linux/drivers/net/ethernet/intel/igb/e1000_82575.c
<<
>>
Prefs
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24/* e1000_82575
  25 * e1000_82576
  26 */
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/types.h>
  31#include <linux/if_ether.h>
  32#include <linux/i2c.h>
  33
  34#include "e1000_mac.h"
  35#include "e1000_82575.h"
  36#include "e1000_i210.h"
  37#include "igb.h"
  38
  39static s32  igb_get_invariants_82575(struct e1000_hw *);
  40static s32  igb_acquire_phy_82575(struct e1000_hw *);
  41static void igb_release_phy_82575(struct e1000_hw *);
  42static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  43static void igb_release_nvm_82575(struct e1000_hw *);
  44static s32  igb_check_for_link_82575(struct e1000_hw *);
  45static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  46static s32  igb_init_hw_82575(struct e1000_hw *);
  47static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  48static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  49static s32  igb_reset_hw_82575(struct e1000_hw *);
  50static s32  igb_reset_hw_82580(struct e1000_hw *);
  51static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  52static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  53static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  54static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  55static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  56static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  57static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  58static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  59static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  60                                                 u16 *);
  61static s32  igb_get_phy_id_82575(struct e1000_hw *);
  62static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  63static bool igb_sgmii_active_82575(struct e1000_hw *);
  64static s32  igb_reset_init_script_82575(struct e1000_hw *);
  65static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  66static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  67static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  68static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  69static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  70static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  71static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  72static const u16 e1000_82580_rxpbs_table[] = {
  73        36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  74
  75/* Due to a hw errata, if the host tries to  configure the VFTA register
  76 * while performing queries from the BMC or DMA, then the VFTA in some
  77 * cases won't be written.
  78 */
  79
  80/**
  81 *  igb_write_vfta_i350 - Write value to VLAN filter table
  82 *  @hw: pointer to the HW structure
  83 *  @offset: register offset in VLAN filter table
  84 *  @value: register value written to VLAN filter table
  85 *
  86 *  Writes value at the given offset in the register array which stores
  87 *  the VLAN filter table.
  88 **/
  89static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  90{
  91        struct igb_adapter *adapter = hw->back;
  92        int i;
  93
  94        for (i = 10; i--;)
  95                array_wr32(E1000_VFTA, offset, value);
  96
  97        wrfl();
  98        adapter->shadow_vfta[offset] = value;
  99}
 100
 101/**
 102 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 103 *  @hw: pointer to the HW structure
 104 *
 105 *  Called to determine if the I2C pins are being used for I2C or as an
 106 *  external MDIO interface since the two options are mutually exclusive.
 107 **/
 108static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
 109{
 110        u32 reg = 0;
 111        bool ext_mdio = false;
 112
 113        switch (hw->mac.type) {
 114        case e1000_82575:
 115        case e1000_82576:
 116                reg = rd32(E1000_MDIC);
 117                ext_mdio = !!(reg & E1000_MDIC_DEST);
 118                break;
 119        case e1000_82580:
 120        case e1000_i350:
 121        case e1000_i354:
 122        case e1000_i210:
 123        case e1000_i211:
 124                reg = rd32(E1000_MDICNFG);
 125                ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 126                break;
 127        default:
 128                break;
 129        }
 130        return ext_mdio;
 131}
 132
 133/**
 134 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 135 *  @hw: pointer to the HW structure
 136 *
 137 *  Poll the M88E1112 interfaces to see which interface achieved link.
 138 */
 139static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 140{
 141        struct e1000_phy_info *phy = &hw->phy;
 142        s32 ret_val;
 143        u16 data;
 144        u8 port = 0;
 145
 146        /* Check the copper medium. */
 147        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 148        if (ret_val)
 149                return ret_val;
 150
 151        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 152        if (ret_val)
 153                return ret_val;
 154
 155        if (data & E1000_M88E1112_STATUS_LINK)
 156                port = E1000_MEDIA_PORT_COPPER;
 157
 158        /* Check the other medium. */
 159        ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 160        if (ret_val)
 161                return ret_val;
 162
 163        ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 164        if (ret_val)
 165                return ret_val;
 166
 167
 168        if (data & E1000_M88E1112_STATUS_LINK)
 169                port = E1000_MEDIA_PORT_OTHER;
 170
 171        /* Determine if a swap needs to happen. */
 172        if (port && (hw->dev_spec._82575.media_port != port)) {
 173                hw->dev_spec._82575.media_port = port;
 174                hw->dev_spec._82575.media_changed = true;
 175        }
 176
 177        if (port == E1000_MEDIA_PORT_COPPER) {
 178                /* reset page to 0 */
 179                ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 180                if (ret_val)
 181                        return ret_val;
 182                igb_check_for_link_82575(hw);
 183        } else {
 184                igb_check_for_link_82575(hw);
 185                /* reset page to 0 */
 186                ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 187                if (ret_val)
 188                        return ret_val;
 189        }
 190
 191        return 0;
 192}
 193
 194/**
 195 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 196 *  @hw: pointer to the HW structure
 197 **/
 198static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 199{
 200        struct e1000_phy_info *phy = &hw->phy;
 201        s32 ret_val = 0;
 202        u32 ctrl_ext;
 203
 204        if (hw->phy.media_type != e1000_media_type_copper) {
 205                phy->type = e1000_phy_none;
 206                goto out;
 207        }
 208
 209        phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 210        phy->reset_delay_us     = 100;
 211
 212        ctrl_ext = rd32(E1000_CTRL_EXT);
 213
 214        if (igb_sgmii_active_82575(hw)) {
 215                phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 216                ctrl_ext |= E1000_CTRL_I2C_ENA;
 217        } else {
 218                phy->ops.reset = igb_phy_hw_reset;
 219                ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 220        }
 221
 222        wr32(E1000_CTRL_EXT, ctrl_ext);
 223        igb_reset_mdicnfg_82580(hw);
 224
 225        if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 226                phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 227                phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 228        } else {
 229                switch (hw->mac.type) {
 230                case e1000_82580:
 231                case e1000_i350:
 232                case e1000_i354:
 233                case e1000_i210:
 234                case e1000_i211:
 235                        phy->ops.read_reg = igb_read_phy_reg_82580;
 236                        phy->ops.write_reg = igb_write_phy_reg_82580;
 237                        break;
 238                default:
 239                        phy->ops.read_reg = igb_read_phy_reg_igp;
 240                        phy->ops.write_reg = igb_write_phy_reg_igp;
 241                }
 242        }
 243
 244        /* set lan id */
 245        hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 246                        E1000_STATUS_FUNC_SHIFT;
 247
 248        /* Make sure the PHY is in a good state. Several people have reported
 249         * firmware leaving the PHY's page select register set to something
 250         * other than the default of zero, which causes the PHY ID read to
 251         * access something other than the intended register.
