linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/bitmap.h>
  38#include <linux/crc32.h>
  39#include <linux/ctype.h>
  40#include <linux/debugfs.h>
  41#include <linux/err.h>
  42#include <linux/etherdevice.h>
  43#include <linux/firmware.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/init.h>
  47#include <linux/log2.h>
  48#include <linux/mdio.h>
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/mutex.h>
  52#include <linux/netdevice.h>
  53#include <linux/pci.h>
  54#include <linux/aer.h>
  55#include <linux/rtnetlink.h>
  56#include <linux/sched.h>
  57#include <linux/seq_file.h>
  58#include <linux/sockios.h>
  59#include <linux/vmalloc.h>
  60#include <linux/workqueue.h>
  61#include <net/neighbour.h>
  62#include <net/netevent.h>
  63#include <net/addrconf.h>
  64#include <net/bonding.h>
  65#include <net/addrconf.h>
  66#include <linux/uaccess.h>
  67#include <linux/crash_dump.h>
  68#include <net/udp_tunnel.h>
  69
  70#include "cxgb4.h"
  71#include "cxgb4_filter.h"
  72#include "t4_regs.h"
  73#include "t4_values.h"
  74#include "t4_msg.h"
  75#include "t4fw_api.h"
  76#include "t4fw_version.h"
  77#include "cxgb4_dcb.h"
  78#include "cxgb4_debugfs.h"
  79#include "clip_tbl.h"
  80#include "l2t.h"
  81#include "smt.h"
  82#include "sched.h"
  83#include "cxgb4_tc_u32.h"
  84#include "cxgb4_tc_flower.h"
  85#include "cxgb4_ptp.h"
  86#include "cxgb4_cudbg.h"
  87
  88char cxgb4_driver_name[] = KBUILD_MODNAME;
  89
  90#ifdef DRV_VERSION
  91#undef DRV_VERSION
  92#endif
  93#define DRV_VERSION "2.0.0-ko"
  94const char cxgb4_driver_version[] = DRV_VERSION;
  95#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
  96
  97#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
  98                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
  99                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
 100
 101/* Macros needed to support the PCI Device ID Table ...
 102 */
 103#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
 104        static const struct pci_device_id cxgb4_pci_tbl[] = {
 105#define CXGB4_UNIFIED_PF 0x4
 106
 107#define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
 108
 109/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 110 * called for both.
 111 */
 112#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
 113
 114#define CH_PCI_ID_TABLE_ENTRY(devid) \
 115                {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
 116
 117#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
 118                { 0, } \
 119        }
 120
 121#include "t4_pci_id_tbl.h"
 122
 123#define FW4_FNAME "cxgb4/t4fw.bin"
 124#define FW5_FNAME "cxgb4/t5fw.bin"
 125#define FW6_FNAME "cxgb4/t6fw.bin"
 126#define FW4_CFNAME "cxgb4/t4-config.txt"
 127#define FW5_CFNAME "cxgb4/t5-config.txt"
 128#define FW6_CFNAME "cxgb4/t6-config.txt"
 129#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
 130#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
 131#define PHY_AQ1202_DEVICEID 0x4409
 132#define PHY_BCM84834_DEVICEID 0x4486
 133
 134MODULE_DESCRIPTION(DRV_DESC);
 135MODULE_AUTHOR("Chelsio Communications");
 136MODULE_LICENSE("Dual BSD/GPL");
 137MODULE_VERSION(DRV_VERSION);
 138MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
 139MODULE_FIRMWARE(FW4_FNAME);
 140MODULE_FIRMWARE(FW5_FNAME);
 141MODULE_FIRMWARE(FW6_FNAME);
 142
 143/*
 144 * The driver uses the best interrupt scheme available on a platform in the
 145 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 146 * of these schemes the driver may consider as follows:
 147 *
 148 * msi = 2: choose from among all three options
 149 * msi = 1: only consider MSI and INTx interrupts
 150 * msi = 0: force INTx interrupts
 151 */
 152static int msi = 2;
 153
 154module_param(msi, int, 0644);
 155MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
 156
 157/*
 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 160 * boundaries.  This is a requirement for many architectures which will throw
 161 * a machine check fault if an attempt is made to access one of the 4-byte IP
 162 * header fields on a non-4-byte boundary.  And it's a major performance issue
 163 * even on some architectures which allow it like some implementations of the
 164 * x86 ISA.  However, some architectures don't mind this and for some very
 165 * edge-case performance sensitive applications (like forwarding large volumes
 166 * of small packets), setting this DMA offset to 0 will decrease the number of
 167 * PCI-E Bus transfers enough to measurably affect performance.
 168 */
 169static int rx_dma_offset = 2;
 170
 171/* TX Queue select used to determine what algorithm to use for selecting TX
 172 * queue. Select between the kernel provided function (select_queue=0) or user
 173 * cxgb_select_queue function (select_queue=1)
 174 *
 175 * Default: select_queue=0
 176 */
 177static int select_queue;
 178module_param(select_queue, int, 0644);
 179MODULE_PARM_DESC(select_queue,
 180                 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
 181
 182static struct dentry *cxgb4_debugfs_root;
 183
 184LIST_HEAD(adapter_list);
 185DEFINE_MUTEX(uld_mutex);
 186
 187static void link_report(struct net_device *dev)
 188{
 189        if (!netif_carrier_ok(dev))
 190                netdev_info(dev, "link down\n");
 191        else {
 192                static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
 193
 194                const char *s;
 195                const struct port_info *p = netdev_priv(dev);
 196
 197                switch (p->link_cfg.speed) {
 198                case 100:
 199                        s = "100Mbps";
 200                        break;
 201                case 1000:
 202                        s = "1Gbps";
 203                        break;
 204                case 10000:
 205                        s = "10Gbps";
 206                        break;
 207                case 25000:
 208                        s = "25Gbps";
 209                        break;
 210                case 40000:
 211                        s = "40Gbps";
 212                        break;
 213                case 100000:
 214                        s = "100Gbps";
 215                        break;
 216                default:
 217                        pr_info("%s: unsupported speed: %d\n",
 218                                dev->name, p->link_cfg.speed);
 219                        return;
 220                }
 221
 222                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
 223                            fc[p->link_cfg.fc]);
 224        }
 225}
 226
 227#ifdef CONFIG_CHELSIO_T4_DCB
 228/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
 229static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
 230{
 231        struct port_info *pi = netdev_priv(dev);
 232        struct adapter *adap = pi->adapter;
 233        struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
 234        int i;
 235
 236        /* We use a simple mapping of Port TX Queue Index to DCB
 237         * Priority when we're enabling DCB.
 238         */
 239        for (i = 0; i < pi->nqsets; i++, txq++) {
 240                u32 name, value;
 241                int err;
 242
 243                name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 244                        FW_PARAMS_PARAM_X_V(
 245                                FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
 246                        FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
 247                value = enable ? i : 0xffffffff;
 248
 249                /* Since we can be called while atomic (from "interrupt
 250                 * level") we need to issue the Set Parameters Commannd
 251                 * without sleeping (timeout < 0).
 252                 */
 253                err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
 254                                            &name, &value,
 255                                            -FW_CMD_MAX_TIMEOUT);
 256
 257                if (err)
 258                        dev_err(adap->pdev_dev,
 259                                "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
 260                                enable ? "set" : "unset", pi->port_id, i, -err);
 261                else
 262                        txq->dcb_prio = value;
 263        }
 264}
 265
 266static int cxgb4_dcb_enabled(const struct net_device *dev)
 267{
 268        struct port_info *pi = netdev_priv(dev);
 269
 270        if (!pi->dcb.enabled)
 271                return 0;
 272
 273        return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
 274                (pi->dcb.state == CXGB4_DCB_STATE_HOST));
 275}
 276#endif /* CONFIG_CHELSIO_T4_DCB */
 277
 278void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
 279{
 280        struct net_device *dev = adapter->port[port_id];
 281
 282        /* Skip changes from disabled ports. */
 283        if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
 284                if (link_stat)
 285                        netif_carrier_on(dev);
 286                else {
 287#ifdef CONFIG_CHELSIO_T4_DCB
 288                        if (cxgb4_dcb_enabled(dev)) {
 289                                cxgb4_dcb_reset(dev);
 290                                dcb_tx_queue_prio_enable(dev, false);
 291                        }
 292#endif /* CONFIG_CHELSIO_T4_DCB */
 293                        netif_carrier_off(dev);
 294                }
 295
 296                link_report(dev);
 297        }
 298}
 299
 300void t4_os_portmod_changed(const struct adapter *adap, int port_id)
 301{
 302        static const char *mod_str[] = {
 303                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 304        };
 305
 306        const struct net_device *dev = adap->port[port_id];
 307        const struct port_info *pi = netdev_priv(dev);
 308
 309        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 310                netdev_info(dev, "port module unplugged\n");
 311        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 312                netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
 313        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 314                netdev_info(dev, "%s: unsupported port module inserted\n",
 315                            dev->name);
 316        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 317                netdev_info(dev, "%s: unknown port module inserted\n",
 318                            dev->name);
 319        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 320                netdev_info(dev, "%s: transceiver module error\n", dev->name);
 321        else
 322                netdev_info(dev, "%s: unknown module type %d inserted\n",
 323                            dev->name, pi->mod_type);
 324}
 325
 326int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
 327module_param(dbfifo_int_thresh, int, 0644);
 328MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
 329
 330/*
 331 * usecs to sleep while draining the dbfifo
 332 */
 333static int dbfifo_drain_delay = 1000;
 334module_param(dbfifo_drain_delay, int, 0644);
 335MODULE_PARM_DESC(dbfifo_drain_delay,
 336                 "usecs to sleep while draining the dbfifo");
 337
 338static inline int cxgb4_set_addr_hash(struct port_info *pi)
 339{
 340        struct adapter *adap = pi->adapter;
 341        u64 vec = 0;
 342        bool ucast = false;
 343        struct hash_mac_addr *entry;
 344
 345        /* Calculate the hash vector for the updated list and program it */
 346        list_for_each_entry(entry, &adap->mac_hlist, list) {
 347                ucast |= is_unicast_ether_addr(entry->addr);
 348                vec |= (1ULL << hash_mac_addr(entry->addr));
 349        }
 350        return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
 351                                vec, false);
 352}
 353
 354static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 355{
 356        struct port_info *pi = netdev_priv(netdev);
 357        struct adapter *adap = pi->adapter;
 358        int ret;
 359        u64 mhash = 0;
 360        u64 uhash = 0;
 361        bool free = false;
 362        bool ucast = is_unicast_ether_addr(mac_addr);
 363        const u8 *maclist[1] = {mac_addr};
 364        struct hash_mac_addr *new_entry;
 365
 366        ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
 367                                NULL, ucast ? &uhash : &mhash, false);
 368        if (ret < 0)
 369                goto out;
 370        /* if hash != 0, then add the addr to hash addr list
 371         * so on the end we will calculate the hash for the
 372         * list and program it
 373         */
 374        if (uhash || mhash) {
 375                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 376                if (!new_entry)
 377                        return -ENOMEM;
 378                ether_addr_copy(new_entry->addr, mac_addr);
 379                list_add_tail(&new_entry->list, &adap->mac_hlist);
 380                ret = cxgb4_set_addr_hash(pi);
 381        }
 382out:
 383        return ret < 0 ? ret : 0;
 384}
 385
 386static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 387{
 388        struct port_info *pi = netdev_priv(netdev);
 389        struct adapter *adap = pi->adapter;
 390        int ret;
 391        const u8 *maclist[1] = {mac_addr};
 392        struct hash_mac_addr *entry, *tmp;
 393
 394        /* If the MAC address to be removed is in the hash addr
 395         * list, delete it from the list and update hash vector
 396         */
 397        list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
 398                if (ether_addr_equal(entry->addr, mac_addr)) {
 399                        list_del(&entry->list);
 400                        kfree(entry);
 401                        return cxgb4_set_addr_hash(pi);
 402                }
 403        }
 404
 405        ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
 406        return ret < 0 ? -EINVAL : 0;
 407}
 408
 409/*
 410 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 411 * If @mtu is -1 it is left unchanged.
 412 */
 413static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 414{
 415        struct port_info *pi = netdev_priv(dev);
 416        struct adapter *adapter = pi->adapter;
 417
 418        __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 419        __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 420
 421        return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
 422                             (dev->flags & IFF_PROMISC) ? 1 : 0,
 423                             (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
 424                             sleep_ok);
 425}
 426
 427/**
 428 *      link_start - enable a port
 429 *      @dev: the port to enable
 430 *
 431 *      Performs the MAC and PHY actions needed to enable a port.
 432 */
 433static int link_start(struct net_device *dev)
 434{
 435        int ret;
 436        struct port_info *pi = netdev_priv(dev);
 437        unsigned int mb = pi->adapter->pf;
 438
 439        /*
 440         * We do not set address filters and promiscuity here, the stack does
 441         * that step explicitly.
 442         */
 443        ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
 444                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
 445        if (ret == 0) {
 446                ret = t4_change_mac(pi->adapter, mb, pi->viid,
 447                                    pi->xact_addr_filt, dev->dev_addr, true,
 448                                    true);
 449                if (ret >= 0) {
 450                        pi->xact_addr_filt = ret;
 451                        ret = 0;
 452                }
 453        }
 454        if (ret == 0)
 455                ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
 456                                    &pi->link_cfg);
 457        if (ret == 0) {
 458                local_bh_disable();
 459                ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
 460                                          true, CXGB4_DCB_ENABLED);
 461                local_bh_enable();
 462        }
 463
 464        return ret;
 465}
 466
 467#ifdef CONFIG_CHELSIO_T4_DCB
 468/* Handle a Data Center Bridging update message from the firmware. */
 469static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
 470{
 471        int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
 472        struct net_device *dev = adap->port[adap->chan_map[port]];
 473        int old_dcb_enabled = cxgb4_dcb_enabled(dev);
 474        int new_dcb_enabled;
 475
 476        cxgb4_dcb_handle_fw_update(adap, pcmd);
 477        new_dcb_enabled = cxgb4_dcb_enabled(dev);
 478
 479        /* If the DCB has become enabled or disabled on the port then we're
 480         * going to need to set up/tear down DCB Priority parameters for the
 481         * TX Queues associated with the port.
 482         */
 483        if (new_dcb_enabled != old_dcb_enabled)
 484                dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
 485}
 486#endif /* CONFIG_CHELSIO_T4_DCB */
 487
 488/* Response queue handler for the FW event queue.
 489 */
 490static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
 491                          const struct pkt_gl *gl)
 492{
 493        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 494
 495        rsp++;                                          /* skip RSS header */
 496
 497        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 498         */
 499        if (unlikely(opcode == CPL_FW4_MSG &&
 500           ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
 501                rsp++;
 502                opcode = ((const struct rss_header *)rsp)->opcode;
 503                rsp++;
 504                if (opcode != CPL_SGE_EGR_UPDATE) {
 505                        dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 506                                , opcode);
 507                        goto out;
 508                }
 509        }
 510
 511        if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
 512                const struct cpl_sge_egr_update *p = (void *)rsp;
 513                unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
 514                struct sge_txq *txq;
 515
 516                txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
 517                txq->restarts++;
 518                if (txq->q_type == CXGB4_TXQ_ETH) {
 519                        struct sge_eth_txq *eq;
 520
 521                        eq = container_of(txq, struct sge_eth_txq, q);
 522                        netif_tx_wake_queue(eq->txq);
 523                } else {
 524                        struct sge_uld_txq *oq;
 525
 526                        oq = container_of(txq, struct sge_uld_txq, q);
 527                        tasklet_schedule(&oq->qresume_tsk);
 528                }
 529        } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
 530                const struct cpl_fw6_msg *p = (void *)rsp;
 531
 532#ifdef CONFIG_CHELSIO_T4_DCB
 533                const struct fw_port_cmd *pcmd = (const void *)p->data;
 534                unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
 535                unsigned int action =
 536                        FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
 537
 538                if (cmd == FW_PORT_CMD &&
 539                    (action == FW_PORT_ACTION_GET_PORT_INFO ||
 540                     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
 541                        int port = FW_PORT_CMD_PORTID_G(
 542                                        be32_to_cpu(pcmd->op_to_portid));
 543                        struct net_device *dev;
 544                        int dcbxdis, state_input;
 545
 546                        dev = q->adap->port[q->adap->chan_map[port]];
 547                        dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
 548                                   ? !!(pcmd->u.info.dcbxdis_pkd &
 549                                        FW_PORT_CMD_DCBXDIS_F)
 550                                   : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
 551                                        FW_PORT_CMD_DCBXDIS32_F));
 552                        state_input = (dcbxdis
 553                                       ? CXGB4_DCB_INPUT_FW_DISABLED
 554                                       : CXGB4_DCB_INPUT_FW_ENABLED);
 555
 556                        cxgb4_dcb_state_fsm(dev, state_input);
 557                }
 558
 559                if (cmd == FW_PORT_CMD &&
 560                    action == FW_PORT_ACTION_L2_DCB_CFG)
 561                        dcb_rpl(q->adap, pcmd);
 562                else
 563#endif
 564                        if (p->type == 0)
 565                                t4_handle_fw_rpl(q->adap, p->data);
 566        } else if (opcode == CPL_L2T_WRITE_RPL) {
 567                const struct cpl_l2t_write_rpl *p = (void *)rsp;
 568
 569                do_l2t_write_rpl(q->adap, p);
 570        } else if (opcode == CPL_SMT_WRITE_RPL) {
 571                const struct cpl_smt_write_rpl *p = (void *)rsp;
 572
 573                do_smt_write_rpl(q->adap, p);
 574        } else if (opcode == CPL_SET_TCB_RPL) {
 575                const struct cpl_set_tcb_rpl *p = (void *)rsp;
 576
 577                filter_rpl(q->adap, p);
 578        } else if (opcode == CPL_ACT_OPEN_RPL) {
 579                const struct cpl_act_open_rpl *p = (void *)rsp;
 580
 581                hash_filter_rpl(q->adap, p);
 582        } else if (opcode == CPL_ABORT_RPL_RSS) {
 583                const struct cpl_abort_rpl_rss *p = (void *)rsp;
 584
 585                hash_del_filter_rpl(q->adap, p);
 586        } else
 587                dev_err(q->adap->pdev_dev,
 588                        "unexpected CPL %#x on FW event queue\n", opcode);
 589out:
 590        return 0;
 591}
 592
 593static void disable_msi(struct adapter *adapter)
 594{
 595        if (adapter->flags & USING_MSIX) {
 596                pci_disable_msix(adapter->pdev);
 597                adapter->flags &= ~USING_MSIX;
 598        } else if (adapter->flags & USING_MSI) {
 599                pci_disable_msi(adapter->pdev);
 600                adapter->flags &= ~USING_MSI;
 601        }
 602}
 603
 604/*
 605 * Interrupt handler for non-data events used with MSI-X.
 606 */
 607static irqreturn_t t4_nondata_intr(int irq, void *cookie)
 608{
 609        struct adapter *adap = cookie;
 610        u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
 611
 612        if (v & PFSW_F) {
 613                adap->swintr = 1;
 614                t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
 615        }
 616        if (adap->flags & MASTER_PF)
 617                t4_slow_intr_handler(adap);
 618        return IRQ_HANDLED;
 619}
 620
 621/*
 622 * Name the MSI-X interrupts.
 623 */
 624static void name_msix_vecs(struct adapter *adap)
 625{
 626        int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
 627
 628        /* non-data interrupts */
 629        snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
 630
 631        /* FW events */
 632        snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
 633                 adap->port[0]->name);
 634
 635        /* Ethernet queues */
 636        for_each_port(adap, j) {
 637                struct net_device *d = adap->port[j];
 638                const struct port_info *pi = netdev_priv(d);
 639
 640                for (i = 0; i < pi->nqsets; i++, msi_idx++)
 641                        snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
 642                                 d->name, i);
 643        }
 644}
 645
 646static int request_msix_queue_irqs(struct adapter *adap)
 647{
 648        struct sge *s = &adap->sge;
 649        int err, ethqidx;
 650        int msi_index = 2;
 651
 652        err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
 653                          adap->msix_info[1].desc, &s->fw_evtq);
 654        if (err)
 655                return err;
 656
 657        for_each_ethrxq(s, ethqidx) {
 658                err = request_irq(adap->msix_info[msi_index].vec,
 659                                  t4_sge_intr_msix, 0,
 660                                  adap->msix_info[msi_index].desc,
 661                                  &s->ethrxq[ethqidx].rspq);
 662                if (err)
 663                        goto unwind;
 664                msi_index++;
 665        }
 666        return 0;
 667
 668unwind:
 669        while (--ethqidx >= 0)
 670                free_irq(adap->msix_info[--msi_index].vec,
 671                         &s->ethrxq[ethqidx].rspq);
 672        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 673        return err;
 674}
 675
 676static void free_msix_queue_irqs(struct adapter *adap)
 677{
 678        int i, msi_index = 2;
 679        struct sge *s = &adap->sge;
 680
 681        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 682        for_each_ethrxq(s, i)
 683                free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
 684}
 685
 686/**
 687 *      cxgb4_write_rss - write the RSS table for a given port
 688 *      @pi: the port
 689 *      @queues: array of queue indices for RSS
 690 *
 691 *      Sets up the portion of the HW RSS table for the port's VI to distribute
 692 *      packets to the Rx queues in @queues.
 693 *      Should never be called before setting up sge eth rx queues
 694 */
 695int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
 696{
 697        u16 *rss;
 698        int i, err;
 699        struct adapter *adapter = pi->adapter;
 700        const struct sge_eth_rxq *rxq;
 701
 702        rxq = &adapter->sge.ethrxq[pi->first_qset];
 703        rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
 704        if (!rss)
 705                return -ENOMEM;
 706
 707        /* map the queue indices to queue ids */
 708        for (i = 0; i < pi->rss_size; i++, queues++)
 709                rss[i] = rxq[*queues].rspq.abs_id;
 710
 711        err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
 712                                  pi->rss_size, rss, pi->rss_size);
 713        /* If Tunnel All Lookup isn't specified in the global RSS
 714         * Configuration, then we need to specify a default Ingress
 715         * Queue for any ingress packets which aren't hashed.  We'll
 716         * use our first ingress queue ...
 717         */
 718        if (!err)
 719                err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
 720                                       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
 721                                       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
 722                                       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
 723                                       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
 724                                       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
 725                                       rss[0]);
 726        kfree(rss);
 727        return err;
 728}
 729
 730/**
 731 *      setup_rss - configure RSS
 732 *      @adap: the adapter
 733 *
 734 *      Sets up RSS for each port.
