1322                autoecc = 1;
1323                break;
1324        case MTD_OPS_RAW:
1325                autoecc = 0;
1326                break;
1327        default:
1328                autoecc = -EINVAL;
1329        }
1330        return autoecc;
1331}
1332
1333/**
1334 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1335 * @dst: the target 16 bytes OOB buffer
1336 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1337 *
1338 */
1339static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1340{
1341        memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1342        dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1343}
1344
1345/**
1346 * doc_backup_oob - Backup OOB into docg3 structure
1347 * @docg3: the device
1348 * @to: the page offset in the chip
1349 * @ops: the OOB size and buffer
1350 *
1351 * As the docg3 should write a page with its OOB in one pass, and some userland
1352 * applications do write_oob() to setup the OOB and then write(), store the OOB
1353 * into a temporary storage. This is very dangerous, as 2 concurrent
1354 * applications could store an OOB, and then write their pages (which will
1355 * result into one having its OOB corrupted).
1356 *
1357 * The only reliable way would be for userland to call doc_write_oob() with both
1358 * the page data _and_ the OOB area.
1359 *
1360 * Returns 0 if success, -EINVAL if ops content invalid
1361 */
1362static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1363                          struct mtd_oob_ops *ops)
1364{
1365        int ooblen = ops->ooblen, autoecc;
1366
1367        if (ooblen != DOC_LAYOUT_OOB_SIZE)
1368                return -EINVAL;
1369        autoecc = doc_guess_autoecc(ops);
1370        if (autoecc < 0)
1371                return autoecc;
1372
1373        docg3->oob_write_ofs = to;
1374        docg3->oob_autoecc = autoecc;
1375        if (ops->mode == MTD_OPS_AUTO_OOB) {
1376                doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1377                ops->oobretlen = 8;
1378        } else {
1379                memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1380                ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1381        }
1382        return 0;
1383}
1384
1385/**
1386 * doc_write_oob - Write out of band bytes to flash
1387 * @mtd: the device
1388 * @ofs: the offset from first block and first page, in bytes, aligned on page
1389 *       size
1390 * @ops: the mtd oob structure
1391 *
1392 * Either write OOB data into a temporary buffer, for the subsequent write
1393 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1394 * as well, issue the page write.
1395 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1396 * still be filled in if asked for).
1397 *
1398 * Returns 0 is successful, EINVAL if length is not 14 bytes
1399 */
1400static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1401                         struct mtd_oob_ops *ops)
1402{
1403        struct docg3 *docg3 = mtd->priv;
1404        int ret, autoecc, oobdelta;
1405        u8 *oobbuf = ops->oobbuf;
1406        u8 *buf = ops->datbuf;
1407        size_t len, ooblen;
1408        u8 oob[DOC_LAYOUT_OOB_SIZE];
1409
1410        if (buf)
1411                len = ops->len;
1412        else
1413                len = 0;
1414        if (oobbuf)
1415                ooblen = ops->ooblen;
1416        else
1417                ooblen = 0;
1418
1419        if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1420                oobbuf += ops->ooboffs;
1421
1422        doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1423                ofs, ops->mode, buf, len, oobbuf, ooblen);
1424        switch (ops->mode) {
1425        case MTD_OPS_PLACE_OOB:
1426        case MTD_OPS_RAW:
1427                oobdelta = mtd->oobsize;
1428                break;
1429        case MTD_OPS_AUTO_OOB:
1430                oobdelta = mtd->oobavail;
1431                break;
1432        default:
1433                return -EINVAL;
1434        }
1435        if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1436            (ofs % DOC_LAYOUT_PAGE_SIZE))
1437                return -EINVAL;
1438        if (len && ooblen &&
1439            (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1440                return -EINVAL;
1441
1442        ops->oobretlen = 0;
1443        ops->retlen = 0;
1444        ret = 0;
1445        if (len == 0 && ooblen == 0)
1446                return -EINVAL;
1447        if (len == 0 && ooblen > 0)
1448                return doc_backup_oob(docg3, ofs, ops);
1449
1450        autoecc = doc_guess_autoecc(ops);
1451        if (autoecc < 0)
1452                return autoecc;
1453
1454        mutex_lock(&docg3->cascade->lock);
1455        while (!ret && len > 0) {
1456                memset(oob, 0, sizeof(oob));
1457                if (ofs == docg3->oob_write_ofs)