 252         */
 253        ret_val = hw->phy.ops.reset(hw);
 254        if (ret_val) {
 255                hw_dbg("Error resetting the PHY.\n");
 256                goto out;
 257        }
 258
 259        /* Set phy->phy_addr and phy->id. */
 260        igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
 261        ret_val = igb_get_phy_id_82575(hw);
 262        if (ret_val)
 263                return ret_val;
 264
 265        /* Verify phy id and set remaining function pointers */
 266        switch (phy->id) {
 267        case M88E1543_E_PHY_ID:
 268        case M88E1512_E_PHY_ID:
 269        case I347AT4_E_PHY_ID:
 270        case M88E1112_E_PHY_ID:
 271        case M88E1111_I_PHY_ID:
 272                phy->type               = e1000_phy_m88;
 273                phy->ops.check_polarity = igb_check_polarity_m88;
 274                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 275                if (phy->id != M88E1111_I_PHY_ID)
 276                        phy->ops.get_cable_length =
 277                                         igb_get_cable_length_m88_gen2;
 278                else
 279                        phy->ops.get_cable_length = igb_get_cable_length_m88;
 280                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 281                /* Check if this PHY is configured for media swap. */
 282                if (phy->id == M88E1112_E_PHY_ID) {
 283                        u16 data;
 284
 285                        ret_val = phy->ops.write_reg(hw,
 286                                                     E1000_M88E1112_PAGE_ADDR,
 287                                                     2);
 288                        if (ret_val)
 289                                goto out;
 290
 291                        ret_val = phy->ops.read_reg(hw,
 292                                                    E1000_M88E1112_MAC_CTRL_1,
 293                                                    &data);
 294                        if (ret_val)
 295                                goto out;
 296
 297                        data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 298                               E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 299                        if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 300                            data == E1000_M88E1112_AUTO_COPPER_BASEX)
 301                                hw->mac.ops.check_for_link =
 302                                                igb_check_for_link_media_swap;
 303                }
 304                if (phy->id == M88E1512_E_PHY_ID) {
 305                        ret_val = igb_initialize_M88E1512_phy(hw);
 306                        if (ret_val)
 307                                goto out;
 308                }
 309                if (phy->id == M88E1543_E_PHY_ID) {
 310                        ret_val = igb_initialize_M88E1543_phy(hw);
 311                        if (ret_val)
 312                                goto out;
 313                }
 314                break;
 315        case IGP03E1000_E_PHY_ID:
 316                phy->type = e1000_phy_igp_3;
 317                phy->ops.get_phy_info = igb_get_phy_info_igp;
 318                phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 319                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 320                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 321                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 322                break;
 323        case I82580_I_PHY_ID:
 324        case I350_I_PHY_ID:
 325                phy->type = e1000_phy_82580;
 326                phy->ops.force_speed_duplex =
 327                                         igb_phy_force_speed_duplex_82580;
 328                phy->ops.get_cable_length = igb_get_cable_length_82580;
 329                phy->ops.get_phy_info = igb_get_phy_info_82580;
 330                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 331                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 332                break;
 333        case I210_I_PHY_ID:
 334                phy->type               = e1000_phy_i210;
 335                phy->ops.check_polarity = igb_check_polarity_m88;
 336                phy->ops.get_cfg_done   = igb_get_cfg_done_i210;
 337                phy->ops.get_phy_info   = igb_get_phy_info_m88;
 338                phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 339                phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 340                phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 341                phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 342                break;
 343        case BCM54616_E_PHY_ID:
 344                phy->type = e1000_phy_bcm54616;
 345                break;
 346        default:
 347                ret_val = -E1000_ERR_PHY;
 348                goto out;
 349        }
 350
 351out:
 352        return ret_val;
 353}
 354
 355/**
 356 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 357 *  @hw: pointer to the HW structure
 358 **/
 359static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 360{
 361        struct e1000_nvm_info *nvm = &hw->nvm;
 362        u32 eecd = rd32(E1000_EECD);
 363        u16 size;
 364
 365        size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 366                     E1000_EECD_SIZE_EX_SHIFT);
 367
 368        /* Added to a constant, "size" becomes the left-shift value
 369         * for setting word_size.
 370         */
 371        size += NVM_WORD_SIZE_BASE_SHIFT;
 372
 373        /* Just in case size is out of range, cap it to the largest
 374         * EEPROM size supported
 375         */
 376        if (size > 15)
 377                size = 15;
 378
 379        nvm->word_size = BIT(size);
 380        nvm->opcode_bits = 8;
 381        nvm->delay_usec = 1;
 382
 383        switch (nvm->override) {
 384        case e1000_nvm_override_spi_large:
 385                nvm->page_size = 32;
 386                nvm->address_bits = 16;
 387                break;
 388        case e1000_nvm_override_spi_small:
 389                nvm->page_size = 8;
 390                nvm->address_bits = 8;
 391                break;
 392        default:
 393                nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 394                nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 395                                    16 : 8;
 396                break;
 397        }
 398        if (nvm->word_size == BIT(15))
 399                nvm->page_size = 128;
 400
 401        nvm->type = e1000_nvm_eeprom_spi;
 402
 403        /* NVM Function Pointers */
 404        nvm->ops.acquire = igb_acquire_nvm_82575;
 405        nvm->ops.release = igb_release_nvm_82575;
 406        nvm->ops.write = igb_write_nvm_spi;
 407        nvm->ops.validate = igb_validate_nvm_checksum;
 408        nvm->ops.update = igb_update_nvm_checksum;
 409        if (nvm->word_size < BIT(15))
 410                nvm->ops.read = igb_read_nvm_eerd;
 411        else
 412                nvm->ops.read = igb_read_nvm_spi;
 413
 414        /* override generic family function pointers for specific descendants */
 415        switch (hw->mac.type) {
 416        case e1000_82580:
 417                nvm->ops.validate = igb_validate_nvm_checksum_82580;
 418                nvm->ops.update = igb_update_nvm_checksum_82580;
 419                break;
 420        case e1000_i354:
 421        case e1000_i350:
 422                nvm->ops.validate = igb_validate_nvm_checksum_i350;
 423                nvm->ops.update = igb_update_nvm_checksum_i350;
 424                break;
 425        default:
 426                break;
 427        }
 428
 429        return 0;
 430}
 431
 432/**
 433 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 434 *  @hw: pointer to the HW structure
 435 **/
 436static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 437{
 438        struct e1000_mac_info *mac = &hw->mac;
 439        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 440
 441        /* Set mta register count */
 442        mac->mta_reg_count = 128;
 443        /* Set uta register count */
 444        mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 445        /* Set rar entry count */
 446        switch (mac->type) {
 447        case e1000_82576:
 448                mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 449                break;
 450        case e1000_82580:
 451                mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 452                break;
