linux/drivers/net/ethernet/chelsio/cxgb4vf/t4vf_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3 * driver for Linux.
   4 *
   5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6 *
   7 * This software is available to you under a choice of one of two
   8 * licenses.  You may choose to be licensed under the terms of the GNU
   9 * General Public License (GPL) Version 2, available from the file
  10 * COPYING in the main directory of this source tree, or the
  11 * OpenIB.org BSD license below:
  12 *
  13 *     Redistribution and use in source and binary forms, with or
  14 *     without modification, are permitted provided that the following
  15 *     conditions are met:
  16 *
  17 *      - Redistributions of source code must retain the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer.
  20 *
  21 *      - Redistributions in binary form must reproduce the above
  22 *        copyright notice, this list of conditions and the following
  23 *        disclaimer in the documentation and/or other materials
  24 *        provided with the distribution.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33 * SOFTWARE.
  34 */
  35
  36#include <linux/pci.h>
  37
  38#include "t4vf_common.h"
  39#include "t4vf_defs.h"
  40
  41#include "../cxgb4/t4_regs.h"
  42#include "../cxgb4/t4_values.h"
  43#include "../cxgb4/t4fw_api.h"
  44
  45/*
  46 * Wait for the device to become ready (signified by our "who am I" register
  47 * returning a value other than all 1's).  Return an error if it doesn't
  48 * become ready ...
  49 */
  50int t4vf_wait_dev_ready(struct adapter *adapter)
  51{
  52        const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
  53        const u32 notready1 = 0xffffffff;
  54        const u32 notready2 = 0xeeeeeeee;
  55        u32 val;
  56
  57        val = t4_read_reg(adapter, whoami);
  58        if (val != notready1 && val != notready2)
  59                return 0;
  60        msleep(500);
  61        val = t4_read_reg(adapter, whoami);
  62        if (val != notready1 && val != notready2)
  63                return 0;
  64        else
  65                return -EIO;
  66}
  67
  68/*
  69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
  70 * (since the firmware data structures are specified in a big-endian layout).
  71 */
  72static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
  73                         u32 mbox_data)
  74{
  75        for ( ; size; size -= 8, mbox_data += 8)
  76                *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
  77}
  78
  79/**
  80 *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
  81 *      @adapter: the adapter
  82 *      @cmd: the Firmware Mailbox Command or Reply
  83 *      @size: command length in bytes
  84 *      @access: the time (ms) needed to access the Firmware Mailbox
  85 *      @execute: the time (ms) the command spent being executed
  86 */
  87static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
  88                             int size, int access, int execute)
  89{
  90        struct mbox_cmd_log *log = adapter->mbox_log;
  91        struct mbox_cmd *entry;
  92        int i;
  93
  94        entry = mbox_cmd_log_entry(log, log->cursor++);
  95        if (log->cursor == log->size)
  96                log->cursor = 0;
  97
  98        for (i = 0; i < size / 8; i++)
  99                entry->cmd[i] = be64_to_cpu(cmd[i]);
 100        while (i < MBOX_LEN / 8)
 101                entry->cmd[i++] = 0;
 102        entry->timestamp = jiffies;
 103        entry->seqno = log->seqno++;
 104        entry->access = access;
 105        entry->execute = execute;
 106}
 107
 108/**
 109 *      t4vf_wr_mbox_core - send a command to FW through the mailbox
 110 *      @adapter: the adapter
 111 *      @cmd: the command to write
 112 *      @size: command length in bytes
 113 *      @rpl: where to optionally store the reply
 114 *      @sleep_ok: if true we may sleep while awaiting command completion
 115 *
 116 *      Sends the given command to FW through the mailbox and waits for the
 117 *      FW to execute the command.  If @rpl is not %NULL it is used to store
 118 *      the FW's reply to the command.  The command and its optional reply
 119 *      are of the same length.  FW can take up to 500 ms to respond.
 120 *      @sleep_ok determines whether we may sleep while awaiting the response.
 121 *      If sleeping is allowed we use progressive backoff otherwise we spin.
 122 *
 123 *      The return value is 0 on success or a negative errno on failure.  A
 124 *      failure can happen either because we are not able to execute the
 125 *      command or FW executes it but signals an error.  In the latter case
 126 *      the return value is the error code indicated by FW (negated).
 127 */
 128int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
 129                      void *rpl, bool sleep_ok)
 130{
 131        static const int delay[] = {
 132                1, 1, 3, 5, 10, 10, 20, 50, 100
 133        };
 134
 135        u16 access = 0, execute = 0;
 136        u32 v, mbox_data;
 137        int i, ms, delay_idx, ret;
 138        const __be64 *p;
 139        u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
 140        u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
 141        __be64 cmd_rpl[MBOX_LEN / 8];
 142        struct mbox_list entry;
 143
 144        /* In T6, mailbox size is changed to 128 bytes to avoid
 145         * invalidating the entire prefetch buffer.
 146         */
 147        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 148                mbox_data = T4VF_MBDATA_BASE_ADDR;
 149        else
 150                mbox_data = T6VF_MBDATA_BASE_ADDR;
 151
 152        /*
 153         * Commands must be multiples of 16 bytes in length and may not be
 154         * larger than the size of the Mailbox Data register array.
 155         */
 156        if ((size % 16) != 0 ||
 157            size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
 158                return -EINVAL;
 159
 160        /* Queue ourselves onto the mailbox access list.  When our entry is at
 161         * the front of the list, we have rights to access the mailbox.  So we
 162         * wait [for a while] till we're at the front [or bail out with an
 163         * EBUSY] ...
 164         */
 165        spin_lock(&adapter->mbox_lock);
 166        list_add_tail(&entry.list, &adapter->mlist.list);
 167        spin_unlock(&adapter->mbox_lock);
 168
 169        delay_idx = 0;
 170        ms = delay[0];
 171
 172        for (i = 0; ; i += ms) {
 173                /* If we've waited too long, return a busy indication.  This
 174                 * really ought to be based on our initial position in the
 175                 * mailbox access list but this is a start.  We very rearely
 176                 * contend on access to the mailbox ...
 177                 */
 178                if (i > FW_CMD_MAX_TIMEOUT) {
 179                        spin_lock(&adapter->mbox_lock);
 180                        list_del(&entry.list);
 181                        spin_unlock(&adapter->mbox_lock);
 182                        ret = -EBUSY;
 183                        t4vf_record_mbox(adapter, cmd, size, access, ret);
 184                        return ret;
 185                }
 186
 187                /* If we're at the head, break out and start the mailbox
 188                 * protocol.
 189                 */
 190                if (list_first_entry(&adapter->mlist.list, struct mbox_list,
 191                                     list) == &entry)
 192                        break;
 193
 194                /* Delay for a bit before checking again ... */
 195                if (sleep_ok) {
 196                        ms = delay[delay_idx];  /* last element may repeat */
 197                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 198                                delay_idx++;
 199                        msleep(ms);
 200                } else {
 201                        mdelay(ms);
 202                }
 203        }
 204
 205        /*
 206         * Loop trying to get ownership of the mailbox.  Return an error
 207         * if we can't gain ownership.
 208         */
 209        v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 210        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 211                v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 212        if (v != MBOX_OWNER_DRV) {
 213                spin_lock(&adapter->mbox_lock);
 214                list_del(&entry.list);
 215                spin_unlock(&adapter->mbox_lock);
 216                ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
 217                t4vf_record_mbox(adapter, cmd, size, access, ret);
 218                return ret;
 219        }
 220
 221        /*
 222         * Write the command array into the Mailbox Data register array and
 223         * transfer ownership of the mailbox to the firmware.
 224         *
 225         * For the VFs, the Mailbox Data "registers" are actually backed by
 226         * T4's "MA" interface rather than PL Registers (as is the case for
 227         * the PFs).  Because these are in different coherency domains, the
 228         * write to the VF's PL-register-backed Mailbox Control can race in
 229         * front of the writes to the MA-backed VF Mailbox Data "registers".
 230         * So we need to do a read-back on at least one byte of the VF Mailbox
 231         * Data registers before doing the write to the VF Mailbox Control
 232         * register.
 233         */
 234        if (cmd_op != FW_VI_STATS_CMD)
 235                t4vf_record_mbox(adapter, cmd, size, access, 0);
 236        for (i = 0, p = cmd; i < size; i += 8)
 237                t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
 238        t4_read_reg(adapter, mbox_data);         /* flush write */
 239
 240        t4_write_reg(adapter, mbox_ctl,
 241                     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
 242        t4_read_reg(adapter, mbox_ctl);          /* flush write */
 243
 244        /*
 245         * Spin waiting for firmware to acknowledge processing our command.
 246         */
 247        delay_idx = 0;
 248        ms = delay[0];
 249
 250        for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
 251                if (sleep_ok) {
 252                        ms = delay[delay_idx];
 253                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 254                                delay_idx++;
 255                        msleep(ms);
 256                } else
 257                        mdelay(ms);
 258
 259                /*
 260                 * If we're the owner, see if this is the reply we wanted.