1458                        memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1459                else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1460                        doc_fill_autooob(oob, oobbuf);
1461                else if (ooblen > 0)
1462                        memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1463                ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1464
1465                ofs += DOC_LAYOUT_PAGE_SIZE;
1466                len -= DOC_LAYOUT_PAGE_SIZE;
1467                buf += DOC_LAYOUT_PAGE_SIZE;
1468                if (ooblen) {
1469                        oobbuf += oobdelta;
1470                        ooblen -= oobdelta;
1471                        ops->oobretlen += oobdelta;
1472                }
1473                ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1474        }
1475
1476        doc_set_device_id(docg3, 0);
1477        mutex_unlock(&docg3->cascade->lock);
1478        return ret;
1479}
1480
1481static struct docg3 *sysfs_dev2docg3(struct device *dev,
1482                                     struct device_attribute *attr)
1483{
1484        int floor;
1485        struct platform_device *pdev = to_platform_device(dev);
1486        struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1487
1488        floor = attr->attr.name[1] - '0';
1489        if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1490                return NULL;
1491        else
1492                return docg3_floors[floor]->priv;
1493}
1494
1495static ssize_t dps0_is_key_locked(struct device *dev,
1496                                  struct device_attribute *attr, char *buf)
1497{
1498        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1499        int dps0;
1500
1501        mutex_lock(&docg3->cascade->lock);
1502        doc_set_device_id(docg3, docg3->device_id);
1503        dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1504        doc_set_device_id(docg3, 0);
1505        mutex_unlock(&docg3->cascade->lock);
1506
1507        return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1508}
1509
1510static ssize_t dps1_is_key_locked(struct device *dev,
1511                                  struct device_attribute *attr, char *buf)
1512{
1513        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1514        int dps1;
1515
1516        mutex_lock(&docg3->cascade->lock);
1517        doc_set_device_id(docg3, docg3->device_id);
1518        dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1519        doc_set_device_id(docg3, 0);
1520        mutex_unlock(&docg3->cascade->lock);
1521
1522        return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1523}
1524
1525static ssize_t dps0_insert_key(struct device *dev,
1526                               struct device_attribute *attr,
1527                               const char *buf, size_t count)
1528{
1529        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1530        int i;
1531
1532        if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1533                return -EINVAL;
1534
1535        mutex_lock(&docg3->cascade->lock);
1536        doc_set_device_id(docg3, docg3->device_id);
1537        for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1538                doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1539        doc_set_device_id(docg3, 0);
1540        mutex_unlock(&docg3->cascade->lock);
1541        return count;
1542}
1543
1544static ssize_t dps1_insert_key(struct device *dev,
1545                               struct device_attribute *attr,
1546                               const char *buf, size_t count)
1547{
1548        struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1549        int i;
1550
1551        if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1552                return -EINVAL;
1553
1554        mutex_lock(&docg3->cascade->lock);
1555        doc_set_device_id(docg3, docg3->device_id);
1556        for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1557                doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1558        doc_set_device_id(docg3, 0);
1559        mutex_unlock(&docg3->cascade->lock);
1560        return count;
1561}
1562
1563#define FLOOR_SYSFS(id) { \
1564        __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1565        __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1566        __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1567        __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1568}
1569
1570static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1571        FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1572};
1573
1574static int doc_register_sysfs(struct platform_device *pdev,
1575                              struct docg3_cascade *cascade)
1576{
1577        struct device *dev = &pdev->dev;
1578        int floor;
1579        int ret;
1580        int i;
1581
1582        for (floor = 0;