 453        case e1000_i350:
 454        case e1000_i354:
 455                mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 456                break;
 457        default:
 458                mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 459                break;
 460        }
 461        /* reset */
 462        if (mac->type >= e1000_82580)
 463                mac->ops.reset_hw = igb_reset_hw_82580;
 464        else
 465                mac->ops.reset_hw = igb_reset_hw_82575;
 466
 467        if (mac->type >= e1000_i210) {
 468                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 469                mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 470
 471        } else {
 472                mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 473                mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 474        }
 475
 476        if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 477                mac->ops.write_vfta = igb_write_vfta_i350;
 478        else
 479                mac->ops.write_vfta = igb_write_vfta;
 480
 481        /* Set if part includes ASF firmware */
 482        mac->asf_firmware_present = true;
 483        /* Set if manageability features are enabled. */
 484        mac->arc_subsystem_valid =
 485                (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 486                        ? true : false;
 487        /* enable EEE on i350 parts and later parts */
 488        if (mac->type >= e1000_i350)
 489                dev_spec->eee_disable = false;
 490        else
 491                dev_spec->eee_disable = true;
 492        /* Allow a single clear of the SW semaphore on I210 and newer */
 493        if (mac->type >= e1000_i210)
 494                dev_spec->clear_semaphore_once = true;
 495        /* physical interface link setup */
 496        mac->ops.setup_physical_interface =
 497                (hw->phy.media_type == e1000_media_type_copper)
 498                        ? igb_setup_copper_link_82575
 499                        : igb_setup_serdes_link_82575;
 500
 501        if (mac->type == e1000_82580) {
 502                switch (hw->device_id) {
 503                /* feature not supported on these id's */
 504                case E1000_DEV_ID_DH89XXCC_SGMII:
 505                case E1000_DEV_ID_DH89XXCC_SERDES:
 506                case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 507                case E1000_DEV_ID_DH89XXCC_SFP:
 508                        break;
 509                default:
 510                        hw->dev_spec._82575.mas_capable = true;
 511                        break;
 512                }
 513        }
 514        return 0;
 515}
 516
 517/**
 518 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 519 *  @hw: pointer to the HW structure
 520 *
 521 *  The media type is chosen based on SFP module.
 522 *  compatibility flags retrieved from SFP ID EEPROM.
 523 **/
 524static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 525{
 526        s32 ret_val = E1000_ERR_CONFIG;
 527        u32 ctrl_ext = 0;
 528        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 529        struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 530        u8 tranceiver_type = 0;
 531        s32 timeout = 3;
 532
 533        /* Turn I2C interface ON and power on sfp cage */
 534        ctrl_ext = rd32(E1000_CTRL_EXT);
 535        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 536        wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 537
 538        wrfl();
 539
 540        /* Read SFP module data */
 541        while (timeout) {
 542                ret_val = igb_read_sfp_data_byte(hw,
 543                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 544                        &tranceiver_type);
 545                if (ret_val == 0)
 546                        break;
 547                msleep(100);
 548                timeout--;
 549        }
 550        if (ret_val != 0)
 551                goto out;
 552
 553        ret_val = igb_read_sfp_data_byte(hw,
 554                        E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 555                        (u8 *)eth_flags);
 556        if (ret_val != 0)
 557                goto out;
 558
 559        /* Check if there is some SFP module plugged and powered */
 560        if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 561            (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 562                dev_spec->module_plugged = true;
 563                if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 564                        hw->phy.media_type = e1000_media_type_internal_serdes;
 565                } else if (eth_flags->e100_base_fx) {
 566                        dev_spec->sgmii_active = true;
 567                        hw->phy.media_type = e1000_media_type_internal_serdes;
 568                } else if (eth_flags->e1000_base_t) {
 569                        dev_spec->sgmii_active = true;
 570                        hw->phy.media_type = e1000_media_type_copper;
 571                } else {
 572                        hw->phy.media_type = e1000_media_type_unknown;
 573                        hw_dbg("PHY module has not been recognized\n");
 574                        goto out;
 575                }
 576        } else {
 577                hw->phy.media_type = e1000_media_type_unknown;
 578        }
 579        ret_val = 0;
 580out:
 581        /* Restore I2C interface setting */
 582        wr32(E1000_CTRL_EXT, ctrl_ext);
 583        return ret_val;
 584}
 585
 586static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 587{
 588        struct e1000_mac_info *mac = &hw->mac;
 589        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 590        s32 ret_val;
 591        u32 ctrl_ext = 0;
 592        u32 link_mode = 0;
 593
 594        switch (hw->device_id) {
 595        case E1000_DEV_ID_82575EB_COPPER:
 596        case E1000_DEV_ID_82575EB_FIBER_SERDES:
 597        case E1000_DEV_ID_82575GB_QUAD_COPPER:
 598                mac->type = e1000_82575;
 599                break;
 600        case E1000_DEV_ID_82576:
 601        case E1000_DEV_ID_82576_NS:
 602        case E1000_DEV_ID_82576_NS_SERDES:
 603        case E1000_DEV_ID_82576_FIBER:
 604        case E1000_DEV_ID_82576_SERDES:
 605        case E1000_DEV_ID_82576_QUAD_COPPER:
 606        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 607        case E1000_DEV_ID_82576_SERDES_QUAD:
 608                mac->type = e1000_82576;
 609                break;
 610        case E1000_DEV_ID_82580_COPPER:
 611        case E1000_DEV_ID_82580_FIBER:
 612        case E1000_DEV_ID_82580_QUAD_FIBER:
 613        case E1000_DEV_ID_82580_SERDES:
 614        case E1000_DEV_ID_82580_SGMII:
 615        case E1000_DEV_ID_82580_COPPER_DUAL:
 616        case E1000_DEV_ID_DH89XXCC_SGMII:
 617        case E1000_DEV_ID_DH89XXCC_SERDES:
 618        case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 619        case E1000_DEV_ID_DH89XXCC_SFP:
 620                mac->type = e1000_82580;
 621                break;
 622        case E1000_DEV_ID_I350_COPPER:
 623        case E1000_DEV_ID_I350_FIBER:
 624        case E1000_DEV_ID_I350_SERDES:
 625        case E1000_DEV_ID_I350_SGMII:
 626                mac->type = e1000_i350;
 627                break;
 628        case E1000_DEV_ID_I210_COPPER:
 629        case E1000_DEV_ID_I210_FIBER:
 630        case E1000_DEV_ID_I210_SERDES:
 631        case E1000_DEV_ID_I210_SGMII:
 632        case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 633        case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 634                mac->type = e1000_i210;
 635                break;
 636        case E1000_DEV_ID_I211_COPPER:
 637                mac->type = e1000_i211;
 638                break;
 639        case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 640        case E1000_DEV_ID_I354_SGMII:
 641        case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 642                mac->type = e1000_i354;
 643                break;
 644        default:
 645                return -E1000_ERR_MAC_INIT;
 646        }
 647
 648        /* Set media type */
 649        /* The 82575 uses bits 22:23 for link mode. The mode can be changed
 650         * based on the EEPROM. We cannot rely upon device ID. There
 651         * is no distinguishable difference between fiber and internal
 652         * SerDes mode on the 82575. There can be an external PHY attached
 653         * on the SGMII interface. For this, we'll set sgmii_active to true.