 261                 */
 262                v = t4_read_reg(adapter, mbox_ctl);
 263                if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
 264                        /*
 265                         * If the Message Valid bit isn't on, revoke ownership
 266                         * of the mailbox and continue waiting for our reply.
 267                         */
 268                        if ((v & MBMSGVALID_F) == 0) {
 269                                t4_write_reg(adapter, mbox_ctl,
 270                                             MBOWNER_V(MBOX_OWNER_NONE));
 271                                continue;
 272                        }
 273
 274                        /*
 275                         * We now have our reply.  Extract the command return
 276                         * value, copy the reply back to our caller's buffer
 277                         * (if specified) and revoke ownership of the mailbox.
 278                         * We return the (negated) firmware command return
 279                         * code (this depends on FW_SUCCESS == 0).
 280                         */
 281                        get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
 282
 283                        /* return value in low-order little-endian word */
 284                        v = be64_to_cpu(cmd_rpl[0]);
 285
 286                        if (rpl) {
 287                                /* request bit in high-order BE word */
 288                                WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
 289                                         & FW_CMD_REQUEST_F) == 0);
 290                                memcpy(rpl, cmd_rpl, size);
 291                                WARN_ON((be32_to_cpu(*(__be32 *)rpl)
 292                                         & FW_CMD_REQUEST_F) != 0);
 293                        }
 294                        t4_write_reg(adapter, mbox_ctl,
 295                                     MBOWNER_V(MBOX_OWNER_NONE));
 296                        execute = i + ms;
 297                        if (cmd_op != FW_VI_STATS_CMD)
 298                                t4vf_record_mbox(adapter, cmd_rpl, size, access,
 299                                                 execute);
 300                        spin_lock(&adapter->mbox_lock);
 301                        list_del(&entry.list);
 302                        spin_unlock(&adapter->mbox_lock);
 303                        return -FW_CMD_RETVAL_G(v);
 304                }
 305        }
 306
 307        /* We timed out.  Return the error ... */
 308        ret = -ETIMEDOUT;
 309        t4vf_record_mbox(adapter, cmd, size, access, ret);
 310        spin_lock(&adapter->mbox_lock);
 311        list_del(&entry.list);
 312        spin_unlock(&adapter->mbox_lock);
 313        return ret;
 314}
 315
 316#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
 317                     FW_PORT_CAP32_ANEG)
 318
 319/**
 320 *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
 321 *      @caps16: a 16-bit Port Capabilities value
 322 *
 323 *      Returns the equivalent 32-bit Port Capabilities value.
 324 */
 325static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
 326{
 327        fw_port_cap32_t caps32 = 0;
 328
 329        #define CAP16_TO_CAP32(__cap) \
 330                do { \
 331                        if (caps16 & FW_PORT_CAP_##__cap) \
 332                                caps32 |= FW_PORT_CAP32_##__cap; \
 333                } while (0)
 334
 335        CAP16_TO_CAP32(SPEED_100M);
 336        CAP16_TO_CAP32(SPEED_1G);
 337        CAP16_TO_CAP32(SPEED_25G);
 338        CAP16_TO_CAP32(SPEED_10G);
 339        CAP16_TO_CAP32(SPEED_40G);
 340        CAP16_TO_CAP32(SPEED_100G);
 341        CAP16_TO_CAP32(FC_RX);
 342        CAP16_TO_CAP32(FC_TX);
 343        CAP16_TO_CAP32(ANEG);
 344        CAP16_TO_CAP32(MDIX);
 345        CAP16_TO_CAP32(MDIAUTO);
 346        CAP16_TO_CAP32(FEC_RS);
 347        CAP16_TO_CAP32(FEC_BASER_RS);
 348        CAP16_TO_CAP32(802_3_PAUSE);
 349        CAP16_TO_CAP32(802_3_ASM_DIR);
 350
 351        #undef CAP16_TO_CAP32
 352
 353        return caps32;
 354}
 355
 356/* Translate Firmware Pause specification to Common Code */
 357static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
 358{
 359        enum cc_pause cc_pause = 0;
 360
 361        if (fw_pause & FW_PORT_CAP32_FC_RX)
 362                cc_pause |= PAUSE_RX;
 363        if (fw_pause & FW_PORT_CAP32_FC_TX)
 364                cc_pause |= PAUSE_TX;
 365
 366        return cc_pause;
 367}
 368
 369/* Translate Firmware Forward Error Correction specification to Common Code */
 370static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
 371{
 372        enum cc_fec cc_fec = 0;
 373
 374        if (fw_fec & FW_PORT_CAP32_FEC_RS)
 375                cc_fec |= FEC_RS;
 376        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
 377                cc_fec |= FEC_BASER_RS;
 378
 379        return cc_fec;
 380}
 381
 382/**
 383 * Return the highest speed set in the port capabilities, in Mb/s.
 384 */
 385static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
 386{
 387        #define TEST_SPEED_RETURN(__caps_speed, __speed) \
 388                do { \
 389                        if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
 390                                return __speed; \
 391                } while (0)
 392
 393        TEST_SPEED_RETURN(400G, 400000);
 394        TEST_SPEED_RETURN(200G, 200000);
 395        TEST_SPEED_RETURN(100G, 100000);
 396        TEST_SPEED_RETURN(50G,   50000);
 397        TEST_SPEED_RETURN(40G,   40000);
 398        TEST_SPEED_RETURN(25G,   25000);
 399        TEST_SPEED_RETURN(10G,   10000);
 400        TEST_SPEED_RETURN(1G,     1000);
 401        TEST_SPEED_RETURN(100M,    100);
 402
 403        #undef TEST_SPEED_RETURN
 404
 405        return 0;
 406}
 407
 408/*
 409 *      init_link_config - initialize a link's SW state
 410 *      @lc: structure holding the link state
 411 *      @pcaps: link Port Capabilities
 412 *      @acaps: link current Advertised Port Capabilities
 413 *
 414 *      Initializes the SW state maintained for each link, including the link's
 415 *      capabilities and default speed/flow-control/autonegotiation settings.
 416 */
 417static void init_link_config(struct link_config *lc,
 418                             fw_port_cap32_t pcaps,
 419                             fw_port_cap32_t acaps)
 420{
 421        lc->pcaps = pcaps;
 422        lc->lpacaps = 0;
 423        lc->speed_caps = 0;
 424        lc->speed = 0;
 425        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
 426
 427        /* For Forward Error Control, we default to whatever the Firmware
 428         * tells us the Link is currently advertising.
 429         */
 430        lc->auto_fec = fwcap_to_cc_fec(acaps);
 431        lc->requested_fec = FEC_AUTO;
 432        lc->fec = lc->auto_fec;
 433
 434        if (lc->pcaps & FW_PORT_CAP32_ANEG) {
 435                lc->acaps = acaps & ADVERT_MASK;
 436                lc->autoneg = AUTONEG_ENABLE;
 437                lc->requested_fc |= PAUSE_AUTONEG;
 438        } else {
 439                lc->acaps = 0;
 440                lc->autoneg = AUTONEG_DISABLE;
 441        }
 442}
 443
 444/**
 445 *      t4vf_port_init - initialize port hardware/software state
 446 *      @adapter: the adapter
 447 *      @pidx: the adapter port index
 448 */
 449int t4vf_port_init(struct adapter *adapter, int pidx)
 450{
 451        struct port_info *pi = adap2pinfo(adapter, pidx);
 452        unsigned int fw_caps = adapter->params.fw_caps_support;
 453        struct fw_vi_cmd vi_cmd, vi_rpl;
 454        struct fw_port_cmd port_cmd, port_rpl;
 455        enum fw_port_type port_type;
 456        int mdio_addr;
 457        fw_port_cap32_t pcaps, acaps;
 458        int ret;
 459
 460        /* If we haven't yet determined whether we're talking to Firmware
 461         * which knows the new 32-bit Port Capabilities, it's time to find
 462         * out now.  This will also tell new Firmware to send us Port Status
 463         * Updates using the new 32-bit Port Capabilities version of the
 464         * Port Information message.
 465         */
 466        if (fw_caps == FW_CAPS_UNKNOWN) {
 467                u32 param, val;
 468
 469                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
 470                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
 471                val = 1;
 472                ret = t4vf_set_params(adapter, 1, &param, &val);
 473                fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
 474                adapter->params.fw_caps_support = fw_caps;
 475        }
 476
 477        /*
 478         * Execute a VI Read command to get our Virtual Interface information
 479         * like MAC address, etc.
 480         */
 481        memset(&vi_cmd, 0, sizeof(vi_cmd));
 482        vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
 483                                       FW_CMD_REQUEST_F |
 484                                       FW_CMD_READ_F);
 485        vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
 486        vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
 487        ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
 488        if (ret != FW_SUCCESS)
 489                return ret;
 490
 491        BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
 492        pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
 493        t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
 494
 495        /*
 496         * If we don't have read access to our port information, we're done
 497         * now.  Otherwise, execute a PORT Read command to get it ...