1583             floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1584             floor++) {
1585                for (i = 0; i < 4; i++) {
1586                        ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1587                        if (ret)
1588                                goto remove_files;
1589                }
1590        }
1591
1592        return 0;
1593
1594remove_files:
1595        do {
1596                while (--i >= 0)
1597                        device_remove_file(dev, &doc_sys_attrs[floor][i]);
1598                i = 4;
1599        } while (--floor >= 0);
1600
1601        return ret;
1602}
1603
1604static void doc_unregister_sysfs(struct platform_device *pdev,
1605                                 struct docg3_cascade *cascade)
1606{
1607        struct device *dev = &pdev->dev;
1608        int floor, i;
1609
1610        for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1611             floor++)
1612                for (i = 0; i < 4; i++)
1613                        device_remove_file(dev, &doc_sys_attrs[floor][i]);
1614}
1615
1616/*
1617 * Debug sysfs entries
1618 */
1619static int dbg_flashctrl_show(struct seq_file *s, void *p)
1620{
1621        struct docg3 *docg3 = (struct docg3 *)s->private;
1622
1623        u8 fctrl;
1624
1625        mutex_lock(&docg3->cascade->lock);
1626        fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1627        mutex_unlock(&docg3->cascade->lock);
1628
1629        seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1630                   fctrl,
1631                   fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1632                   fctrl & DOC_CTRL_CE ? "active" : "inactive",
1633                   fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1634                   fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1635                   fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1636
1637        return 0;
1638}
1639DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1640
1641static int dbg_asicmode_show(struct seq_file *s, void *p)
1642{
1643        struct docg3 *docg3 = (struct docg3 *)s->private;
1644
1645        int pctrl, mode;
1646
1647        mutex_lock(&docg3->cascade->lock);
1648        pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1649        mode = pctrl & 0x03;
1650        mutex_unlock(&docg3->cascade->lock);
1651
1652        seq_printf(s,
1653                   "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1654                   pctrl,
1655                   pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1656                   pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1657                   pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1658                   pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1659                   pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1660                   mode >> 1, mode & 0x1);
1661
1662        switch (mode) {
1663        case DOC_ASICMODE_RESET:
1664                seq_puts(s, "reset");
1665                break;
1666        case DOC_ASICMODE_NORMAL:
1667                seq_puts(s, "normal");
1668                break;
1669        case DOC_ASICMODE_POWERDOWN:
1670                seq_puts(s, "powerdown");
1671                break;
1672        }
1673        seq_puts(s, ")\n");
1674        return 0;
1675}
1676DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1677
1678static int dbg_device_id_show(struct seq_file *s, void *p)
1679{
1680        struct docg3 *docg3 = (struct docg3 *)s->private;
1681        int id;
1682
1683        mutex_lock(&docg3->cascade->lock);
1684        id = doc_register_readb(docg3, DOC_DEVICESELECT);
1685        mutex_unlock(&docg3->cascade->lock);
1686
1687        seq_printf(s, "DeviceId = %d\n", id);
1688        return 0;
1689}
1690DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1691
1692static int dbg_protection_show(struct seq_file *s, void *p)
1693{
1694        struct docg3 *docg3 = (struct docg3 *)s->private;
1695        int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1696
1697        mutex_lock(&docg3->cascade->lock);
1698        protect = doc_register_readb(docg3, DOC_PROTECTION);
1699        dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1700        dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1701        dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1702        dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1703        dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1704        dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1705        mutex_unlock(&docg3->cascade->lock);
1706
1707        seq_printf(s, "Protection = 0x%02x (", protect);
1708        if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1709                seq_puts(s, "FOUNDRY_OTP_LOCK,");
1710        if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1711                seq_puts(s, "CUSTOMER_OTP_LOCK,");