 735 */
 736static int setup_rss(struct adapter *adap)
 737{
 738        int i, j, err;
 739
 740        for_each_port(adap, i) {
 741                const struct port_info *pi = adap2pinfo(adap, i);
 742
 743                /* Fill default values with equal distribution */
 744                for (j = 0; j < pi->rss_size; j++)
 745                        pi->rss[j] = j % pi->nqsets;
 746
 747                err = cxgb4_write_rss(pi, pi->rss);
 748                if (err)
 749                        return err;
 750        }
 751        return 0;
 752}
 753
 754/*
 755 * Return the channel of the ingress queue with the given qid.
 756 */
 757static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
 758{
 759        qid -= p->ingr_start;
 760        return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
 761}
 762
 763/*
 764 * Wait until all NAPI handlers are descheduled.
 765 */
 766static void quiesce_rx(struct adapter *adap)
 767{
 768        int i;
 769
 770        for (i = 0; i < adap->sge.ingr_sz; i++) {
 771                struct sge_rspq *q = adap->sge.ingr_map[i];
 772
 773                if (q && q->handler)
 774                        napi_disable(&q->napi);
 775        }
 776}
 777
 778/* Disable interrupt and napi handler */
 779static void disable_interrupts(struct adapter *adap)
 780{
 781        if (adap->flags & FULL_INIT_DONE) {
 782                t4_intr_disable(adap);
 783                if (adap->flags & USING_MSIX) {
 784                        free_msix_queue_irqs(adap);
 785                        free_irq(adap->msix_info[0].vec, adap);
 786                } else {
 787                        free_irq(adap->pdev->irq, adap);
 788                }
 789                quiesce_rx(adap);
 790        }
 791}
 792
 793/*
 794 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 795 */
 796static void enable_rx(struct adapter *adap)
 797{
 798        int i;
 799
 800        for (i = 0; i < adap->sge.ingr_sz; i++) {
 801                struct sge_rspq *q = adap->sge.ingr_map[i];
 802
 803                if (!q)
 804                        continue;
 805                if (q->handler)
 806                        napi_enable(&q->napi);
 807
 808                /* 0-increment GTS to start the timer and enable interrupts */
 809                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
 810                             SEINTARM_V(q->intr_params) |
 811                             INGRESSQID_V(q->cntxt_id));
 812        }
 813}
 814
 815
 816static int setup_fw_sge_queues(struct adapter *adap)
 817{
 818        struct sge *s = &adap->sge;
 819        int err = 0;
 820
 821        bitmap_zero(s->starving_fl, s->egr_sz);
 822        bitmap_zero(s->txq_maperr, s->egr_sz);
 823
 824        if (adap->flags & USING_MSIX)
 825                adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
 826        else {
 827                err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
 828                                       NULL, NULL, NULL, -1);
 829                if (err)
 830                        return err;
 831                adap->msi_idx = -((int)s->intrq.abs_id + 1);
 832        }
 833
 834        err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
 835                               adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
 836        if (err)
 837                t4_free_sge_resources(adap);
 838        return err;
 839}
 840
 841/**
 842 *      setup_sge_queues - configure SGE Tx/Rx/response queues
 843 *      @adap: the adapter
 844 *
 845 *      Determines how many sets of SGE queues to use and initializes them.
 846 *      We support multiple queue sets per port if we have MSI-X, otherwise
 847 *      just one queue set per port.
 848 */
 849static int setup_sge_queues(struct adapter *adap)
 850{
 851        int err, i, j;
 852        struct sge *s = &adap->sge;
 853        struct sge_uld_rxq_info *rxq_info = NULL;
 854        unsigned int cmplqid = 0;
 855
 856        if (is_uld(adap))
 857                rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
 858
 859        for_each_port(adap, i) {
 860                struct net_device *dev = adap->port[i];
 861                struct port_info *pi = netdev_priv(dev);
 862                struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
 863                struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
 864
 865                for (j = 0; j < pi->nqsets; j++, q++) {
 866                        if (adap->msi_idx > 0)
 867                                adap->msi_idx++;
 868                        err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
 869                                               adap->msi_idx, &q->fl,
 870                                               t4_ethrx_handler,
 871                                               NULL,
 872                                               t4_get_tp_ch_map(adap,
 873                                                                pi->tx_chan));
 874                        if (err)
 875                                goto freeout;
 876                        q->rspq.idx = j;
 877                        memset(&q->stats, 0, sizeof(q->stats));
 878                }
 879                for (j = 0; j < pi->nqsets; j++, t++) {
 880                        err = t4_sge_alloc_eth_txq(adap, t, dev,
 881                                        netdev_get_tx_queue(dev, j),
 882                                        s->fw_evtq.cntxt_id);
 883                        if (err)
 884                                goto freeout;
 885                }
 886        }
 887
 888        for_each_port(adap, i) {
 889                /* Note that cmplqid below is 0 if we don't
 890                 * have RDMA queues, and that's the right value.
 891                 */
 892                if (rxq_info)
 893                        cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
 894
 895                err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
 896                                            s->fw_evtq.cntxt_id, cmplqid);
 897                if (err)
 898                        goto freeout;
 899        }
 900
 901        if (!is_t4(adap->params.chip)) {
 902                err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
 903                                           netdev_get_tx_queue(adap->port[0], 0)
 904                                           , s->fw_evtq.cntxt_id);
 905                if (err)
 906                        goto freeout;
 907        }
 908
 909        t4_write_reg(adap, is_t4(adap->params.chip) ?
 910                                MPS_TRC_RSS_CONTROL_A :
 911                                MPS_T5_TRC_RSS_CONTROL_A,
 912                     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
 913                     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
 914        return 0;
 915freeout:
 916        t4_free_sge_resources(adap);
 917        return err;
 918}
 919
 920static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
 921                             void *accel_priv, select_queue_fallback_t fallback)
 922{
 923        int txq;
 924
 925#ifdef CONFIG_CHELSIO_T4_DCB
 926        /* If a Data Center Bridging has been successfully negotiated on this
 927         * link then we'll use the skb's priority to map it to a TX Queue.
 928         * The skb's priority is determined via the VLAN Tag Priority Code
 929         * Point field.
 930         */
 931        if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
 932                u16 vlan_tci;
 933                int err;
 934
 935                err = vlan_get_tag(skb, &vlan_tci);
 936                if (unlikely(err)) {
 937                        if (net_ratelimit())
 938                                netdev_warn(dev,
 939                                            "TX Packet without VLAN Tag on DCB Link\n");
 940                        txq = 0;
 941                } else {
 942                        txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
 943#ifdef CONFIG_CHELSIO_T4_FCOE
 944                        if (skb->protocol == htons(ETH_P_FCOE))
 945                                txq = skb->priority & 0x7;
 946#endif /* CONFIG_CHELSIO_T4_FCOE */
 947                }
 948                return txq;
 949        }
 950#endif /* CONFIG_CHELSIO_T4_DCB */
 951
 952        if (select_queue) {
 953                txq = (skb_rx_queue_recorded(skb)
 954                        ? skb_get_rx_queue(skb)
 955                        : smp_processor_id());
 956
 957                while (unlikely(txq >= dev->real_num_tx_queues))
 958                        txq -= dev->real_num_tx_queues;
 959
 960                return txq;
 961        }
 962
 963        return fallback(dev, skb) % dev->real_num_tx_queues;
 964}
 965
 966static int closest_timer(const struct sge *s, int time)
 967{
 968        int i, delta, match = 0, min_delta = INT_MAX;
 969
 970        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
 971                delta = time - s->timer_val[i];
 972                if (delta < 0)
 973                        delta = -delta;
 974                if (delta < min_delta) {
 975                        min_delta = delta;
 976                        match = i;
 977                }
 978        }
 979        return match;
 980}
 981
 982static int closest_thres(const struct sge *s, int thres)
 983{
 984        int i, delta, match = 0, min_delta = INT_MAX;
 985
 986        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
 987                delta = thres - s->counter_val[i];
 988                if (delta < 0)
 989                        delta = -delta;
 990                if (delta < min_delta) {
 991                        min_delta = delta;
 992                        match = i;
 993                }
 994        }
 995        return match;
 996}
 997
 998/**
 999 *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1000 *      @q: the Rx queue
1001 *      @us: the hold-off time in us, or 0 to disable timer
1002 *      @cnt: the hold-off packet count, or 0 to disable counter
1003 *
1004 *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1005 *      one of the two needs to be enabled for the queue to generate interrupts.
1006 */
1007int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1008                               unsigned int us, unsigned int cnt)
1009{
1010        struct adapter *adap = q->adap;
1011
1012        if ((us | cnt) == 0)
1013                cnt = 1;
1014
1015        if (cnt) {
1016                int err;
1017                u32 v, new_idx;
1018
1019                new_idx = closest_thres(&adap->sge, cnt);
1020                if (q->desc && q->pktcnt_idx != new_idx) {
1021                        /* the queue has already been created, update it */
1022                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1023                            FW_PARAMS_PARAM_X_V(
1024                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1025                            FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1026                        err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1027                                            &v, &new_idx);
1028                        if (err)
1029                                return err;
1030                }
1031                q->pktcnt_idx = new_idx;
1032        }
1033
1034        us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1035        q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1036        return 0;
1037}
1038
1039static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1040{
1041        const struct port_info *pi = netdev_priv(dev);
1042        netdev_features_t changed = dev->features ^ features;
1043        int err;
1044
1045        if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1046                return 0;
1047
1048        err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1049                            -1, -1, -1,
1050                            !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1051        if (unlikely(err))
1052                dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1053        return err;
1054}
1055
1056static int setup_debugfs(struct adapter *adap)
1057{
1058        if (IS_ERR_OR_NULL(adap->debugfs_root))
1059                return -1;
1060
1061#ifdef CONFIG_DEBUG_FS
1062        t4_setup_debugfs(adap);
1063#endif
1064        return 0;
1065}
1066
1067/*
1068 * upper-layer driver support
1069 */
1070
1071/*
1072 * Allocate an active-open TID and set it to the supplied value.
1073 */
1074int cxgb4_alloc_atid(struct tid_info *t, void *data)
1075{
1076        int atid = -1;
1077
1078        spin_lock_bh(&t->atid_lock);
1079        if (t->afree) {
1080                union aopen_entry *p = t->afree;
1081
1082                atid = (p - t->atid_tab) + t->atid_base;
1083                t->afree = p->next;
1084                p->data = data;
1085                t->atids_in_use++;
1086        }
1087        spin_unlock_bh(&t->atid_lock);
1088        return atid;
1089}
1090EXPORT_SYMBOL(cxgb4_alloc_atid);
1091
1092/*
1093 * Release an active-open TID.
1094 */
1095void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1096{
1097        union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1098
1099        spin_lock_bh(&t->atid_lock);
1100        p->next = t->afree;
1101        t->afree = p;
1102        t->atids_in_use--;
1103        spin_unlock_bh(&t->atid_lock);
1104}
1105EXPORT_SYMBOL(cxgb4_free_atid);
1106
1107/*
1108 * Allocate a server TID and set it to the supplied value.
1109 */
1110int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1111{
1112        int stid;
1113
1114        spin_lock_bh(&t->stid_lock);
1115        if (family == PF_INET) {
1116                stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1117                if (stid < t->nstids)
1118                        __set_bit(stid, t->stid_bmap);
1119                else
1120                        stid = -1;
1121        } else {
1122                stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1123                if (stid < 0)
1124                        stid = -1;
1125        }
1126        if (stid >= 0) {
1127                t->stid_tab[stid].data = data;
1128                stid += t->stid_base;
1129                /* IPv6 requires max of 520 bits or 16 cells in TCAM
1130                 * This is equivalent to 4 TIDs. With CLIP enabled it
1131                 * needs 2 TIDs.
1132                 */
1133                if (family == PF_INET6) {
1134                        t->stids_in_use += 2;
1135                        t->v6_stids_in_use += 2;
1136                } else {
1137                        t->stids_in_use++;
1138                }
1139        }
1140        spin_unlock_bh(&t->stid_lock);
1141        return stid;
1142}
1143EXPORT_SYMBOL(cxgb4_alloc_stid);
1144
1145/* Allocate a server filter TID and set it to the supplied value.
1146 */
1147int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1148{
1149        int stid;
1150
1151        spin_lock_bh(&t->stid_lock);
1152        if (family == PF_INET) {
1153                stid = find_next_zero_bit(t->stid_bmap,
1154                                t->nstids + t->nsftids, t->nstids);
1155                if (stid < (t->nstids + t->nsftids))
1156                        __set_bit(stid, t->stid_bmap);
1157                else
1158                        stid = -1;
1159        } else {
1160                stid = -1;
1161        }
1162        if (stid >= 0) {
1163                t->stid_tab[stid].data = data;
1164                stid -= t->nstids;
1165                stid += t->sftid_base;
1166                t->sftids_in_use++;
1167        }
1168        spin_unlock_bh(&t->stid_lock);
1169        return stid;
1170}
1171EXPORT_SYMBOL(cxgb4_alloc_sftid);
1172
1173/* Release a server TID.
1174 */
1175void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1176{
1177        /* Is it a server filter TID? */
1178        if (t->nsftids && (stid >= t->sftid_base)) {
1179                stid -= t->sftid_base;
1180                stid += t->nstids;
1181        } else {
1182                stid -= t->stid_base;
1183        }
1184
1185        spin_lock_bh(&t->stid_lock);
1186        if (family == PF_INET)
1187                __clear_bit(stid, t->stid_bmap);
1188        else
1189                bitmap_release_region(t->stid_bmap, stid, 1);
1190        t->stid_tab[stid].data = NULL;
1191        if (stid < t->nstids) {
1192                if (family == PF_INET6) {
1193                        t->stids_in_use -= 2;
1194                        t->v6_stids_in_use -= 2;
1195                } else {
1196                        t->stids_in_use--;
1197                }
1198        } else {
1199                t->sftids_in_use--;
1200        }
1201
1202        spin_unlock_bh(&t->stid_lock);
1203}
1204EXPORT_SYMBOL(cxgb4_free_stid);
1205
1206/*
1207 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1208 */
1209static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1210                           unsigned int tid)
1211{
1212        struct cpl_tid_release *req;
1213
1214        set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1215        req = __skb_put(skb, sizeof(*req));
1216        INIT_TP_WR(req, tid);
1217        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1218}
1219
1220/*
1221 * Queue a TID release request and if necessary schedule a work queue to
1222 * process it.
1223 */
1224static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1225                                    unsigned int tid)
1226{
1227        void **p = &t->tid_tab[tid];
1228        struct adapter *adap = container_of(t, struct adapter, tids);
1229
1230        spin_lock_bh(&adap->tid_release_lock);
1231        *p = adap->tid_release_head;
1232        /* Low 2 bits encode the Tx channel number */
1233        adap->tid_release_head = (void **)((uintptr_t)p | chan);
1234        if (!adap->tid_release_task_busy) {
1235                adap->tid_release_task_busy = true;
1236                queue_work(adap->workq, &adap->tid_release_task);
1237        }
1238        spin_unlock_bh(&adap->tid_release_lock);
1239}
1240
1241/*
1242 * Process the list of pending TID release requests.
1243 */
1244static void process_tid_release_list(struct work_struct *work)
1245{
1246        struct sk_buff *skb;
1247        struct adapter *adap;
1248
1249        adap = container_of(work, struct adapter, tid_release_task);
1250
1251        spin_lock_bh(&adap->tid_release_lock);
1252        while (adap->tid_release_head) {
1253                void **p = adap->tid_release_head;
1254                unsigned int chan = (uintptr_t)p & 3;
1255                p = (void *)p - chan;
1256
1257                adap->tid_release_head = *p;
1258                *p = NULL;
1259                spin_unlock_bh(&adap->tid_release_lock);
1260
1261                while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1262                                         GFP_KERNEL)))
1263                        schedule_timeout_uninterruptible(1);
1264
1265                mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1266                t4_ofld_send(adap, skb);
1267                spin_lock_bh(&adap->tid_release_lock);
1268        }
1269        adap->tid_release_task_busy = false;
1270        spin_unlock_bh(&adap->tid_release_lock);
1271}
1272
1273/*
1274 * Release a TID and inform HW.  If we are unable to allocate the release
1275 * message we defer to a work queue.
1276 */
1277void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1278                      unsigned short family)
1279{
1280        struct sk_buff *skb;
1281        struct adapter *adap = container_of(t, struct adapter, tids);
1282
1283        WARN_ON(tid >= t->ntids);
1284
1285        if (t->tid_tab[tid]) {
1286                t->tid_tab[tid] = NULL;
1287                atomic_dec(&t->conns_in_use);
1288                if (t->hash_base && (tid >= t->hash_base)) {
1289                        if (family == AF_INET6)
1290                                atomic_sub(2, &t->hash_tids_in_use);
1291                        else
1292                                atomic_dec(&t->hash_tids_in_use);
1293                } else {
1294                        if (family == AF_INET6)
1295                                atomic_sub(2, &t->tids_in_use);
1296                        else
1297                                atomic_dec(&t->tids_in_use);
1298                }
1299        }
1300
1301        skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1302        if (likely(skb)) {
1303                mk_tid_release(skb, chan, tid);
1304                t4_ofld_send(adap, skb);
1305        } else
1306                cxgb4_queue_tid_release(t, chan, tid);
1307}
1308EXPORT_SYMBOL(cxgb4_remove_tid);
1309
1310/*
1311 * Allocate and initialize the TID tables.  Returns 0 on success.
1312 */
1313static int tid_init(struct tid_info *t)
1314{
1315        struct adapter *adap = container_of(t, struct adapter, tids);
1316        unsigned int max_ftids = t->nftids + t->nsftids;
1317        unsigned int natids = t->natids;
1318        unsigned int stid_bmap_size;
1319        unsigned int ftid_bmap_size;
1320        size_t size;
1321
1322        stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1323        ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1324        size = t->ntids * sizeof(*t->tid_tab) +
1325               natids * sizeof(*t->atid_tab) +
1326               t->nstids * sizeof(*t->stid_tab) +
1327               t->nsftids * sizeof(*t->stid_tab) +
1328               stid_bmap_size * sizeof(long) +
1329               max_ftids * sizeof(*t->ftid_tab) +
1330               ftid_bmap_size * sizeof(long);
1331
1332        t->tid_tab = kvzalloc(size, GFP_KERNEL);
1333        if (!t->tid_tab)
1334                return -ENOMEM;
1335
1336        t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1337        t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1338        t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1339        t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1340        t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1341        spin_lock_init(&t->stid_lock);
1342        spin_lock_init(&t->atid_lock);
1343        spin_lock_init(&t->ftid_lock);
1344
1345        t->stids_in_use = 0;
1346        t->v6_stids_in_use = 0;
1347        t->sftids_in_use = 0;
1348        t->afree = NULL;
1349        t->atids_in_use = 0;
1350        atomic_set(&t->tids_in_use, 0);
1351        atomic_set(&t->conns_in_use, 0);
1352        atomic_set(&t->hash_tids_in_use, 0);
1353
1354        /* Setup the free list for atid_tab and clear the stid bitmap. */
1355        if (natids) {
1356                while (--natids)
1357                        t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1358                t->afree = t->atid_tab;
1359        }
1360
1361        if (is_offload(adap)) {
1362                bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1363                /* Reserve stid 0 for T4/T5 adapters */
1364                if (!t->stid_base &&
1365                    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1366                        __set_bit(0, t->stid_bmap);
1367        }
1368
1369        bitmap_zero(t->ftid_bmap, t->nftids);
1370        return 0;
1371}
1372
1373/**
1374 *      cxgb4_create_server - create an IP server
1375 *      @dev: the device
1376 *      @stid: the server TID
1377 *      @sip: local IP address to bind server to
1378 *      @sport: the server's TCP port
1379 *      @queue: queue to direct messages from this server to
1380 *
1381 *      Create an IP server for the given port and address.
1382 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1383 */
1384int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1385                        __be32 sip, __be16 sport, __be16 vlan,
1386                        unsigned int queue)
1387{
1388        unsigned int chan;
1389        struct sk_buff *skb;
1390        struct adapter *adap;
1391        struct cpl_pass_open_req *req;
1392        int ret;
1393
1394        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1395        if (!skb)
1396                return -ENOMEM;
1397
1398        adap = netdev2adap(dev);
1399        req = __skb_put(skb, sizeof(*req));
1400        INIT_TP_WR(req, 0);
1401        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1402        req->local_port = sport;
1403        req->peer_port = htons(0);
1404        req->local_ip = sip;
1405        req->peer_ip = htonl(0);
1406        chan = rxq_to_chan(&adap->sge, queue);
1407        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1408        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1409                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1410        ret = t4_mgmt_tx(adap, skb);
1411        return net_xmit_eval(ret);
1412}
1413EXPORT_SYMBOL(cxgb4_create_server);
1414
1415/*      cxgb4_create_server6 - create an IPv6 server
1416 *      @dev: the device
1417 *      @stid: the server TID
1418 *      @sip: local IPv6 address to bind server to
1419 *      @sport: the server's TCP port
1420 *      @queue: queue to direct messages from this server to
1421 *
1422 *      Create an IPv6 server for the given port and address.
1423 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1424 */
1425int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1426                         const struct in6_addr *sip, __be16 sport,
1427                         unsigned int queue)
1428{
1429        unsigned int chan;
1430        struct sk_buff *skb;
1431        struct adapter *adap;
1432        struct cpl_pass_open_req6 *req;
1433        int ret;
1434
1435        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1436        if (!skb)
1437                return -ENOMEM;
1438
1439        adap = netdev2adap(dev);
1440        req = __skb_put(skb, sizeof(*req));
1441        INIT_TP_WR(req, 0);
1442        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1443        req->local_port = sport;
1444        req->peer_port = htons(0);
1445        req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1446        req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1447        req->peer_ip_hi = cpu_to_be64(0);
1448        req->peer_ip_lo = cpu_to_be64(0);
1449        chan = rxq_to_chan(&adap->sge, queue);
1450        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1451        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1452                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1453        ret = t4_mgmt_tx(adap, skb);
1454        return net_xmit_eval(ret);
1455}
1456EXPORT_SYMBOL(cxgb4_create_server6);
1457
1458int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1459                        unsigned int queue, bool ipv6)
1460{
1461        struct sk_buff *skb;
1462        struct adapter *adap;
1463        struct cpl_close_listsvr_req *req;
1464        int ret;
1465
1466        adap = netdev2adap(dev);
1467
1468        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1469        if (!skb)
1470                return -ENOMEM;
1471
1472        req = __skb_put(skb, sizeof(*req));
1473        INIT_TP_WR(req, 0);
1474        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1475        req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1476                                LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1477        ret = t4_mgmt_tx(adap, skb);
1478        return net_xmit_eval(ret);
1479}
1480EXPORT_SYMBOL(cxgb4_remove_server);
1481
1482/**
1483 *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1484 *      @mtus: the HW MTU table
1485 *      @mtu: the target MTU
1486 *      @idx: index of selected entry in the MTU table
1487 *
1488 *      Returns the index and the value in the HW MTU table that is closest to
1489 *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1490 *      table, in which case that smallest available value is selected.