 498         */
 499        if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
 500                return 0;
 501
 502        memset(&port_cmd, 0, sizeof(port_cmd));
 503        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
 504                                            FW_CMD_REQUEST_F |
 505                                            FW_CMD_READ_F |
 506                                            FW_PORT_CMD_PORTID_V(pi->port_id));
 507        port_cmd.action_to_len16 = cpu_to_be32(
 508                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
 509                                     ? FW_PORT_ACTION_GET_PORT_INFO
 510                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
 511                FW_LEN16(port_cmd));
 512        ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
 513        if (ret != FW_SUCCESS)
 514                return ret;
 515
 516        /* Extract the various fields from the Port Information message. */
 517        if (fw_caps == FW_CAPS16) {
 518                u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
 519
 520                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
 521                mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
 522                             ? FW_PORT_CMD_MDIOADDR_G(lstatus)
 523                             : -1);
 524                pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
 525                acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
 526        } else {
 527                u32 lstatus32 =
 528                           be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
 529
 530                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
 531                mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
 532                             ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
 533                             : -1);
 534                pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
 535                acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
 536        }
 537
 538        pi->port_type = port_type;
 539        pi->mdio_addr = mdio_addr;
 540        pi->mod_type = FW_PORT_MOD_TYPE_NA;
 541
 542        init_link_config(&pi->link_cfg, pcaps, acaps);
 543        return 0;
 544}
 545
 546/**
 547 *      t4vf_fw_reset - issue a reset to FW
 548 *      @adapter: the adapter
 549 *
 550 *      Issues a reset command to FW.  For a Physical Function this would
 551 *      result in the Firmware resetting all of its state.  For a Virtual
 552 *      Function this just resets the state associated with the VF.
 553 */
 554int t4vf_fw_reset(struct adapter *adapter)
 555{
 556        struct fw_reset_cmd cmd;
 557
 558        memset(&cmd, 0, sizeof(cmd));
 559        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
 560                                      FW_CMD_WRITE_F);
 561        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 562        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 563}
 564
 565/**
 566 *      t4vf_query_params - query FW or device parameters
 567 *      @adapter: the adapter
 568 *      @nparams: the number of parameters
 569 *      @params: the parameter names
 570 *      @vals: the parameter values
 571 *
 572 *      Reads the values of firmware or device parameters.  Up to 7 parameters
 573 *      can be queried at once.
 574 */
 575static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
 576                             const u32 *params, u32 *vals)
 577{
 578        int i, ret;
 579        struct fw_params_cmd cmd, rpl;
 580        struct fw_params_param *p;
 581        size_t len16;
 582
 583        if (nparams > 7)
 584                return -EINVAL;
 585
 586        memset(&cmd, 0, sizeof(cmd));
 587        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 588                                    FW_CMD_REQUEST_F |
 589                                    FW_CMD_READ_F);
 590        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 591                                      param[nparams].mnem), 16);
 592        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 593        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
 594                p->mnem = htonl(*params++);
 595
 596        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 597        if (ret == 0)
 598                for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
 599                        *vals++ = be32_to_cpu(p->val);
 600        return ret;
 601}
 602
 603/**
 604 *      t4vf_set_params - sets FW or device parameters
 605 *      @adapter: the adapter
 606 *      @nparams: the number of parameters
 607 *      @params: the parameter names
 608 *      @vals: the parameter values
 609 *
 610 *      Sets the values of firmware or device parameters.  Up to 7 parameters
 611 *      can be specified at once.
 612 */
 613int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
 614                    const u32 *params, const u32 *vals)
 615{
 616        int i;
 617        struct fw_params_cmd cmd;
 618        struct fw_params_param *p;
 619        size_t len16;
 620
 621        if (nparams > 7)
 622                return -EINVAL;
 623
 624        memset(&cmd, 0, sizeof(cmd));
 625        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 626                                    FW_CMD_REQUEST_F |
 627                                    FW_CMD_WRITE_F);
 628        len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 629                                      param[nparams]), 16);
 630        cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 631        for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
 632                p->mnem = cpu_to_be32(*params++);
 633                p->val = cpu_to_be32(*vals++);
 634        }
 635
 636        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 637}
 638
 639/**
 640 *      t4vf_fl_pkt_align - return the fl packet alignment
 641 *      @adapter: the adapter
 642 *
 643 *      T4 has a single field to specify the packing and padding boundary.
 644 *      T5 onwards has separate fields for this and hence the alignment for
 645 *      next packet offset is maximum of these two.  And T6 changes the
 646 *      Ingress Padding Boundary Shift, so it's all a mess and it's best
 647 *      if we put this in low-level Common Code ...
 648 *
 649 */
 650int t4vf_fl_pkt_align(struct adapter *adapter)
 651{
 652        u32 sge_control, sge_control2;
 653        unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
 654
 655        sge_control = adapter->params.sge.sge_control;
 656
 657        /* T4 uses a single control field to specify both the PCIe Padding and
 658         * Packing Boundary.  T5 introduced the ability to specify these
 659         * separately.  The actual Ingress Packet Data alignment boundary
 660         * within Packed Buffer Mode is the maximum of these two
 661         * specifications.  (Note that it makes no real practical sense to
 662         * have the Pading Boudary be larger than the Packing Boundary but you
 663         * could set the chip up that way and, in fact, legacy T4 code would
 664         * end doing this because it would initialize the Padding Boundary and
 665         * leave the Packing Boundary initialized to 0 (16 bytes).)
 666         * Padding Boundary values in T6 starts from 8B,
 667         * where as it is 32B for T4 and T5.
 668         */
 669        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 670                ingpad_shift = INGPADBOUNDARY_SHIFT_X;
 671        else
 672                ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
 673
 674        ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
 675
 676        fl_align = ingpadboundary;
 677        if (!is_t4(adapter->params.chip)) {
 678                /* T5 has a different interpretation of one of the PCIe Packing
 679                 * Boundary values.
 680                 */
 681                sge_control2 = adapter->params.sge.sge_control2;
 682                ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
 683                if (ingpackboundary == INGPACKBOUNDARY_16B_X)
 684                        ingpackboundary = 16;
 685                else
 686                        ingpackboundary = 1 << (ingpackboundary +
 687                                                INGPACKBOUNDARY_SHIFT_X);
 688
 689                fl_align = max(ingpadboundary, ingpackboundary);
 690        }
 691        return fl_align;
 692}
 693
 694/**
 695 *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
 696 *      @adapter: the adapter
 697 *      @qid: the Queue ID
 698 *      @qtype: the Ingress or Egress type for @qid
 699 *      @pbar2_qoffset: BAR2 Queue Offset
 700 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 701 *
 702 *      Returns the BAR2 SGE Queue Registers information associated with the
 703 *      indicated Absolute Queue ID.  These are passed back in return value
 704 *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 705 *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 706 *
 707 *      This may return an error which indicates that BAR2 SGE Queue
 708 *      registers aren't available.  If an error is not returned, then the
 709 *      following values are returned:
 710 *
 711 *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 712 *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 713 *
 714 *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 715 *      require the "Inferred Queue ID" ability may be used.  E.g. the
 716 *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 717 *      then these "Inferred Queue ID" register may not be used.
 718 */
 719int t4vf_bar2_sge_qregs(struct adapter *adapter,
 720                        unsigned int qid,
 721                        enum t4_bar2_qtype qtype,
 722                        u64 *pbar2_qoffset,
 723                        unsigned int *pbar2_qid)
 724{
 725        unsigned int page_shift, page_size, qpp_shift, qpp_mask;
 726        u64 bar2_page_offset, bar2_qoffset;
 727        unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
 728
 729        /* T4 doesn't support BAR2 SGE Queue registers.
 730         */
 731        if (is_t4(adapter->params.chip))
 732                return -EINVAL;
 733
 734        /* Get our SGE Page Size parameters.
 735         */
 736        page_shift = adapter->params.sge.sge_vf_hps + 10;
 737        page_size = 1 << page_shift;
 738
 739        /* Get the right Queues per Page parameters for our Queue.
 740         */
 741        qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
 742                     ? adapter->params.sge.sge_vf_eq_qpp
 743                     : adapter->params.sge.sge_vf_iq_qpp);
 744        qpp_mask = (1 << qpp_shift) - 1;
 745
 746        /* Calculate the basics of the BAR2 SGE Queue register area:
 747         *  o The BAR2 page the Queue registers will be in.
 748         *  o The BAR2 Queue ID.
 749         *  o The BAR2 Queue ID Offset into the BAR2 page.
 750         */
 751        bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
 752        bar2_qid = qid & qpp_mask;
 753        bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
 754
 755        /* If the BAR2 Queue ID Offset is less than the Page Size, then the
 756         * hardware will infer the Absolute Queue ID simply from the writes to
 757         * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
 758         * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
 759         * write to the first BAR2 SGE Queue Area within the BAR2 Page with
 760         * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
 761         * from the BAR2 Page and BAR2 Queue ID.
