linux/drivers/mtd/nand/fsmc_nand.c
<<
>>
Prefs
   1/*
   2 * drivers/mtd/nand/fsmc_nand.c
   3 *
   4 * ST Microelectronics
   5 * Flexible Static Memory Controller (FSMC)
   6 * Driver for NAND portions
   7 *
   8 * Copyright © 2010 ST Microelectronics
   9 * Vipin Kumar <vipin.kumar@st.com>
  10 * Ashish Priyadarshi
  11 *
  12 * Based on drivers/mtd/nand/nomadik_nand.c
  13 *
  14 * This file is licensed under the terms of the GNU General Public
  15 * License version 2. This program is licensed "as is" without any
  16 * warranty of any kind, whether express or implied.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/completion.h>
  21#include <linux/dmaengine.h>
  22#include <linux/dma-direction.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/err.h>
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/resource.h>
  28#include <linux/sched.h>
  29#include <linux/types.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/rawnand.h>
  32#include <linux/mtd/nand_ecc.h>
  33#include <linux/platform_device.h>
  34#include <linux/of.h>
  35#include <linux/mtd/partitions.h>
  36#include <linux/io.h>
  37#include <linux/slab.h>
  38#include <linux/amba/bus.h>
  39#include <mtd/mtd-abi.h>
  40
  41/* fsmc controller registers for NOR flash */
  42#define CTRL                    0x0
  43        /* ctrl register definitions */
  44        #define BANK_ENABLE             (1 << 0)
  45        #define MUXED                   (1 << 1)
  46        #define NOR_DEV                 (2 << 2)
  47        #define WIDTH_8                 (0 << 4)
  48        #define WIDTH_16                (1 << 4)
  49        #define RSTPWRDWN               (1 << 6)
  50        #define WPROT                   (1 << 7)
  51        #define WRT_ENABLE              (1 << 12)
  52        #define WAIT_ENB                (1 << 13)
  53
  54#define CTRL_TIM                0x4
  55        /* ctrl_tim register definitions */
  56
  57#define FSMC_NOR_BANK_SZ        0x8
  58#define FSMC_NOR_REG_SIZE       0x40
  59
  60#define FSMC_NOR_REG(base, bank, reg)           (base + \
  61                                                FSMC_NOR_BANK_SZ * (bank) + \
  62                                                reg)
  63
  64/* fsmc controller registers for NAND flash */
  65#define PC                      0x00
  66        /* pc register definitions */
  67        #define FSMC_RESET              (1 << 0)
  68        #define FSMC_WAITON             (1 << 1)
  69        #define FSMC_ENABLE             (1 << 2)
  70        #define FSMC_DEVTYPE_NAND       (1 << 3)
  71        #define FSMC_DEVWID_8           (0 << 4)
  72        #define FSMC_DEVWID_16          (1 << 4)
  73        #define FSMC_ECCEN              (1 << 6)
  74        #define FSMC_ECCPLEN_512        (0 << 7)
  75        #define FSMC_ECCPLEN_256        (1 << 7)
  76        #define FSMC_TCLR_1             (1)
  77        #define FSMC_TCLR_SHIFT         (9)
  78        #define FSMC_TCLR_MASK          (0xF)
  79        #define FSMC_TAR_1              (1)
  80        #define FSMC_TAR_SHIFT          (13)
  81        #define FSMC_TAR_MASK           (0xF)
  82#define STS                     0x04
  83        /* sts register definitions */
  84        #define FSMC_CODE_RDY           (1 << 15)
  85#define COMM                    0x08
  86        /* comm register definitions */
  87        #define FSMC_TSET_0             0
  88        #define FSMC_TSET_SHIFT         0
  89        #define FSMC_TSET_MASK          0xFF
  90        #define FSMC_TWAIT_6            6
  91        #define FSMC_TWAIT_SHIFT        8
  92        #define FSMC_TWAIT_MASK         0xFF
  93        #define FSMC_THOLD_4            4
  94        #define FSMC_THOLD_SHIFT        16
  95        #define FSMC_THOLD_MASK         0xFF
  96        #define FSMC_THIZ_1             1
  97        #define FSMC_THIZ_SHIFT         24
  98        #define FSMC_THIZ_MASK          0xFF
  99#define ATTRIB                  0x0C
 100#define IOATA                   0x10
 101#define ECC1                    0x14
 102#define ECC2                    0x18
 103#define ECC3                    0x1C
 104#define FSMC_NAND_BANK_SZ       0x20
 105
 106#define FSMC_NAND_REG(base, bank, reg)          (base + FSMC_NOR_REG_SIZE + \
 107                                                (FSMC_NAND_BANK_SZ * (bank)) + \
 108                                                reg)
 109
 110#define FSMC_BUSY_WAIT_TIMEOUT  (1 * HZ)
 111
 112struct fsmc_nand_timings {
 113        uint8_t tclr;
 114        uint8_t tar;
 115        uint8_t thiz;
 116        uint8_t thold;
 117        uint8_t twait;
 118        uint8_t tset;
 119};
 120
 121enum access_mode {
 122        USE_DMA_ACCESS = 1,
 123        USE_WORD_ACCESS,
 124};
 125
 126/**
 127 * struct fsmc_nand_data - structure for FSMC NAND device state
 128 *
 129 * @pid:                Part ID on the AMBA PrimeCell format
 130 * @mtd:                MTD info for a NAND flash.