1491 */
1492unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1493                            unsigned int *idx)
1494{
1495        unsigned int i = 0;
1496
1497        while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1498                ++i;
1499        if (idx)
1500                *idx = i;
1501        return mtus[i];
1502}
1503EXPORT_SYMBOL(cxgb4_best_mtu);
1504
1505/**
1506 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1507 *     @mtus: the HW MTU table
1508 *     @header_size: Header Size
1509 *     @data_size_max: maximum Data Segment Size
1510 *     @data_size_align: desired Data Segment Size Alignment (2^N)
1511 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1512 *
1513 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1514 *     MTU Table based solely on a Maximum MTU parameter, we break that
1515 *     parameter up into a Header Size and Maximum Data Segment Size, and
1516 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1517 *     the Hardware MTU Table which will result in a Data Segment Size with
1518 *     the requested alignment _and_ that MTU isn't "too far" from the
1519 *     closest MTU, then we'll return that rather than the closest MTU.
1520 */
1521unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1522                                    unsigned short header_size,
1523                                    unsigned short data_size_max,
1524                                    unsigned short data_size_align,
1525                                    unsigned int *mtu_idxp)
1526{
1527        unsigned short max_mtu = header_size + data_size_max;
1528        unsigned short data_size_align_mask = data_size_align - 1;
1529        int mtu_idx, aligned_mtu_idx;
1530
1531        /* Scan the MTU Table till we find an MTU which is larger than our
1532         * Maximum MTU or we reach the end of the table.  Along the way,
1533         * record the last MTU found, if any, which will result in a Data
1534         * Segment Length matching the requested alignment.
1535         */
1536        for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1537                unsigned short data_size = mtus[mtu_idx] - header_size;
1538
1539                /* If this MTU minus the Header Size would result in a
1540                 * Data Segment Size of the desired alignment, remember it.
1541                 */
1542                if ((data_size & data_size_align_mask) == 0)
1543                        aligned_mtu_idx = mtu_idx;
1544
1545                /* If we're not at the end of the Hardware MTU Table and the
1546                 * next element is larger than our Maximum MTU, drop out of
1547                 * the loop.
1548                 */
1549                if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1550                        break;
1551        }
1552
1553        /* If we fell out of the loop because we ran to the end of the table,
1554         * then we just have to use the last [largest] entry.
1555         */
1556        if (mtu_idx == NMTUS)
1557                mtu_idx--;
1558
1559        /* If we found an MTU which resulted in the requested Data Segment
1560         * Length alignment and that's "not far" from the largest MTU which is
1561         * less than or equal to the maximum MTU, then use that.
1562         */
1563        if (aligned_mtu_idx >= 0 &&
1564            mtu_idx - aligned_mtu_idx <= 1)
1565                mtu_idx = aligned_mtu_idx;
1566
1567        /* If the caller has passed in an MTU Index pointer, pass the
1568         * MTU Index back.  Return the MTU value.
1569         */
1570        if (mtu_idxp)
1571                *mtu_idxp = mtu_idx;
1572        return mtus[mtu_idx];
1573}
1574EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1575
1576/**
1577 *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1578 *      @chip: chip type
1579 *      @viid: VI id of the given port
1580 *
1581 *      Return the SMT index for this VI.
1582 */
1583unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1584{
1585        /* In T4/T5, SMT contains 256 SMAC entries organized in
1586         * 128 rows of 2 entries each.
1587         * In T6, SMT contains 256 SMAC entries in 256 rows.
1588         * TODO: The below code needs to be updated when we add support
1589         * for 256 VFs.
1590         */
1591        if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1592                return ((viid & 0x7f) << 1);
1593        else
1594                return (viid & 0x7f);
1595}
1596EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1597
1598/**
1599 *      cxgb4_port_chan - get the HW channel of a port
1600 *      @dev: the net device for the port
1601 *
1602 *      Return the HW Tx channel of the given port.
1603 */
1604unsigned int cxgb4_port_chan(const struct net_device *dev)
1605{
1606        return netdev2pinfo(dev)->tx_chan;
1607}
1608EXPORT_SYMBOL(cxgb4_port_chan);
1609
1610unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1611{
1612        struct adapter *adap = netdev2adap(dev);
1613        u32 v1, v2, lp_count, hp_count;
1614
1615        v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1616        v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1617        if (is_t4(adap->params.chip)) {
1618                lp_count = LP_COUNT_G(v1);
1619                hp_count = HP_COUNT_G(v1);
1620        } else {
1621                lp_count = LP_COUNT_T5_G(v1);
1622                hp_count = HP_COUNT_T5_G(v2);
1623        }
1624        return lpfifo ? lp_count : hp_count;
1625}
1626EXPORT_SYMBOL(cxgb4_dbfifo_count);
1627
1628/**
1629 *      cxgb4_port_viid - get the VI id of a port
1630 *      @dev: the net device for the port
1631 *
1632 *      Return the VI id of the given port.
1633 */
1634unsigned int cxgb4_port_viid(const struct net_device *dev)
1635{
1636        return netdev2pinfo(dev)->viid;
1637}
1638EXPORT_SYMBOL(cxgb4_port_viid);
1639
1640/**
1641 *      cxgb4_port_idx - get the index of a port
1642 *      @dev: the net device for the port
1643 *
1644 *      Return the index of the given port.
1645 */
1646unsigned int cxgb4_port_idx(const struct net_device *dev)
1647{
1648        return netdev2pinfo(dev)->port_id;
1649}
1650EXPORT_SYMBOL(cxgb4_port_idx);
1651
1652void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1653                         struct tp_tcp_stats *v6)
1654{
1655        struct adapter *adap = pci_get_drvdata(pdev);
1656
1657        spin_lock(&adap->stats_lock);
1658        t4_tp_get_tcp_stats(adap, v4, v6, false);
1659        spin_unlock(&adap->stats_lock);
1660}
1661EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1662
1663void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1664                      const unsigned int *pgsz_order)
1665{
1666        struct adapter *adap = netdev2adap(dev);
1667
1668        t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1669        t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1670                     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1671                     HPZ3_V(pgsz_order[3]));
1672}
1673EXPORT_SYMBOL(cxgb4_iscsi_init);
1674
1675int cxgb4_flush_eq_cache(struct net_device *dev)
1676{
1677        struct adapter *adap = netdev2adap(dev);
1678
1679        return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1680}
1681EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1682
1683static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1684{
1685        u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1686        __be64 indices;
1687        int ret;
1688
1689        spin_lock(&adap->win0_lock);
1690        ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1691                           sizeof(indices), (__be32 *)&indices,
1692                           T4_MEMORY_READ);
1693        spin_unlock(&adap->win0_lock);
1694        if (!ret) {
1695                *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1696                *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1697        }
1698        return ret;
1699}
1700
1701int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1702                        u16 size)
1703{
1704        struct adapter *adap = netdev2adap(dev);
1705        u16 hw_pidx, hw_cidx;
1706        int ret;
1707
1708        ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1709        if (ret)
1710                goto out;
1711
1712        if (pidx != hw_pidx) {
1713                u16 delta;
1714                u32 val;
1715
1716                if (pidx >= hw_pidx)
1717                        delta = pidx - hw_pidx;
1718                else
1719                        delta = size - hw_pidx + pidx;
1720
1721                if (is_t4(adap->params.chip))
1722                        val = PIDX_V(delta);
1723                else
1724                        val = PIDX_T5_V(delta);
1725                wmb();
1726                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1727                             QID_V(qid) | val);
1728        }
1729out:
1730        return ret;
1731}
1732EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1733
1734int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1735{
1736        struct adapter *adap;
1737        u32 offset, memtype, memaddr;
1738        u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1739        u32 edc0_end, edc1_end, mc0_end, mc1_end;
1740        int ret;
1741
1742        adap = netdev2adap(dev);
1743
1744        offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1745
1746        /* Figure out where the offset lands in the Memory Type/Address scheme.
1747         * This code assumes that the memory is laid out starting at offset 0
1748         * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1749         * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1750         * MC0, and some have both MC0 and MC1.
1751         */
1752        size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1753        edc0_size = EDRAM0_SIZE_G(size) << 20;
1754        size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1755        edc1_size = EDRAM1_SIZE_G(size) << 20;
1756        size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1757        mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1758
1759        edc0_end = edc0_size;
1760        edc1_end = edc0_end + edc1_size;
1761        mc0_end = edc1_end + mc0_size;
1762
1763        if (offset < edc0_end) {
1764                memtype = MEM_EDC0;
1765                memaddr = offset;
1766        } else if (offset < edc1_end) {
1767                memtype = MEM_EDC1;
1768                memaddr = offset - edc0_end;
1769        } else {
1770                if (offset < mc0_end) {
1771                        memtype = MEM_MC0;
1772                        memaddr = offset - edc1_end;
1773                } else if (is_t5(adap->params.chip)) {
1774                        size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1775                        mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1776                        mc1_end = mc0_end + mc1_size;
1777                        if (offset < mc1_end) {
1778                                memtype = MEM_MC1;
1779                                memaddr = offset - mc0_end;
1780                        } else {
1781                                /* offset beyond the end of any memory */
1782                                goto err;
1783                        }
1784                } else {
1785                        /* T4/T6 only has a single memory channel */
1786                        goto err;
1787                }
1788        }
1789
1790        spin_lock(&adap->win0_lock);
1791        ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1792        spin_unlock(&adap->win0_lock);
1793        return ret;
1794
1795err:
1796        dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1797                stag, offset);
1798        return -EINVAL;
1799}
1800EXPORT_SYMBOL(cxgb4_read_tpte);
1801
1802u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1803{
1804        u32 hi, lo;
1805        struct adapter *adap;
1806
1807        adap = netdev2adap(dev);
1808        lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1809        hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1810
1811        return ((u64)hi << 32) | (u64)lo;
1812}
1813EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1814
1815int cxgb4_bar2_sge_qregs(struct net_device *dev,
1816                         unsigned int qid,
1817                         enum cxgb4_bar2_qtype qtype,
1818                         int user,
1819                         u64 *pbar2_qoffset,
1820                         unsigned int *pbar2_qid)
1821{
1822        return t4_bar2_sge_qregs(netdev2adap(dev),
1823                                 qid,
1824                                 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1825                                  ? T4_BAR2_QTYPE_EGRESS
1826                                  : T4_BAR2_QTYPE_INGRESS),
1827                                 user,
1828                                 pbar2_qoffset,
1829                                 pbar2_qid);
1830}
1831EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1832
1833static struct pci_driver cxgb4_driver;
1834
1835static void check_neigh_update(struct neighbour *neigh)
1836{
1837        const struct device *parent;
1838        const struct net_device *netdev = neigh->dev;
1839
1840        if (is_vlan_dev(netdev))
1841                netdev = vlan_dev_real_dev(netdev);
1842        parent = netdev->dev.parent;
1843        if (parent && parent->driver == &cxgb4_driver.driver)
1844                t4_l2t_update(dev_get_drvdata(parent), neigh);
1845}
1846
1847static int netevent_cb(struct notifier_block *nb, unsigned long event,
1848                       void *data)
1849{
1850        switch (event) {
1851        case NETEVENT_NEIGH_UPDATE:
1852                check_neigh_update(data);
1853                break;
1854        case NETEVENT_REDIRECT:
1855        default:
1856                break;
1857        }
1858        return 0;
1859}
1860
1861static bool netevent_registered;
1862static struct notifier_block cxgb4_netevent_nb = {
1863        .notifier_call = netevent_cb
1864};
1865
1866static void drain_db_fifo(struct adapter *adap, int usecs)
1867{
1868        u32 v1, v2, lp_count, hp_count;
1869
1870        do {
1871                v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1872                v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1873                if (is_t4(adap->params.chip)) {
1874                        lp_count = LP_COUNT_G(v1);
1875                        hp_count = HP_COUNT_G(v1);
1876                } else {
1877                        lp_count = LP_COUNT_T5_G(v1);
1878                        hp_count = HP_COUNT_T5_G(v2);
1879                }
1880
1881                if (lp_count == 0 && hp_count == 0)
1882                        break;
1883                set_current_state(TASK_UNINTERRUPTIBLE);
1884                schedule_timeout(usecs_to_jiffies(usecs));
1885        } while (1);
1886}
1887
1888static void disable_txq_db(struct sge_txq *q)
1889{
1890        unsigned long flags;
1891
1892        spin_lock_irqsave(&q->db_lock, flags);
1893        q->db_disabled = 1;
1894        spin_unlock_irqrestore(&q->db_lock, flags);
1895}
1896
1897static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1898{
1899        spin_lock_irq(&q->db_lock);
1900        if (q->db_pidx_inc) {
1901                /* Make sure that all writes to the TX descriptors
1902                 * are committed before we tell HW about them.
1903                 */
1904                wmb();
1905                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1906                             QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1907                q->db_pidx_inc = 0;
1908        }
1909        q->db_disabled = 0;
1910        spin_unlock_irq(&q->db_lock);
1911}
1912
1913static void disable_dbs(struct adapter *adap)
1914{
1915        int i;
1916
1917        for_each_ethrxq(&adap->sge, i)
1918                disable_txq_db(&adap->sge.ethtxq[i].q);
1919        if (is_offload(adap)) {
1920                struct sge_uld_txq_info *txq_info =
1921                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1922
1923                if (txq_info) {
1924                        for_each_ofldtxq(&adap->sge, i) {
1925                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1926
1927                                disable_txq_db(&txq->q);
1928                        }
1929                }
1930        }
1931        for_each_port(adap, i)
1932                disable_txq_db(&adap->sge.ctrlq[i].q);
1933}
1934
1935static void enable_dbs(struct adapter *adap)
1936{
1937        int i;
1938
1939        for_each_ethrxq(&adap->sge, i)
1940                enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1941        if (is_offload(adap)) {
1942                struct sge_uld_txq_info *txq_info =
1943                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1944
1945                if (txq_info) {
1946                        for_each_ofldtxq(&adap->sge, i) {
1947                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1948
1949                                enable_txq_db(adap, &txq->q);
1950                        }
1951                }
1952        }
1953        for_each_port(adap, i)
1954                enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1955}
1956
1957static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1958{
1959        enum cxgb4_uld type = CXGB4_ULD_RDMA;
1960
1961        if (adap->uld && adap->uld[type].handle)
1962                adap->uld[type].control(adap->uld[type].handle, cmd);
1963}
1964
1965static void process_db_full(struct work_struct *work)
1966{
1967        struct adapter *adap;
1968
1969        adap = container_of(work, struct adapter, db_full_task);
1970
1971        drain_db_fifo(adap, dbfifo_drain_delay);
1972        enable_dbs(adap);
1973        notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1974        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1975                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1976                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1977                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1978        else
1979                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1980                                 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1981}
1982
1983static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1984{
1985        u16 hw_pidx, hw_cidx;
1986        int ret;
1987
1988        spin_lock_irq(&q->db_lock);
1989        ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1990        if (ret)
1991                goto out;
1992        if (q->db_pidx != hw_pidx) {
1993                u16 delta;
1994                u32 val;
1995
1996                if (q->db_pidx >= hw_pidx)
1997                        delta = q->db_pidx - hw_pidx;
1998                else
1999                        delta = q->size - hw_pidx + q->db_pidx;
2000
2001                if (is_t4(adap->params.chip))
2002                        val = PIDX_V(delta);
2003                else
2004                        val = PIDX_T5_V(delta);
2005                wmb();
2006                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2007                             QID_V(q->cntxt_id) | val);
2008        }
2009out:
2010        q->db_disabled = 0;
2011        q->db_pidx_inc = 0;
2012        spin_unlock_irq(&q->db_lock);
2013        if (ret)
2014                CH_WARN(adap, "DB drop recovery failed.\n");
2015}
2016
2017static void recover_all_queues(struct adapter *adap)
2018{
2019        int i;
2020
2021        for_each_ethrxq(&adap->sge, i)
2022                sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2023        if (is_offload(adap)) {
2024                struct sge_uld_txq_info *txq_info =
2025                        adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2026                if (txq_info) {
2027                        for_each_ofldtxq(&adap->sge, i) {
2028                                struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2029
2030                                sync_txq_pidx(adap, &txq->q);
2031                        }
2032                }
2033        }
2034        for_each_port(adap, i)
2035                sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2036}
2037
2038static void process_db_drop(struct work_struct *work)
2039{
2040        struct adapter *adap;
2041
2042        adap = container_of(work, struct adapter, db_drop_task);
2043
2044        if (is_t4(adap->params.chip)) {
2045                drain_db_fifo(adap, dbfifo_drain_delay);
2046                notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2047                drain_db_fifo(adap, dbfifo_drain_delay);
2048                recover_all_queues(adap);
2049                drain_db_fifo(adap, dbfifo_drain_delay);
2050                enable_dbs(adap);
2051                notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2052        } else if (is_t5(adap->params.chip)) {
2053                u32 dropped_db = t4_read_reg(adap, 0x010ac);
2054                u16 qid = (dropped_db >> 15) & 0x1ffff;
2055                u16 pidx_inc = dropped_db & 0x1fff;
2056                u64 bar2_qoffset;
2057                unsigned int bar2_qid;
2058                int ret;
2059
2060                ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2061                                        0, &bar2_qoffset, &bar2_qid);
2062                if (ret)
2063                        dev_err(adap->pdev_dev, "doorbell drop recovery: "
2064                                "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2065                else
2066                        writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2067                               adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2068
2069                /* Re-enable BAR2 WC */
2070                t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2071        }
2072
2073        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2074                t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2075}
2076
2077void t4_db_full(struct adapter *adap)
2078{
2079        if (is_t4(adap->params.chip)) {
2080                disable_dbs(adap);
2081                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2082                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2083                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2084                queue_work(adap->workq, &adap->db_full_task);
2085        }
2086}
2087
2088void t4_db_dropped(struct adapter *adap)
2089{
2090        if (is_t4(adap->params.chip)) {
2091                disable_dbs(adap);
2092                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2093        }
2094        queue_work(adap->workq, &adap->db_drop_task);
2095}
2096
2097void t4_register_netevent_notifier(void)
2098{
2099        if (!netevent_registered) {
2100                register_netevent_notifier(&cxgb4_netevent_nb);
2101                netevent_registered = true;
2102        }
2103}
2104
2105static void detach_ulds(struct adapter *adap)
2106{
2107        unsigned int i;
2108
2109        mutex_lock(&uld_mutex);
2110        list_del(&adap->list_node);
2111
2112        for (i = 0; i < CXGB4_ULD_MAX; i++)
2113                if (adap->uld && adap->uld[i].handle)
2114                        adap->uld[i].state_change(adap->uld[i].handle,
2115                                             CXGB4_STATE_DETACH);
2116
2117        if (netevent_registered && list_empty(&adapter_list)) {
2118                unregister_netevent_notifier(&cxgb4_netevent_nb);
2119                netevent_registered = false;
2120        }
2121        mutex_unlock(&uld_mutex);
2122}
2123
2124static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2125{
2126        unsigned int i;
2127
2128        mutex_lock(&uld_mutex);
2129        for (i = 0; i < CXGB4_ULD_MAX; i++)
2130                if (adap->uld && adap->uld[i].handle)
2131                        adap->uld[i].state_change(adap->uld[i].handle,
2132                                                  new_state);
2133        mutex_unlock(&uld_mutex);
2134}
2135
2136#if IS_ENABLED(CONFIG_IPV6)
2137static int cxgb4_inet6addr_handler(struct notifier_block *this,
2138                                   unsigned long event, void *data)
2139{
2140        struct inet6_ifaddr *ifa = data;
2141        struct net_device *event_dev = ifa->idev->dev;
2142        const struct device *parent = NULL;
2143#if IS_ENABLED(CONFIG_BONDING)
2144        struct adapter *adap;
2145#endif
2146        if (is_vlan_dev(event_dev))
2147                event_dev = vlan_dev_real_dev(event_dev);
2148#if IS_ENABLED(CONFIG_BONDING)
2149        if (event_dev->flags & IFF_MASTER) {
2150                list_for_each_entry(adap, &adapter_list, list_node) {
2151                        switch (event) {
2152                        case NETDEV_UP:
2153                                cxgb4_clip_get(adap->port[0],
2154                                               (const u32 *)ifa, 1);
2155                                break;
2156                        case NETDEV_DOWN:
2157                                cxgb4_clip_release(adap->port[0],
2158                                                   (const u32 *)ifa, 1);
2159                                break;
2160                        default:
2161                                break;
2162                        }
2163                }
2164                return NOTIFY_OK;
2165        }
2166#endif
2167
2168        if (event_dev)
2169                parent = event_dev->dev.parent;
2170
2171        if (parent && parent->driver == &cxgb4_driver.driver) {
2172                switch (event) {
2173                case NETDEV_UP:
2174                        cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2175                        break;
2176                case NETDEV_DOWN:
2177                        cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2178                        break;
2179                default:
2180                        break;
2181                }
2182        }
2183        return NOTIFY_OK;
2184}
2185
2186static bool inet6addr_registered;
2187static struct notifier_block cxgb4_inet6addr_notifier = {
2188        .notifier_call = cxgb4_inet6addr_handler
2189};
2190
2191static void update_clip(const struct adapter *adap)
2192{
2193        int i;
2194        struct net_device *dev;
2195        int ret;
2196
2197        rcu_read_lock();
2198
2199        for (i = 0; i < MAX_NPORTS; i++) {
2200                dev = adap->port[i];
2201                ret = 0;
2202
2203                if (dev)
2204                        ret = cxgb4_update_root_dev_clip(dev);
2205
2206                if (ret < 0)
2207                        break;
2208        }
2209        rcu_read_unlock();
2210}
2211#endif /* IS_ENABLED(CONFIG_IPV6) */
2212
2213/**
2214 *      cxgb_up - enable the adapter
2215 *      @adap: adapter being enabled
2216 *
2217 *      Called when the first port is enabled, this function performs the
2218 *      actions necessary to make an adapter operational, such as completing
2219 *      the initialization of HW modules, and enabling interrupts.