 762         *
 763         * One important censequence of this is that some BAR2 SGE registers
 764         * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
 765         * there.  But other registers synthesize the SGE Queue ID purely
 766         * from the writes to the registers -- the Write Combined Doorbell
 767         * Buffer is a good example.  These BAR2 SGE Registers are only
 768         * available for those BAR2 SGE Register areas where the SGE Absolute
 769         * Queue ID can be inferred from simple writes.
 770         */
 771        bar2_qoffset = bar2_page_offset;
 772        bar2_qinferred = (bar2_qid_offset < page_size);
 773        if (bar2_qinferred) {
 774                bar2_qoffset += bar2_qid_offset;
 775                bar2_qid = 0;
 776        }
 777
 778        *pbar2_qoffset = bar2_qoffset;
 779        *pbar2_qid = bar2_qid;
 780        return 0;
 781}
 782
 783unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
 784{
 785        u32 whoami;
 786
 787        whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
 788        return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
 789                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
 790}
 791
 792/**
 793 *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
 794 *      @adapter: the adapter
 795 *
 796 *      Retrieves various core SGE parameters in the form of hardware SGE
 797 *      register values.  The caller is responsible for decoding these as
 798 *      needed.  The SGE parameters are stored in @adapter->params.sge.
 799 */
 800int t4vf_get_sge_params(struct adapter *adapter)
 801{
 802        struct sge_params *sge_params = &adapter->params.sge;
 803        u32 params[7], vals[7];
 804        int v;
 805
 806        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 807                     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
 808        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 809                     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
 810        params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 811                     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
 812        params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 813                     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
 814        params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 815                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
 816        params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 817                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
 818        params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 819                     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
 820        v = t4vf_query_params(adapter, 7, params, vals);
 821        if (v)
 822                return v;
 823        sge_params->sge_control = vals[0];
 824        sge_params->sge_host_page_size = vals[1];
 825        sge_params->sge_fl_buffer_size[0] = vals[2];
 826        sge_params->sge_fl_buffer_size[1] = vals[3];
 827        sge_params->sge_timer_value_0_and_1 = vals[4];
 828        sge_params->sge_timer_value_2_and_3 = vals[5];
 829        sge_params->sge_timer_value_4_and_5 = vals[6];
 830
 831        /* T4 uses a single control field to specify both the PCIe Padding and
 832         * Packing Boundary.  T5 introduced the ability to specify these
 833         * separately with the Padding Boundary in SGE_CONTROL and and Packing
 834         * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
 835         * SGE_CONTROL in order to determine how ingress packet data will be
 836         * laid out in Packed Buffer Mode.  Unfortunately, older versions of
 837         * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
 838         * failure grabbing it we throw an error since we can't figure out the
 839         * right value.
 840         */
 841        if (!is_t4(adapter->params.chip)) {
 842                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 843                             FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
 844                v = t4vf_query_params(adapter, 1, params, vals);
 845                if (v != FW_SUCCESS) {
 846                        dev_err(adapter->pdev_dev,
 847                                "Unable to get SGE Control2; "
 848                                "probably old firmware.\n");
 849                        return v;
 850                }
 851                sge_params->sge_control2 = vals[0];
 852        }
 853
 854        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 855                     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
 856        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 857                     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
 858        v = t4vf_query_params(adapter, 2, params, vals);
 859        if (v)
 860                return v;
 861        sge_params->sge_ingress_rx_threshold = vals[0];
 862        sge_params->sge_congestion_control = vals[1];
 863
 864        /* For T5 and later we want to use the new BAR2 Doorbells.
 865         * Unfortunately, older firmware didn't allow the this register to be
 866         * read.
 867         */
 868        if (!is_t4(adapter->params.chip)) {
 869                unsigned int pf, s_hps, s_qpp;
 870
 871                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 872                             FW_PARAMS_PARAM_XYZ_V(
 873                                     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
 874                params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 875                             FW_PARAMS_PARAM_XYZ_V(
 876                                     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
 877                v = t4vf_query_params(adapter, 2, params, vals);
 878                if (v != FW_SUCCESS) {
 879                        dev_warn(adapter->pdev_dev,
 880                                 "Unable to get VF SGE Queues/Page; "
 881                                 "probably old firmware.\n");
 882                        return v;
 883                }
 884                sge_params->sge_egress_queues_per_page = vals[0];
 885                sge_params->sge_ingress_queues_per_page = vals[1];
 886
 887                /* We need the Queues/Page for our VF.  This is based on the
 888                 * PF from which we're instantiated and is indexed in the
 889                 * register we just read. Do it once here so other code in
 890                 * the driver can just use it.
 891                 */
 892                pf = t4vf_get_pf_from_vf(adapter);
 893                s_hps = (HOSTPAGESIZEPF0_S +
 894                         (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
 895                sge_params->sge_vf_hps =
 896                        ((sge_params->sge_host_page_size >> s_hps)
 897                         & HOSTPAGESIZEPF0_M);
 898
 899                s_qpp = (QUEUESPERPAGEPF0_S +
 900                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
 901                sge_params->sge_vf_eq_qpp =
 902                        ((sge_params->sge_egress_queues_per_page >> s_qpp)
 903                         & QUEUESPERPAGEPF0_M);
 904                sge_params->sge_vf_iq_qpp =
 905                        ((sge_params->sge_ingress_queues_per_page >> s_qpp)
 906                         & QUEUESPERPAGEPF0_M);
 907        }
 908
 909        return 0;
 910}
 911
 912/**
 913 *      t4vf_get_vpd_params - retrieve device VPD paremeters
 914 *      @adapter: the adapter
 915 *
 916 *      Retrives various device Vital Product Data parameters.  The parameters
 917 *      are stored in @adapter->params.vpd.
 918 */
 919int t4vf_get_vpd_params(struct adapter *adapter)
 920{
 921        struct vpd_params *vpd_params = &adapter->params.vpd;
 922        u32 params[7], vals[7];
 923        int v;
 924
 925        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 926                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
 927        v = t4vf_query_params(adapter, 1, params, vals);
 928        if (v)
 929                return v;
 930        vpd_params->cclk = vals[0];
 931
 932        return 0;
 933}
 934
 935/**
 936 *      t4vf_get_dev_params - retrieve device paremeters
 937 *      @adapter: the adapter
 938 *
 939 *      Retrives various device parameters.  The parameters are stored in
 940 *      @adapter->params.dev.
 941 */
 942int t4vf_get_dev_params(struct adapter *adapter)
 943{
 944        struct dev_params *dev_params = &adapter->params.dev;
 945        u32 params[7], vals[7];
 946        int v;
 947
 948        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 949                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
 950        params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 951                     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
 952        v = t4vf_query_params(adapter, 2, params, vals);
 953        if (v)
 954                return v;
 955        dev_params->fwrev = vals[0];
 956        dev_params->tprev = vals[1];
 957
 958        return 0;
 959}
 960
 961/**
 962 *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
 963 *      @adapter: the adapter
 964 *
 965 *      Retrieves global RSS mode and parameters with which we have to live
 966 *      and stores them in the @adapter's RSS parameters.
 967 */
 968int t4vf_get_rss_glb_config(struct adapter *adapter)
 969{
 970        struct rss_params *rss = &adapter->params.rss;
 971        struct fw_rss_glb_config_cmd cmd, rpl;
 972        int v;
 973
 974        /*
 975         * Execute an RSS Global Configuration read command to retrieve
 976         * our RSS configuration.
 977         */
 978        memset(&cmd, 0, sizeof(cmd));
 979        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
 980                                      FW_CMD_REQUEST_F |
 981                                      FW_CMD_READ_F);
 982        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 983        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 984        if (v)
 985                return v;
 986
 987        /*
 988         * Transate the big-endian RSS Global Configuration into our
 989         * cpu-endian format based on the RSS mode.  We also do first level
 990         * filtering at this point to weed out modes which don't support
 991         * VF Drivers ...
 992         */
 993        rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
 994                        be32_to_cpu(rpl.u.manual.mode_pkd));
 995        switch (rss->mode) {
 996        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
 997                u32 word = be32_to_cpu(
 998                                rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
 999
1000                rss->u.basicvirtual.synmapen =
1001                        ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1002                rss->u.basicvirtual.syn4tupenipv6 =
1003                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1004                rss->u.basicvirtual.syn2tupenipv6 =
1005                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1006                rss->u.basicvirtual.syn4tupenipv4 =
1007                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1008                rss->u.basicvirtual.syn2tupenipv4 =
1009                        ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1010
1011                rss->u.basicvirtual.ofdmapen =
1012                        ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1013
1014                rss->u.basicvirtual.tnlmapen =
1015                        ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1016                rss->u.basicvirtual.tnlalllookup =
1017                        ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1018
1019                rss->u.basicvirtual.hashtoeplitz =
1020                        ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1021
1022                /* we need at least Tunnel Map Enable to be set */
1023                if (!rss->u.basicvirtual.tnlmapen)
1024                        return -EINVAL;
1025                break;
1026        }
1027
1028        default:
1029                /* all unknown/unsupported RSS modes result in an error */
1030                return -EINVAL;
1031        }
1032
1033        return 0;
1034}
1035
1036/**
1037 *      t4vf_get_vfres - retrieve VF resource limits
1038 *      @adapter: the adapter
1039 *
1040 *      Retrieves configured resource limits and capabilities for a virtual
1041 *      function.  The results are stored in @adapter->vfres.