 654         */
 655        hw->phy.media_type = e1000_media_type_copper;
 656        dev_spec->sgmii_active = false;
 657        dev_spec->module_plugged = false;
 658
 659        ctrl_ext = rd32(E1000_CTRL_EXT);
 660
 661        link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 662        switch (link_mode) {
 663        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 664                hw->phy.media_type = e1000_media_type_internal_serdes;
 665                break;
 666        case E1000_CTRL_EXT_LINK_MODE_SGMII:
 667                /* Get phy control interface type set (MDIO vs. I2C)*/
 668                if (igb_sgmii_uses_mdio_82575(hw)) {
 669                        hw->phy.media_type = e1000_media_type_copper;
 670                        dev_spec->sgmii_active = true;
 671                        break;
 672                }
 673                /* fall through for I2C based SGMII */
 674        case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 675                /* read media type from SFP EEPROM */
 676                ret_val = igb_set_sfp_media_type_82575(hw);
 677                if ((ret_val != 0) ||
 678                    (hw->phy.media_type == e1000_media_type_unknown)) {
 679                        /* If media type was not identified then return media
 680                         * type defined by the CTRL_EXT settings.
 681                         */
 682                        hw->phy.media_type = e1000_media_type_internal_serdes;
 683
 684                        if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 685                                hw->phy.media_type = e1000_media_type_copper;
 686                                dev_spec->sgmii_active = true;
 687                        }
 688
 689                        break;
 690                }
 691
 692                /* do not change link mode for 100BaseFX */
 693                if (dev_spec->eth_flags.e100_base_fx)
 694                        break;
 695
 696                /* change current link mode setting */
 697                ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 698
 699                if (hw->phy.media_type == e1000_media_type_copper)
 700                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 701                else
 702                        ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 703
 704                wr32(E1000_CTRL_EXT, ctrl_ext);
 705
 706                break;
 707        default:
 708                break;
 709        }
 710
 711        /* mac initialization and operations */
 712        ret_val = igb_init_mac_params_82575(hw);
 713        if (ret_val)
 714                goto out;
 715
 716        /* NVM initialization */
 717        ret_val = igb_init_nvm_params_82575(hw);
 718        switch (hw->mac.type) {
 719        case e1000_i210:
 720        case e1000_i211:
 721                ret_val = igb_init_nvm_params_i210(hw);
 722                break;
 723        default:
 724                break;
 725        }
 726
 727        if (ret_val)
 728                goto out;
 729
 730        /* if part supports SR-IOV then initialize mailbox parameters */
 731        switch (mac->type) {
 732        case e1000_82576:
 733        case e1000_i350:
 734                igb_init_mbx_params_pf(hw);
 735                break;
 736        default:
 737                break;
 738        }
 739
 740        /* setup PHY parameters */
 741        ret_val = igb_init_phy_params_82575(hw);
 742
 743out:
 744        return ret_val;
 745}
 746
 747/**
 748 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 749 *  @hw: pointer to the HW structure
 750 *
 751 *  Acquire access rights to the correct PHY.  This is a
 752 *  function pointer entry point called by the api module.
 753 **/
 754static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 755{
 756        u16 mask = E1000_SWFW_PHY0_SM;
 757
 758        if (hw->bus.func == E1000_FUNC_1)
 759                mask = E1000_SWFW_PHY1_SM;
 760        else if (hw->bus.func == E1000_FUNC_2)
 761                mask = E1000_SWFW_PHY2_SM;
 762        else if (hw->bus.func == E1000_FUNC_3)
 763                mask = E1000_SWFW_PHY3_SM;
 764
 765        return hw->mac.ops.acquire_swfw_sync(hw, mask);
 766}
 767
 768/**
 769 *  igb_release_phy_82575 - Release rights to access PHY
 770 *  @hw: pointer to the HW structure
 771 *
 772 *  A wrapper to release access rights to the correct PHY.  This is a
 773 *  function pointer entry point called by the api module.
 774 **/
 775static void igb_release_phy_82575(struct e1000_hw *hw)
 776{
 777        u16 mask = E1000_SWFW_PHY0_SM;
 778
 779        if (hw->bus.func == E1000_FUNC_1)
 780                mask = E1000_SWFW_PHY1_SM;
 781        else if (hw->bus.func == E1000_FUNC_2)
 782                mask = E1000_SWFW_PHY2_SM;
 783        else if (hw->bus.func == E1000_FUNC_3)
 784                mask = E1000_SWFW_PHY3_SM;
 785
 786        hw->mac.ops.release_swfw_sync(hw, mask);
 787}
 788
 789/**
 790 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 791 *  @hw: pointer to the HW structure
 792 *  @offset: register offset to be read
 793 *  @data: pointer to the read data
 794 *
 795 *  Reads the PHY register at offset using the serial gigabit media independent
 796 *  interface and stores the retrieved information in data.
 797 **/
 798static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 799                                          u16 *data)
 800{
 801        s32 ret_val = -E1000_ERR_PARAM;
 802
 803        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 804                hw_dbg("PHY Address %u is out of range\n", offset);
 805                goto out;
 806        }
 807
 808        ret_val = hw->phy.ops.acquire(hw);
 809        if (ret_val)
 810                goto out;
 811
 812        ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 813
 814        hw->phy.ops.release(hw);
 815
 816out:
 817        return ret_val;
 818}
 819
 820/**
 821 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 822 *  @hw: pointer to the HW structure
 823 *  @offset: register offset to write to
 824 *  @data: data to write at register offset
 825 *
 826 *  Writes the data to PHY register at the offset using the serial gigabit
 827 *  media independent interface.
 828 **/
 829static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 830                                           u16 data)
 831{
 832        s32 ret_val = -E1000_ERR_PARAM;
 833
 834
 835        if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 836                hw_dbg("PHY Address %d is out of range\n", offset);
 837                goto out;
 838        }
 839
 840        ret_val = hw->phy.ops.acquire(hw);
 841        if (ret_val)
 842                goto out;
 843
 844        ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 845
 846        hw->phy.ops.release(hw);
 847
 848out:
 849        return ret_val;
 850}
 851
 852/**
 853 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 854 *  @hw: pointer to the HW structure
 855 *
 856 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 857 *  sgmi interface.
 858 **/
 859static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 860{
 861        struct e1000_phy_info *phy = &hw->phy;
 862        s32  ret_val = 0;
 863        u16 phy_id;
 864        u32 ctrl_ext;
 865        u32 mdic;
 866
 867        /* Extra read required for some PHY's on i354 */
 868        if (hw->mac.type == e1000_i354)
 869                igb_get_phy_id(hw);
 870
 871        /* For SGMII PHYs, we try the list of possible addresses until
 872         * we find one that works.  For non-SGMII PHYs
 873         * (e.g. integrated copper PHYs), an address of 1 should
 874         * work.  The result of this function should mean phy->phy_addr
 875         * and phy->id are set correctly.