2220 *
2221 *      Must be called with the rtnl lock held.
2222 */
2223static int cxgb_up(struct adapter *adap)
2224{
2225        int err;
2226
2227        mutex_lock(&uld_mutex);
2228        err = setup_sge_queues(adap);
2229        if (err)
2230                goto rel_lock;
2231        err = setup_rss(adap);
2232        if (err)
2233                goto freeq;
2234
2235        if (adap->flags & USING_MSIX) {
2236                name_msix_vecs(adap);
2237                err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2238                                  adap->msix_info[0].desc, adap);
2239                if (err)
2240                        goto irq_err;
2241                err = request_msix_queue_irqs(adap);
2242                if (err) {
2243                        free_irq(adap->msix_info[0].vec, adap);
2244                        goto irq_err;
2245                }
2246        } else {
2247                err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2248                                  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2249                                  adap->port[0]->name, adap);
2250                if (err)
2251                        goto irq_err;
2252        }
2253
2254        enable_rx(adap);
2255        t4_sge_start(adap);
2256        t4_intr_enable(adap);
2257        adap->flags |= FULL_INIT_DONE;
2258        mutex_unlock(&uld_mutex);
2259
2260        notify_ulds(adap, CXGB4_STATE_UP);
2261#if IS_ENABLED(CONFIG_IPV6)
2262        update_clip(adap);
2263#endif
2264        /* Initialize hash mac addr list*/
2265        INIT_LIST_HEAD(&adap->mac_hlist);
2266        return err;
2267
2268 irq_err:
2269        dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2270 freeq:
2271        t4_free_sge_resources(adap);
2272 rel_lock:
2273        mutex_unlock(&uld_mutex);
2274        return err;
2275}
2276
2277static void cxgb_down(struct adapter *adapter)
2278{
2279        cancel_work_sync(&adapter->tid_release_task);
2280        cancel_work_sync(&adapter->db_full_task);
2281        cancel_work_sync(&adapter->db_drop_task);
2282        adapter->tid_release_task_busy = false;
2283        adapter->tid_release_head = NULL;
2284
2285        t4_sge_stop(adapter);
2286        t4_free_sge_resources(adapter);
2287        adapter->flags &= ~FULL_INIT_DONE;
2288}
2289
2290/*
2291 * net_device operations
2292 */
2293static int cxgb_open(struct net_device *dev)
2294{
2295        int err;
2296        struct port_info *pi = netdev_priv(dev);
2297        struct adapter *adapter = pi->adapter;
2298
2299        netif_carrier_off(dev);
2300
2301        if (!(adapter->flags & FULL_INIT_DONE)) {
2302                err = cxgb_up(adapter);
2303                if (err < 0)
2304                        return err;
2305        }
2306
2307        /* It's possible that the basic port information could have
2308         * changed since we first read it.
2309         */
2310        err = t4_update_port_info(pi);
2311        if (err < 0)
2312                return err;
2313
2314        err = link_start(dev);
2315        if (!err)
2316                netif_tx_start_all_queues(dev);
2317        return err;
2318}
2319
2320static int cxgb_close(struct net_device *dev)
2321{
2322        struct port_info *pi = netdev_priv(dev);
2323        struct adapter *adapter = pi->adapter;
2324        int ret;
2325
2326        netif_tx_stop_all_queues(dev);
2327        netif_carrier_off(dev);
2328        ret = t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2329#ifdef CONFIG_CHELSIO_T4_DCB
2330        cxgb4_dcb_reset(dev);
2331        dcb_tx_queue_prio_enable(dev, false);
2332#endif
2333        return ret;
2334}
2335
2336int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2337                __be32 sip, __be16 sport, __be16 vlan,
2338                unsigned int queue, unsigned char port, unsigned char mask)
2339{
2340        int ret;
2341        struct filter_entry *f;
2342        struct adapter *adap;
2343        int i;
2344        u8 *val;
2345
2346        adap = netdev2adap(dev);
2347
2348        /* Adjust stid to correct filter index */
2349        stid -= adap->tids.sftid_base;
2350        stid += adap->tids.nftids;
2351
2352        /* Check to make sure the filter requested is writable ...
2353         */
2354        f = &adap->tids.ftid_tab[stid];
2355        ret = writable_filter(f);
2356        if (ret)
2357                return ret;
2358
2359        /* Clear out any old resources being used by the filter before
2360         * we start constructing the new filter.
2361         */
2362        if (f->valid)
2363                clear_filter(adap, f);
2364
2365        /* Clear out filter specifications */
2366        memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2367        f->fs.val.lport = cpu_to_be16(sport);
2368        f->fs.mask.lport  = ~0;
2369        val = (u8 *)&sip;
2370        if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2371                for (i = 0; i < 4; i++) {
2372                        f->fs.val.lip[i] = val[i];
2373                        f->fs.mask.lip[i] = ~0;
2374                }
2375                if (adap->params.tp.vlan_pri_map & PORT_F) {
2376                        f->fs.val.iport = port;
2377                        f->fs.mask.iport = mask;
2378                }
2379        }
2380
2381        if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2382                f->fs.val.proto = IPPROTO_TCP;
2383                f->fs.mask.proto = ~0;
2384        }
2385
2386        f->fs.dirsteer = 1;
2387        f->fs.iq = queue;
2388        /* Mark filter as locked */
2389        f->locked = 1;
2390        f->fs.rpttid = 1;
2391
2392        /* Save the actual tid. We need this to get the corresponding
2393         * filter entry structure in filter_rpl.
2394         */
2395        f->tid = stid + adap->tids.ftid_base;
2396        ret = set_filter_wr(adap, stid);
2397        if (ret) {
2398                clear_filter(adap, f);
2399                return ret;
2400        }
2401
2402        return 0;
2403}
2404EXPORT_SYMBOL(cxgb4_create_server_filter);
2405
2406int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2407                unsigned int queue, bool ipv6)
2408{
2409        struct filter_entry *f;
2410        struct adapter *adap;
2411
2412        adap = netdev2adap(dev);
2413
2414        /* Adjust stid to correct filter index */
2415        stid -= adap->tids.sftid_base;
2416        stid += adap->tids.nftids;
2417
2418        f = &adap->tids.ftid_tab[stid];
2419        /* Unlock the filter */
2420        f->locked = 0;
2421
2422        return delete_filter(adap, stid);
2423}
2424EXPORT_SYMBOL(cxgb4_remove_server_filter);
2425
2426static void cxgb_get_stats(struct net_device *dev,
2427                           struct rtnl_link_stats64 *ns)
2428{
2429        struct port_stats stats;
2430        struct port_info *p = netdev_priv(dev);
2431        struct adapter *adapter = p->adapter;
2432
2433        /* Block retrieving statistics during EEH error
2434         * recovery. Otherwise, the recovery might fail
2435         * and the PCI device will be removed permanently
2436         */
2437        spin_lock(&adapter->stats_lock);
2438        if (!netif_device_present(dev)) {
2439                spin_unlock(&adapter->stats_lock);
2440                return;
2441        }
2442        t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2443                                 &p->stats_base);
2444        spin_unlock(&adapter->stats_lock);
2445
2446        ns->tx_bytes   = stats.tx_octets;
2447        ns->tx_packets = stats.tx_frames;
2448        ns->rx_bytes   = stats.rx_octets;
2449        ns->rx_packets = stats.rx_frames;
2450        ns->multicast  = stats.rx_mcast_frames;
2451
2452        /* detailed rx_errors */
2453        ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2454                               stats.rx_runt;
2455        ns->rx_over_errors   = 0;
2456        ns->rx_crc_errors    = stats.rx_fcs_err;
2457        ns->rx_frame_errors  = stats.rx_symbol_err;
2458        ns->rx_dropped       = stats.rx_ovflow0 + stats.rx_ovflow1 +
2459                               stats.rx_ovflow2 + stats.rx_ovflow3 +
2460                               stats.rx_trunc0 + stats.rx_trunc1 +
2461                               stats.rx_trunc2 + stats.rx_trunc3;
2462        ns->rx_missed_errors = 0;
2463
2464        /* detailed tx_errors */
2465        ns->tx_aborted_errors   = 0;
2466        ns->tx_carrier_errors   = 0;
2467        ns->tx_fifo_errors      = 0;
2468        ns->tx_heartbeat_errors = 0;
2469        ns->tx_window_errors    = 0;
2470
2471        ns->tx_errors = stats.tx_error_frames;
2472        ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2473                ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2474}
2475
2476static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2477{
2478        unsigned int mbox;
2479        int ret = 0, prtad, devad;
2480        struct port_info *pi = netdev_priv(dev);
2481        struct adapter *adapter = pi->adapter;
2482        struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2483
2484        switch (cmd) {
2485        case SIOCGMIIPHY:
2486                if (pi->mdio_addr < 0)
2487                        return -EOPNOTSUPP;
2488                data->phy_id = pi->mdio_addr;
2489                break;
2490        case SIOCGMIIREG:
2491        case SIOCSMIIREG:
2492                if (mdio_phy_id_is_c45(data->phy_id)) {
2493                        prtad = mdio_phy_id_prtad(data->phy_id);
2494                        devad = mdio_phy_id_devad(data->phy_id);
2495                } else if (data->phy_id < 32) {
2496                        prtad = data->phy_id;
2497                        devad = 0;
2498                        data->reg_num &= 0x1f;
2499                } else
2500                        return -EINVAL;
2501
2502                mbox = pi->adapter->pf;
2503                if (cmd == SIOCGMIIREG)
2504                        ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2505                                         data->reg_num, &data->val_out);
2506                else
2507                        ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2508                                         data->reg_num, data->val_in);
2509                break;
2510        case SIOCGHWTSTAMP:
2511                return copy_to_user(req->ifr_data, &pi->tstamp_config,
2512                                    sizeof(pi->tstamp_config)) ?
2513                        -EFAULT : 0;
2514        case SIOCSHWTSTAMP:
2515                if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2516                                   sizeof(pi->tstamp_config)))
2517                        return -EFAULT;
2518
2519                if (!is_t4(adapter->params.chip)) {
2520                        switch (pi->tstamp_config.tx_type) {
2521                        case HWTSTAMP_TX_OFF:
2522                        case HWTSTAMP_TX_ON:
2523                                break;
2524                        default:
2525                                return -ERANGE;
2526                        }
2527
2528                        switch (pi->tstamp_config.rx_filter) {
2529                        case HWTSTAMP_FILTER_NONE:
2530                                pi->rxtstamp = false;
2531                                break;
2532                        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2533                        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2534                                cxgb4_ptprx_timestamping(pi, pi->port_id,
2535                                                         PTP_TS_L4);
2536                                break;
2537                        case HWTSTAMP_FILTER_PTP_V2_EVENT:
2538                                cxgb4_ptprx_timestamping(pi, pi->port_id,
2539                                                         PTP_TS_L2_L4);
2540                                break;
2541                        case HWTSTAMP_FILTER_ALL:
2542                        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2543                        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2544                        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2545                        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2546                                pi->rxtstamp = true;
2547                                break;
2548                        default:
2549                                pi->tstamp_config.rx_filter =
2550                                        HWTSTAMP_FILTER_NONE;
2551                                return -ERANGE;
2552                        }
2553
2554                        if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2555                            (pi->tstamp_config.rx_filter ==
2556                                HWTSTAMP_FILTER_NONE)) {
2557                                if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2558                                        pi->ptp_enable = false;
2559                        }
2560
2561                        if (pi->tstamp_config.rx_filter !=
2562                                HWTSTAMP_FILTER_NONE) {
2563                                if (cxgb4_ptp_redirect_rx_packet(adapter,
2564                                                                 pi) >= 0)
2565                                        pi->ptp_enable = true;
2566                        }
2567                } else {
2568                        /* For T4 Adapters */
2569                        switch (pi->tstamp_config.rx_filter) {
2570                        case HWTSTAMP_FILTER_NONE:
2571                        pi->rxtstamp = false;
2572                        break;
2573                        case HWTSTAMP_FILTER_ALL:
2574                        pi->rxtstamp = true;
2575                        break;
2576                        default:
2577                        pi->tstamp_config.rx_filter =
2578                        HWTSTAMP_FILTER_NONE;
2579                        return -ERANGE;
2580                        }
2581                }
2582                return copy_to_user(req->ifr_data, &pi->tstamp_config,
2583                                    sizeof(pi->tstamp_config)) ?
2584                        -EFAULT : 0;
2585        default:
2586                return -EOPNOTSUPP;
2587        }
2588        return ret;
2589}
2590
2591static void cxgb_set_rxmode(struct net_device *dev)
2592{
2593        /* unfortunately we can't return errors to the stack */
2594        set_rxmode(dev, -1, false);
2595}
2596
2597static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2598{
2599        int ret;
2600        struct port_info *pi = netdev_priv(dev);
2601
2602        ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2603                            -1, -1, -1, true);
2604        if (!ret)
2605                dev->mtu = new_mtu;
2606        return ret;
2607}
2608
2609#ifdef CONFIG_PCI_IOV
2610static int cxgb4_mgmt_open(struct net_device *dev)
2611{
2612        /* Turn carrier off since we don't have to transmit anything on this
2613         * interface.
2614         */
2615        netif_carrier_off(dev);
2616        return 0;
2617}
2618
2619/* Fill MAC address that will be assigned by the FW */
2620static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2621{
2622        u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2623        unsigned int i, vf, nvfs;
2624        u16 a, b;
2625        int err;
2626        u8 *na;
2627
2628        adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2629                                                            PCI_CAP_ID_VPD);
2630        err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2631        if (err)
2632                return;
2633
2634        na = adap->params.vpd.na;
2635        for (i = 0; i < ETH_ALEN; i++)
2636                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2637                              hex2val(na[2 * i + 1]));
2638
2639        a = (hw_addr[0] << 8) | hw_addr[1];
2640        b = (hw_addr[1] << 8) | hw_addr[2];
2641        a ^= b;
2642        a |= 0x0200;    /* locally assigned Ethernet MAC address */
2643        a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2644        macaddr[0] = a >> 8;
2645        macaddr[1] = a & 0xff;
2646
2647        for (i = 2; i < 5; i++)
2648                macaddr[i] = hw_addr[i + 1];
2649
2650        for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2651                vf < nvfs; vf++) {
2652                macaddr[5] = adap->pf * 16 + vf;
2653                ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2654        }
2655}
2656
2657static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2658{
2659        struct port_info *pi = netdev_priv(dev);
2660        struct adapter *adap = pi->adapter;
2661        int ret;
2662
2663        /* verify MAC addr is valid */
2664        if (!is_valid_ether_addr(mac)) {
2665                dev_err(pi->adapter->pdev_dev,
2666                        "Invalid Ethernet address %pM for VF %d\n",
2667                        mac, vf);
2668                return -EINVAL;
2669        }
2670
2671        dev_info(pi->adapter->pdev_dev,
2672                 "Setting MAC %pM on VF %d\n", mac, vf);
2673        ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2674        if (!ret)
2675                ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2676        return ret;
2677}
2678
2679static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2680                                    int vf, struct ifla_vf_info *ivi)
2681{
2682        struct port_info *pi = netdev_priv(dev);
2683        struct adapter *adap = pi->adapter;
2684
2685        if (vf >= adap->num_vfs)
2686                return -EINVAL;
2687        ivi->vf = vf;
2688        ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
2689        ivi->min_tx_rate = 0;
2690        ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2691        return 0;
2692}
2693
2694static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2695                                       struct netdev_phys_item_id *ppid)
2696{
2697        struct port_info *pi = netdev_priv(dev);
2698        unsigned int phy_port_id;
2699
2700        phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2701        ppid->id_len = sizeof(phy_port_id);
2702        memcpy(ppid->id, &phy_port_id, ppid->id_len);
2703        return 0;
2704}
2705
2706static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2707                                  int min_tx_rate, int max_tx_rate)
2708{
2709        struct port_info *pi = netdev_priv(dev);
2710        struct adapter *adap = pi->adapter;
2711        unsigned int link_ok, speed, mtu;
2712        u32 fw_pfvf, fw_class;
2713        int class_id = vf;
2714        int ret;
2715        u16 pktsize;
2716
2717        if (vf >= adap->num_vfs)
2718                return -EINVAL;
2719
2720        if (min_tx_rate) {
2721                dev_err(adap->pdev_dev,
2722                        "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2723                        min_tx_rate, vf);
2724                return -EINVAL;
2725        }
2726
2727        ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2728        if (ret != FW_SUCCESS) {
2729                dev_err(adap->pdev_dev,
2730                        "Failed to get link information for VF %d\n", vf);
2731                return -EINVAL;
2732        }
2733
2734        if (!link_ok) {
2735                dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2736                return -EINVAL;
2737        }
2738
2739        if (max_tx_rate > speed) {
2740                dev_err(adap->pdev_dev,
2741                        "Max tx rate %d for VF %d can't be > link-speed %u",
2742                        max_tx_rate, vf, speed);
2743                return -EINVAL;
2744        }
2745
2746        pktsize = mtu;
2747        /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2748        pktsize = pktsize - sizeof(struct ethhdr) - 4;
2749        /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2750        pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2751        /* configure Traffic Class for rate-limiting */
2752        ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2753                              SCHED_CLASS_LEVEL_CL_RL,
2754                              SCHED_CLASS_MODE_CLASS,
2755                              SCHED_CLASS_RATEUNIT_BITS,
2756                              SCHED_CLASS_RATEMODE_ABS,
2757                              pi->tx_chan, class_id, 0,
2758                              max_tx_rate * 1000, 0, pktsize);
2759        if (ret) {
2760                dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2761                        ret);
2762                return -EINVAL;
2763        }
2764        dev_info(adap->pdev_dev,
2765                 "Class %d with MSS %u configured with rate %u\n",
2766                 class_id, pktsize, max_tx_rate);
2767
2768        /* bind VF to configured Traffic Class */
2769        fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2770                   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2771        fw_class = class_id;
2772        ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2773                            &fw_class);
2774        if (ret) {
2775                dev_err(adap->pdev_dev,
2776                        "Err %d in binding VF %d to Traffic Class %d\n",
2777                        ret, vf, class_id);
2778                return -EINVAL;
2779        }
2780        dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2781                 adap->pf, vf, class_id);
2782        adap->vfinfo[vf].tx_rate = max_tx_rate;
2783        return 0;
2784}
2785
2786static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2787                                  u16 vlan, u8 qos, __be16 vlan_proto)
2788{
2789        struct port_info *pi = netdev_priv(dev);
2790        struct adapter *adap = pi->adapter;
2791        int ret;
2792
2793        if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2794                return -EINVAL;
2795
2796        if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2797                return -EPROTONOSUPPORT;
2798
2799        ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2800        if (!ret) {
2801                adap->vfinfo[vf].vlan = vlan;
2802                return 0;
2803        }
2804
2805        dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2806                ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2807        return ret;
2808}
2809#endif /* CONFIG_PCI_IOV */
2810
2811static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2812{
2813        int ret;
2814        struct sockaddr *addr = p;
2815        struct port_info *pi = netdev_priv(dev);
2816
2817        if (!is_valid_ether_addr(addr->sa_data))
2818                return -EADDRNOTAVAIL;
2819
2820        ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2821                            pi->xact_addr_filt, addr->sa_data, true, true);
2822        if (ret < 0)
2823                return ret;
2824
2825        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2826        pi->xact_addr_filt = ret;
2827        return 0;
2828}
2829
2830#ifdef CONFIG_NET_POLL_CONTROLLER
2831static void cxgb_netpoll(struct net_device *dev)
2832{
2833        struct port_info *pi = netdev_priv(dev);
2834        struct adapter *adap = pi->adapter;
2835
2836        if (adap->flags & USING_MSIX) {
2837                int i;
2838                struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2839
2840                for (i = pi->nqsets; i; i--, rx++)
2841                        t4_sge_intr_msix(0, &rx->rspq);
2842        } else
2843                t4_intr_handler(adap)(0, adap);
2844}
2845#endif
2846
2847static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2848{
2849        struct port_info *pi = netdev_priv(dev);
2850        struct adapter *adap = pi->adapter;
2851        struct sched_class *e;
2852        struct ch_sched_params p;
2853        struct ch_sched_queue qe;
2854        u32 req_rate;
2855        int err = 0;
2856
2857        if (!can_sched(dev))
2858                return -ENOTSUPP;
2859
2860        if (index < 0 || index > pi->nqsets - 1)
2861                return -EINVAL;
2862
2863        if (!(adap->flags & FULL_INIT_DONE)) {
2864                dev_err(adap->pdev_dev,
2865                        "Failed to rate limit on queue %d. Link Down?\n",
2866                        index);
2867                return -EINVAL;
2868        }
2869
2870        /* Convert from Mbps to Kbps */
2871        req_rate = rate << 10;
2872
2873        /* Max rate is 10 Gbps */
2874        if (req_rate >= SCHED_MAX_RATE_KBPS) {
2875                dev_err(adap->pdev_dev,
2876                        "Invalid rate %u Mbps, Max rate is %u Gbps\n",
2877                        rate, SCHED_MAX_RATE_KBPS);
2878                return -ERANGE;
2879        }
2880
2881        /* First unbind the queue from any existing class */
2882        memset(&qe, 0, sizeof(qe));
2883        qe.queue = index;
2884        qe.class = SCHED_CLS_NONE;
2885
2886        err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2887        if (err) {
2888                dev_err(adap->pdev_dev,
2889                        "Unbinding Queue %d on port %d fail. Err: %d\n",
2890                        index, pi->port_id, err);
2891                return err;
2892        }
2893
2894        /* Queue already unbound */
2895        if (!req_rate)
2896                return 0;
2897
2898        /* Fetch any available unused or matching scheduling class */
2899        memset(&p, 0, sizeof(p));
2900        p.type = SCHED_CLASS_TYPE_PACKET;
2901        p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2902        p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2903        p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2904        p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2905        p.u.params.channel  = pi->tx_chan;
2906        p.u.params.class    = SCHED_CLS_NONE;
2907        p.u.params.minrate  = 0;
2908        p.u.params.maxrate  = req_rate;
2909        p.u.params.weight   = 0;
2910        p.u.params.pktsize  = dev->mtu;
2911
2912        e = cxgb4_sched_class_alloc(dev, &p);
2913        if (!e)
2914                return -ENOMEM;
2915
2916        /* Bind the queue to a scheduling class */
2917        memset(&qe, 0, sizeof(qe));
2918        qe.queue = index;
2919        qe.class = e->idx;
2920
2921        err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2922        if (err)
2923                dev_err(adap->pdev_dev,
2924                        "Queue rate limiting failed. Err: %d\n", err);
2925        return err;
2926}
2927
2928static int cxgb_setup_tc_flower(struct net_device *dev,
2929                                struct tc_cls_flower_offload *cls_flower)
2930{
2931        switch (cls_flower->command) {
2932        case TC_CLSFLOWER_REPLACE:
2933                return cxgb4_tc_flower_replace(dev, cls_flower);
2934        case TC_CLSFLOWER_DESTROY:
2935                return cxgb4_tc_flower_destroy(dev, cls_flower);
2936        case TC_CLSFLOWER_STATS:
2937                return cxgb4_tc_flower_stats(dev, cls_flower);
2938        default:
2939                return -EOPNOTSUPP;
2940        }
2941}
2942
2943static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2944                                 struct tc_cls_u32_offload *cls_u32)
2945{
2946        switch (cls_u32->command) {
2947        case TC_CLSU32_NEW_KNODE:
2948        case TC_CLSU32_REPLACE_KNODE:
2949                return cxgb4_config_knode(dev, cls_u32);
2950        case TC_CLSU32_DELETE_KNODE:
2951                return cxgb4_delete_knode(dev, cls_u32);
2952        default:
2953                return -EOPNOTSUPP;
2954        }
2955}
2956
2957static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2958                                  void *cb_priv)
2959{
2960        struct net_device *dev = cb_priv;
2961        struct port_info *pi = netdev2pinfo(dev);
2962        struct adapter *adap = netdev2adap(dev);
2963
2964        if (!(adap->flags & FULL_INIT_DONE)) {
2965                dev_err(adap->pdev_dev,
2966                        "Failed to setup tc on port %d. Link Down?\n",
2967                        pi->port_id);
2968                return -EINVAL;
2969        }
2970
2971        if (!tc_cls_can_offload_and_chain0(dev, type_data))
2972                return -EOPNOTSUPP;
2973
2974        switch (type) {
2975        case TC_SETUP_CLSU32:
2976                return cxgb_setup_tc_cls_u32(dev, type_data);
2977        case TC_SETUP_CLSFLOWER:
2978                return cxgb_setup_tc_flower(dev, type_data);
2979        default:
2980                return -EOPNOTSUPP;
2981        }
2982}
2983
2984static int cxgb_setup_tc_block(struct net_device *dev,
2985                               struct tc_block_offload *f)
2986{
2987        struct port_info *pi = netdev2pinfo(dev);
2988
2989        if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2990                return -EOPNOTSUPP;
2991
2992        switch (f->command) {
2993        case TC_BLOCK_BIND:
2994                return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
2995                                             pi, dev);
2996        case TC_BLOCK_UNBIND:
2997                tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
2998                return 0;
2999        default:
3000                return -EOPNOTSUPP;
3001        }
3002}
3003
3004static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3005                         void *type_data)
3006{
3007        switch (type) {
3008        case TC_SETUP_BLOCK:
3009                return cxgb_setup_tc_block(dev, type_data);
3010        default:
3011                return -EOPNOTSUPP;
3012        }
3013}
3014
3015static void cxgb_del_udp_tunnel(struct net_device *netdev,
3016                                struct udp_tunnel_info *ti)
3017{
3018        struct port_info *pi = netdev_priv(netdev);
3019        struct adapter *adapter = pi->adapter;
3020        unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3021        u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3022        int ret = 0, i;
3023
3024        if (chip_ver < CHELSIO_T6)
3025                return;
3026
3027        switch (ti->type) {
3028        case UDP_TUNNEL_TYPE_VXLAN:
3029                if (!adapter->vxlan_port_cnt ||
3030                    adapter->vxlan_port != ti->port)
3031                        return; /* Invalid VxLAN destination port */
3032
3033                adapter->vxlan_port_cnt--;
3034                if (adapter->vxlan_port_cnt)
3035                        return;
3036
3037                adapter->vxlan_port = 0;
3038                t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3039                break;
3040        case UDP_TUNNEL_TYPE_GENEVE:
3041                if (!adapter->geneve_port_cnt ||
3042                    adapter->geneve_port != ti->port)
3043                        return; /* Invalid GENEVE destination port */
3044
3045                adapter->geneve_port_cnt--;
3046                if (adapter->geneve_port_cnt)
3047                        return;
3048
3049                adapter->geneve_port = 0;
3050                t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3051        default:
3052                return;
3053        }
3054
3055        /* Matchall mac entries can be deleted only after all tunnel ports
3056         * are brought down or removed.