1042 */
1043int t4vf_get_vfres(struct adapter *adapter)
1044{
1045        struct vf_resources *vfres = &adapter->params.vfres;
1046        struct fw_pfvf_cmd cmd, rpl;
1047        int v;
1048        u32 word;
1049
1050        /*
1051         * Execute PFVF Read command to get VF resource limits; bail out early
1052         * with error on command failure.
1053         */
1054        memset(&cmd, 0, sizeof(cmd));
1055        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1056                                    FW_CMD_REQUEST_F |
1057                                    FW_CMD_READ_F);
1058        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1059        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1060        if (v)
1061                return v;
1062
1063        /*
1064         * Extract VF resource limits and return success.
1065         */
1066        word = be32_to_cpu(rpl.niqflint_niq);
1067        vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1068        vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1069
1070        word = be32_to_cpu(rpl.type_to_neq);
1071        vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1072        vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1073
1074        word = be32_to_cpu(rpl.tc_to_nexactf);
1075        vfres->tc = FW_PFVF_CMD_TC_G(word);
1076        vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1077        vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1078
1079        word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1080        vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1081        vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1082        vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1083
1084        return 0;
1085}
1086
1087/**
1088 *      t4vf_read_rss_vi_config - read a VI's RSS configuration
1089 *      @adapter: the adapter
1090 *      @viid: Virtual Interface ID
1091 *      @config: pointer to host-native VI RSS Configuration buffer
1092 *
1093 *      Reads the Virtual Interface's RSS configuration information and
1094 *      translates it into CPU-native format.
1095 */
1096int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1097                            union rss_vi_config *config)
1098{
1099        struct fw_rss_vi_config_cmd cmd, rpl;
1100        int v;
1101
1102        memset(&cmd, 0, sizeof(cmd));
1103        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1104                                     FW_CMD_REQUEST_F |
1105                                     FW_CMD_READ_F |
1106                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1107        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1108        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1109        if (v)
1110                return v;
1111
1112        switch (adapter->params.rss.mode) {
1113        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1114                u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1115
1116                config->basicvirtual.ip6fourtupen =
1117                        ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1118                config->basicvirtual.ip6twotupen =
1119                        ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1120                config->basicvirtual.ip4fourtupen =
1121                        ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1122                config->basicvirtual.ip4twotupen =
1123                        ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1124                config->basicvirtual.udpen =
1125                        ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1126                config->basicvirtual.defaultq =
1127                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1128                break;
1129        }
1130
1131        default:
1132                return -EINVAL;
1133        }
1134
1135        return 0;
1136}
1137
1138/**
1139 *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1140 *      @adapter: the adapter
1141 *      @viid: Virtual Interface ID
1142 *      @config: pointer to host-native VI RSS Configuration buffer
1143 *
1144 *      Write the Virtual Interface's RSS configuration information
1145 *      (translating it into firmware-native format before writing).
1146 */
1147int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1148                             union rss_vi_config *config)
1149{
1150        struct fw_rss_vi_config_cmd cmd, rpl;
1151
1152        memset(&cmd, 0, sizeof(cmd));
1153        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1154                                     FW_CMD_REQUEST_F |
1155                                     FW_CMD_WRITE_F |
1156                                     FW_RSS_VI_CONFIG_CMD_VIID(viid));
1157        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1158        switch (adapter->params.rss.mode) {
1159        case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1160                u32 word = 0;
1161
1162                if (config->basicvirtual.ip6fourtupen)
1163                        word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1164                if (config->basicvirtual.ip6twotupen)
1165                        word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1166                if (config->basicvirtual.ip4fourtupen)
1167                        word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1168                if (config->basicvirtual.ip4twotupen)
1169                        word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1170                if (config->basicvirtual.udpen)
1171                        word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1172                word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1173                                config->basicvirtual.defaultq);
1174                cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1175                break;
1176        }
1177
1178        default:
1179                return -EINVAL;
1180        }
1181
1182        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1183}
1184
1185/**
1186 *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1187 *      @adapter: the adapter
1188 *      @viid: Virtual Interface of RSS Table Slice
1189 *      @start: starting entry in the table to write
1190 *      @n: how many table entries to write
1191 *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1192 *      @nrspq: number of values in @rspq
1193 *
1194 *      Programs the selected part of the VI's RSS mapping table with the
1195 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1196 *      until the full table range is populated.
1197 *
1198 *      The caller must ensure the values in @rspq are in the range 0..1023.
1199 */
1200int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1201                          int start, int n, const u16 *rspq, int nrspq)
1202{
1203        const u16 *rsp = rspq;
1204        const u16 *rsp_end = rspq+nrspq;
1205        struct fw_rss_ind_tbl_cmd cmd;
1206
1207        /*
1208         * Initialize firmware command template to write the RSS table.
1209         */
1210        memset(&cmd, 0, sizeof(cmd));
1211        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1212                                     FW_CMD_REQUEST_F |
1213                                     FW_CMD_WRITE_F |
1214                                     FW_RSS_IND_TBL_CMD_VIID_V(viid));
1215        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1216
1217        /*
1218         * Each firmware RSS command can accommodate up to 32 RSS Ingress
1219         * Queue Identifiers.  These Ingress Queue IDs are packed three to
1220         * a 32-bit word as 10-bit values with the upper remaining 2 bits
1221         * reserved.
1222         */
1223        while (n > 0) {
1224                __be32 *qp = &cmd.iq0_to_iq2;
1225                int nq = min(n, 32);
1226                int ret;
1227
1228                /*
1229                 * Set up the firmware RSS command header to send the next
1230                 * "nq" Ingress Queue IDs to the firmware.
1231                 */
1232                cmd.niqid = cpu_to_be16(nq);
1233                cmd.startidx = cpu_to_be16(start);
1234
1235                /*
1236                 * "nq" more done for the start of the next loop.
1237                 */
1238                start += nq;
1239                n -= nq;
1240
1241                /*
1242                 * While there are still Ingress Queue IDs to stuff into the
1243                 * current firmware RSS command, retrieve them from the
1244                 * Ingress Queue ID array and insert them into the command.
1245                 */
1246                while (nq > 0) {
1247                        /*
1248                         * Grab up to the next 3 Ingress Queue IDs (wrapping
1249                         * around the Ingress Queue ID array if necessary) and
1250                         * insert them into the firmware RSS command at the
1251                         * current 3-tuple position within the commad.
1252                         */
1253                        u16 qbuf[3];
1254                        u16 *qbp = qbuf;
1255                        int nqbuf = min(3, nq);
1256
1257                        nq -= nqbuf;
1258                        qbuf[0] = qbuf[1] = qbuf[2] = 0;
1259                        while (nqbuf) {
1260                                nqbuf--;
1261                                *qbp++ = *rsp++;
1262                                if (rsp >= rsp_end)
1263                                        rsp = rspq;
1264                        }
1265                        *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1266                                            FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1267                                            FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1268                }
1269
1270                /*
1271                 * Send this portion of the RRS table update to the firmware;
1272                 * bail out on any errors.
1273                 */
1274                ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1275                if (ret)
1276                        return ret;
1277        }
1278        return 0;
1279}
1280
1281/**
1282 *      t4vf_alloc_vi - allocate a virtual interface on a port
1283 *      @adapter: the adapter
1284 *      @port_id: physical port associated with the VI
1285 *
1286 *      Allocate a new Virtual Interface and bind it to the indicated
1287 *      physical port.  Return the new Virtual Interface Identifier on
1288 *      success, or a [negative] error number on failure.
1289 */
1290int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1291{
1292        struct fw_vi_cmd cmd, rpl;
1293        int v;
1294
1295        /*
1296         * Execute a VI command to allocate Virtual Interface and return its
1297         * VIID.
1298         */
1299        memset(&cmd, 0, sizeof(cmd));
1300        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1301                                    FW_CMD_REQUEST_F |
1302                                    FW_CMD_WRITE_F |
1303                                    FW_CMD_EXEC_F);
1304        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1305                                         FW_VI_CMD_ALLOC_F);
1306        cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1307        v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1308        if (v)
1309                return v;
1310
1311        return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1312}
1313
1314/**
1315 *      t4vf_free_vi -- free a virtual interface
1316 *      @adapter: the adapter
1317 *      @viid: the virtual interface identifier
1318 *
1319 *      Free a previously allocated Virtual Interface.  Return an error on
1320 *      failure.