 876         */
 877        if (!(igb_sgmii_active_82575(hw))) {
 878                phy->addr = 1;
 879                ret_val = igb_get_phy_id(hw);
 880                goto out;
 881        }
 882
 883        if (igb_sgmii_uses_mdio_82575(hw)) {
 884                switch (hw->mac.type) {
 885                case e1000_82575:
 886                case e1000_82576:
 887                        mdic = rd32(E1000_MDIC);
 888                        mdic &= E1000_MDIC_PHY_MASK;
 889                        phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 890                        break;
 891                case e1000_82580:
 892                case e1000_i350:
 893                case e1000_i354:
 894                case e1000_i210:
 895                case e1000_i211:
 896                        mdic = rd32(E1000_MDICNFG);
 897                        mdic &= E1000_MDICNFG_PHY_MASK;
 898                        phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 899                        break;
 900                default:
 901                        ret_val = -E1000_ERR_PHY;
 902                        goto out;
 903                }
 904                ret_val = igb_get_phy_id(hw);
 905                goto out;
 906        }
 907
 908        /* Power on sgmii phy if it is disabled */
 909        ctrl_ext = rd32(E1000_CTRL_EXT);
 910        wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 911        wrfl();
 912        msleep(300);
 913
 914        /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 915         * Therefore, we need to test 1-7
 916         */
 917        for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 918                ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 919                if (ret_val == 0) {
 920                        hw_dbg("Vendor ID 0x%08X read at address %u\n",
 921                               phy_id, phy->addr);
 922                        /* At the time of this writing, The M88 part is
 923                         * the only supported SGMII PHY product.
 924                         */
 925                        if (phy_id == M88_VENDOR)
 926                                break;
 927                } else {
 928                        hw_dbg("PHY address %u was unreadable\n", phy->addr);
 929                }
 930        }
 931
 932        /* A valid PHY type couldn't be found. */
 933        if (phy->addr == 8) {
 934                phy->addr = 0;
 935                ret_val = -E1000_ERR_PHY;
 936                goto out;
 937        } else {
 938                ret_val = igb_get_phy_id(hw);
 939        }
 940
 941        /* restore previous sfp cage power state */
 942        wr32(E1000_CTRL_EXT, ctrl_ext);
 943
 944out:
 945        return ret_val;
 946}
 947
 948/**
 949 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 950 *  @hw: pointer to the HW structure
 951 *
 952 *  Resets the PHY using the serial gigabit media independent interface.
 953 **/
 954static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 955{
 956        struct e1000_phy_info *phy = &hw->phy;
 957        s32 ret_val;
 958
 959        /* This isn't a true "hard" reset, but is the only reset
 960         * available to us at this time.
 961         */
 962
 963        hw_dbg("Soft resetting SGMII attached PHY...\n");
 964
 965        /* SFP documentation requires the following to configure the SPF module
 966         * to work on SGMII.  No further documentation is given.
 967         */
 968        ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 969        if (ret_val)
 970                goto out;
 971
 972        ret_val = igb_phy_sw_reset(hw);
 973        if (ret_val)
 974                goto out;
 975
 976        if (phy->id == M88E1512_E_PHY_ID)
 977                ret_val = igb_initialize_M88E1512_phy(hw);
 978        if (phy->id == M88E1543_E_PHY_ID)
 979                ret_val = igb_initialize_M88E1543_phy(hw);
 980out:
 981        return ret_val;
 982}
 983
 984/**
 985 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 986 *  @hw: pointer to the HW structure
 987 *  @active: true to enable LPLU, false to disable
 988 *
 989 *  Sets the LPLU D0 state according to the active flag.  When
 990 *  activating LPLU this function also disables smart speed
 991 *  and vice versa.  LPLU will not be activated unless the
 992 *  device autonegotiation advertisement meets standards of
 993 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 994 *  This is a function pointer entry point only called by
 995 *  PHY setup routines.
 996 **/
 997static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 998{
 999        struct e1000_phy_info *phy = &hw->phy;
1000        s32 ret_val;
1001        u16 data;
1002
1003        ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1004        if (ret_val)
1005                goto out;
1006
1007        if (active) {
1008                data |= IGP02E1000_PM_D0_LPLU;
1009                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1010                                                 data);
1011                if (ret_val)
1012                        goto out;
1013
1014                /* When LPLU is enabled, we should disable SmartSpeed */
1015                ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1016                                                &data);
1017                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1018                ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1019                                                 data);
1020                if (ret_val)
1021                        goto out;
1022        } else {
1023                data &= ~IGP02E1000_PM_D0_LPLU;
1024                ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1025                                                 data);
1026                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1027                 * during Dx states where the power conservation is most
1028                 * important.  During driver activity we should enable
1029                 * SmartSpeed, so performance is maintained.
1030                 */
1031                if (phy->smart_speed == e1000_smart_speed_on) {
1032                        ret_val = phy->ops.read_reg(hw,
1033                                        IGP01E1000_PHY_PORT_CONFIG, &data);
1034                        if (ret_val)
1035                                goto out;
1036
1037                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1038                        ret_val = phy->ops.write_reg(hw,
1039                                        IGP01E1000_PHY_PORT_CONFIG, data);
1040                        if (ret_val)
1041                                goto out;
1042                } else if (phy->smart_speed == e1000_smart_speed_off) {
1043                        ret_val = phy->ops.read_reg(hw,
1044                                        IGP01E1000_PHY_PORT_CONFIG, &data);
1045                        if (ret_val)
1046                                goto out;
1047
1048                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1049                        ret_val = phy->ops.write_reg(hw,
1050                                        IGP01E1000_PHY_PORT_CONFIG, data);
1051                        if (ret_val)
1052                                goto out;
1053                }
1054        }
1055
1056out:
1057        return ret_val;
1058}
1059
1060/**
1061 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1062 *  @hw: pointer to the HW structure
1063 *  @active: true to enable LPLU, false to disable
1064 *
1065 *  Sets the LPLU D0 state according to the active flag.  When
1066 *  activating LPLU this function also disables smart speed
1067 *  and vice versa.  LPLU will not be activated unless the
1068 *  device autonegotiation advertisement meets standards of
1069 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1070 *  This is a function pointer entry point only called by
1071 *  PHY setup routines.