3057         */
3058        if (!adapter->rawf_cnt)
3059                return;
3060        for_each_port(adapter, i) {
3061                pi = adap2pinfo(adapter, i);
3062                ret = t4_free_raw_mac_filt(adapter, pi->viid,
3063                                           match_all_mac, match_all_mac,
3064                                           adapter->rawf_start +
3065                                            pi->port_id,
3066                                           1, pi->port_id, true);
3067                if (ret < 0) {
3068                        netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3069                                    i);
3070                        return;
3071                }
3072                atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3073                           pi->port_id].refcnt);
3074        }
3075}
3076
3077static void cxgb_add_udp_tunnel(struct net_device *netdev,
3078                                struct udp_tunnel_info *ti)
3079{
3080        struct port_info *pi = netdev_priv(netdev);
3081        struct adapter *adapter = pi->adapter;
3082        unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3083        u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3084        int i, ret;
3085
3086        if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3087                return;
3088
3089        switch (ti->type) {
3090        case UDP_TUNNEL_TYPE_VXLAN:
3091                /* Callback for adding vxlan port can be called with the same
3092                 * port for both IPv4 and IPv6. We should not disable the
3093                 * offloading when the same port for both protocols is added
3094                 * and later one of them is removed.
3095                 */
3096                if (adapter->vxlan_port_cnt &&
3097                    adapter->vxlan_port == ti->port) {
3098                        adapter->vxlan_port_cnt++;
3099                        return;
3100                }
3101
3102                /* We will support only one VxLAN port */
3103                if (adapter->vxlan_port_cnt) {
3104                        netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3105                                    be16_to_cpu(adapter->vxlan_port),
3106                                    be16_to_cpu(ti->port));
3107                        return;
3108                }
3109
3110                adapter->vxlan_port = ti->port;
3111                adapter->vxlan_port_cnt = 1;
3112
3113                t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3114                             VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3115                break;
3116        case UDP_TUNNEL_TYPE_GENEVE:
3117                if (adapter->geneve_port_cnt &&
3118                    adapter->geneve_port == ti->port) {
3119                        adapter->geneve_port_cnt++;
3120                        return;
3121                }
3122
3123                /* We will support only one GENEVE port */
3124                if (adapter->geneve_port_cnt) {
3125                        netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3126                                    be16_to_cpu(adapter->geneve_port),
3127                                    be16_to_cpu(ti->port));
3128                        return;
3129                }
3130
3131                adapter->geneve_port = ti->port;
3132                adapter->geneve_port_cnt = 1;
3133
3134                t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3135                             GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3136        default:
3137                return;
3138        }
3139
3140        /* Create a 'match all' mac filter entry for inner mac,
3141         * if raw mac interface is supported. Once the linux kernel provides
3142         * driver entry points for adding/deleting the inner mac addresses,
3143         * we will remove this 'match all' entry and fallback to adding
3144         * exact match filters.
3145         */
3146        for_each_port(adapter, i) {
3147                pi = adap2pinfo(adapter, i);
3148
3149                ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3150                                            match_all_mac,
3151                                            match_all_mac,
3152                                            adapter->rawf_start +
3153                                            pi->port_id,
3154                                            1, pi->port_id, true);
3155                if (ret < 0) {
3156                        netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3157                                    be16_to_cpu(ti->port));
3158                        cxgb_del_udp_tunnel(netdev, ti);
3159                        return;
3160                }
3161                atomic_inc(&adapter->mps_encap[ret].refcnt);
3162        }
3163}
3164
3165static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3166                                             struct net_device *dev,
3167                                             netdev_features_t features)
3168{
3169        struct port_info *pi = netdev_priv(dev);
3170        struct adapter *adapter = pi->adapter;
3171
3172        if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3173                return features;
3174
3175        /* Check if hw supports offload for this packet */
3176        if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3177                return features;
3178
3179        /* Offload is not supported for this encapsulated packet */
3180        return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3181}
3182
3183static netdev_features_t cxgb_fix_features(struct net_device *dev,
3184                                           netdev_features_t features)
3185{
3186        /* Disable GRO, if RX_CSUM is disabled */
3187        if (!(features & NETIF_F_RXCSUM))
3188                features &= ~NETIF_F_GRO;
3189
3190        return features;
3191}
3192
3193static const struct net_device_ops cxgb4_netdev_ops = {
3194        .ndo_open             = cxgb_open,
3195        .ndo_stop             = cxgb_close,
3196        .ndo_start_xmit       = t4_eth_xmit,
3197        .ndo_select_queue     = cxgb_select_queue,
3198        .ndo_get_stats64      = cxgb_get_stats,
3199        .ndo_set_rx_mode      = cxgb_set_rxmode,
3200        .ndo_set_mac_address  = cxgb_set_mac_addr,
3201        .ndo_set_features     = cxgb_set_features,
3202        .ndo_validate_addr    = eth_validate_addr,
3203        .ndo_do_ioctl         = cxgb_ioctl,
3204        .ndo_change_mtu       = cxgb_change_mtu,
3205#ifdef CONFIG_NET_POLL_CONTROLLER
3206        .ndo_poll_controller  = cxgb_netpoll,
3207#endif
3208#ifdef CONFIG_CHELSIO_T4_FCOE
3209        .ndo_fcoe_enable      = cxgb_fcoe_enable,
3210        .ndo_fcoe_disable     = cxgb_fcoe_disable,
3211#endif /* CONFIG_CHELSIO_T4_FCOE */
3212        .ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3213        .ndo_setup_tc         = cxgb_setup_tc,
3214        .ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3215        .ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3216        .ndo_features_check   = cxgb_features_check,
3217        .ndo_fix_features     = cxgb_fix_features,
3218};
3219
3220#ifdef CONFIG_PCI_IOV
3221static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3222        .ndo_open             = cxgb4_mgmt_open,
3223        .ndo_set_vf_mac       = cxgb4_mgmt_set_vf_mac,
3224        .ndo_get_vf_config    = cxgb4_mgmt_get_vf_config,
3225        .ndo_set_vf_rate      = cxgb4_mgmt_set_vf_rate,
3226        .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3227        .ndo_set_vf_vlan      = cxgb4_mgmt_set_vf_vlan,
3228};
3229#endif
3230
3231static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3232                                   struct ethtool_drvinfo *info)
3233{
3234        struct adapter *adapter = netdev2adap(dev);
3235
3236        strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3237        strlcpy(info->version, cxgb4_driver_version,
3238                sizeof(info->version));
3239        strlcpy(info->bus_info, pci_name(adapter->pdev),
3240                sizeof(info->bus_info));
3241}
3242
3243static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3244        .get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3245};
3246
3247void t4_fatal_err(struct adapter *adap)
3248{
3249        int port;
3250
3251        if (pci_channel_offline(adap->pdev))
3252                return;
3253
3254        /* Disable the SGE since ULDs are going to free resources that
3255         * could be exposed to the adapter.  RDMA MWs for example...
3256         */
3257        t4_shutdown_adapter(adap);
3258        for_each_port(adap, port) {
3259                struct net_device *dev = adap->port[port];
3260
3261                /* If we get here in very early initialization the network
3262                 * devices may not have been set up yet.
3263                 */
3264                if (!dev)
3265                        continue;
3266
3267                netif_tx_stop_all_queues(dev);
3268                netif_carrier_off(dev);
3269        }
3270        dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3271}
3272
3273static void setup_memwin(struct adapter *adap)
3274{
3275        u32 nic_win_base = t4_get_util_window(adap);
3276
3277        t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3278}
3279
3280static void setup_memwin_rdma(struct adapter *adap)
3281{
3282        if (adap->vres.ocq.size) {
3283                u32 start;
3284                unsigned int sz_kb;
3285
3286                start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3287                start &= PCI_BASE_ADDRESS_MEM_MASK;
3288                start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3289                sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3290                t4_write_reg(adap,
3291                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3292                             start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3293                t4_write_reg(adap,
3294                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3295                             adap->vres.ocq.start);
3296                t4_read_reg(adap,
3297                            PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3298        }
3299}
3300
3301static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3302{
3303        u32 v;
3304        int ret;
3305
3306        /* get device capabilities */
3307        memset(c, 0, sizeof(*c));
3308        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3309                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
3310        c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3311        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3312        if (ret < 0)
3313                return ret;
3314
3315        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3316                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3317        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3318        if (ret < 0)
3319                return ret;
3320
3321        ret = t4_config_glbl_rss(adap, adap->pf,
3322                                 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3323                                 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3324                                 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3325        if (ret < 0)
3326                return ret;
3327
3328        ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3329                          MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3330                          FW_CMD_CAP_PF);
3331        if (ret < 0)
3332                return ret;
3333
3334        t4_sge_init(adap);
3335
3336        /* tweak some settings */
3337        t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3338        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3339        t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3340        v = t4_read_reg(adap, TP_PIO_DATA_A);
3341        t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3342
3343        /* first 4 Tx modulation queues point to consecutive Tx channels */
3344        adap->params.tp.tx_modq_map = 0xE4;
3345        t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3346                     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3347
3348        /* associate each Tx modulation queue with consecutive Tx channels */
3349        v = 0x84218421;
3350        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3351                          &v, 1, TP_TX_SCHED_HDR_A);
3352        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3353                          &v, 1, TP_TX_SCHED_FIFO_A);
3354        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3355                          &v, 1, TP_TX_SCHED_PCMD_A);
3356
3357#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3358        if (is_offload(adap)) {
3359                t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3360                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3361                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3362                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3363                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3364                t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3365                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3366                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3367                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3368                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3369        }
3370
3371        /* get basic stuff going */
3372        return t4_early_init(adap, adap->pf);
3373}
3374
3375/*
3376 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3377 */
3378#define MAX_ATIDS 8192U
3379
3380/*
3381 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3382 *
3383 * If the firmware we're dealing with has Configuration File support, then
3384 * we use that to perform all configuration
3385 */
3386
3387/*
3388 * Tweak configuration based on module parameters, etc.  Most of these have
3389 * defaults assigned to them by Firmware Configuration Files (if we're using
3390 * them) but need to be explicitly set if we're using hard-coded
3391 * initialization.  But even in the case of using Firmware Configuration
3392 * Files, we'd like to expose the ability to change these via module
3393 * parameters so these are essentially common tweaks/settings for
3394 * Configuration Files and hard-coded initialization ...
3395 */
3396static int adap_init0_tweaks(struct adapter *adapter)
3397{
3398        /*
3399         * Fix up various Host-Dependent Parameters like Page Size, Cache
3400         * Line Size, etc.  The firmware default is for a 4KB Page Size and
3401         * 64B Cache Line Size ...
3402         */
3403        t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3404
3405        /*
3406         * Process module parameters which affect early initialization.
3407         */
3408        if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3409                dev_err(&adapter->pdev->dev,
3410                        "Ignoring illegal rx_dma_offset=%d, using 2\n",
3411                        rx_dma_offset);
3412                rx_dma_offset = 2;
3413        }
3414        t4_set_reg_field(adapter, SGE_CONTROL_A,
3415                         PKTSHIFT_V(PKTSHIFT_M),
3416                         PKTSHIFT_V(rx_dma_offset));
3417
3418        /*
3419         * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3420         * adds the pseudo header itself.
3421         */
3422        t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3423                               CSUM_HAS_PSEUDO_HDR_F, 0);
3424
3425        return 0;
3426}
3427
3428/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3429 * unto themselves and they contain their own firmware to perform their
3430 * tasks ...
3431 */
3432static int phy_aq1202_version(const u8 *phy_fw_data,
3433                              size_t phy_fw_size)
3434{
3435        int offset;
3436
3437        /* At offset 0x8 you're looking for the primary image's
3438         * starting offset which is 3 Bytes wide
3439         *
3440         * At offset 0xa of the primary image, you look for the offset
3441         * of the DRAM segment which is 3 Bytes wide.
3442         *
3443         * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3444         * wide
3445         */
3446        #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3447        #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3448        #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3449
3450        offset = le24(phy_fw_data + 0x8) << 12;
3451        offset = le24(phy_fw_data + offset + 0xa);
3452        return be16(phy_fw_data + offset + 0x27e);
3453
3454        #undef be16
3455        #undef le16
3456        #undef le24
3457}
3458
3459static struct info_10gbt_phy_fw {
3460        unsigned int phy_fw_id;         /* PCI Device ID */
3461        char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3462        int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3463        int phy_flash;                  /* Has FLASH for PHY Firmware */
3464} phy_info_array[] = {
3465        {
3466                PHY_AQ1202_DEVICEID,
3467                PHY_AQ1202_FIRMWARE,
3468                phy_aq1202_version,
3469                1,
3470        },
3471        {
3472                PHY_BCM84834_DEVICEID,
3473                PHY_BCM84834_FIRMWARE,
3474                NULL,
3475                0,
3476        },
3477        { 0, NULL, NULL },
3478};
3479
3480static struct info_10gbt_phy_fw *find_phy_info(int devid)
3481{
3482        int i;
3483
3484        for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3485                if (phy_info_array[i].phy_fw_id == devid)
3486                        return &phy_info_array[i];
3487        }
3488        return NULL;
3489}
3490
3491/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3492 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3493 * we return a negative error number.  If we transfer new firmware we return 1
3494 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3495 */
3496static int adap_init0_phy(struct adapter *adap)
3497{
3498        const struct firmware *phyf;
3499        int ret;
3500        struct info_10gbt_phy_fw *phy_info;
3501
3502        /* Use the device ID to determine which PHY file to flash.
3503         */
3504        phy_info = find_phy_info(adap->pdev->device);
3505        if (!phy_info) {
3506                dev_warn(adap->pdev_dev,
3507                         "No PHY Firmware file found for this PHY\n");
3508                return -EOPNOTSUPP;
3509        }
3510
3511        /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3512         * use that. The adapter firmware provides us with a memory buffer
3513         * where we can load a PHY firmware file from the host if we want to
3514         * override the PHY firmware File in flash.
3515         */
3516        ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3517                                      adap->pdev_dev);
3518        if (ret < 0) {
3519                /* For adapters without FLASH attached to PHY for their
3520                 * firmware, it's obviously a fatal error if we can't get the
3521                 * firmware to the adapter.  For adapters with PHY firmware
3522                 * FLASH storage, it's worth a warning if we can't find the
3523                 * PHY Firmware but we'll neuter the error ...
3524                 */
3525                dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3526                        "/lib/firmware/%s, error %d\n",
3527                        phy_info->phy_fw_file, -ret);
3528                if (phy_info->phy_flash) {
3529                        int cur_phy_fw_ver = 0;
3530
3531                        t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3532                        dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3533                                 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3534                        ret = 0;
3535                }
3536
3537                return ret;
3538        }
3539
3540        /* Load PHY Firmware onto adapter.
3541         */
3542        ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3543                             phy_info->phy_fw_version,
3544                             (u8 *)phyf->data, phyf->size);
3545        if (ret < 0)
3546                dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3547                        -ret);
3548        else if (ret > 0) {
3549                int new_phy_fw_ver = 0;
3550
3551                if (phy_info->phy_fw_version)
3552                        new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3553                                                                  phyf->size);
3554                dev_info(adap->pdev_dev, "Successfully transferred PHY "
3555                         "Firmware /lib/firmware/%s, version %#x\n",
3556                         phy_info->phy_fw_file, new_phy_fw_ver);
3557        }
3558
3559        release_firmware(phyf);
3560
3561        return ret;
3562}
3563
3564/*
3565 * Attempt to initialize the adapter via a Firmware Configuration File.
3566 */
3567static int adap_init0_config(struct adapter *adapter, int reset)
3568{
3569        struct fw_caps_config_cmd caps_cmd;
3570        const struct firmware *cf;
3571        unsigned long mtype = 0, maddr = 0;
3572        u32 finiver, finicsum, cfcsum;
3573        int ret;
3574        int config_issued = 0;
3575        char *fw_config_file, fw_config_file_path[256];
3576        char *config_name = NULL;
3577
3578        /*
3579         * Reset device if necessary.
3580         */
3581        if (reset) {
3582                ret = t4_fw_reset(adapter, adapter->mbox,
3583                                  PIORSTMODE_F | PIORST_F);
3584                if (ret < 0)
3585                        goto bye;
3586        }
3587
3588        /* If this is a 10Gb/s-BT adapter make sure the chip-external
3589         * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3590         * to be performed after any global adapter RESET above since some
3591         * PHYs only have local RAM copies of the PHY firmware.
3592         */
3593        if (is_10gbt_device(adapter->pdev->device)) {
3594                ret = adap_init0_phy(adapter);
3595                if (ret < 0)
3596                        goto bye;
3597        }
3598        /*
3599         * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3600         * then use that.  Otherwise, use the configuration file stored
3601         * in the adapter flash ...
3602         */
3603        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3604        case CHELSIO_T4:
3605                fw_config_file = FW4_CFNAME;
3606                break;
3607        case CHELSIO_T5:
3608                fw_config_file = FW5_CFNAME;
3609                break;
3610        case CHELSIO_T6:
3611                fw_config_file = FW6_CFNAME;
3612                break;
3613        default:
3614                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3615                       adapter->pdev->device);
3616                ret = -EINVAL;
3617                goto bye;
3618        }
3619
3620        ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3621        if (ret < 0) {
3622                config_name = "On FLASH";
3623                mtype = FW_MEMTYPE_CF_FLASH;
3624                maddr = t4_flash_cfg_addr(adapter);
3625        } else {
3626                u32 params[7], val[7];
3627
3628                sprintf(fw_config_file_path,
3629                        "/lib/firmware/%s", fw_config_file);
3630                config_name = fw_config_file_path;
3631
3632                if (cf->size >= FLASH_CFG_MAX_SIZE)
3633                        ret = -ENOMEM;
3634                else {
3635                        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3636                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3637                        ret = t4_query_params(adapter, adapter->mbox,
3638                                              adapter->pf, 0, 1, params, val);
3639                        if (ret == 0) {
3640                                /*
3641                                 * For t4_memory_rw() below addresses and
3642                                 * sizes have to be in terms of multiples of 4
3643                                 * bytes.  So, if the Configuration File isn't
3644                                 * a multiple of 4 bytes in length we'll have
3645                                 * to write that out separately since we can't
3646                                 * guarantee that the bytes following the
3647                                 * residual byte in the buffer returned by
3648                                 * request_firmware() are zeroed out ...