1321 */
1322int t4vf_free_vi(struct adapter *adapter, int viid)
1323{
1324        struct fw_vi_cmd cmd;
1325
1326        /*
1327         * Execute a VI command to free the Virtual Interface.
1328         */
1329        memset(&cmd, 0, sizeof(cmd));
1330        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1331                                    FW_CMD_REQUEST_F |
1332                                    FW_CMD_EXEC_F);
1333        cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1334                                         FW_VI_CMD_FREE_F);
1335        cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1336        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1337}
1338
1339/**
1340 *      t4vf_enable_vi - enable/disable a virtual interface
1341 *      @adapter: the adapter
1342 *      @viid: the Virtual Interface ID
1343 *      @rx_en: 1=enable Rx, 0=disable Rx
1344 *      @tx_en: 1=enable Tx, 0=disable Tx
1345 *
1346 *      Enables/disables a virtual interface.
1347 */
1348int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1349                   bool rx_en, bool tx_en)
1350{
1351        struct fw_vi_enable_cmd cmd;
1352
1353        memset(&cmd, 0, sizeof(cmd));
1354        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1355                                     FW_CMD_REQUEST_F |
1356                                     FW_CMD_EXEC_F |
1357                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1358        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1359                                       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1360                                       FW_LEN16(cmd));
1361        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1362}
1363
1364/**
1365 *      t4vf_identify_port - identify a VI's port by blinking its LED
1366 *      @adapter: the adapter
1367 *      @viid: the Virtual Interface ID
1368 *      @nblinks: how many times to blink LED at 2.5 Hz
1369 *
1370 *      Identifies a VI's port by blinking its LED.
1371 */
1372int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1373                       unsigned int nblinks)
1374{
1375        struct fw_vi_enable_cmd cmd;
1376
1377        memset(&cmd, 0, sizeof(cmd));
1378        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1379                                     FW_CMD_REQUEST_F |
1380                                     FW_CMD_EXEC_F |
1381                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1382        cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1383                                       FW_LEN16(cmd));
1384        cmd.blinkdur = cpu_to_be16(nblinks);
1385        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1386}
1387
1388/**
1389 *      t4vf_set_rxmode - set Rx properties of a virtual interface
1390 *      @adapter: the adapter
1391 *      @viid: the VI id
1392 *      @mtu: the new MTU or -1 for no change
1393 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1394 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1395 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1396 *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1397 *              -1 no change
1398 *
1399 *      Sets Rx properties of a virtual interface.
1400 */
1401int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1402                    int mtu, int promisc, int all_multi, int bcast, int vlanex,
1403                    bool sleep_ok)
1404{
1405        struct fw_vi_rxmode_cmd cmd;
1406
1407        /* convert to FW values */
1408        if (mtu < 0)
1409                mtu = FW_VI_RXMODE_CMD_MTU_M;
1410        if (promisc < 0)
1411                promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1412        if (all_multi < 0)
1413                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1414        if (bcast < 0)
1415                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1416        if (vlanex < 0)
1417                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1418
1419        memset(&cmd, 0, sizeof(cmd));
1420        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1421                                     FW_CMD_REQUEST_F |
1422                                     FW_CMD_WRITE_F |
1423                                     FW_VI_RXMODE_CMD_VIID_V(viid));
1424        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1425        cmd.mtu_to_vlanexen =
1426                cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1427                            FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1428                            FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1429                            FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1430                            FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1431        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1432}
1433
1434/**
1435 *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1436 *      @adapter: the adapter
1437 *      @viid: the Virtual Interface Identifier
1438 *      @free: if true any existing filters for this VI id are first removed
1439 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1440 *      @addr: the MAC address(es)
1441 *      @idx: where to store the index of each allocated filter
1442 *      @hash: pointer to hash address filter bitmap
1443 *      @sleep_ok: call is allowed to sleep
1444 *
1445 *      Allocates an exact-match filter for each of the supplied addresses and
1446 *      sets it to the corresponding address.  If @idx is not %NULL it should
1447 *      have at least @naddr entries, each of which will be set to the index of
1448 *      the filter allocated for the corresponding MAC address.  If a filter
1449 *      could not be allocated for an address its index is set to 0xffff.
1450 *      If @hash is not %NULL addresses that fail to allocate an exact filter
1451 *      are hashed and update the hash filter bitmap pointed at by @hash.
1452 *
1453 *      Returns a negative error number or the number of filters allocated.
1454 */
1455int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1456                        unsigned int naddr, const u8 **addr, u16 *idx,
1457                        u64 *hash, bool sleep_ok)
1458{
1459        int offset, ret = 0;
1460        unsigned nfilters = 0;
1461        unsigned int rem = naddr;
1462        struct fw_vi_mac_cmd cmd, rpl;
1463        unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1464
1465        if (naddr > max_naddr)
1466                return -EINVAL;
1467
1468        for (offset = 0; offset < naddr; /**/) {
1469                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1470                                         ? rem
1471                                         : ARRAY_SIZE(cmd.u.exact));
1472                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1473                                                     u.exact[fw_naddr]), 16);
1474                struct fw_vi_mac_exact *p;
1475                int i;
1476
1477                memset(&cmd, 0, sizeof(cmd));
1478                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1479                                             FW_CMD_REQUEST_F |
1480                                             FW_CMD_WRITE_F |
1481                                             (free ? FW_CMD_EXEC_F : 0) |
1482                                             FW_VI_MAC_CMD_VIID_V(viid));
1483                cmd.freemacs_to_len16 =
1484                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1485                                    FW_CMD_LEN16_V(len16));
1486
1487                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1488                        p->valid_to_idx = cpu_to_be16(
1489                                FW_VI_MAC_CMD_VALID_F |
1490                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1491                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1492                }
1493
1494
1495                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1496                                        sleep_ok);
1497                if (ret && ret != -ENOMEM)
1498                        break;
1499
1500                for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1501                        u16 index = FW_VI_MAC_CMD_IDX_G(
1502                                be16_to_cpu(p->valid_to_idx));
1503
1504                        if (idx)
1505                                idx[offset+i] =
1506                                        (index >= max_naddr
1507                                         ? 0xffff
1508                                         : index);
1509                        if (index < max_naddr)
1510                                nfilters++;
1511                        else if (hash)
1512                                *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1513                }
1514
1515                free = false;
1516                offset += fw_naddr;
1517                rem -= fw_naddr;
1518        }
1519
1520        /*
1521         * If there were no errors or we merely ran out of room in our MAC
1522         * address arena, return the number of filters actually written.
1523         */
1524        if (ret == 0 || ret == -ENOMEM)
1525                ret = nfilters;
1526        return ret;
1527}
1528
1529/**
1530 *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1531 *      @adapter: the adapter
1532 *      @viid: the VI id
1533 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1534 *      @addr: the MAC address(es)
1535 *      @sleep_ok: call is allowed to sleep
1536 *
1537 *      Frees the exact-match filter for each of the supplied addresses
1538 *
1539 *      Returns a negative error number or the number of filters freed.
1540 */
1541int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1542                       unsigned int naddr, const u8 **addr, bool sleep_ok)
1543{
1544        int offset, ret = 0;
1545        struct fw_vi_mac_cmd cmd;
1546        unsigned int nfilters = 0;
1547        unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1548        unsigned int rem = naddr;
1549
1550        if (naddr > max_naddr)
1551                return -EINVAL;
1552
1553        for (offset = 0; offset < (int)naddr ; /**/) {
1554                unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1555                                         rem : ARRAY_SIZE(cmd.u.exact));
1556                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1557                                                     u.exact[fw_naddr]), 16);
1558                struct fw_vi_mac_exact *p;
1559                int i;
1560
1561                memset(&cmd, 0, sizeof(cmd));
1562                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1563                                     FW_CMD_REQUEST_F |
1564                                     FW_CMD_WRITE_F |
1565                                     FW_CMD_EXEC_V(0) |
1566                                     FW_VI_MAC_CMD_VIID_V(viid));
1567                cmd.freemacs_to_len16 =
1568                                cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1569                                            FW_CMD_LEN16_V(len16));
1570
1571                for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1572                        p->valid_to_idx = cpu_to_be16(
1573                                FW_VI_MAC_CMD_VALID_F |
1574                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1575                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1576                }
1577
1578                ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1579                                        sleep_ok);
1580                if (ret)
1581                        break;
1582
1583                for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1584                        u16 index = FW_VI_MAC_CMD_IDX_G(
1585                                                be16_to_cpu(p->valid_to_idx));
1586
1587                        if (index < max_naddr)
1588                                nfilters++;
1589                }
1590
1591                offset += fw_naddr;
1592                rem -= fw_naddr;
1593        }
1594
1595        if (ret == 0)
1596                ret = nfilters;
1597        return ret;
1598}
1599
1600/**
1601 *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1602 *      @adapter: the adapter
1603 *      @viid: the Virtual Interface ID
1604 *      @idx: index of existing filter for old value of MAC address, or -1
1605 *      @addr: the new MAC address value
1606 *      @persist: if idx < 0, the new MAC allocation should be persistent
1607 *
1608 *      Modifies an exact-match filter and sets it to the new MAC address.