1712        if (protect & DOC_PROTECT_LOCK_INPUT)
1713                seq_puts(s, "LOCK_INPUT,");
1714        if (protect & DOC_PROTECT_STICKY_LOCK)
1715                seq_puts(s, "STICKY_LOCK,");
1716        if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1717                seq_puts(s, "PROTECTION ON,");
1718        if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1719                seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1720        if (protect & DOC_PROTECT_PROTECTION_ERROR)
1721                seq_puts(s, "PROTECT_ERR,");
1722        else
1723                seq_puts(s, "NO_PROTECT_ERR");
1724        seq_puts(s, ")\n");
1725
1726        seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1727                   dps0, dps0_low, dps0_high,
1728                   !!(dps0 & DOC_DPS_OTP_PROTECTED),
1729                   !!(dps0 & DOC_DPS_READ_PROTECTED),
1730                   !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1731                   !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1732                   !!(dps0 & DOC_DPS_KEY_OK));
1733        seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1734                   dps1, dps1_low, dps1_high,
1735                   !!(dps1 & DOC_DPS_OTP_PROTECTED),
1736                   !!(dps1 & DOC_DPS_READ_PROTECTED),
1737                   !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1738                   !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1739                   !!(dps1 & DOC_DPS_KEY_OK));
1740        return 0;
1741}
1742DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1743
1744static void __init doc_dbg_register(struct mtd_info *floor)
1745{
1746        struct dentry *root = floor->dbg.dfs_dir;
1747        struct docg3 *docg3 = floor->priv;
1748
1749        if (IS_ERR_OR_NULL(root)) {
1750                if (IS_ENABLED(CONFIG_DEBUG_FS) &&
1751                    !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1752                        dev_warn(floor->dev.parent,
1753                                 "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
1754                return;
1755        }
1756
1757        debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3,
1758                            &flashcontrol_fops);
1759        debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3,
1760                            &asic_mode_fops);
1761        debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3,
1762                            &device_id_fops);
1763        debugfs_create_file("docg3_protection", S_IRUSR, root, docg3,
1764                            &protection_fops);
1765}
1766
1767/**
1768 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1769 * @chip_id: The chip ID of the supported chip
1770 * @mtd: The structure to fill
1771 */
1772static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1773{
1774        struct docg3 *docg3 = mtd->priv;
1775        int cfg;
1776
1777        cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1778        docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1779        docg3->reliable = reliable_mode;
1780
1781        switch (chip_id) {
1782        case DOC_CHIPID_G3:
1783                mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1784                                      docg3->device_id);
1785                if (!mtd->name)
1786                        return -ENOMEM;
1787                docg3->max_block = 2047;
1788                break;
1789        }
1790        mtd->type = MTD_NANDFLASH;
1791        mtd->flags = MTD_CAP_NANDFLASH;
1792        mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1793        if (docg3->reliable == 2)
1794                mtd->size /= 2;
1795        mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1796        if (docg3->reliable == 2)
1797                mtd->erasesize /= 2;
1798        mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1799        mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1800        mtd->_erase = doc_erase;
1801        mtd->_read_oob = doc_read_oob;
1802        mtd->_write_oob = doc_write_oob;
1803        mtd->_block_isbad = doc_block_isbad;
1804        mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops);
1805        mtd->oobavail = 8;
1806        mtd->ecc_strength = DOC_ECC_BCH_T;
1807
1808        return 0;
1809}
1810
1811/**
1812 * doc_probe_device - Check if a device is available
1813 * @base: the io space where the device is probed
1814 * @floor: the floor of the probed device
1815 * @dev: the device
1816 * @cascade: the cascade of chips this devices will belong to
1817 *
1818 * Checks whether a device at the specified IO range, and floor is available.
1819 *
1820 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1821 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1822 * launched.