 131 * @nand:               Chip related info for a NAND flash.
 132 * @partitions:         Partition info for a NAND Flash.
 133 * @nr_partitions:      Total number of partition of a NAND flash.
 134 *
 135 * @bank:               Bank number for probed device.
 136 * @clk:                Clock structure for FSMC.
 137 *
 138 * @read_dma_chan:      DMA channel for read access
 139 * @write_dma_chan:     DMA channel for write access to NAND
 140 * @dma_access_complete: Completion structure
 141 *
 142 * @data_pa:            NAND Physical port for Data.
 143 * @data_va:            NAND port for Data.
 144 * @cmd_va:             NAND port for Command.
 145 * @addr_va:            NAND port for Address.
 146 * @regs_va:            FSMC regs base address.
 147 */
 148struct fsmc_nand_data {
 149        u32                     pid;
 150        struct nand_chip        nand;
 151
 152        unsigned int            bank;
 153        struct device           *dev;
 154        enum access_mode        mode;
 155        struct clk              *clk;
 156
 157        /* DMA related objects */
 158        struct dma_chan         *read_dma_chan;
 159        struct dma_chan         *write_dma_chan;
 160        struct completion       dma_access_complete;
 161
 162        struct fsmc_nand_timings *dev_timings;
 163
 164        dma_addr_t              data_pa;
 165        void __iomem            *data_va;
 166        void __iomem            *cmd_va;
 167        void __iomem            *addr_va;
 168        void __iomem            *regs_va;
 169};
 170
 171static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
 172                                   struct mtd_oob_region *oobregion)
 173{
 174        struct nand_chip *chip = mtd_to_nand(mtd);
 175
 176        if (section >= chip->ecc.steps)
 177                return -ERANGE;
 178
 179        oobregion->offset = (section * 16) + 2;
 180        oobregion->length = 3;
 181
 182        return 0;
 183}
 184
 185static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
 186                                    struct mtd_oob_region *oobregion)
 187{
 188        struct nand_chip *chip = mtd_to_nand(mtd);
 189
 190        if (section >= chip->ecc.steps)
 191                return -ERANGE;
 192
 193        oobregion->offset = (section * 16) + 8;
 194
 195        if (section < chip->ecc.steps - 1)
 196                oobregion->length = 8;
 197        else
 198                oobregion->length = mtd->oobsize - oobregion->offset;
 199
 200        return 0;
 201}
 202
 203static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
 204        .ecc = fsmc_ecc1_ooblayout_ecc,
 205        .free = fsmc_ecc1_ooblayout_free,
 206};
 207
 208/*
 209 * ECC placement definitions in oobfree type format.
 210 * There are 13 bytes of ecc for every 512 byte block and it has to be read
 211 * consecutively and immediately after the 512 byte data block for hardware to
 212 * generate the error bit offsets in 512 byte data.
 213 */
 214static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
 215                                   struct mtd_oob_region *oobregion)
 216{
 217        struct nand_chip *chip = mtd_to_nand(mtd);
 218
 219        if (section >= chip->ecc.steps)
 220                return -ERANGE;
 221
 222        oobregion->length = chip->ecc.bytes;
 223
 224        if (!section && mtd->writesize <= 512)
 225                oobregion->offset = 0;
 226        else
 227                oobregion->offset = (section * 16) + 2;
 228
 229        return 0;
 230}
 231
 232static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
 233                                    struct mtd_oob_region *oobregion)
 234{
 235        struct nand_chip *chip = mtd_to_nand(mtd);
 236
 237        if (section >= chip->ecc.steps)
 238                return -ERANGE;
 239
 240        oobregion->offset = (section * 16) + 15;
 241
 242        if (section < chip->ecc.steps - 1)
 243                oobregion->length = 3;
 244        else
 245                oobregion->length = mtd->oobsize - oobregion->offset;
 246
 247        return 0;
 248}
 249
 250static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
 251        .ecc = fsmc_ecc4_ooblayout_ecc,
 252        .free = fsmc_ecc4_ooblayout_free,
 253};
 254
 255static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
 256{
 257        return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
 258}
 259
 260/*
 261 * fsmc_cmd_ctrl - For facilitaing Hardware access
 262 * This routine allows hardware specific access to control-lines(ALE,CLE)
 263 */
 264static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 265{
 266        struct nand_chip *this = mtd_to_nand(mtd);
 267        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 268        void __iomem *regs = host->regs_va;
 269        unsigned int bank = host->bank;
 270
 271        if (ctrl & NAND_CTRL_CHANGE) {
 272                u32 pc;
 273
 274                if (ctrl & NAND_CLE) {
 275                        this->IO_ADDR_R = host->cmd_va;
 276                        this->IO_ADDR_W = host->cmd_va;
 277                } else if (ctrl & NAND_ALE) {
 278                        this->IO_ADDR_R = host->addr_va;
 279                        this->IO_ADDR_W = host->addr_va;
 280                } else {
 281                        this->IO_ADDR_R = host->data_va;
 282                        this->IO_ADDR_W = host->data_va;
 283                }
 284
 285                pc = readl(FSMC_NAND_REG(regs, bank, PC));
 286                if (ctrl & NAND_NCE)
 287                        pc |= FSMC_ENABLE;
 288                else
 289                        pc &= ~FSMC_ENABLE;