1072 **/
1073static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1074{
1075        struct e1000_phy_info *phy = &hw->phy;
1076        u16 data;
1077
1078        data = rd32(E1000_82580_PHY_POWER_MGMT);
1079
1080        if (active) {
1081                data |= E1000_82580_PM_D0_LPLU;
1082
1083                /* When LPLU is enabled, we should disable SmartSpeed */
1084                data &= ~E1000_82580_PM_SPD;
1085        } else {
1086                data &= ~E1000_82580_PM_D0_LPLU;
1087
1088                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1089                 * during Dx states where the power conservation is most
1090                 * important.  During driver activity we should enable
1091                 * SmartSpeed, so performance is maintained.
1092                 */
1093                if (phy->smart_speed == e1000_smart_speed_on)
1094                        data |= E1000_82580_PM_SPD;
1095                else if (phy->smart_speed == e1000_smart_speed_off)
1096                        data &= ~E1000_82580_PM_SPD; }
1097
1098        wr32(E1000_82580_PHY_POWER_MGMT, data);
1099        return 0;
1100}
1101
1102/**
1103 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1104 *  @hw: pointer to the HW structure
1105 *  @active: boolean used to enable/disable lplu
1106 *
1107 *  Success returns 0, Failure returns 1
1108 *
1109 *  The low power link up (lplu) state is set to the power management level D3
1110 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1111 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1112 *  is used during Dx states where the power conservation is most important.
1113 *  During driver activity, SmartSpeed should be enabled so performance is
1114 *  maintained.
1115 **/
1116static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1117{
1118        struct e1000_phy_info *phy = &hw->phy;
1119        u16 data;
1120
1121        data = rd32(E1000_82580_PHY_POWER_MGMT);
1122
1123        if (!active) {
1124                data &= ~E1000_82580_PM_D3_LPLU;
1125                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1126                 * during Dx states where the power conservation is most
1127                 * important.  During driver activity we should enable
1128                 * SmartSpeed, so performance is maintained.
1129                 */
1130                if (phy->smart_speed == e1000_smart_speed_on)
1131                        data |= E1000_82580_PM_SPD;
1132                else if (phy->smart_speed == e1000_smart_speed_off)
1133                        data &= ~E1000_82580_PM_SPD;
1134        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1135                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1136                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1137                data |= E1000_82580_PM_D3_LPLU;
1138                /* When LPLU is enabled, we should disable SmartSpeed */
1139                data &= ~E1000_82580_PM_SPD;
1140        }
1141
1142        wr32(E1000_82580_PHY_POWER_MGMT, data);
1143        return 0;
1144}
1145
1146/**
1147 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1148 *  @hw: pointer to the HW structure
1149 *
1150 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1151 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1152 *  Return successful if access grant bit set, else clear the request for
1153 *  EEPROM access and return -E1000_ERR_NVM (-1).
1154 **/
1155static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1156{
1157        s32 ret_val;
1158
1159        ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1160        if (ret_val)
1161                goto out;
1162
1163        ret_val = igb_acquire_nvm(hw);
1164
1165        if (ret_val)
1166                hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1167
1168out:
1169        return ret_val;
1170}
1171
1172/**
1173 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1174 *  @hw: pointer to the HW structure
1175 *
1176 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1177 *  then release the semaphores acquired.
1178 **/
1179static void igb_release_nvm_82575(struct e1000_hw *hw)
1180{
1181        igb_release_nvm(hw);
1182        hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1183}
1184
1185/**
1186 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1187 *  @hw: pointer to the HW structure
1188 *  @mask: specifies which semaphore to acquire
1189 *
1190 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1191 *  will also specify which port we're acquiring the lock for.
1192 **/
1193static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1194{
1195        u32 swfw_sync;
1196        u32 swmask = mask;
1197        u32 fwmask = mask << 16;
1198        s32 ret_val = 0;
1199        s32 i = 0, timeout = 200;
1200
1201        while (i < timeout) {
1202                if (igb_get_hw_semaphore(hw)) {
1203                        ret_val = -E1000_ERR_SWFW_SYNC;
1204                        goto out;
1205                }
1206
1207                swfw_sync = rd32(E1000_SW_FW_SYNC);
1208                if (!(swfw_sync & (fwmask | swmask)))
1209                        break;
1210
1211                /* Firmware currently using resource (fwmask)
1212                 * or other software thread using resource (swmask)
1213                 */
1214                igb_put_hw_semaphore(hw);
1215                mdelay(5);
1216                i++;
1217        }
1218
1219        if (i == timeout) {
1220                hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1221                ret_val = -E1000_ERR_SWFW_SYNC;
1222                goto out;
1223        }
1224
1225        swfw_sync |= swmask;
1226        wr32(E1000_SW_FW_SYNC, swfw_sync);
1227
1228        igb_put_hw_semaphore(hw);
1229
1230out:
1231        return ret_val;
1232}
1233
1234/**
1235 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1236 *  @hw: pointer to the HW structure
1237 *  @mask: specifies which semaphore to acquire
1238 *
1239 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1240 *  will also specify which port we're releasing the lock for.
1241 **/
1242static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1243{
1244        u32 swfw_sync;
1245
1246        while (igb_get_hw_semaphore(hw) != 0)
1247                ; /* Empty */
1248
1249        swfw_sync = rd32(E1000_SW_FW_SYNC);
1250        swfw_sync &= ~mask;
1251        wr32(E1000_SW_FW_SYNC, swfw_sync);
1252
1253        igb_put_hw_semaphore(hw);
1254}
1255
1256/**
1257 *  igb_get_cfg_done_82575 - Read config done bit
1258 *  @hw: pointer to the HW structure
1259 *
1260 *  Read the management control register for the config done bit for
1261 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1262 *  to read the config done bit, so an error is *ONLY* logged and returns
1263 *  0.  If we were to return with error, EEPROM-less silicon
1264 *  would not be able to be reset or change link.
1265 **/
1266static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1267{
1268        s32 timeout = PHY_CFG_TIMEOUT;
1269        u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1270
1271        if (hw->bus.func == 1)
1272                mask = E1000_NVM_CFG_DONE_PORT_1;
1273        else if (hw->bus.func == E1000_FUNC_2)
1274                mask = E1000_NVM_CFG_DONE_PORT_2;
1275        else if (hw->bus.func == E1000_FUNC_3)
1276                mask = E1000_NVM_CFG_DONE_PORT_3;
1277
1278        while (timeout) {
1279                if (rd32(E1000_EEMNGCTL) & mask)
1280                        break;
1281                usleep_range(1000, 2000);
1282                timeout--;
1283        }
1284        if (!timeout)
1285                hw_dbg("MNG configuration cycle has not completed.\n");
1286
1287        /* If EEPROM is not marked present, init the PHY manually */
1288        if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1289            (hw->phy.type == e1000_phy_igp_3))
1290                igb_phy_init_script_igp3(hw);
1291
1292        return 0;
1293}
1294
1295/**
1296 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1297 *  @hw: pointer to the HW structure
1298 *  @speed: stores the current speed
1299 *  @duplex: stores the current duplex
1300 *
1301 *  This is a wrapper function, if using the serial gigabit media independent
1302 *  interface, use PCS to retrieve the link speed and duplex information.