3649                                 */
3650                                size_t resid = cf->size & 0x3;
3651                                size_t size = cf->size & ~0x3;
3652                                __be32 *data = (__be32 *)cf->data;
3653
3654                                mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3655                                maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3656
3657                                spin_lock(&adapter->win0_lock);
3658                                ret = t4_memory_rw(adapter, 0, mtype, maddr,
3659                                                   size, data, T4_MEMORY_WRITE);
3660                                if (ret == 0 && resid != 0) {
3661                                        union {
3662                                                __be32 word;
3663                                                char buf[4];
3664                                        } last;
3665                                        int i;
3666
3667                                        last.word = data[size >> 2];
3668                                        for (i = resid; i < 4; i++)
3669                                                last.buf[i] = 0;
3670                                        ret = t4_memory_rw(adapter, 0, mtype,
3671                                                           maddr + size,
3672                                                           4, &last.word,
3673                                                           T4_MEMORY_WRITE);
3674                                }
3675                                spin_unlock(&adapter->win0_lock);
3676                        }
3677                }
3678
3679                release_firmware(cf);
3680                if (ret)
3681                        goto bye;
3682        }
3683
3684        /*
3685         * Issue a Capability Configuration command to the firmware to get it
3686         * to parse the Configuration File.  We don't use t4_fw_config_file()
3687         * because we want the ability to modify various features after we've
3688         * processed the configuration file ...
3689         */
3690        memset(&caps_cmd, 0, sizeof(caps_cmd));
3691        caps_cmd.op_to_write =
3692                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3693                      FW_CMD_REQUEST_F |
3694                      FW_CMD_READ_F);
3695        caps_cmd.cfvalid_to_len16 =
3696                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3697                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3698                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3699                      FW_LEN16(caps_cmd));
3700        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3701                         &caps_cmd);
3702
3703        /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3704         * Configuration File in FLASH), our last gasp effort is to use the
3705         * Firmware Configuration File which is embedded in the firmware.  A
3706         * very few early versions of the firmware didn't have one embedded
3707         * but we can ignore those.
3708         */
3709        if (ret == -ENOENT) {
3710                memset(&caps_cmd, 0, sizeof(caps_cmd));
3711                caps_cmd.op_to_write =
3712                        htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3713                                        FW_CMD_REQUEST_F |
3714                                        FW_CMD_READ_F);
3715                caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3716                ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3717                                sizeof(caps_cmd), &caps_cmd);
3718                config_name = "Firmware Default";
3719        }
3720
3721        config_issued = 1;
3722        if (ret < 0)
3723                goto bye;
3724
3725        finiver = ntohl(caps_cmd.finiver);
3726        finicsum = ntohl(caps_cmd.finicsum);
3727        cfcsum = ntohl(caps_cmd.cfcsum);
3728        if (finicsum != cfcsum)
3729                dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3730                         "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3731                         finicsum, cfcsum);
3732
3733        /*
3734         * And now tell the firmware to use the configuration we just loaded.
3735         */
3736        caps_cmd.op_to_write =
3737                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3738                      FW_CMD_REQUEST_F |
3739                      FW_CMD_WRITE_F);
3740        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3741        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3742                         NULL);
3743        if (ret < 0)
3744                goto bye;
3745
3746        /*
3747         * Tweak configuration based on system architecture, module
3748         * parameters, etc.
3749         */
3750        ret = adap_init0_tweaks(adapter);
3751        if (ret < 0)
3752                goto bye;
3753
3754        /*
3755         * And finally tell the firmware to initialize itself using the
3756         * parameters from the Configuration File.
3757         */
3758        ret = t4_fw_initialize(adapter, adapter->mbox);
3759        if (ret < 0)
3760                goto bye;
3761
3762        /* Emit Firmware Configuration File information and return
3763         * successfully.
3764         */
3765        dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3766                 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3767                 config_name, finiver, cfcsum);
3768        return 0;
3769
3770        /*
3771         * Something bad happened.  Return the error ...  (If the "error"
3772         * is that there's no Configuration File on the adapter we don't
3773         * want to issue a warning since this is fairly common.)
3774         */
3775bye:
3776        if (config_issued && ret != -ENOENT)
3777                dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3778                         config_name, -ret);
3779        return ret;
3780}
3781
3782static struct fw_info fw_info_array[] = {
3783        {
3784                .chip = CHELSIO_T4,
3785                .fs_name = FW4_CFNAME,
3786                .fw_mod_name = FW4_FNAME,
3787                .fw_hdr = {
3788                        .chip = FW_HDR_CHIP_T4,
3789                        .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3790                        .intfver_nic = FW_INTFVER(T4, NIC),
3791                        .intfver_vnic = FW_INTFVER(T4, VNIC),
3792                        .intfver_ri = FW_INTFVER(T4, RI),
3793                        .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3794                        .intfver_fcoe = FW_INTFVER(T4, FCOE),
3795                },
3796        }, {
3797                .chip = CHELSIO_T5,
3798                .fs_name = FW5_CFNAME,
3799                .fw_mod_name = FW5_FNAME,
3800                .fw_hdr = {
3801                        .chip = FW_HDR_CHIP_T5,
3802                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3803                        .intfver_nic = FW_INTFVER(T5, NIC),
3804                        .intfver_vnic = FW_INTFVER(T5, VNIC),
3805                        .intfver_ri = FW_INTFVER(T5, RI),
3806                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3807                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
3808                },
3809        }, {
3810                .chip = CHELSIO_T6,
3811                .fs_name = FW6_CFNAME,
3812                .fw_mod_name = FW6_FNAME,
3813                .fw_hdr = {
3814                        .chip = FW_HDR_CHIP_T6,
3815                        .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3816                        .intfver_nic = FW_INTFVER(T6, NIC),
3817                        .intfver_vnic = FW_INTFVER(T6, VNIC),
3818                        .intfver_ofld = FW_INTFVER(T6, OFLD),
3819                        .intfver_ri = FW_INTFVER(T6, RI),
3820                        .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3821                        .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3822                        .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3823                        .intfver_fcoe = FW_INTFVER(T6, FCOE),
3824                },
3825        }
3826
3827};
3828
3829static struct fw_info *find_fw_info(int chip)
3830{
3831        int i;
3832
3833        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3834                if (fw_info_array[i].chip == chip)
3835                        return &fw_info_array[i];
3836        }
3837        return NULL;
3838}
3839
3840/*
3841 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3842 */
3843static int adap_init0(struct adapter *adap)
3844{
3845        int ret;
3846        u32 v, port_vec;
3847        enum dev_state state;
3848        u32 params[7], val[7];
3849        struct fw_caps_config_cmd caps_cmd;
3850        int reset = 1;
3851
3852        /* Grab Firmware Device Log parameters as early as possible so we have
3853         * access to it for debugging, etc.
3854         */
3855        ret = t4_init_devlog_params(adap);
3856        if (ret < 0)
3857                return ret;
3858
3859        /* Contact FW, advertising Master capability */
3860        ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3861                          is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3862        if (ret < 0) {
3863                dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3864                        ret);
3865                return ret;
3866        }
3867        if (ret == adap->mbox)
3868                adap->flags |= MASTER_PF;
3869
3870        /*
3871         * If we're the Master PF Driver and the device is uninitialized,
3872         * then let's consider upgrading the firmware ...  (We always want
3873         * to check the firmware version number in order to A. get it for
3874         * later reporting and B. to warn if the currently loaded firmware
3875         * is excessively mismatched relative to the driver.)
3876         */
3877
3878        t4_get_version_info(adap);
3879        ret = t4_check_fw_version(adap);
3880        /* If firmware is too old (not supported by driver) force an update. */
3881        if (ret)
3882                state = DEV_STATE_UNINIT;
3883        if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3884                struct fw_info *fw_info;
3885                struct fw_hdr *card_fw;
3886                const struct firmware *fw;
3887                const u8 *fw_data = NULL;
3888                unsigned int fw_size = 0;
3889
3890                /* This is the firmware whose headers the driver was compiled
3891                 * against
3892                 */
3893                fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3894                if (fw_info == NULL) {
3895                        dev_err(adap->pdev_dev,
3896                                "unable to get firmware info for chip %d.\n",
3897                                CHELSIO_CHIP_VERSION(adap->params.chip));
3898                        return -EINVAL;
3899                }
3900
3901                /* allocate memory to read the header of the firmware on the
3902                 * card
3903                 */
3904                card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3905
3906                /* Get FW from from /lib/firmware/ */
3907                ret = request_firmware(&fw, fw_info->fw_mod_name,
3908                                       adap->pdev_dev);
3909                if (ret < 0) {
3910                        dev_err(adap->pdev_dev,
3911                                "unable to load firmware image %s, error %d\n",
3912                                fw_info->fw_mod_name, ret);
3913                } else {
3914                        fw_data = fw->data;
3915                        fw_size = fw->size;
3916                }
3917
3918                /* upgrade FW logic */
3919                ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3920                                 state, &reset);
3921
3922                /* Cleaning up */
3923                release_firmware(fw);
3924                kvfree(card_fw);
3925
3926                if (ret < 0)
3927                        goto bye;
3928        }
3929
3930        /*
3931         * Grab VPD parameters.  This should be done after we establish a
3932         * connection to the firmware since some of the VPD parameters
3933         * (notably the Core Clock frequency) are retrieved via requests to
3934         * the firmware.  On the other hand, we need these fairly early on
3935         * so we do this right after getting ahold of the firmware.
3936         */
3937        ret = t4_get_vpd_params(adap, &adap->params.vpd);
3938        if (ret < 0)
3939                goto bye;
3940
3941        /*
3942         * Find out what ports are available to us.  Note that we need to do
3943         * this before calling adap_init0_no_config() since it needs nports
3944         * and portvec ...
3945         */
3946        v =
3947            FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3948            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3949        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3950        if (ret < 0)
3951                goto bye;
3952
3953        adap->params.nports = hweight32(port_vec);
3954        adap->params.portvec = port_vec;
3955
3956        /* If the firmware is initialized already, emit a simply note to that
3957         * effect. Otherwise, it's time to try initializing the adapter.
3958         */
3959        if (state == DEV_STATE_INIT) {
3960                dev_info(adap->pdev_dev, "Coming up as %s: "\
3961                         "Adapter already initialized\n",
3962                         adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3963        } else {
3964                dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3965                         "Initializing adapter\n");
3966
3967                /* Find out whether we're dealing with a version of the
3968                 * firmware which has configuration file support.
3969                 */
3970                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3971                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3972                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3973                                      params, val);
3974
3975                /* If the firmware doesn't support Configuration Files,
3976                 * return an error.
3977                 */
3978                if (ret < 0) {
3979                        dev_err(adap->pdev_dev, "firmware doesn't support "
3980                                "Firmware Configuration Files\n");
3981                        goto bye;
3982                }
3983
3984                /* The firmware provides us with a memory buffer where we can
3985                 * load a Configuration File from the host if we want to
3986                 * override the Configuration File in flash.
3987                 */
3988                ret = adap_init0_config(adap, reset);
3989                if (ret == -ENOENT) {
3990                        dev_err(adap->pdev_dev, "no Configuration File "
3991                                "present on adapter.\n");
3992                        goto bye;
3993                }
3994                if (ret < 0) {
3995                        dev_err(adap->pdev_dev, "could not initialize "
3996                                "adapter, error %d\n", -ret);
3997                        goto bye;
3998                }
3999        }
4000
4001        /* Give the SGE code a chance to pull in anything that it needs ...
4002         * Note that this must be called after we retrieve our VPD parameters
4003         * in order to know how to convert core ticks to seconds, etc.
4004         */
4005        ret = t4_sge_init(adap);
4006        if (ret < 0)
4007                goto bye;
4008
4009        if (is_bypass_device(adap->pdev->device))
4010                adap->params.bypass = 1;
4011
4012        /*
4013         * Grab some of our basic fundamental operating parameters.
4014         */
4015#define FW_PARAM_DEV(param) \
4016        (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4017        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4018
4019#define FW_PARAM_PFVF(param) \
4020        FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4021        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4022        FW_PARAMS_PARAM_Y_V(0) | \
4023        FW_PARAMS_PARAM_Z_V(0)
4024
4025        params[0] = FW_PARAM_PFVF(EQ_START);
4026        params[1] = FW_PARAM_PFVF(L2T_START);
4027        params[2] = FW_PARAM_PFVF(L2T_END);
4028        params[3] = FW_PARAM_PFVF(FILTER_START);
4029        params[4] = FW_PARAM_PFVF(FILTER_END);
4030        params[5] = FW_PARAM_PFVF(IQFLINT_START);
4031        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4032        if (ret < 0)
4033                goto bye;
4034        adap->sge.egr_start = val[0];
4035        adap->l2t_start = val[1];
4036        adap->l2t_end = val[2];
4037        adap->tids.ftid_base = val[3];
4038        adap->tids.nftids = val[4] - val[3] + 1;
4039        adap->sge.ingr_start = val[5];
4040
4041        /* qids (ingress/egress) returned from firmware can be anywhere
4042         * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4043         * Hence driver needs to allocate memory for this range to
4044         * store the queue info. Get the highest IQFLINT/EQ index returned
4045         * in FW_EQ_*_CMD.alloc command.
4046         */
4047        params[0] = FW_PARAM_PFVF(EQ_END);
4048        params[1] = FW_PARAM_PFVF(IQFLINT_END);
4049        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4050        if (ret < 0)
4051                goto bye;
4052        adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4053        adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4054
4055        adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4056                                    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4057        if (!adap->sge.egr_map) {
4058                ret = -ENOMEM;
4059                goto bye;
4060        }
4061
4062        adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4063                                     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4064        if (!adap->sge.ingr_map) {
4065                ret = -ENOMEM;
4066                goto bye;
4067        }
4068
4069        /* Allocate the memory for the vaious egress queue bitmaps
4070         * ie starving_fl, txq_maperr and blocked_fl.
4071         */
4072        adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4073                                        sizeof(long), GFP_KERNEL);
4074        if (!adap->sge.starving_fl) {
4075                ret = -ENOMEM;
4076                goto bye;
4077        }
4078
4079        adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4080                                       sizeof(long), GFP_KERNEL);
4081        if (!adap->sge.txq_maperr) {
4082                ret = -ENOMEM;
4083                goto bye;
4084        }
4085
4086#ifdef CONFIG_DEBUG_FS
4087        adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4088                                       sizeof(long), GFP_KERNEL);
4089        if (!adap->sge.blocked_fl) {
4090                ret = -ENOMEM;
4091                goto bye;
4092        }
4093#endif
4094
4095        params[0] = FW_PARAM_PFVF(CLIP_START);
4096        params[1] = FW_PARAM_PFVF(CLIP_END);
4097        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4098        if (ret < 0)
4099                goto bye;
4100        adap->clipt_start = val[0];
4101        adap->clipt_end = val[1];
4102
4103        /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4104         * Classes supported by the hardware/firmware so we hard code it here
4105         * for now.
4106         */
4107        adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4108
4109        /* query params related to active filter region */
4110        params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4111        params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4112        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4113        /* If Active filter size is set we enable establishing
4114         * offload connection through firmware work request
4115         */
4116        if ((val[0] != val[1]) && (ret >= 0)) {
4117                adap->flags |= FW_OFLD_CONN;
4118                adap->tids.aftid_base = val[0];
4119                adap->tids.aftid_end = val[1];
4120        }
4121
4122        /* If we're running on newer firmware, let it know that we're
4123         * prepared to deal with encapsulated CPL messages.  Older
4124         * firmware won't understand this and we'll just get
4125         * unencapsulated messages ...
4126         */
4127        params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4128        val[0] = 1;
4129        (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4130
4131        /*
4132         * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4133         * capability.  Earlier versions of the firmware didn't have the
4134         * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4135         * permission to use ULPTX MEMWRITE DSGL.
4136         */
4137        if (is_t4(adap->params.chip)) {
4138                adap->params.ulptx_memwrite_dsgl = false;
4139        } else {
4140                params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4141                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4142                                      1, params, val);
4143                adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4144        }
4145
4146        /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4147        params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4148        ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4149                              1, params, val);
4150        adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4151
4152        /* See if FW supports FW_FILTER2 work request */
4153        if (is_t4(adap->params.chip)) {
4154                adap->params.filter2_wr_support = 0;
4155        } else {
4156                params[0] = FW_PARAM_DEV(FILTER2_WR);
4157                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4158                                      1, params, val);
4159                adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4160        }
4161
4162        /*
4163         * Get device capabilities so we can determine what resources we need
4164         * to manage.
4165         */
4166        memset(&caps_cmd, 0, sizeof(caps_cmd));
4167        caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4168                                     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4169        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4170        ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4171                         &caps_cmd);
4172        if (ret < 0)
4173                goto bye;
4174
4175        if (caps_cmd.ofldcaps ||
4176            (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4177                /* query offload-related parameters */
4178                params[0] = FW_PARAM_DEV(NTID);
4179                params[1] = FW_PARAM_PFVF(SERVER_START);
4180                params[2] = FW_PARAM_PFVF(SERVER_END);
4181                params[3] = FW_PARAM_PFVF(TDDP_START);
4182                params[4] = FW_PARAM_PFVF(TDDP_END);
4183                params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4184                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4185                                      params, val);
4186                if (ret < 0)
4187                        goto bye;
4188                adap->tids.ntids = val[0];
4189                adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4190                adap->tids.stid_base = val[1];
4191                adap->tids.nstids = val[2] - val[1] + 1;
4192                /*
4193                 * Setup server filter region. Divide the available filter
4194                 * region into two parts. Regular filters get 1/3rd and server
4195                 * filters get 2/3rd part. This is only enabled if workarond
4196                 * path is enabled.
4197                 * 1. For regular filters.
4198                 * 2. Server filter: This are special filters which are used
4199                 * to redirect SYN packets to offload queue.
4200                 */
4201                if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4202                        adap->tids.sftid_base = adap->tids.ftid_base +
4203                                        DIV_ROUND_UP(adap->tids.nftids, 3);
4204                        adap->tids.nsftids = adap->tids.nftids -
4205                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4206                        adap->tids.nftids = adap->tids.sftid_base -
4207                                                adap->tids.ftid_base;
4208                }
4209                adap->vres.ddp.start = val[3];
4210                adap->vres.ddp.size = val[4] - val[3] + 1;
4211                adap->params.ofldq_wr_cred = val[5];
4212
4213                if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4214                        if (init_hash_filter(adap) < 0)
4215                                goto bye;
4216                } else {
4217                        adap->params.offload = 1;
4218                        adap->num_ofld_uld += 1;
4219                }
4220        }
4221        if (caps_cmd.rdmacaps) {
4222                params[0] = FW_PARAM_PFVF(STAG_START);
4223                params[1] = FW_PARAM_PFVF(STAG_END);
4224                params[2] = FW_PARAM_PFVF(RQ_START);
4225                params[3] = FW_PARAM_PFVF(RQ_END);
4226                params[4] = FW_PARAM_PFVF(PBL_START);
4227                params[5] = FW_PARAM_PFVF(PBL_END);
4228                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4229                                      params, val);
4230                if (ret < 0)
4231                        goto bye;
4232                adap->vres.stag.start = val[0];
4233                adap->vres.stag.size = val[1] - val[0] + 1;
4234                adap->vres.rq.start = val[2];
4235                adap->vres.rq.size = val[3] - val[2] + 1;
4236                adap->vres.pbl.start = val[4];
4237                adap->vres.pbl.size = val[5] - val[4] + 1;
4238
4239                params[0] = FW_PARAM_PFVF(SQRQ_START);
4240                params[1] = FW_PARAM_PFVF(SQRQ_END);
4241                params[2] = FW_PARAM_PFVF(CQ_START);
4242                params[3] = FW_PARAM_PFVF(CQ_END);
4243                params[4] = FW_PARAM_PFVF(OCQ_START);
4244                params[5] = FW_PARAM_PFVF(OCQ_END);
4245                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4246                                      val);
4247                if (ret < 0)
4248                        goto bye;
4249                adap->vres.qp.start = val[0];
4250                adap->vres.qp.size = val[1] - val[0] + 1;
4251                adap->vres.cq.start = val[2];
4252                adap->vres.cq.size = val[3] - val[2] + 1;
4253                adap->vres.ocq.start = val[4];
4254                adap->vres.ocq.size = val[5] - val[4] + 1;
4255
4256                params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4257                params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4258                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4259                                      val);
4260                if (ret < 0) {
4261                        adap->params.max_ordird_qp = 8;
4262                        adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4263                        ret = 0;
4264                } else {
4265                        adap->params.max_ordird_qp = val[0];
4266                        adap->params.max_ird_adapter = val[1];
4267                }
4268                dev_info(adap->pdev_dev,
4269                         "max_ordird_qp %d max_ird_adapter %d\n",
4270                         adap->params.max_ordird_qp,
4271                         adap->params.max_ird_adapter);
4272                adap->num_ofld_uld += 2;
4273        }
4274        if (caps_cmd.iscsicaps) {
4275                params[0] = FW_PARAM_PFVF(ISCSI_START);
4276                params[1] = FW_PARAM_PFVF(ISCSI_END);
4277                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4278                                      params, val);
4279                if (ret < 0)
4280                        goto bye;
4281                adap->vres.iscsi.start = val[0];
4282                adap->vres.iscsi.size = val[1] - val[0] + 1;
4283                /* LIO target and cxgb4i initiaitor */
4284                adap->num_ofld_uld += 2;
4285        }
4286        if (caps_cmd.cryptocaps) {
4287                /* Should query params here...TODO */
4288                params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4289                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4290                                      params, val);
4291                if (ret < 0) {
4292                        if (ret != -EINVAL)
4293                                goto bye;
4294                } else {
4295                        adap->vres.ncrypto_fc = val[0];
4296                }
4297                adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4298                adap->num_uld += 1;
4299        }
4300#undef FW_PARAM_PFVF
4301#undef FW_PARAM_DEV
4302
4303        /* The MTU/MSS Table is initialized by now, so load their values.  If
4304         * we're initializing the adapter, then we'll make any modifications
4305         * we want to the MTU/MSS Table and also initialize the congestion
4306         * parameters.
4307         */
4308        t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4309        if (state != DEV_STATE_INIT) {
4310                int i;
4311
4312                /* The default MTU Table contains values 1492 and 1500.