 290                writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
 291        }
 292
 293        mb();
 294
 295        if (cmd != NAND_CMD_NONE)
 296                writeb_relaxed(cmd, this->IO_ADDR_W);
 297}
 298
 299/*
 300 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 301 *
 302 * This routine initializes timing parameters related to NAND memory access in
 303 * FSMC registers
 304 */
 305static void fsmc_nand_setup(struct fsmc_nand_data *host,
 306                            struct fsmc_nand_timings *tims)
 307{
 308        uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 309        uint32_t tclr, tar, thiz, thold, twait, tset;
 310        unsigned int bank = host->bank;
 311        void __iomem *regs = host->regs_va;
 312
 313        tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 314        tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
 315        thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
 316        thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
 317        twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
 318        tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 319
 320        if (host->nand.options & NAND_BUSWIDTH_16)
 321                writel_relaxed(value | FSMC_DEVWID_16,
 322                                FSMC_NAND_REG(regs, bank, PC));
 323        else
 324                writel_relaxed(value | FSMC_DEVWID_8,
 325                                FSMC_NAND_REG(regs, bank, PC));
 326
 327        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
 328                        FSMC_NAND_REG(regs, bank, PC));
 329        writel_relaxed(thiz | thold | twait | tset,
 330                        FSMC_NAND_REG(regs, bank, COMM));
 331        writel_relaxed(thiz | thold | twait | tset,
 332                        FSMC_NAND_REG(regs, bank, ATTRIB));
 333}
 334
 335static int fsmc_calc_timings(struct fsmc_nand_data *host,
 336                             const struct nand_sdr_timings *sdrt,
 337                             struct fsmc_nand_timings *tims)
 338{
 339        unsigned long hclk = clk_get_rate(host->clk);
 340        unsigned long hclkn = NSEC_PER_SEC / hclk;
 341        uint32_t thiz, thold, twait, tset;
 342
 343        if (sdrt->tRC_min < 30000)
 344                return -EOPNOTSUPP;
 345
 346        tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
 347        if (tims->tar > FSMC_TAR_MASK)
 348                tims->tar = FSMC_TAR_MASK;
 349        tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
 350        if (tims->tclr > FSMC_TCLR_MASK)
 351                tims->tclr = FSMC_TCLR_MASK;
 352
 353        thiz = sdrt->tCS_min - sdrt->tWP_min;
 354        tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
 355
 356        thold = sdrt->tDH_min;
 357        if (thold < sdrt->tCH_min)
 358                thold = sdrt->tCH_min;
 359        if (thold < sdrt->tCLH_min)
 360                thold = sdrt->tCLH_min;
 361        if (thold < sdrt->tWH_min)
 362                thold = sdrt->tWH_min;
 363        if (thold < sdrt->tALH_min)
 364                thold = sdrt->tALH_min;
 365        if (thold < sdrt->tREH_min)
 366                thold = sdrt->tREH_min;
 367        tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
 368        if (tims->thold == 0)
 369                tims->thold = 1;
 370        else if (tims->thold > FSMC_THOLD_MASK)
 371                tims->thold = FSMC_THOLD_MASK;
 372
 373        twait = max(sdrt->tRP_min, sdrt->tWP_min);
 374        tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
 375        if (tims->twait == 0)
 376                tims->twait = 1;
 377        else if (tims->twait > FSMC_TWAIT_MASK)
 378                tims->twait = FSMC_TWAIT_MASK;
 379
 380        tset = max(sdrt->tCS_min - sdrt->tWP_min,
 381                   sdrt->tCEA_max - sdrt->tREA_max);
 382        tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
 383        if (tims->tset == 0)
 384                tims->tset = 1;
 385        else if (tims->tset > FSMC_TSET_MASK)
 386                tims->tset = FSMC_TSET_MASK;
 387
 388        return 0;
 389}
 390
 391static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
 392                                     const struct nand_data_interface *conf)
 393{
 394        struct nand_chip *nand = mtd_to_nand(mtd);
 395        struct fsmc_nand_data *host = nand_get_controller_data(nand);
 396        struct fsmc_nand_timings tims;
 397        const struct nand_sdr_timings *sdrt;
 398        int ret;
 399
 400        sdrt = nand_get_sdr_timings(conf);
 401        if (IS_ERR(sdrt))
 402                return PTR_ERR(sdrt);
 403
 404        ret = fsmc_calc_timings(host, sdrt, &tims);
 405        if (ret)
 406                return ret;
 407
 408        if (csline == NAND_DATA_IFACE_CHECK_ONLY)
 409                return 0;
 410
 411        fsmc_nand_setup(host, &tims);
 412
 413        return 0;
 414}
 415
 416/*
 417 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 418 */
 419static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
 420{
 421        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 422        void __iomem *regs = host->regs_va;
 423        uint32_t bank = host->bank;
 424
 425        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
 426                        FSMC_NAND_REG(regs, bank, PC));
 427        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
 428                        FSMC_NAND_REG(regs, bank, PC));
 429        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
 430                        FSMC_NAND_REG(regs, bank, PC));
 431}
 432
 433/*
 434 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 435 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 436 * max of 8-bits)