1303 *  Otherwise, use the generic function to get the link speed and duplex info.
1304 **/
1305static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1306                                        u16 *duplex)
1307{
1308        s32 ret_val;
1309
1310        if (hw->phy.media_type != e1000_media_type_copper)
1311                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1312                                                               duplex);
1313        else
1314                ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1315                                                                    duplex);
1316
1317        return ret_val;
1318}
1319
1320/**
1321 *  igb_check_for_link_82575 - Check for link
1322 *  @hw: pointer to the HW structure
1323 *
1324 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1325 *  use the generic interface for determining link.
1326 **/
1327static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1328{
1329        s32 ret_val;
1330        u16 speed, duplex;
1331
1332        if (hw->phy.media_type != e1000_media_type_copper) {
1333                ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1334                                                             &duplex);
1335                /* Use this flag to determine if link needs to be checked or
1336                 * not.  If  we have link clear the flag so that we do not
1337                 * continue to check for link.
1338                 */
1339                hw->mac.get_link_status = !hw->mac.serdes_has_link;
1340
1341                /* Configure Flow Control now that Auto-Neg has completed.
1342                 * First, we need to restore the desired flow control
1343                 * settings because we may have had to re-autoneg with a
1344                 * different link partner.
1345                 */
1346                ret_val = igb_config_fc_after_link_up(hw);
1347                if (ret_val)
1348                        hw_dbg("Error configuring flow control\n");
1349        } else {
1350                ret_val = igb_check_for_copper_link(hw);
1351        }
1352
1353        return ret_val;
1354}
1355
1356/**
1357 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1358 *  @hw: pointer to the HW structure
1359 **/
1360void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1361{
1362        u32 reg;
1363
1364
1365        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1366            !igb_sgmii_active_82575(hw))
1367                return;
1368
1369        /* Enable PCS to turn on link */
1370        reg = rd32(E1000_PCS_CFG0);
1371        reg |= E1000_PCS_CFG_PCS_EN;
1372        wr32(E1000_PCS_CFG0, reg);
1373
1374        /* Power up the laser */
1375        reg = rd32(E1000_CTRL_EXT);
1376        reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1377        wr32(E1000_CTRL_EXT, reg);
1378
1379        /* flush the write to verify completion */
1380        wrfl();
1381        usleep_range(1000, 2000);
1382}
1383
1384/**
1385 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1386 *  @hw: pointer to the HW structure
1387 *  @speed: stores the current speed
1388 *  @duplex: stores the current duplex
1389 *
1390 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1391 *  duplex, then store the values in the pointers provided.
1392 **/
1393static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1394                                                u16 *duplex)
1395{
1396        struct e1000_mac_info *mac = &hw->mac;
1397        u32 pcs, status;
1398
1399        /* Set up defaults for the return values of this function */
1400        mac->serdes_has_link = false;
1401        *speed = 0;
1402        *duplex = 0;
1403
1404        /* Read the PCS Status register for link state. For non-copper mode,
1405         * the status register is not accurate. The PCS status register is
1406         * used instead.
1407         */
1408        pcs = rd32(E1000_PCS_LSTAT);
1409
1410        /* The link up bit determines when link is up on autoneg. The sync ok
1411         * gets set once both sides sync up and agree upon link. Stable link
1412         * can be determined by checking for both link up and link sync ok
1413         */
1414        if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1415                mac->serdes_has_link = true;
1416
1417                /* Detect and store PCS speed */
1418                if (pcs & E1000_PCS_LSTS_SPEED_1000)
1419                        *speed = SPEED_1000;
1420                else if (pcs & E1000_PCS_LSTS_SPEED_100)
1421                        *speed = SPEED_100;
1422                else
1423                        *speed = SPEED_10;
1424
1425                /* Detect and store PCS duplex */
1426                if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1427                        *duplex = FULL_DUPLEX;
1428                else
1429                        *duplex = HALF_DUPLEX;
1430
1431        /* Check if it is an I354 2.5Gb backplane connection. */
1432                if (mac->type == e1000_i354) {
1433                        status = rd32(E1000_STATUS);
1434                        if ((status & E1000_STATUS_2P5_SKU) &&
1435                            !(status & E1000_STATUS_2P5_SKU_OVER)) {
1436                                *speed = SPEED_2500;
1437                                *duplex = FULL_DUPLEX;
1438                                hw_dbg("2500 Mbs, ");
1439                                hw_dbg("Full Duplex\n");
1440                        }
1441                }
1442
1443        }
1444
1445        return 0;
1446}
1447
1448/**
1449 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1450 *  @hw: pointer to the HW structure
1451 *
1452 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1453 *  when management pass thru is not enabled.
1454 **/
1455void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1456{
1457        u32 reg;
1458
1459        if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1460            igb_sgmii_active_82575(hw))
1461                return;
1462
1463        if (!igb_enable_mng_pass_thru(hw)) {
1464                /* Disable PCS to turn off link */
1465                reg = rd32(E1000_PCS_CFG0);
1466                reg &= ~E1000_PCS_CFG_PCS_EN;
1467                wr32(E1000_PCS_CFG0, reg);
1468
1469                /* shutdown the laser */
1470                reg = rd32(E1000_CTRL_EXT);
1471                reg |= E1000_CTRL_EXT_SDP3_DATA;
1472                wr32(E1000_CTRL_EXT, reg);
1473
1474                /* flush the write to verify completion */
1475                wrfl();
1476                usleep_range(1000, 2000);
1477        }
1478}
1479
1480/**
1481 *  igb_reset_hw_82575 - Reset hardware
1482 *  @hw: pointer to the HW structure
1483 *
1484 *  This resets the hardware into a known state.  This is a
1485 *  function pointer entry point called by the api module.
1486 **/
1487static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1488{
1489        u32 ctrl;
1490        s32 ret_val;
1491
1492        /* Prevent the PCI-E bus from sticking if there is no TLP connection
1493         * on the last TLP read/write transaction when MAC is reset.
1494         */
1495        ret_val = igb_disable_pcie_master(hw);
1496        if (ret_val)
1497                hw_dbg("PCI-E Master disable polling has failed.\n");
1498
1499        /* set the completion timeout for interface */
1500        ret_val = igb_set_pcie_completion_timeout(hw);
1501        if (ret_val)
1502                hw_dbg("PCI-E Set completion timeout has failed.\n");
1503
1504        hw_dbg("Masking off all interrupts\n");
1505        wr32(E1000_IMC, 0xffffffff);
1506
1507        wr32(E1000_RCTL, 0);
1508        wr32(E1000_TCTL, E1000_TCTL_PSP);
1509        wrfl();
1510
1511        usleep_range(10000, 20000);
1512
1513        ctrl = rd32(E1000_CTRL);
1514
1515        hw_dbg("Issuing a global reset to MAC\n");
1516        wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1517
1518        ret_val = igb_get_auto_rd_done(hw);
1519        if (ret_val) {
1520                /* When auto config read does not complete, do not
1521                 * return with an error. This can happen in situations
1522                 * where there is no eeprom and prevents getting link.