4313                 * However, for TCP, it's better to have two values which are
4314                 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4315                 * This allows us to have a TCP Data Payload which is a
4316                 * multiple of 8 regardless of what combination of TCP Options
4317                 * are in use (always a multiple of 4 bytes) which is
4318                 * important for performance reasons.  For instance, if no
4319                 * options are in use, then we have a 20-byte IP header and a
4320                 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4321                 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4322                 * which is not a multiple of 8.  So using an MSS of 1488 in
4323                 * this case results in a TCP Data Payload of 1448 bytes which
4324                 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4325                 * Stamps have been negotiated, then an MTU of 1500 bytes
4326                 * results in a TCP Data Payload of 1448 bytes which, as
4327                 * above, is a multiple of 8 bytes ...
4328                 */
4329                for (i = 0; i < NMTUS; i++)
4330                        if (adap->params.mtus[i] == 1492) {
4331                                adap->params.mtus[i] = 1488;
4332                                break;
4333                        }
4334
4335                t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4336                             adap->params.b_wnd);
4337        }
4338        t4_init_sge_params(adap);
4339        adap->flags |= FW_OK;
4340        t4_init_tp_params(adap, true);
4341        return 0;
4342
4343        /*
4344         * Something bad happened.  If a command timed out or failed with EIO
4345         * FW does not operate within its spec or something catastrophic
4346         * happened to HW/FW, stop issuing commands.
4347         */
4348bye:
4349        kfree(adap->sge.egr_map);
4350        kfree(adap->sge.ingr_map);
4351        kfree(adap->sge.starving_fl);
4352        kfree(adap->sge.txq_maperr);
4353#ifdef CONFIG_DEBUG_FS
4354        kfree(adap->sge.blocked_fl);
4355#endif
4356        if (ret != -ETIMEDOUT && ret != -EIO)
4357                t4_fw_bye(adap, adap->mbox);
4358        return ret;
4359}
4360
4361/* EEH callbacks */
4362
4363static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4364                                         pci_channel_state_t state)
4365{
4366        int i;
4367        struct adapter *adap = pci_get_drvdata(pdev);
4368
4369        if (!adap)
4370                goto out;
4371
4372        rtnl_lock();
4373        adap->flags &= ~FW_OK;
4374        notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4375        spin_lock(&adap->stats_lock);
4376        for_each_port(adap, i) {
4377                struct net_device *dev = adap->port[i];
4378                if (dev) {
4379                        netif_device_detach(dev);
4380                        netif_carrier_off(dev);
4381                }
4382        }
4383        spin_unlock(&adap->stats_lock);
4384        disable_interrupts(adap);
4385        if (adap->flags & FULL_INIT_DONE)
4386                cxgb_down(adap);
4387        rtnl_unlock();
4388        if ((adap->flags & DEV_ENABLED)) {
4389                pci_disable_device(pdev);
4390                adap->flags &= ~DEV_ENABLED;
4391        }
4392out:    return state == pci_channel_io_perm_failure ?
4393                PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4394}
4395
4396static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4397{
4398        int i, ret;
4399        struct fw_caps_config_cmd c;
4400        struct adapter *adap = pci_get_drvdata(pdev);
4401
4402        if (!adap) {
4403                pci_restore_state(pdev);
4404                pci_save_state(pdev);
4405                return PCI_ERS_RESULT_RECOVERED;
4406        }
4407
4408        if (!(adap->flags & DEV_ENABLED)) {
4409                if (pci_enable_device(pdev)) {
4410                        dev_err(&pdev->dev, "Cannot reenable PCI "
4411                                            "device after reset\n");
4412                        return PCI_ERS_RESULT_DISCONNECT;
4413                }
4414                adap->flags |= DEV_ENABLED;
4415        }
4416
4417        pci_set_master(pdev);
4418        pci_restore_state(pdev);
4419        pci_save_state(pdev);
4420        pci_cleanup_aer_uncorrect_error_status(pdev);
4421
4422        if (t4_wait_dev_ready(adap->regs) < 0)
4423                return PCI_ERS_RESULT_DISCONNECT;
4424        if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4425                return PCI_ERS_RESULT_DISCONNECT;
4426        adap->flags |= FW_OK;
4427        if (adap_init1(adap, &c))
4428                return PCI_ERS_RESULT_DISCONNECT;
4429
4430        for_each_port(adap, i) {
4431                struct port_info *p = adap2pinfo(adap, i);
4432
4433                ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4434                                  NULL, NULL);
4435                if (ret < 0)
4436                        return PCI_ERS_RESULT_DISCONNECT;
4437                p->viid = ret;
4438                p->xact_addr_filt = -1;
4439        }
4440
4441        t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4442                     adap->params.b_wnd);
4443        setup_memwin(adap);
4444        if (cxgb_up(adap))
4445                return PCI_ERS_RESULT_DISCONNECT;
4446        return PCI_ERS_RESULT_RECOVERED;
4447}
4448
4449static void eeh_resume(struct pci_dev *pdev)
4450{
4451        int i;
4452        struct adapter *adap = pci_get_drvdata(pdev);
4453
4454        if (!adap)
4455                return;
4456
4457        rtnl_lock();
4458        for_each_port(adap, i) {
4459                struct net_device *dev = adap->port[i];
4460                if (dev) {
4461                        if (netif_running(dev)) {
4462                                link_start(dev);
4463                                cxgb_set_rxmode(dev);
4464                        }
4465                        netif_device_attach(dev);
4466                }
4467        }
4468        rtnl_unlock();
4469}
4470
4471static const struct pci_error_handlers cxgb4_eeh = {
4472        .error_detected = eeh_err_detected,
4473        .slot_reset     = eeh_slot_reset,
4474        .resume         = eeh_resume,
4475};
4476
4477/* Return true if the Link Configuration supports "High Speeds" (those greater
4478 * than 1Gb/s).
4479 */
4480static inline bool is_x_10g_port(const struct link_config *lc)
4481{
4482        unsigned int speeds, high_speeds;
4483
4484        speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4485        high_speeds = speeds &
4486                        ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4487
4488        return high_speeds != 0;
4489}
4490
4491/*
4492 * Perform default configuration of DMA queues depending on the number and type
4493 * of ports we found and the number of available CPUs.  Most settings can be
4494 * modified by the admin prior to actual use.
4495 */
4496static void cfg_queues(struct adapter *adap)
4497{
4498        struct sge *s = &adap->sge;
4499        int i = 0, n10g = 0, qidx = 0;
4500#ifndef CONFIG_CHELSIO_T4_DCB
4501        int q10g = 0;
4502#endif
4503
4504        /* Reduce memory usage in kdump environment, disable all offload.
4505         */
4506        if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4507                adap->params.offload = 0;
4508                adap->params.crypto = 0;
4509        }
4510
4511        n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4512#ifdef CONFIG_CHELSIO_T4_DCB
4513        /* For Data Center Bridging support we need to be able to support up
4514         * to 8 Traffic Priorities; each of which will be assigned to its
4515         * own TX Queue in order to prevent Head-Of-Line Blocking.
4516         */
4517        if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4518                dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4519                        MAX_ETH_QSETS, adap->params.nports * 8);
4520                BUG_ON(1);
4521        }
4522
4523        for_each_port(adap, i) {
4524                struct port_info *pi = adap2pinfo(adap, i);
4525
4526                pi->first_qset = qidx;
4527                pi->nqsets = is_kdump_kernel() ? 1 : 8;
4528                qidx += pi->nqsets;
4529        }
4530#else /* !CONFIG_CHELSIO_T4_DCB */
4531        /*
4532         * We default to 1 queue per non-10G port and up to # of cores queues
4533         * per 10G port.
4534         */
4535        if (n10g)
4536                q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4537        if (q10g > netif_get_num_default_rss_queues())
4538                q10g = netif_get_num_default_rss_queues();
4539
4540        if (is_kdump_kernel())
4541                q10g = 1;
4542
4543        for_each_port(adap, i) {
4544                struct port_info *pi = adap2pinfo(adap, i);
4545
4546                pi->first_qset = qidx;
4547                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4548                qidx += pi->nqsets;
4549        }
4550#endif /* !CONFIG_CHELSIO_T4_DCB */
4551
4552        s->ethqsets = qidx;
4553        s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4554
4555        if (is_uld(adap)) {
4556                /*
4557                 * For offload we use 1 queue/channel if all ports are up to 1G,
4558                 * otherwise we divide all available queues amongst the channels
4559                 * capped by the number of available cores.
4560                 */
4561                if (n10g) {
4562                        i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4563                        s->ofldqsets = roundup(i, adap->params.nports);
4564                } else {
4565                        s->ofldqsets = adap->params.nports;
4566                }
4567        }
4568
4569        for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4570                struct sge_eth_rxq *r = &s->ethrxq[i];
4571
4572                init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4573                r->fl.size = 72;
4574        }
4575
4576        for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4577                s->ethtxq[i].q.size = 1024;
4578
4579        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4580                s->ctrlq[i].q.size = 512;
4581
4582        if (!is_t4(adap->params.chip))
4583                s->ptptxq.q.size = 8;
4584
4585        init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4586        init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4587}
4588
4589/*
4590 * Reduce the number of Ethernet queues across all ports to at most n.
4591 * n provides at least one queue per port.
4592 */
4593static void reduce_ethqs(struct adapter *adap, int n)
4594{
4595        int i;
4596        struct port_info *pi;
4597
4598        while (n < adap->sge.ethqsets)
4599                for_each_port(adap, i) {
4600                        pi = adap2pinfo(adap, i);
4601                        if (pi->nqsets > 1) {
4602                                pi->nqsets--;
4603                                adap->sge.ethqsets--;
4604                                if (adap->sge.ethqsets <= n)
4605                                        break;
4606                        }
4607                }
4608
4609        n = 0;
4610        for_each_port(adap, i) {
4611                pi = adap2pinfo(adap, i);
4612                pi->first_qset = n;
4613                n += pi->nqsets;
4614        }
4615}
4616
4617static int get_msix_info(struct adapter *adap)
4618{
4619        struct uld_msix_info *msix_info;
4620        unsigned int max_ingq = 0;
4621
4622        if (is_offload(adap))
4623                max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4624        if (is_pci_uld(adap))
4625                max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4626
4627        if (!max_ingq)
4628                goto out;
4629
4630        msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4631        if (!msix_info)
4632                return -ENOMEM;
4633
4634        adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4635                                                 sizeof(long), GFP_KERNEL);
4636        if (!adap->msix_bmap_ulds.msix_bmap) {
4637                kfree(msix_info);
4638                return -ENOMEM;
4639        }
4640        spin_lock_init(&adap->msix_bmap_ulds.lock);
4641        adap->msix_info_ulds = msix_info;
4642out:
4643        return 0;
4644}
4645
4646static void free_msix_info(struct adapter *adap)
4647{
4648        if (!(adap->num_uld && adap->num_ofld_uld))
4649                return;
4650
4651        kfree(adap->msix_info_ulds);
4652        kfree(adap->msix_bmap_ulds.msix_bmap);
4653}
4654
4655/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4656#define EXTRA_VECS 2
4657
4658static int enable_msix(struct adapter *adap)
4659{
4660        int ofld_need = 0, uld_need = 0;
4661        int i, j, want, need, allocated;
4662        struct sge *s = &adap->sge;
4663        unsigned int nchan = adap->params.nports;
4664        struct msix_entry *entries;
4665        int max_ingq = MAX_INGQ;
4666
4667        if (is_pci_uld(adap))
4668                max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4669        if (is_offload(adap))
4670                max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4671        entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4672                          GFP_KERNEL);
4673        if (!entries)
4674                return -ENOMEM;
4675
4676        /* map for msix */
4677        if (get_msix_info(adap)) {
4678                adap->params.offload = 0;
4679                adap->params.crypto = 0;
4680        }
4681
4682        for (i = 0; i < max_ingq + 1; ++i)
4683                entries[i].entry = i;
4684
4685        want = s->max_ethqsets + EXTRA_VECS;
4686        if (is_offload(adap)) {
4687                want += adap->num_ofld_uld * s->ofldqsets;
4688                ofld_need = adap->num_ofld_uld * nchan;
4689        }
4690        if (is_pci_uld(adap)) {
4691                want += adap->num_uld * s->ofldqsets;
4692                uld_need = adap->num_uld * nchan;
4693        }
4694#ifdef CONFIG_CHELSIO_T4_DCB
4695        /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4696         * each port.
4697         */
4698        need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4699#else
4700        need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4701#endif
4702        allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4703        if (allocated < 0) {
4704                dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4705                         " not using MSI-X\n");
4706                kfree(entries);
4707                return allocated;
4708        }
4709
4710        /* Distribute available vectors to the various queue groups.
4711         * Every group gets its minimum requirement and NIC gets top
4712         * priority for leftovers.
4713         */
4714        i = allocated - EXTRA_VECS - ofld_need - uld_need;
4715        if (i < s->max_ethqsets) {
4716                s->max_ethqsets = i;
4717                if (i < s->ethqsets)
4718                        reduce_ethqs(adap, i);
4719        }
4720        if (is_uld(adap)) {
4721                if (allocated < want)
4722                        s->nqs_per_uld = nchan;
4723                else
4724                        s->nqs_per_uld = s->ofldqsets;
4725        }
4726
4727        for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4728                adap->msix_info[i].vec = entries[i].vector;
4729        if (is_uld(adap)) {
4730                for (j = 0 ; i < allocated; ++i, j++) {
4731                        adap->msix_info_ulds[j].vec = entries[i].vector;
4732                        adap->msix_info_ulds[j].idx = i;
4733                }
4734                adap->msix_bmap_ulds.mapsize = j;
4735        }
4736        dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4737                 "nic %d per uld %d\n",
4738                 allocated, s->max_ethqsets, s->nqs_per_uld);
4739
4740        kfree(entries);
4741        return 0;
4742}
4743
4744#undef EXTRA_VECS
4745
4746static int init_rss(struct adapter *adap)
4747{
4748        unsigned int i;
4749        int err;
4750
4751        err = t4_init_rss_mode(adap, adap->mbox);
4752        if (err)
4753                return err;
4754
4755        for_each_port(adap, i) {
4756                struct port_info *pi = adap2pinfo(adap, i);
4757
4758                pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4759                if (!pi->rss)
4760                        return -ENOMEM;
4761        }
4762        return 0;
4763}
4764
4765static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4766                                        enum pci_bus_speed *speed,
4767                                        enum pcie_link_width *width)
4768{
4769        u32 lnkcap1, lnkcap2;
4770        int err1, err2;
4771
4772#define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4773
4774        *speed = PCI_SPEED_UNKNOWN;
4775        *width = PCIE_LNK_WIDTH_UNKNOWN;
4776
4777        err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4778                                          &lnkcap1);
4779        err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4780                                          &lnkcap2);
4781        if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4782                if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4783                        *speed = PCIE_SPEED_8_0GT;
4784                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4785                        *speed = PCIE_SPEED_5_0GT;
4786                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4787                        *speed = PCIE_SPEED_2_5GT;
4788        }
4789        if (!err1) {
4790                *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4791                if (!lnkcap2) { /* pre-r3.0 */
4792                        if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4793                                *speed = PCIE_SPEED_5_0GT;
4794                        else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4795                                *speed = PCIE_SPEED_2_5GT;
4796                }
4797        }
4798
4799        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4800                return err1 ? err1 : err2 ? err2 : -EINVAL;
4801        return 0;
4802}
4803
4804static void cxgb4_check_pcie_caps(struct adapter *adap)
4805{
4806        enum pcie_link_width width, width_cap;
4807        enum pci_bus_speed speed, speed_cap;
4808
4809#define PCIE_SPEED_STR(speed) \
4810        (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4811         speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4812         speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4813         "Unknown")
4814
4815        if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4816                dev_warn(adap->pdev_dev,
4817                         "Unable to determine PCIe device BW capabilities\n");
4818                return;
4819        }
4820
4821        if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4822            speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4823                dev_warn(adap->pdev_dev,
4824                         "Unable to determine PCI Express bandwidth.\n");
4825                return;
4826        }
4827
4828        dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4829                 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4830        dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4831                 width, width_cap);
4832        if (speed < speed_cap || width < width_cap)
4833                dev_info(adap->pdev_dev,
4834                         "A slot with more lanes and/or higher speed is "
4835                         "suggested for optimal performance.\n");
4836}
4837
4838/* Dump basic information about the adapter */
4839static void print_adapter_info(struct adapter *adapter)
4840{
4841        /* Hardware/Firmware/etc. Version/Revision IDs */
4842        t4_dump_version_info(adapter);
4843
4844        /* Software/Hardware configuration */
4845        dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4846                 is_offload(adapter) ? "R" : "",
4847                 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4848                  (adapter->flags & USING_MSI) ? "MSI" : ""),
4849                 is_offload(adapter) ? "Offload" : "non-Offload");
4850}
4851
4852static void print_port_info(const struct net_device *dev)
4853{
4854        char buf[80];
4855        char *bufp = buf;
4856        const char *spd = "";
4857        const struct port_info *pi = netdev_priv(dev);
4858        const struct adapter *adap = pi->adapter;
4859
4860        if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4861                spd = " 2.5 GT/s";
4862        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4863                spd = " 5 GT/s";
4864        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4865                spd = " 8 GT/s";
4866
4867        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
4868                bufp += sprintf(bufp, "100M/");
4869        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
4870                bufp += sprintf(bufp, "1G/");
4871        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
4872                bufp += sprintf(bufp, "10G/");
4873        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
4874                bufp += sprintf(bufp, "25G/");
4875        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
4876                bufp += sprintf(bufp, "40G/");
4877        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
4878                bufp += sprintf(bufp, "50G/");
4879        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
4880                bufp += sprintf(bufp, "100G/");
4881        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
4882                bufp += sprintf(bufp, "200G/");
4883        if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
4884                bufp += sprintf(bufp, "400G/");
4885        if (bufp != buf)
4886                --bufp;
4887        sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4888
4889        netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4890                    dev->name, adap->params.vpd.id, adap->name, buf);
4891}
4892
4893/*
4894 * Free the following resources:
4895 * - memory used for tables
4896 * - MSI/MSI-X
4897 * - net devices
4898 * - resources FW is holding for us
4899 */
4900static void free_some_resources(struct adapter *adapter)
4901{
4902        unsigned int i;
4903
4904        kvfree(adapter->smt);
4905        kvfree(adapter->l2t);
4906        t4_cleanup_sched(adapter);
4907        kvfree(adapter->tids.tid_tab);
4908        cxgb4_cleanup_tc_flower(adapter);
4909        cxgb4_cleanup_tc_u32(adapter);
4910        kfree(adapter->sge.egr_map);
4911        kfree(adapter->sge.ingr_map);
4912        kfree(adapter->sge.starving_fl);
4913        kfree(adapter->sge.txq_maperr);
4914#ifdef CONFIG_DEBUG_FS
4915        kfree(adapter->sge.blocked_fl);
4916#endif
4917        disable_msi(adapter);
4918
4919        for_each_port(adapter, i)
4920                if (adapter->port[i]) {
4921                        struct port_info *pi = adap2pinfo(adapter, i);
4922
4923                        if (pi->viid != 0)
4924                                t4_free_vi(adapter, adapter->mbox, adapter->pf,
4925                                           0, pi->viid);
4926                        kfree(adap2pinfo(adapter, i)->rss);
4927                        free_netdev(adapter->port[i]);
4928                }
4929        if (adapter->flags & FW_OK)
4930                t4_fw_bye(adapter, adapter->pf);
4931}
4932
4933#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4934#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4935                   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4936#define SEGMENT_SIZE 128
4937
4938static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4939{
4940        u16 device_id;
4941
4942        /* Retrieve adapter's device ID */
4943        pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4944
4945        switch (device_id >> 12) {
4946        case CHELSIO_T4:
4947                return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4948        case CHELSIO_T5:
4949                return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4950        case CHELSIO_T6:
4951                return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4952        default:
4953                dev_err(&pdev->dev, "Device %d is not supported\n",
4954                        device_id);
4955        }
4956        return -EINVAL;
4957}
4958
4959#ifdef CONFIG_PCI_IOV
4960static void cxgb4_mgmt_setup(struct net_device *dev)
4961{
4962        dev->type = ARPHRD_NONE;
4963        dev->mtu = 0;
4964        dev->hard_header_len = 0;
4965        dev->addr_len = 0;
4966        dev->tx_queue_len = 0;
4967        dev->flags |= IFF_NOARP;
4968        dev->priv_flags |= IFF_NO_QUEUE;
4969
4970        /* Initialize the device structure. */
4971        dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4972        dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4973}
4974
4975static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4976{
4977        struct adapter *adap = pci_get_drvdata(pdev);
4978        int err = 0;
4979        int current_vfs = pci_num_vf(pdev);
4980        u32 pcie_fw;
4981
4982        pcie_fw = readl(adap->regs + PCIE_FW_A);
4983        /* Check if cxgb4 is the MASTER and fw is initialized */
4984        if (num_vfs &&
4985            (!(pcie_fw & PCIE_FW_INIT_F) ||
4986            !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4987            PCIE_FW_MASTER_G(pcie_fw) != CXGB4_UNIFIED_PF)) {
4988                dev_warn(&pdev->dev,
4989                         "cxgb4 driver needs to be MASTER to support SRIOV\n");
4990                return -EOPNOTSUPP;
4991        }
4992
4993        /* If any of the VF's is already assigned to Guest OS, then
4994         * SRIOV for the same cannot be modified
4995         */
4996        if (current_vfs && pci_vfs_assigned(pdev)) {
4997                dev_err(&pdev->dev,
4998                        "Cannot modify SR-IOV while VFs are assigned\n");
4999                return current_vfs;
5000        }
5001        /* Note that the upper-level code ensures that we're never called with
5002         * a non-zero "num_vfs" when we already have VFs instantiated.  But
5003         * it never hurts to code defensively.
5004         */
5005        if (num_vfs != 0 && current_vfs != 0)
5006                return -EBUSY;
5007
5008        /* Nothing to do for no change. */
5009        if (num_vfs == current_vfs)
5010                return num_vfs;
5011
5012        /* Disable SRIOV when zero is passed. */
5013        if (!num_vfs) {
5014                pci_disable_sriov(pdev);
5015                /* free VF Management Interface */
5016                unregister_netdev(adap->port[0]);
5017                free_netdev(adap->port[0]);
5018                adap->port[0] = NULL;
5019
5020                /* free VF resources */
5021                adap->num_vfs = 0;
5022                kfree(adap->vfinfo);
5023                adap->vfinfo = NULL;
5024                return 0;
5025        }
5026
5027        if (!current_vfs) {
5028                struct fw_pfvf_cmd port_cmd, port_rpl;
5029                struct net_device *netdev;
5030                unsigned int pmask, port;
5031                struct pci_dev *pbridge;
5032                struct port_info *pi;
5033                char name[IFNAMSIZ];
5034                u32 devcap2;
5035                u16 flags;
5036                int pos;
5037
5038                /* If we want to instantiate Virtual Functions, then our
5039                 * parent bridge's PCI-E needs to support Alternative Routing
5040                 * ID (ARI) because our VFs will show up at function offset 8
5041                 * and above.