1609 *      Note that in general it is not possible to modify the value of a given
1610 *      filter so the generic way to modify an address filter is to free the
1611 *      one being used by the old address value and allocate a new filter for
1612 *      the new address value.  @idx can be -1 if the address is a new
1613 *      addition.
1614 *
1615 *      Returns a negative error number or the index of the filter with the new
1616 *      MAC value.
1617 */
1618int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1619                    int idx, const u8 *addr, bool persist)
1620{
1621        int ret;
1622        struct fw_vi_mac_cmd cmd, rpl;
1623        struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1624        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1625                                             u.exact[1]), 16);
1626        unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1627
1628        /*
1629         * If this is a new allocation, determine whether it should be
1630         * persistent (across a "freemacs" operation) or not.
1631         */
1632        if (idx < 0)
1633                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1634
1635        memset(&cmd, 0, sizeof(cmd));
1636        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1637                                     FW_CMD_REQUEST_F |
1638                                     FW_CMD_WRITE_F |
1639                                     FW_VI_MAC_CMD_VIID_V(viid));
1640        cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1641        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1642                                      FW_VI_MAC_CMD_IDX_V(idx));
1643        memcpy(p->macaddr, addr, sizeof(p->macaddr));
1644
1645        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1646        if (ret == 0) {
1647                p = &rpl.u.exact[0];
1648                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1649                if (ret >= max_mac_addr)
1650                        ret = -ENOMEM;
1651        }
1652        return ret;
1653}
1654
1655/**
1656 *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1657 *      @adapter: the adapter
1658 *      @viid: the Virtual Interface Identifier
1659 *      @ucast: whether the hash filter should also match unicast addresses
1660 *      @vec: the value to be written to the hash filter
1661 *      @sleep_ok: call is allowed to sleep
1662 *
1663 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1664 */
1665int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1666                       bool ucast, u64 vec, bool sleep_ok)
1667{
1668        struct fw_vi_mac_cmd cmd;
1669        size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1670                                             u.exact[0]), 16);
1671
1672        memset(&cmd, 0, sizeof(cmd));
1673        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1674                                     FW_CMD_REQUEST_F |
1675                                     FW_CMD_WRITE_F |
1676                                     FW_VI_ENABLE_CMD_VIID_V(viid));
1677        cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1678                                            FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1679                                            FW_CMD_LEN16_V(len16));
1680        cmd.u.hash.hashvec = cpu_to_be64(vec);
1681        return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1682}
1683
1684/**
1685 *      t4vf_get_port_stats - collect "port" statistics
1686 *      @adapter: the adapter
1687 *      @pidx: the port index
1688 *      @s: the stats structure to fill
1689 *
1690 *      Collect statistics for the "port"'s Virtual Interface.
1691 */
1692int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1693                        struct t4vf_port_stats *s)
1694{
1695        struct port_info *pi = adap2pinfo(adapter, pidx);
1696        struct fw_vi_stats_vf fwstats;
1697        unsigned int rem = VI_VF_NUM_STATS;
1698        __be64 *fwsp = (__be64 *)&fwstats;
1699
1700        /*
1701         * Grab the Virtual Interface statistics a chunk at a time via mailbox
1702         * commands.  We could use a Work Request and get all of them at once
1703         * but that's an asynchronous interface which is awkward to use.
1704         */
1705        while (rem) {
1706                unsigned int ix = VI_VF_NUM_STATS - rem;
1707                unsigned int nstats = min(6U, rem);
1708                struct fw_vi_stats_cmd cmd, rpl;
1709                size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1710                              sizeof(struct fw_vi_stats_ctl));
1711                size_t len16 = DIV_ROUND_UP(len, 16);
1712                int ret;
1713
1714                memset(&cmd, 0, sizeof(cmd));
1715                cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1716                                             FW_VI_STATS_CMD_VIID_V(pi->viid) |
1717                                             FW_CMD_REQUEST_F |
1718                                             FW_CMD_READ_F);
1719                cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1720                cmd.u.ctl.nstats_ix =
1721                        cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1722                                    FW_VI_STATS_CMD_NSTATS_V(nstats));
1723                ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1724                if (ret)
1725                        return ret;
1726
1727                memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1728
1729                rem -= nstats;
1730                fwsp += nstats;
1731        }
1732
1733        /*
1734         * Translate firmware statistics into host native statistics.
1735         */
1736        s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1737        s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1738        s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1739        s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1740        s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1741        s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1742        s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1743        s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1744        s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1745
1746        s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1747        s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1748        s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1749        s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1750        s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1751        s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1752
1753        s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1754
1755        return 0;
1756}
1757
1758/**
1759 *      t4vf_iq_free - free an ingress queue and its free lists
1760 *      @adapter: the adapter
1761 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1762 *      @iqid: ingress queue ID
1763 *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1764 *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1765 *
1766 *      Frees an ingress queue and its associated free lists, if any.
1767 */
1768int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1769                 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1770{
1771        struct fw_iq_cmd cmd;
1772
1773        memset(&cmd, 0, sizeof(cmd));
1774        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1775                                    FW_CMD_REQUEST_F |
1776                                    FW_CMD_EXEC_F);
1777        cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1778                                         FW_LEN16(cmd));
1779        cmd.type_to_iqandstindex =
1780                cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1781
1782        cmd.iqid = cpu_to_be16(iqid);
1783        cmd.fl0id = cpu_to_be16(fl0id);
1784        cmd.fl1id = cpu_to_be16(fl1id);
1785        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1786}
1787
1788/**
1789 *      t4vf_eth_eq_free - free an Ethernet egress queue
1790 *      @adapter: the adapter
1791 *      @eqid: egress queue ID
1792 *
1793 *      Frees an Ethernet egress queue.
1794 */
1795int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1796{
1797        struct fw_eq_eth_cmd cmd;
1798
1799        memset(&cmd, 0, sizeof(cmd));
1800        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1801                                    FW_CMD_REQUEST_F |
1802                                    FW_CMD_EXEC_F);
1803        cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1804                                         FW_LEN16(cmd));
1805        cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1806        return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1807}
1808
1809/**
1810 *      t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1811 *      @link_down_rc: Link Down Reason Code
1812 *
1813 *      Returns a string representation of the Link Down Reason Code.
1814 */
1815static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1816{
1817        static const char * const reason[] = {
1818                "Link Down",
1819                "Remote Fault",
1820                "Auto-negotiation Failure",
1821                "Reserved",
1822                "Insufficient Airflow",
1823                "Unable To Determine Reason",
1824                "No RX Signal Detected",
1825                "Reserved",
1826        };
1827
1828        if (link_down_rc >= ARRAY_SIZE(reason))
1829                return "Bad Reason Code";
1830
1831        return reason[link_down_rc];
1832}
1833
1834/**
1835 *      t4vf_handle_get_port_info - process a FW reply message
1836 *      @pi: the port info
1837 *      @rpl: start of the FW message
1838 *
1839 *      Processes a GET_PORT_INFO FW reply message.
1840 */
1841static void t4vf_handle_get_port_info(struct port_info *pi,
1842                                      const struct fw_port_cmd *cmd)
1843{
1844        int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1845        struct adapter *adapter = pi->adapter;
1846        struct link_config *lc = &pi->link_cfg;
1847        int link_ok, linkdnrc;
1848        enum fw_port_type port_type;
1849        enum fw_port_module_type mod_type;
1850        unsigned int speed, fc, fec;
1851        fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1852
1853        /* Extract the various fields from the Port Information message. */
1854        switch (action) {
1855        case FW_PORT_ACTION_GET_PORT_INFO: {
1856                u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1857
1858                link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1859                linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1860                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1861                mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1862                pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1863                acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1864                lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1865
1866                /* Unfortunately the format of the Link Status in the old
1867                 * 16-bit Port Information message isn't the same as the
1868                 * 16-bit Port Capabilities bitfield used everywhere else ...