1823 */
1824static struct mtd_info * __init
1825doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1826{
1827        int ret, bbt_nbpages;
1828        u16 chip_id, chip_id_inv;
1829        struct docg3 *docg3;
1830        struct mtd_info *mtd;
1831
1832        ret = -ENOMEM;
1833        docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1834        if (!docg3)
1835                goto nomem1;
1836        mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1837        if (!mtd)
1838                goto nomem2;
1839        mtd->priv = docg3;
1840        mtd->dev.parent = dev;
1841        bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1842                                   8 * DOC_LAYOUT_PAGE_SIZE);
1843        docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1844        if (!docg3->bbt)
1845                goto nomem3;
1846
1847        docg3->dev = dev;
1848        docg3->device_id = floor;
1849        docg3->cascade = cascade;
1850        doc_set_device_id(docg3, docg3->device_id);
1851        if (!floor)
1852                doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1853        doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1854
1855        chip_id = doc_register_readw(docg3, DOC_CHIPID);
1856        chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1857
1858        ret = 0;
1859        if (chip_id != (u16)(~chip_id_inv)) {
1860                goto nomem4;
1861        }
1862
1863        switch (chip_id) {
1864        case DOC_CHIPID_G3:
1865                doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1866                         docg3->cascade->base, floor);
1867                break;
1868        default:
1869                doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1870                goto nomem4;
1871        }
1872
1873        ret = doc_set_driver_info(chip_id, mtd);
1874        if (ret)
1875                goto nomem4;
1876
1877        doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1878        doc_reload_bbt(docg3);
1879        return mtd;
1880
1881nomem4:
1882        kfree(docg3->bbt);
1883nomem3:
1884        kfree(mtd);
1885nomem2:
1886        kfree(docg3);
1887nomem1:
1888        return ERR_PTR(ret);
1889}
1890
1891/**
1892 * doc_release_device - Release a docg3 floor
1893 * @mtd: the device
1894 */
1895static void doc_release_device(struct mtd_info *mtd)
1896{
1897        struct docg3 *docg3 = mtd->priv;
1898
1899        mtd_device_unregister(mtd);
1900        kfree(docg3->bbt);
1901        kfree(docg3);
1902        kfree(mtd->name);
1903        kfree(mtd);
1904}
1905
1906/**
1907 * docg3_resume - Awakens docg3 floor
1908 * @pdev: platfrom device
1909 *
1910 * Returns 0 (always successful)
1911 */
1912static int docg3_resume(struct platform_device *pdev)
1913{
1914        int i;
1915        struct docg3_cascade *cascade;
1916        struct mtd_info **docg3_floors, *mtd;
1917        struct docg3 *docg3;
1918
1919        cascade = platform_get_drvdata(pdev);
1920        docg3_floors = cascade->floors;
1921        mtd = docg3_floors[0];
1922        docg3 = mtd->priv;
1923
1924        doc_dbg("docg3_resume()\n");
1925        for (i = 0; i < 12; i++)
1926                doc_readb(docg3, DOC_IOSPACE_IPL);
1927        return 0;
1928}
1929
1930/**
1931 * docg3_suspend - Put in low power mode the docg3 floor
1932 * @pdev: platform device
1933 * @state: power state
1934 *
1935 * Shuts off most of docg3 circuitery to lower power consumption.
1936 *
1937 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1938 */
1939static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1940{
1941        int floor, i;
1942        struct docg3_cascade *cascade;
1943        struct mtd_info **docg3_floors, *mtd;
1944        struct docg3 *docg3;
1945        u8 ctrl, pwr_down;
1946
1947        cascade = platform_get_drvdata(pdev);
1948        docg3_floors = cascade->floors;
1949        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1950                mtd = docg3_floors[floor];
1951                if (!mtd)
1952                        continue;
1953                docg3 = mtd->priv;
1954
1955                doc_writeb(docg3, floor, DOC_DEVICESELECT);
1956                ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1957                ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1958                doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
1959
1960                for (i = 0; i < 10; i++) {
1961                        usleep_range(3000, 4000);
1962                        pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
1963                        if (pwr_down & DOC_POWERDOWN_READY)
1964                                break;
1965                }
1966                if (pwr_down & DOC_POWERDOWN_READY) {
1967                        doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
1968                                floor);
1969                } else {
1970                        doc_err("docg3_suspend(): floor %d powerdown failed\n",
1971                                floor);
1972                        return -EIO;
1973                }
1974        }
1975
1976        mtd = docg3_floors[0];
1977        docg3 = mtd->priv;
1978        doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
1979        return 0;
1980}
1981
1982/**
1983 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
1984 * @pdev: platform device
1985 *
1986 * Probes for a G3 chip at the specified IO space in the platform data
1987 * ressources. The floor 0 must be available.