5042                 */
5043                pbridge = pdev->bus->self;
5044                pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5045                pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5046                pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5047
5048                if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5049                    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5050                        /* Our parent bridge does not support ARI so issue a
5051                         * warning and skip instantiating the VFs.  They
5052                         * won't be reachable.
5053                         */
5054                        dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5055                                 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5056                                 PCI_FUNC(pbridge->devfn));
5057                        return -ENOTSUPP;
5058                }
5059                memset(&port_cmd, 0, sizeof(port_cmd));
5060                port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5061                                                 FW_CMD_REQUEST_F |
5062                                                 FW_CMD_READ_F |
5063                                                 FW_PFVF_CMD_PFN_V(adap->pf) |
5064                                                 FW_PFVF_CMD_VFN_V(0));
5065                port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5066                err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5067                                 &port_rpl);
5068                if (err)
5069                        return err;
5070                pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5071                port = ffs(pmask) - 1;
5072                /* Allocate VF Management Interface. */
5073                snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5074                         adap->pf);
5075                netdev = alloc_netdev(sizeof(struct port_info),
5076                                      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5077                if (!netdev)
5078                        return -ENOMEM;
5079
5080                pi = netdev_priv(netdev);
5081                pi->adapter = adap;
5082                pi->lport = port;
5083                pi->tx_chan = port;
5084                SET_NETDEV_DEV(netdev, &pdev->dev);
5085
5086                adap->port[0] = netdev;
5087                pi->port_id = 0;
5088
5089                err = register_netdev(adap->port[0]);
5090                if (err) {
5091                        pr_info("Unable to register VF mgmt netdev %s\n", name);
5092                        free_netdev(adap->port[0]);
5093                        adap->port[0] = NULL;
5094                        return err;
5095                }
5096                /* Allocate and set up VF Information. */
5097                adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5098                                       sizeof(struct vf_info), GFP_KERNEL);
5099                if (!adap->vfinfo) {
5100                        unregister_netdev(adap->port[0]);
5101                        free_netdev(adap->port[0]);
5102                        adap->port[0] = NULL;
5103                        return -ENOMEM;
5104                }
5105                cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5106        }
5107        /* Instantiate the requested number of VFs. */
5108        err = pci_enable_sriov(pdev, num_vfs);
5109        if (err) {
5110                pr_info("Unable to instantiate %d VFs\n", num_vfs);
5111                if (!current_vfs) {
5112                        unregister_netdev(adap->port[0]);
5113                        free_netdev(adap->port[0]);
5114                        adap->port[0] = NULL;
5115                        kfree(adap->vfinfo);
5116                        adap->vfinfo = NULL;
5117                }
5118                return err;
5119        }
5120
5121        adap->num_vfs = num_vfs;
5122        return num_vfs;
5123}
5124#endif /* CONFIG_PCI_IOV */
5125
5126static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5127{
5128        int func, i, err, s_qpp, qpp, num_seg;
5129        struct port_info *pi;
5130        bool highdma = false;
5131        struct adapter *adapter = NULL;
5132        struct net_device *netdev;
5133        void __iomem *regs;
5134        u32 whoami, pl_rev;
5135        enum chip_type chip;
5136        static int adap_idx = 1;
5137
5138        printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5139
5140        err = pci_request_regions(pdev, KBUILD_MODNAME);
5141        if (err) {
5142                /* Just info, some other driver may have claimed the device. */
5143                dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5144                return err;
5145        }
5146
5147        err = pci_enable_device(pdev);
5148        if (err) {
5149                dev_err(&pdev->dev, "cannot enable PCI device\n");
5150                goto out_release_regions;
5151        }
5152
5153        regs = pci_ioremap_bar(pdev, 0);
5154        if (!regs) {
5155                dev_err(&pdev->dev, "cannot map device registers\n");
5156                err = -ENOMEM;
5157                goto out_disable_device;
5158        }
5159
5160        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5161        if (!adapter) {
5162                err = -ENOMEM;
5163                goto out_unmap_bar0;
5164        }
5165
5166        adapter->regs = regs;
5167        err = t4_wait_dev_ready(regs);
5168        if (err < 0)
5169                goto out_free_adapter;
5170
5171        /* We control everything through one PF */
5172        whoami = readl(regs + PL_WHOAMI_A);
5173        pl_rev = REV_G(readl(regs + PL_REV_A));
5174        chip = get_chip_type(pdev, pl_rev);
5175        func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
5176                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5177
5178        adapter->pdev = pdev;
5179        adapter->pdev_dev = &pdev->dev;
5180        adapter->name = pci_name(pdev);
5181        adapter->mbox = func;
5182        adapter->pf = func;
5183        adapter->params.chip = chip;
5184        adapter->adap_idx = adap_idx;
5185        adapter->msg_enable = DFLT_MSG_ENABLE;
5186        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5187                                    (sizeof(struct mbox_cmd) *
5188                                     T4_OS_LOG_MBOX_CMDS),
5189                                    GFP_KERNEL);
5190        if (!adapter->mbox_log) {
5191                err = -ENOMEM;
5192                goto out_free_adapter;
5193        }
5194        spin_lock_init(&adapter->mbox_lock);
5195        INIT_LIST_HEAD(&adapter->mlist.list);
5196        pci_set_drvdata(pdev, adapter);
5197
5198        if (func != ent->driver_data) {
5199                pci_disable_device(pdev);
5200                pci_save_state(pdev);        /* to restore SR-IOV later */
5201                return 0;
5202        }
5203
5204        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5205                highdma = true;
5206                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5207                if (err) {
5208                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5209                                "coherent allocations\n");
5210                        goto out_free_adapter;
5211                }
5212        } else {
5213                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5214                if (err) {
5215                        dev_err(&pdev->dev, "no usable DMA configuration\n");
5216                        goto out_free_adapter;
5217                }
5218        }
5219
5220        pci_enable_pcie_error_reporting(pdev);
5221        pci_set_master(pdev);
5222        pci_save_state(pdev);
5223        adap_idx++;
5224        adapter->workq = create_singlethread_workqueue("cxgb4");
5225        if (!adapter->workq) {
5226                err = -ENOMEM;
5227                goto out_free_adapter;
5228        }
5229
5230        adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5231
5232        /* PCI device has been enabled */
5233        adapter->flags |= DEV_ENABLED;
5234        memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5235
5236        /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5237         * Ingress Packet Data to Free List Buffers in order to allow for
5238         * chipset performance optimizations between the Root Complex and
5239         * Memory Controllers.  (Messages to the associated Ingress Queue
5240         * notifying new Packet Placement in the Free Lists Buffers will be
5241         * send without the Relaxed Ordering Attribute thus guaranteeing that
5242         * all preceding PCIe Transaction Layer Packets will be processed
5243         * first.)  But some Root Complexes have various issues with Upstream
5244         * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5245         * The PCIe devices which under the Root Complexes will be cleared the
5246         * Relaxed Ordering bit in the configuration space, So we check our
5247         * PCIe configuration space to see if it's flagged with advice against
5248         * using Relaxed Ordering.
5249         */
5250        if (!pcie_relaxed_ordering_enabled(pdev))
5251                adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5252
5253        spin_lock_init(&adapter->stats_lock);
5254        spin_lock_init(&adapter->tid_release_lock);
5255        spin_lock_init(&adapter->win0_lock);
5256
5257        INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5258        INIT_WORK(&adapter->db_full_task, process_db_full);
5259        INIT_WORK(&adapter->db_drop_task, process_db_drop);
5260
5261        err = t4_prep_adapter(adapter);
5262        if (err)
5263                goto out_free_adapter;
5264
5265
5266        if (!is_t4(adapter->params.chip)) {
5267                s_qpp = (QUEUESPERPAGEPF0_S +
5268                        (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5269                        adapter->pf);
5270                qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5271                      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5272                num_seg = PAGE_SIZE / SEGMENT_SIZE;
5273
5274                /* Each segment size is 128B. Write coalescing is enabled only
5275                 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5276                 * queue is less no of segments that can be accommodated in
5277                 * a page size.
5278                 */
5279                if (qpp > num_seg) {
5280                        dev_err(&pdev->dev,
5281                                "Incorrect number of egress queues per page\n");
5282                        err = -EINVAL;
5283                        goto out_free_adapter;
5284                }
5285                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5286                pci_resource_len(pdev, 2));
5287                if (!adapter->bar2) {
5288                        dev_err(&pdev->dev, "cannot map device bar2 region\n");
5289                        err = -ENOMEM;
5290                        goto out_free_adapter;
5291                }
5292        }
5293
5294        setup_memwin(adapter);
5295        err = adap_init0(adapter);
5296#ifdef CONFIG_DEBUG_FS
5297        bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5298#endif
5299        setup_memwin_rdma(adapter);
5300        if (err)
5301                goto out_unmap_bar;
5302
5303        /* configure SGE_STAT_CFG_A to read WC stats */
5304        if (!is_t4(adapter->params.chip))
5305                t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5306                             (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5307                              T6_STATMODE_V(0)));
5308
5309        for_each_port(adapter, i) {
5310                netdev = alloc_etherdev_mq(sizeof(struct port_info),
5311                                           MAX_ETH_QSETS);
5312                if (!netdev) {
5313                        err = -ENOMEM;
5314                        goto out_free_dev;
5315                }
5316
5317                SET_NETDEV_DEV(netdev, &pdev->dev);
5318
5319                adapter->port[i] = netdev;
5320                pi = netdev_priv(netdev);
5321                pi->adapter = adapter;
5322                pi->xact_addr_filt = -1;
5323                pi->port_id = i;
5324                netdev->irq = pdev->irq;
5325
5326                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5327                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5328                        NETIF_F_RXCSUM | NETIF_F_RXHASH |
5329                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5330                        NETIF_F_HW_TC;
5331
5332                if (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)
5333                        netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5334
5335                if (highdma)
5336                        netdev->hw_features |= NETIF_F_HIGHDMA;
5337                netdev->features |= netdev->hw_features;
5338                netdev->vlan_features = netdev->features & VLAN_FEAT;
5339
5340                netdev->priv_flags |= IFF_UNICAST_FLT;
5341
5342                /* MTU range: 81 - 9600 */
5343                netdev->min_mtu = 81;              /* accommodate SACK */
5344                netdev->max_mtu = MAX_MTU;
5345
5346                netdev->netdev_ops = &cxgb4_netdev_ops;
5347#ifdef CONFIG_CHELSIO_T4_DCB
5348                netdev->dcbnl_ops = &cxgb4_dcb_ops;
5349                cxgb4_dcb_state_init(netdev);
5350#endif
5351                cxgb4_set_ethtool_ops(netdev);
5352        }
5353
5354        cxgb4_init_ethtool_dump(adapter);
5355
5356        pci_set_drvdata(pdev, adapter);
5357
5358        if (adapter->flags & FW_OK) {
5359                err = t4_port_init(adapter, func, func, 0);
5360                if (err)
5361                        goto out_free_dev;
5362        } else if (adapter->params.nports == 1) {
5363                /* If we don't have a connection to the firmware -- possibly
5364                 * because of an error -- grab the raw VPD parameters so we
5365                 * can set the proper MAC Address on the debug network
5366                 * interface that we've created.
5367                 */
5368                u8 hw_addr[ETH_ALEN];
5369                u8 *na = adapter->params.vpd.na;
5370
5371                err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5372                if (!err) {
5373                        for (i = 0; i < ETH_ALEN; i++)
5374                                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5375                                              hex2val(na[2 * i + 1]));
5376                        t4_set_hw_addr(adapter, 0, hw_addr);
5377                }
5378        }
5379
5380        /* Configure queues and allocate tables now, they can be needed as
5381         * soon as the first register_netdev completes.
5382         */
5383        cfg_queues(adapter);
5384
5385        adapter->smt = t4_init_smt();
5386        if (!adapter->smt) {
5387                /* We tolerate a lack of SMT, giving up some functionality */
5388                dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5389        }
5390
5391        adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5392        if (!adapter->l2t) {
5393                /* We tolerate a lack of L2T, giving up some functionality */
5394                dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5395                adapter->params.offload = 0;
5396        }
5397
5398#if IS_ENABLED(CONFIG_IPV6)
5399        if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5400            (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5401                /* CLIP functionality is not present in hardware,
5402                 * hence disable all offload features
5403                 */
5404                dev_warn(&pdev->dev,
5405                         "CLIP not enabled in hardware, continuing\n");
5406                adapter->params.offload = 0;
5407        } else {
5408                adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5409                                                  adapter->clipt_end);
5410                if (!adapter->clipt) {
5411                        /* We tolerate a lack of clip_table, giving up
5412                         * some functionality
5413                         */
5414                        dev_warn(&pdev->dev,
5415                                 "could not allocate Clip table, continuing\n");
5416                        adapter->params.offload = 0;
5417                }
5418        }
5419#endif
5420
5421        for_each_port(adapter, i) {
5422                pi = adap2pinfo(adapter, i);
5423                pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5424                if (!pi->sched_tbl)
5425                        dev_warn(&pdev->dev,
5426                                 "could not activate scheduling on port %d\n",
5427                                 i);
5428        }
5429
5430        if (tid_init(&adapter->tids) < 0) {
5431                dev_warn(&pdev->dev, "could not allocate TID table, "
5432                         "continuing\n");
5433                adapter->params.offload = 0;
5434        } else {
5435                adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5436                if (!adapter->tc_u32)
5437                        dev_warn(&pdev->dev,
5438                                 "could not offload tc u32, continuing\n");
5439
5440                if (cxgb4_init_tc_flower(adapter))
5441                        dev_warn(&pdev->dev,
5442                                 "could not offload tc flower, continuing\n");
5443        }
5444
5445        if (is_offload(adapter) || is_hashfilter(adapter)) {
5446                if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5447                        u32 hash_base, hash_reg;
5448
5449                        if (chip <= CHELSIO_T5) {
5450                                hash_reg = LE_DB_TID_HASHBASE_A;
5451                                hash_base = t4_read_reg(adapter, hash_reg);
5452                                adapter->tids.hash_base = hash_base / 4;
5453                        } else {
5454                                hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5455                                hash_base = t4_read_reg(adapter, hash_reg);
5456                                adapter->tids.hash_base = hash_base;
5457                        }
5458                }
5459        }
5460
5461        /* See what interrupts we'll be using */
5462        if (msi > 1 && enable_msix(adapter) == 0)
5463                adapter->flags |= USING_MSIX;
5464        else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5465                adapter->flags |= USING_MSI;
5466                if (msi > 1)
5467                        free_msix_info(adapter);
5468        }
5469
5470        /* check for PCI Express bandwidth capabiltites */
5471        cxgb4_check_pcie_caps(adapter);
5472
5473        err = init_rss(adapter);
5474        if (err)
5475                goto out_free_dev;
5476
5477        /*
5478         * The card is now ready to go.  If any errors occur during device
5479         * registration we do not fail the whole card but rather proceed only
5480         * with the ports we manage to register successfully.  However we must
5481         * register at least one net device.
5482         */
5483        for_each_port(adapter, i) {
5484                pi = adap2pinfo(adapter, i);
5485                adapter->port[i]->dev_port = pi->lport;
5486                netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5487                netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5488
5489                netif_carrier_off(adapter->port[i]);
5490
5491                err = register_netdev(adapter->port[i]);
5492                if (err)
5493                        break;
5494                adapter->chan_map[pi->tx_chan] = i;
5495                print_port_info(adapter->port[i]);
5496        }
5497        if (i == 0) {
5498                dev_err(&pdev->dev, "could not register any net devices\n");
5499                goto out_free_dev;
5500        }
5501        if (err) {
5502                dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5503                err = 0;
5504        }
5505
5506        if (cxgb4_debugfs_root) {
5507                adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5508                                                           cxgb4_debugfs_root);
5509                setup_debugfs(adapter);
5510        }
5511
5512        /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5513        pdev->needs_freset = 1;
5514
5515        if (is_uld(adapter)) {
5516                mutex_lock(&uld_mutex);
5517                list_add_tail(&adapter->list_node, &adapter_list);
5518                mutex_unlock(&uld_mutex);
5519        }
5520
5521        if (!is_t4(adapter->params.chip))
5522                cxgb4_ptp_init(adapter);
5523
5524        print_adapter_info(adapter);
5525        setup_fw_sge_queues(adapter);
5526        return 0;
5527
5528 out_free_dev:
5529        free_some_resources(adapter);
5530        if (adapter->flags & USING_MSIX)
5531                free_msix_info(adapter);
5532        if (adapter->num_uld || adapter->num_ofld_uld)
5533                t4_uld_mem_free(adapter);
5534 out_unmap_bar:
5535        if (!is_t4(adapter->params.chip))
5536                iounmap(adapter->bar2);
5537 out_free_adapter:
5538        if (adapter->workq)
5539                destroy_workqueue(adapter->workq);
5540
5541        kfree(adapter->mbox_log);
5542        kfree(adapter);
5543 out_unmap_bar0:
5544        iounmap(regs);
5545 out_disable_device:
5546        pci_disable_pcie_error_reporting(pdev);
5547        pci_disable_device(pdev);
5548 out_release_regions:
5549        pci_release_regions(pdev);
5550        return err;
5551}
5552
5553static void remove_one(struct pci_dev *pdev)
5554{
5555        struct adapter *adapter = pci_get_drvdata(pdev);
5556
5557        if (!adapter) {
5558                pci_release_regions(pdev);
5559                return;
5560        }
5561
5562        adapter->flags |= SHUTTING_DOWN;
5563
5564        if (adapter->pf == 4) {
5565                int i;
5566
5567                /* Tear down per-adapter Work Queue first since it can contain
5568                 * references to our adapter data structure.
5569                 */
5570                destroy_workqueue(adapter->workq);
5571
5572                if (is_uld(adapter)) {
5573                        detach_ulds(adapter);
5574                        t4_uld_clean_up(adapter);
5575                }
5576
5577                disable_interrupts(adapter);
5578
5579                for_each_port(adapter, i)
5580                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5581                                unregister_netdev(adapter->port[i]);
5582
5583                debugfs_remove_recursive(adapter->debugfs_root);
5584
5585                if (!is_t4(adapter->params.chip))
5586                        cxgb4_ptp_stop(adapter);
5587
5588                /* If we allocated filters, free up state associated with any
5589                 * valid filters ...
5590                 */
5591                clear_all_filters(adapter);
5592
5593                if (adapter->flags & FULL_INIT_DONE)
5594                        cxgb_down(adapter);
5595
5596                if (adapter->flags & USING_MSIX)
5597                        free_msix_info(adapter);
5598                if (adapter->num_uld || adapter->num_ofld_uld)
5599                        t4_uld_mem_free(adapter);
5600                free_some_resources(adapter);
5601#if IS_ENABLED(CONFIG_IPV6)
5602                t4_cleanup_clip_tbl(adapter);
5603#endif
5604                if (!is_t4(adapter->params.chip))
5605                        iounmap(adapter->bar2);
5606        }
5607#ifdef CONFIG_PCI_IOV
5608        else {
5609                cxgb4_iov_configure(adapter->pdev, 0);
5610        }
5611#endif
5612        iounmap(adapter->regs);
5613        pci_disable_pcie_error_reporting(pdev);
5614        if ((adapter->flags & DEV_ENABLED)) {
5615                pci_disable_device(pdev);
5616                adapter->flags &= ~DEV_ENABLED;
5617        }
5618        pci_release_regions(pdev);
5619        kfree(adapter->mbox_log);
5620        synchronize_rcu();
5621        kfree(adapter);
5622}
5623
5624/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5625 * delivery.  This is essentially a stripped down version of the PCI remove()
5626 * function where we do the minimal amount of work necessary to shutdown any
5627 * further activity.
5628 */
5629static void shutdown_one(struct pci_dev *pdev)
5630{
5631        struct adapter *adapter = pci_get_drvdata(pdev);
5632
5633        /* As with remove_one() above (see extended comment), we only want do
5634         * do cleanup on PCI Devices which went all the way through init_one()
5635         * ...
5636         */
5637        if (!adapter) {
5638                pci_release_regions(pdev);
5639                return;
5640        }
5641
5642        adapter->flags |= SHUTTING_DOWN;
5643
5644        if (adapter->pf == 4) {
5645                int i;
5646
5647                for_each_port(adapter, i)
5648                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5649                                cxgb_close(adapter->port[i]);
5650
5651                if (is_uld(adapter)) {
5652                        detach_ulds(adapter);
5653                        t4_uld_clean_up(adapter);
5654                }
5655
5656                disable_interrupts(adapter);
5657                disable_msi(adapter);
5658
5659                t4_sge_stop(adapter);
5660                if (adapter->flags & FW_OK)
5661                        t4_fw_bye(adapter, adapter->mbox);
5662        }
5663}
5664
5665static struct pci_driver cxgb4_driver = {
5666        .name     = KBUILD_MODNAME,
5667        .id_table = cxgb4_pci_tbl,
5668        .probe    = init_one,
5669        .remove   = remove_one,
5670        .shutdown = shutdown_one,
5671#ifdef CONFIG_PCI_IOV
5672        .sriov_configure = cxgb4_iov_configure,
5673#endif
5674        .err_handler = &cxgb4_eeh,
5675};
5676
5677static int __init cxgb4_init_module(void)
5678{
5679        int ret;
5680
5681        /* Debugfs support is optional, just warn if this fails */
5682        cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5683        if (!cxgb4_debugfs_root)
5684                pr_warn("could not create debugfs entry, continuing\n");
5685
5686        ret = pci_register_driver(&cxgb4_driver);
5687        if (ret < 0)
5688                debugfs_remove(cxgb4_debugfs_root);
5689
5690#if IS_ENABLED(CONFIG_IPV6)
5691        if (!inet6addr_registered) {
5692                register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5693                inet6addr_registered = true;
5694        }
5695#endif
5696
5697        return ret;
5698}
5699
5700static void __exit cxgb4_cleanup_module(void)
5701{
5702#if IS_ENABLED(CONFIG_IPV6)
5703        if (inet6addr_registered) {
5704                unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5705                inet6addr_registered = false;
5706        }
5707#endif
5708        pci_unregister_driver(&cxgb4_driver);
5709        debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5710}
5711
5712module_init(cxgb4_init_module);
5713module_exit(cxgb4_cleanup_module);
5714