 437 */
 438static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
 439                                uint8_t *ecc)
 440{
 441        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 442        void __iomem *regs = host->regs_va;
 443        uint32_t bank = host->bank;
 444        uint32_t ecc_tmp;
 445        unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 446
 447        do {
 448                if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
 449                        break;
 450                else
 451                        cond_resched();
 452        } while (!time_after_eq(jiffies, deadline));
 453
 454        if (time_after_eq(jiffies, deadline)) {
 455                dev_err(host->dev, "calculate ecc timed out\n");
 456                return -ETIMEDOUT;
 457        }
 458
 459        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 460        ecc[0] = (uint8_t) (ecc_tmp >> 0);
 461        ecc[1] = (uint8_t) (ecc_tmp >> 8);
 462        ecc[2] = (uint8_t) (ecc_tmp >> 16);
 463        ecc[3] = (uint8_t) (ecc_tmp >> 24);
 464
 465        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
 466        ecc[4] = (uint8_t) (ecc_tmp >> 0);
 467        ecc[5] = (uint8_t) (ecc_tmp >> 8);
 468        ecc[6] = (uint8_t) (ecc_tmp >> 16);
 469        ecc[7] = (uint8_t) (ecc_tmp >> 24);
 470
 471        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
 472        ecc[8] = (uint8_t) (ecc_tmp >> 0);
 473        ecc[9] = (uint8_t) (ecc_tmp >> 8);
 474        ecc[10] = (uint8_t) (ecc_tmp >> 16);
 475        ecc[11] = (uint8_t) (ecc_tmp >> 24);
 476
 477        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
 478        ecc[12] = (uint8_t) (ecc_tmp >> 16);
 479
 480        return 0;
 481}
 482
 483/*
 484 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 485 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 486 * max of 1-bit)
 487 */
 488static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
 489                                uint8_t *ecc)
 490{
 491        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 492        void __iomem *regs = host->regs_va;
 493        uint32_t bank = host->bank;
 494        uint32_t ecc_tmp;
 495
 496        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 497        ecc[0] = (uint8_t) (ecc_tmp >> 0);
 498        ecc[1] = (uint8_t) (ecc_tmp >> 8);
 499        ecc[2] = (uint8_t) (ecc_tmp >> 16);
 500
 501        return 0;
 502}
 503
 504/* Count the number of 0's in buff upto a max of max_bits */
 505static int count_written_bits(uint8_t *buff, int size, int max_bits)
 506{
 507        int k, written_bits = 0;
 508
 509        for (k = 0; k < size; k++) {
 510                written_bits += hweight8(~buff[k]);
 511                if (written_bits > max_bits)
 512                        break;
 513        }
 514
 515        return written_bits;
 516}
 517
 518static void dma_complete(void *param)
 519{
 520        struct fsmc_nand_data *host = param;
 521
 522        complete(&host->dma_access_complete);
 523}
 524
 525static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
 526                enum dma_data_direction direction)
 527{
 528        struct dma_chan *chan;
 529        struct dma_device *dma_dev;
 530        struct dma_async_tx_descriptor *tx;
 531        dma_addr_t dma_dst, dma_src, dma_addr;
 532        dma_cookie_t cookie;
 533        unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 534        int ret;
 535        unsigned long time_left;
 536
 537        if (direction == DMA_TO_DEVICE)
 538                chan = host->write_dma_chan;
 539        else if (direction == DMA_FROM_DEVICE)
 540                chan = host->read_dma_chan;
 541        else
 542                return -EINVAL;
 543
 544        dma_dev = chan->device;
 545        dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
 546
 547        if (direction == DMA_TO_DEVICE) {
 548                dma_src = dma_addr;
 549                dma_dst = host->data_pa;
 550        } else {
 551                dma_src = host->data_pa;
 552                dma_dst = dma_addr;
 553        }
 554
 555        tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
 556                        len, flags);
 557        if (!tx) {
 558                dev_err(host->dev, "device_prep_dma_memcpy error\n");
 559                ret = -EIO;
 560                goto unmap_dma;
 561        }
 562
 563        tx->callback = dma_complete;
 564        tx->callback_param = host;
 565        cookie = tx->tx_submit(tx);
 566
 567        ret = dma_submit_error(cookie);
 568        if (ret) {
 569                dev_err(host->dev, "dma_submit_error %d\n", cookie);
 570                goto unmap_dma;
 571        }
 572
 573        dma_async_issue_pending(chan);
 574
 575        time_left =
 576        wait_for_completion_timeout(&host->dma_access_complete,
 577                                msecs_to_jiffies(3000));
 578        if (time_left == 0) {
 579                dmaengine_terminate_all(chan);
 580                dev_err(host->dev, "wait_for_completion_timeout\n");
 581                ret = -ETIMEDOUT;
 582                goto unmap_dma;
 583        }
 584
 585        ret = 0;
 586
 587unmap_dma:
 588        dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
 589
 590        return ret;
 591}
 592
 593/*
 594 * fsmc_write_buf - write buffer to chip
 595 * @mtd:        MTD device structure
 596 * @buf:        data buffer
 597 * @len:        number of bytes to write
 598 */
 599static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 600{
 601        int i;
 602        struct nand_chip *chip = mtd_to_nand(mtd);