1869                 */
1870                linkattr = 0;
1871                if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1872                        linkattr |= FW_PORT_CAP32_FC_RX;
1873                if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1874                        linkattr |= FW_PORT_CAP32_FC_TX;
1875                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1876                        linkattr |= FW_PORT_CAP32_SPEED_100M;
1877                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1878                        linkattr |= FW_PORT_CAP32_SPEED_1G;
1879                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1880                        linkattr |= FW_PORT_CAP32_SPEED_10G;
1881                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1882                        linkattr |= FW_PORT_CAP32_SPEED_25G;
1883                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1884                        linkattr |= FW_PORT_CAP32_SPEED_40G;
1885                if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1886                        linkattr |= FW_PORT_CAP32_SPEED_100G;
1887
1888                break;
1889        }
1890
1891        case FW_PORT_ACTION_GET_PORT_INFO32: {
1892                u32 lstatus32;
1893
1894                lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1895                link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1896                linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1897                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1898                mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1899                pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1900                acaps = be32_to_cpu(cmd->u.info32.acaps32);
1901                lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1902                linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1903                break;
1904        }
1905
1906        default:
1907                dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1908                        be32_to_cpu(cmd->action_to_len16));
1909                return;
1910        }
1911
1912        fec = fwcap_to_cc_fec(acaps);
1913        fc = fwcap_to_cc_pause(linkattr);
1914        speed = fwcap_to_speed(linkattr);
1915
1916        if (mod_type != pi->mod_type) {
1917                /* When a new Transceiver Module is inserted, the Firmware
1918                 * will examine any Forward Error Correction parameters
1919                 * present in the Transceiver Module i2c EPROM and determine
1920                 * the supported and recommended FEC settings from those
1921                 * based on IEEE 802.3 standards.  We always record the
1922                 * IEEE 802.3 recommended "automatic" settings.
1923                 */
1924                lc->auto_fec = fec;
1925
1926                /* Some versions of the early T6 Firmware "cheated" when
1927                 * handling different Transceiver Modules by changing the
1928                 * underlaying Port Type reported to the Host Drivers.  As
1929                 * such we need to capture whatever Port Type the Firmware
1930                 * sends us and record it in case it's different from what we
1931                 * were told earlier.  Unfortunately, since Firmware is
1932                 * forever, we'll need to keep this code here forever, but in
1933                 * later T6 Firmware it should just be an assignment of the
1934                 * same value already recorded.
1935                 */
1936                pi->port_type = port_type;
1937
1938                pi->mod_type = mod_type;
1939                t4vf_os_portmod_changed(adapter, pi->pidx);
1940        }
1941
1942        if (link_ok != lc->link_ok || speed != lc->speed ||
1943            fc != lc->fc || fec != lc->fec) {   /* something changed */
1944                if (!link_ok && lc->link_ok) {
1945                        lc->link_down_rc = linkdnrc;
1946                        dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
1947                                 pi->port_id, t4vf_link_down_rc_str(linkdnrc));
1948                }
1949                lc->link_ok = link_ok;
1950                lc->speed = speed;
1951                lc->fc = fc;
1952                lc->fec = fec;
1953
1954                lc->pcaps = pcaps;
1955                lc->lpacaps = lpacaps;
1956                lc->acaps = acaps & ADVERT_MASK;
1957
1958                if (lc->acaps & FW_PORT_CAP32_ANEG) {
1959                        lc->autoneg = AUTONEG_ENABLE;
1960                } else {
1961                        /* When Autoneg is disabled, user needs to set
1962                         * single speed.
1963                         * Similar to cxgb4_ethtool.c: set_link_ksettings
1964                         */
1965                        lc->acaps = 0;
1966                        lc->speed_caps = fwcap_to_speed(acaps);
1967                        lc->autoneg = AUTONEG_DISABLE;
1968                }
1969
1970                t4vf_os_link_changed(adapter, pi->pidx, link_ok);
1971        }
1972}
1973
1974/**
1975 *      t4vf_update_port_info - retrieve and update port information if changed
1976 *      @pi: the port_info
1977 *
1978 *      We issue a Get Port Information Command to the Firmware and, if
1979 *      successful, we check to see if anything is different from what we
1980 *      last recorded and update things accordingly.
1981 */
1982int t4vf_update_port_info(struct port_info *pi)
1983{
1984        unsigned int fw_caps = pi->adapter->params.fw_caps_support;
1985        struct fw_port_cmd port_cmd;
1986        int ret;
1987
1988        memset(&port_cmd, 0, sizeof(port_cmd));
1989        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
1990                                            FW_CMD_REQUEST_F | FW_CMD_READ_F |
1991                                            FW_PORT_CMD_PORTID_V(pi->port_id));
1992        port_cmd.action_to_len16 = cpu_to_be32(
1993                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
1994                                     ? FW_PORT_ACTION_GET_PORT_INFO
1995                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
1996                FW_LEN16(port_cmd));
1997        ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
1998                           &port_cmd);
1999        if (ret)
2000                return ret;
2001        t4vf_handle_get_port_info(pi, &port_cmd);
2002        return 0;
2003}
2004
2005/**
2006 *      t4vf_handle_fw_rpl - process a firmware reply message
2007 *      @adapter: the adapter
2008 *      @rpl: start of the firmware message
2009 *
2010 *      Processes a firmware message, such as link state change messages.
2011 */
2012int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2013{
2014        const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2015        u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2016
2017        switch (opcode) {
2018        case FW_PORT_CMD: {
2019                /*
2020                 * Link/module state change message.
2021                 */
2022                const struct fw_port_cmd *port_cmd =
2023                        (const struct fw_port_cmd *)rpl;
2024                int action = FW_PORT_CMD_ACTION_G(
2025                        be32_to_cpu(port_cmd->action_to_len16));
2026                int port_id, pidx;
2027
2028                if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2029                    action != FW_PORT_ACTION_GET_PORT_INFO32) {
2030                        dev_err(adapter->pdev_dev,
2031                                "Unknown firmware PORT reply action %x\n",
2032                                action);
2033                        break;
2034                }
2035
2036                port_id = FW_PORT_CMD_PORTID_G(
2037                        be32_to_cpu(port_cmd->op_to_portid));
2038                for_each_port(adapter, pidx) {
2039                        struct port_info *pi = adap2pinfo(adapter, pidx);
2040
2041                        if (pi->port_id != port_id)
2042                                continue;
2043                        t4vf_handle_get_port_info(pi, port_cmd);
2044                }
2045                break;
2046        }
2047
2048        default:
2049                dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2050                        opcode);
2051        }
2052        return 0;
2053}
2054
2055/**
2056 */
2057int t4vf_prep_adapter(struct adapter *adapter)
2058{
2059        int err;
2060        unsigned int chipid;
2061
2062        /* Wait for the device to become ready before proceeding ...
2063         */
2064        err = t4vf_wait_dev_ready(adapter);
2065        if (err)
2066                return err;
2067
2068        /* Default port and clock for debugging in case we can't reach
2069         * firmware.
2070         */
2071        adapter->params.nports = 1;
2072        adapter->params.vfres.pmask = 1;
2073        adapter->params.vpd.cclk = 50000;
2074
2075        adapter->params.chip = 0;
2076        switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2077        case CHELSIO_T4:
2078                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2079                adapter->params.arch.sge_fl_db = DBPRIO_F;
2080                adapter->params.arch.mps_tcam_size =
2081                                NUM_MPS_CLS_SRAM_L_INSTANCES;
2082                break;
2083
2084        case CHELSIO_T5:
2085                chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2086                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2087                adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2088                adapter->params.arch.mps_tcam_size =
2089                                NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2090                break;
2091
2092        case CHELSIO_T6:
2093                chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2094                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2095                adapter->params.arch.sge_fl_db = 0;
2096                adapter->params.arch.mps_tcam_size =
2097                                NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2098                break;
2099        }
2100
2101        return 0;
2102}
2103
2104/**
2105 *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
2106 *                            the VI of this VF.
2107 *      @adapter: The adapter
2108 *      @pf: The pf associated with vf
2109 *      @naddr: the number of ACL MAC addresses returned in addr
2110 *      @addr: Placeholder for MAC addresses
2111 *
2112 *      Find the MAC address to be set to the VF's VI. The requested MAC address
2113 *      is from the host OS via callback in the PF driver.
2114 */
2115int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2116                        unsigned int *naddr, u8 *addr)
2117{
2118        struct fw_acl_mac_cmd cmd;
2119        int ret;
2120
2121        memset(&cmd, 0, sizeof(cmd));
2122        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2123                                    FW_CMD_REQUEST_F |
2124                                    FW_CMD_READ_F);
2125        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2126        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2127        if (ret)
2128                return ret;
2129
2130        if (cmd.nmac < *naddr)
2131                *naddr = cmd.nmac;
2132
2133        switch (pf) {
2134        case 3:
2135                memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2136                break;
2137        case 2:
2138                memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2139                break;
2140        case 1:
2141                memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2142                break;
2143        case 0:
2144                memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2145                break;
2146        }
2147
2148        return ret;
2149}
2150
2151/**
2152 *      t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2153 *                             the VI of this VF.
2154 *      @adapter: The adapter
2155 *
2156 *      Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2157 *      is from the host OS via callback in the PF driver.
2158 */
2159int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2160{
2161        struct fw_acl_vlan_cmd cmd;
2162        int vlan = 0;
2163        int ret = 0;
2164
2165        cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2166                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
2167
2168        /* Note: Do not enable the ACL */
2169        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2170
2171        ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2172
2173        if (!ret)
2174                vlan = be16_to_cpu(cmd.vlanid[0]);
2175
2176        return vlan;
2177}
2178