1988 *
1989 * Returns 0 on success, -ENOMEM, -ENXIO on error
1990 */
1991static int __init docg3_probe(struct platform_device *pdev)
1992{
1993        struct device *dev = &pdev->dev;
1994        struct mtd_info *mtd;
1995        struct resource *ress;
1996        void __iomem *base;
1997        int ret, floor;
1998        struct docg3_cascade *cascade;
1999
2000        ret = -ENXIO;
2001        ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2002        if (!ress) {
2003                dev_err(dev, "No I/O memory resource defined\n");
2004                return ret;
2005        }
2006        base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
2007
2008        ret = -ENOMEM;
2009        cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS,
2010                               GFP_KERNEL);
2011        if (!cascade)
2012                return ret;
2013        cascade->base = base;
2014        mutex_init(&cascade->lock);
2015        cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2016                             DOC_ECC_BCH_PRIMPOLY);
2017        if (!cascade->bch)
2018                return ret;
2019
2020        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2021                mtd = doc_probe_device(cascade, floor, dev);
2022                if (IS_ERR(mtd)) {
2023                        ret = PTR_ERR(mtd);
2024                        goto err_probe;
2025                }
2026                if (!mtd) {
2027                        if (floor == 0)
2028                                goto notfound;
2029                        else
2030                                continue;
2031                }
2032                cascade->floors[floor] = mtd;
2033                ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2034                                                0);
2035                if (ret)
2036                        goto err_probe;
2037
2038                doc_dbg_register(cascade->floors[floor]);
2039        }
2040
2041        ret = doc_register_sysfs(pdev, cascade);
2042        if (ret)
2043                goto err_probe;
2044
2045        platform_set_drvdata(pdev, cascade);
2046        return 0;
2047
2048notfound:
2049        ret = -ENODEV;
2050        dev_info(dev, "No supported DiskOnChip found\n");
2051err_probe:
2052        free_bch(cascade->bch);
2053        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2054                if (cascade->floors[floor])
2055                        doc_release_device(cascade->floors[floor]);
2056        return ret;
2057}
2058
2059/**
2060 * docg3_release - Release the driver
2061 * @pdev: the platform device
2062 *
2063 * Returns 0
2064 */
2065static int docg3_release(struct platform_device *pdev)
2066{
2067        struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2068        struct docg3 *docg3 = cascade->floors[0]->priv;
2069        int floor;
2070
2071        doc_unregister_sysfs(pdev, cascade);
2072        for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2073                if (cascade->floors[floor])
2074                        doc_release_device(cascade->floors[floor]);
2075
2076        free_bch(docg3->cascade->bch);
2077        return 0;
2078}
2079
2080#ifdef CONFIG_OF
2081static const struct of_device_id docg3_dt_ids[] = {
2082        { .compatible = "m-systems,diskonchip-g3" },
2083        {}
2084};
2085MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2086#endif
2087
2088static struct platform_driver g3_driver = {
2089        .driver         = {
2090                .name   = "docg3",
2091                .of_match_table = of_match_ptr(docg3_dt_ids),
2092        },
2093        .suspend        = docg3_suspend,
2094        .resume         = docg3_resume,
2095        .remove         = docg3_release,
2096};
2097
2098module_platform_driver_probe(g3_driver, docg3_probe);
2099
2100MODULE_LICENSE("GPL");
2101MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2102MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2103