 603
 604        if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 605                        IS_ALIGNED(len, sizeof(uint32_t))) {
 606                uint32_t *p = (uint32_t *)buf;
 607                len = len >> 2;
 608                for (i = 0; i < len; i++)
 609                        writel_relaxed(p[i], chip->IO_ADDR_W);
 610        } else {
 611                for (i = 0; i < len; i++)
 612                        writeb_relaxed(buf[i], chip->IO_ADDR_W);
 613        }
 614}
 615
 616/*
 617 * fsmc_read_buf - read chip data into buffer
 618 * @mtd:        MTD device structure
 619 * @buf:        buffer to store date
 620 * @len:        number of bytes to read
 621 */
 622static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 623{
 624        int i;
 625        struct nand_chip *chip = mtd_to_nand(mtd);
 626
 627        if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 628                        IS_ALIGNED(len, sizeof(uint32_t))) {
 629                uint32_t *p = (uint32_t *)buf;
 630                len = len >> 2;
 631                for (i = 0; i < len; i++)
 632                        p[i] = readl_relaxed(chip->IO_ADDR_R);
 633        } else {
 634                for (i = 0; i < len; i++)
 635                        buf[i] = readb_relaxed(chip->IO_ADDR_R);
 636        }
 637}
 638
 639/*
 640 * fsmc_read_buf_dma - read chip data into buffer
 641 * @mtd:        MTD device structure
 642 * @buf:        buffer to store date
 643 * @len:        number of bytes to read
 644 */
 645static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
 646{
 647        struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 648
 649        dma_xfer(host, buf, len, DMA_FROM_DEVICE);
 650}
 651
 652/*
 653 * fsmc_write_buf_dma - write buffer to chip
 654 * @mtd:        MTD device structure
 655 * @buf:        data buffer
 656 * @len:        number of bytes to write
 657 */
 658static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
 659                int len)
 660{
 661        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 662
 663        dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 664}
 665
 666/*
 667 * fsmc_read_page_hwecc
 668 * @mtd:        mtd info structure
 669 * @chip:       nand chip info structure
 670 * @buf:        buffer to store read data
 671 * @oob_required:       caller expects OOB data read to chip->oob_poi
 672 * @page:       page number to read
 673 *
 674 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 675 * performed in a strict sequence as follows:
 676 * data(512 byte) -> ecc(13 byte)
 677 * After this read, fsmc hardware generates and reports error data bits(up to a
 678 * max of 8 bits)
 679 */
 680static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
 681                                 uint8_t *buf, int oob_required, int page)
 682{
 683        int i, j, s, stat, eccsize = chip->ecc.size;
 684        int eccbytes = chip->ecc.bytes;
 685        int eccsteps = chip->ecc.steps;
 686        uint8_t *p = buf;
 687        uint8_t *ecc_calc = chip->ecc.calc_buf;
 688        uint8_t *ecc_code = chip->ecc.code_buf;
 689        int off, len, group = 0;
 690        /*
 691         * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
 692         * end up reading 14 bytes (7 words) from oob. The local array is
 693         * to maintain word alignment
 694         */
 695        uint16_t ecc_oob[7];
 696        uint8_t *oob = (uint8_t *)&ecc_oob[0];
 697        unsigned int max_bitflips = 0;
 698
 699        for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 700                nand_read_page_op(chip, page, s * eccsize, NULL, 0);
 701                chip->ecc.hwctl(mtd, NAND_ECC_READ);
 702                chip->read_buf(mtd, p, eccsize);
 703
 704                for (j = 0; j < eccbytes;) {
 705                        struct mtd_oob_region oobregion;
 706                        int ret;
 707
 708                        ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
 709                        if (ret)
 710                                return ret;
 711
 712                        off = oobregion.offset;
 713                        len = oobregion.length;
 714
 715                        /*
 716                         * length is intentionally kept a higher multiple of 2
 717                         * to read at least 13 bytes even in case of 16 bit NAND
 718                         * devices
 719                         */
 720                        if (chip->options & NAND_BUSWIDTH_16)
 721                                len = roundup(len, 2);
 722
 723                        nand_read_oob_op(chip, page, off, oob + j, len);
 724                        j += len;
 725                }
 726
 727                memcpy(&ecc_code[i], oob, chip->ecc.bytes);
 728                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 729
 730                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 731                if (stat < 0) {
 732                        mtd->ecc_stats.failed++;
 733                } else {
 734                        mtd->ecc_stats.corrected += stat;
 735                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
 736                }
 737        }
 738
 739        return max_bitflips;
 740}
 741
 742/*
 743 * fsmc_bch8_correct_data
 744 * @mtd:        mtd info structure
 745 * @dat:        buffer of read data
 746 * @read_ecc:   ecc read from device spare area
 747 * @calc_ecc:   ecc calculated from read data
 748 *
 749 * calc_ecc is a 104 bit information containing maximum of 8 error
 750 * offset informations of 13 bits each in 512 bytes of read data.
 751 */
 752static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
 753                             uint8_t *read_ecc, uint8_t *calc_ecc)
 754{
 755        struct nand_chip *chip = mtd_to_nand(mtd);
 756        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 757        void __iomem *regs = host->regs_va;
 758        unsigned int bank = host->bank;
 759        uint32_t err_idx[8];
 760        uint32_t num_err, i;
 761        uint32_t ecc1, ecc2, ecc3, ecc4;
 762
 763        num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
 764
 765        /* no bit flipping */
 766        if (likely(num_err == 0))
 767                return 0;
 768
 769        /* too many errors */
 770        if (unlikely(num_err > 8)) {
 771                /*
 772                 * This is a temporary erase check. A newly erased page read
 773                 * would result in an ecc error because the oob data is also
 774                 * erased to FF and the calculated ecc for an FF data is not
 775                 * FF..FF.
 776                 * This is a workaround to skip performing correction in case
 777                 * data is FF..FF
 778                 *
 779                 * Logic:
 780                 * For every page, each bit written as 0 is counted until these
 781                 * number of bits are greater than 8 (the maximum correction
 782                 * capability of FSMC for each 512 + 13 bytes)
 783                 */
 784
 785                int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
 786                int bits_data = count_written_bits(dat, chip->ecc.size, 8);
 787
 788                if ((bits_ecc + bits_data) <= 8) {
 789                        if (bits_data)
 790                                memset(dat, 0xff, chip->ecc.size);
 791                        return bits_data;
 792                }
 793
 794                return -EBADMSG;
 795        }
 796
 797        /*
 798         * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
 799         * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
 800         *
 801         * calc_ecc is a 104 bit information containing maximum of 8 error
 802         * offset informations of 13 bits each. calc_ecc is copied into a
 803         * uint64_t array and error offset indexes are populated in err_idx
 804         * array
 805         */
 806        ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 807        ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
 808        ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
 809        ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
 810
 811        err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 812        err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 813        err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 814        err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 815        err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 816        err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 817        err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 818        err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 819
 820        i = 0;
 821        while (num_err--) {
 822                change_bit(0, (unsigned long *)&err_idx[i]);
 823                change_bit(1, (unsigned long *)&err_idx[i]);
 824
 825                if (err_idx[i] < chip->ecc.size * 8) {
 826                        change_bit(err_idx[i], (unsigned long *)dat);
 827                        i++;
 828                }
 829        }
 830        return i;
 831}
 832
 833static bool filter(struct dma_chan *chan, void *slave)
 834{
 835        chan->private = slave;
 836        return true;
 837}
 838
 839static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 840                                     struct fsmc_nand_data *host,
 841                                     struct nand_chip *nand)
 842{
 843        struct device_node *np = pdev->dev.of_node;
 844        u32 val;
 845        int ret;
 846
 847        nand->options = 0;
 848
 849        if (!of_property_read_u32(np, "bank-width", &val)) {
 850                if (val == 2) {
 851                        nand->options |= NAND_BUSWIDTH_16;
 852                } else if (val != 1) {
 853                        dev_err(&pdev->dev, "invalid bank-width %u\n", val);
 854                        return -EINVAL;
 855                }
 856        }
 857
 858        if (of_get_property(np, "nand-skip-bbtscan", NULL))
 859                nand->options |= NAND_SKIP_BBTSCAN;
 860
 861        host->dev_timings = devm_kzalloc(&pdev->dev,
 862                                sizeof(*host->dev_timings), GFP_KERNEL);
 863        if (!host->dev_timings)
 864                return -ENOMEM;
 865        ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
 866                                                sizeof(*host->dev_timings));
 867        if (ret)
 868                host->dev_timings = NULL;
 869
 870        /* Set default NAND bank to 0 */
 871        host->bank = 0;
 872        if (!of_property_read_u32(np, "bank", &val)) {
 873                if (val > 3) {
 874                        dev_err(&pdev->dev, "invalid bank %u\n", val);
 875                        return -EINVAL;
 876                }
 877                host->bank = val;
 878        }
 879        return 0;
 880}
 881
 882/*
 883 * fsmc_nand_probe - Probe function
 884 * @pdev:       platform device structure
 885 */
 886static int __init fsmc_nand_probe(struct platform_device *pdev)
 887{
 888        struct fsmc_nand_data *host;
 889        struct mtd_info *mtd;
 890        struct nand_chip *nand;
 891        struct resource *res;
 892        dma_cap_mask_t mask;
 893        int ret = 0;
 894        u32 pid;
 895        int i;
 896
 897        /* Allocate memory for the device structure (and zero it) */
 898        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 899        if (!host)
 900                return -ENOMEM;
 901
 902        nand = &host->nand;
 903
 904        ret = fsmc_nand_probe_config_dt(pdev, host, nand);
 905        if (ret)
 906                return ret;
 907
 908        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
 909        host->data_va = devm_ioremap_resource(&pdev->dev, res);
 910        if (IS_ERR(host->data_va))
 911                return PTR_ERR(host->data_va);
 912
 913        host->data_pa = (dma_addr_t)res->start;
 914
 915        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
 916        host->addr_va = devm_ioremap_resource(&pdev->dev, res);
 917        if (IS_ERR(host->addr_va))
 918                return PTR_ERR(host->addr_va);
 919
 920        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
 921        host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
 922        if (IS_ERR(host->cmd_va))
 923                return PTR_ERR(host->cmd_va);
 924
 925        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
 926        host->regs_va = devm_ioremap_resource(&pdev->dev, res);
 927        if (IS_ERR(host->regs_va))
 928                return PTR_ERR(host->regs_va);
 929
 930        host->clk = devm_clk_get(&pdev->dev, NULL);
 931        if (IS_ERR(host->clk)) {
 932                dev_err(&pdev->dev, "failed to fetch block clock\n");
 933                return PTR_ERR(host->clk);
 934        }
 935
 936        ret = clk_prepare_enable(host->clk);
 937        if (ret)
 938                return ret;
 939
 940        /*
 941         * This device ID is actually a common AMBA ID as used on the
 942         * AMBA PrimeCell bus. However it is not a PrimeCell.
 943         */
 944        for (pid = 0, i = 0; i < 4; i++)
 945                pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
 946        host->pid = pid;
 947        dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
 948                 "revision %02x, config %02x\n",
 949                 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
 950                 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
 951
 952        host->dev = &pdev->dev;
 953
 954        if (host->mode == USE_DMA_ACCESS)
 955                init_completion(&host->dma_access_complete);
 956
 957        /* Link all private pointers */
 958        mtd = nand_to_mtd(&host->nand);
 959        nand_set_controller_data(nand, host);
 960        nand_set_flash_node(nand, pdev->dev.of_node);
 961
 962        mtd->dev.parent = &pdev->dev;
 963        nand->IO_ADDR_R = host->data_va;
 964        nand->IO_ADDR_W = host->data_va;
 965        nand->cmd_ctrl = fsmc_cmd_ctrl;
 966        nand->chip_delay = 30;
 967
 968        /*
 969         * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
 970         * can overwrite this value if the DT provides a different value.
 971         */
 972        nand->ecc.mode = NAND_ECC_HW;
 973        nand->ecc.hwctl = fsmc_enable_hwecc;
 974        nand->ecc.size = 512;
 975        nand->badblockbits = 7;
 976
 977        switch (host->mode) {
 978        case USE_DMA_ACCESS:
 979                dma_cap_zero(mask);
 980                dma_cap_set(DMA_MEMCPY, mask);
 981                host->read_dma_chan = dma_request_channel(mask, filter, NULL);
 982                if (!host->read_dma_chan) {
 983                        dev_err(&pdev->dev, "Unable to get read dma channel\n");
 984                        goto err_req_read_chnl;
 985                }
 986                host->write_dma_chan = dma_request_channel(mask, filter, NULL);
 987                if (!host->write_dma_chan) {
 988                        dev_err(&pdev->dev, "Unable to get write dma channel\n");
 989                        goto err_req_write_chnl;
 990                }
 991                nand->read_buf = fsmc_read_buf_dma;
 992                nand->write_buf = fsmc_write_buf_dma;
 993                break;
 994
 995        default:
 996        case USE_WORD_ACCESS:
 997                nand->read_buf = fsmc_read_buf;
 998                nand->write_buf = fsmc_write_buf;
 999                break;
1000        }
1001
1002        if (host->dev_timings)
1003                fsmc_nand_setup(host, host->dev_timings);
1004        else
1005                nand->setup_data_interface = fsmc_setup_data_interface;
1006
1007        if (AMBA_REV_BITS(host->pid) >= 8) {
1008                nand->ecc.read_page = fsmc_read_page_hwecc;
1009                nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1010                nand->ecc.correct = fsmc_bch8_correct_data;
1011                nand->ecc.bytes = 13;
1012                nand->ecc.strength = 8;
1013        }
1014
1015        /*
1016         * Scan to find existence of the device
1017         */
1018        ret = nand_scan_ident(mtd, 1, NULL);
1019        if (ret) {
1020                dev_err(&pdev->dev, "No NAND Device found!\n");
1021                goto err_scan_ident;
1022        }
1023
1024        if (AMBA_REV_BITS(host->pid) >= 8) {
1025                switch (mtd->oobsize) {
1026                case 16:
1027                case 64:
1028                case 128:
1029                case 224:
1030                case 256:
1031                        break;
1032                default:
1033                        dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1034                                 mtd->oobsize);
1035                        ret = -EINVAL;
1036                        goto err_probe;
1037                }
1038
1039                mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
1040        } else {
1041                switch (nand->ecc.mode) {
1042                case NAND_ECC_HW:
1043                        dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
1044                        nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1045                        nand->ecc.correct = nand_correct_data;
1046                        nand->ecc.bytes = 3;
1047                        nand->ecc.strength = 1;
1048                        break;
1049
1050                case NAND_ECC_SOFT:
1051                        if (nand->ecc.algo == NAND_ECC_BCH) {
1052                                dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
1053                                break;
1054                        }
1055
1056                case NAND_ECC_ON_DIE:
1057                        break;
1058
1059                default:
1060                        dev_err(&pdev->dev, "Unsupported ECC mode!\n");
1061                        goto err_probe;
1062                }
1063
1064                /*
1065                 * Don't set layout for BCH4 SW ECC. This will be
1066                 * generated later in nand_bch_init() later.
1067                 */
1068                if (nand->ecc.mode == NAND_ECC_HW) {
1069                        switch (mtd->oobsize) {
1070                        case 16:
1071                        case 64:
1072                        case 128:
1073                                mtd_set_ooblayout(mtd,
1074                                                  &fsmc_ecc1_ooblayout_ops);
1075                                break;
1076                        default:
1077                                dev_warn(&pdev->dev,
1078                                         "No oob scheme defined for oobsize %d\n",
1079                                         mtd->oobsize);
1080                                ret = -EINVAL;
1081                                goto err_probe;
1082                        }
1083                }
1084        }
1085
1086        /* Second stage of scan to fill MTD data-structures */
1087        ret = nand_scan_tail(mtd);
1088        if (ret)
1089                goto err_probe;
1090
1091        mtd->name = "nand";
1092        ret = mtd_device_register(mtd, NULL, 0);
1093        if (ret)
1094                goto err_probe;
1095
1096        platform_set_drvdata(pdev, host);
1097        dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1098        return 0;
1099
1100err_probe:
1101err_scan_ident:
1102        if (host->mode == USE_DMA_ACCESS)
1103                dma_release_channel(host->write_dma_chan);
1104err_req_write_chnl:
1105        if (host->mode == USE_DMA_ACCESS)
1106                dma_release_channel(host->read_dma_chan);
1107err_req_read_chnl:
1108        clk_disable_unprepare(host->clk);
1109        return ret;
1110}
1111
1112/*
1113 * Clean up routine
1114 */
1115static int fsmc_nand_remove(struct platform_device *pdev)
1116{
1117        struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1118
1119        if (host) {
1120                nand_release(nand_to_mtd(&host->nand));
1121
1122                if (host->mode == USE_DMA_ACCESS) {
1123                        dma_release_channel(host->write_dma_chan);
1124                        dma_release_channel(host->read_dma_chan);
1125                }
1126                clk_disable_unprepare(host->clk);
1127        }
1128
1129        return 0;
1130}
1131
1132#ifdef CONFIG_PM_SLEEP
1133static int fsmc_nand_suspend(struct device *dev)
1134{
1135        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1136        if (host)
1137                clk_disable_unprepare(host->clk);
1138        return 0;
1139}
1140
1141static int fsmc_nand_resume(struct device *dev)
1142{
1143        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1144        if (host) {
1145                clk_prepare_enable(host->clk);
1146                if (host->dev_timings)
1147                        fsmc_nand_setup(host, host->dev_timings);
1148        }
1149        return 0;
1150}
1151#endif
1152
1153static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1154
1155static const struct of_device_id fsmc_nand_id_table[] = {
1156        { .compatible = "st,spear600-fsmc-nand" },
1157        { .compatible = "stericsson,fsmc-nand" },
1158        {}
1159};
1160MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1161
1162static struct platform_driver fsmc_nand_driver = {
1163        .remove = fsmc_nand_remove,
1164        .driver = {
1165                .name = "fsmc-nand",
1166                .of_match_table = fsmc_nand_id_table,
1167                .pm = &fsmc_nand_pm_ops,
1168        },
1169};
1170
1171module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1172
1173MODULE_LICENSE("GPL");
1174MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1175MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1176