1523                 */
1524                hw_dbg("Auto Read Done did not complete\n");
1525        }
1526
1527        /* If EEPROM is not present, run manual init scripts */
1528        if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1529                igb_reset_init_script_82575(hw);
1530
1531        /* Clear any pending interrupt events. */
1532        wr32(E1000_IMC, 0xffffffff);
1533        rd32(E1000_ICR);
1534
1535        /* Install any alternate MAC address into RAR0 */
1536        ret_val = igb_check_alt_mac_addr(hw);
1537
1538        return ret_val;
1539}
1540
1541/**
1542 *  igb_init_hw_82575 - Initialize hardware
1543 *  @hw: pointer to the HW structure
1544 *
1545 *  This inits the hardware readying it for operation.
1546 **/
1547static s32 igb_init_hw_82575(struct e1000_hw *hw)
1548{
1549        struct e1000_mac_info *mac = &hw->mac;
1550        s32 ret_val;
1551        u16 i, rar_count = mac->rar_entry_count;
1552
1553        if ((hw->mac.type >= e1000_i210) &&
1554            !(igb_get_flash_presence_i210(hw))) {
1555                ret_val = igb_pll_workaround_i210(hw);
1556                if (ret_val)
1557                        return ret_val;
1558        }
1559
1560        /* Initialize identification LED */
1561        ret_val = igb_id_led_init(hw);
1562        if (ret_val) {
1563                hw_dbg("Error initializing identification LED\n");
1564                /* This is not fatal and we should not stop init due to this */
1565        }
1566
1567        /* Disabling VLAN filtering */
1568        hw_dbg("Initializing the IEEE VLAN\n");
1569        igb_clear_vfta(hw);
1570
1571        /* Setup the receive address */
1572        igb_init_rx_addrs(hw, rar_count);
1573
1574        /* Zero out the Multicast HASH table */
1575        hw_dbg("Zeroing the MTA\n");
1576        for (i = 0; i < mac->mta_reg_count; i++)
1577                array_wr32(E1000_MTA, i, 0);
1578
1579        /* Zero out the Unicast HASH table */
1580        hw_dbg("Zeroing the UTA\n");
1581        for (i = 0; i < mac->uta_reg_count; i++)
1582                array_wr32(E1000_UTA, i, 0);
1583
1584        /* Setup link and flow control */
1585        ret_val = igb_setup_link(hw);
1586
1587        /* Clear all of the statistics registers (clear on read).  It is
1588         * important that we do this after we have tried to establish link
1589         * because the symbol error count will increment wildly if there
1590         * is no link.
1591         */
1592        igb_clear_hw_cntrs_82575(hw);
1593        return ret_val;
1594}
1595
1596/**
1597 *  igb_setup_copper_link_82575 - Configure copper link settings
1598 *  @hw: pointer to the HW structure
1599 *
1600 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1601 *  for link, once link is established calls to configure collision distance
1602 *  and flow control are called.
1603 **/
1604static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1605{
1606        u32 ctrl;
1607        s32  ret_val;
1608        u32 phpm_reg;
1609
1610        ctrl = rd32(E1000_CTRL);
1611        ctrl |= E1000_CTRL_SLU;
1612        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1613        wr32(E1000_CTRL, ctrl);
1614
1615        /* Clear Go Link Disconnect bit on supported devices */
1616        switch (hw->mac.type) {
1617        case e1000_82580:
1618        case e1000_i350:
1619        case e1000_i210:
1620        case e1000_i211:
1621                phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1622                phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1623                wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1624                break;
1625        default:
1626                break;
1627        }
1628
1629        ret_val = igb_setup_serdes_link_82575(hw);
1630        if (ret_val)
1631                goto out;
1632
1633        if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1634                /* allow time for SFP cage time to power up phy */
1635                msleep(300);
1636
1637                ret_val = hw->phy.ops.reset(hw);
1638                if (ret_val) {
1639                        hw_dbg("Error resetting the PHY.\n");
1640                        goto out;
1641                }
1642        }
1643        switch (hw->phy.type) {
1644        case e1000_phy_i210:
1645        case e1000_phy_m88:
1646                switch (hw->phy.id) {
1647                case I347AT4_E_PHY_ID:
1648                case M88E1112_E_PHY_ID:
1649                case M88E1543_E_PHY_ID:
1650                case M88E1512_E_PHY_ID:
1651                case I210_I_PHY_ID:
1652                        ret_val = igb_copper_link_setup_m88_gen2(hw);
1653                        break;
1654                default:
1655                        ret_val = igb_copper_link_setup_m88(hw);
1656                        break;
1657                }
1658                break;
1659        case e1000_phy_igp_3:
1660                ret_val = igb_copper_link_setup_igp(hw);
1661                break;
1662        case e1000_phy_82580:
1663                ret_val = igb_copper_link_setup_82580(hw);
1664                break;
1665        case e1000_phy_bcm54616:
1666                ret_val = 0;
1667                break;
1668        default:
1669                ret_val = -E1000_ERR_PHY;
1670                break;
1671        }
1672
1673        if (ret_val)
1674                goto out;
1675
1676        ret_val = igb_setup_copper_link(hw);
1677out:
1678        return ret_val;
1679}
1680
1681/**
1682 *  igb_setup_serdes_link_82575 - Setup link for serdes
1683 *  @hw: pointer to the HW structure
1684 *
1685 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1686 *  used on copper connections where the serialized gigabit media independent
1687 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1688 *  for auto-negotiation or forces speed/duplex.
1689 **/
1690static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1691{
1692        u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1693        bool pcs_autoneg;
1694        s32 ret_val = 0;
1695        u16 data;
1696
1697        if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1698            !igb_sgmii_active_82575(hw))
1699                return ret_val;
1700
1701
1702        /* On the 82575, SerDes loopback mode persists until it is
1703         * explicitly turned off or a power cycle is performed.  A read to
1704         * the register does not indicate its status.  Therefore, we ensure
1705         * loopback mode is disabled during initialization.
1706         */
1707        wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1708
1709        /* power on the sfp cage if present and turn on I2C */
1710        ctrl_ext = rd32(E1000_CTRL_EXT);
1711        ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1712        ctrl_ext |= E1000_CTRL_I2C_ENA;
1713        wr32(E1000_CTRL_EXT, ctrl_ext);
1714
1715        ctrl_reg = rd32(E1000_CTRL);
1716        ctrl_reg |= E1000_CTRL_SLU;
1717
1718        if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1719                /* set both sw defined pins */
1720                ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1721
1722                /* Set switch control to serdes energy detect */
1723                reg = rd32(E1000_CONNSW);
1724                reg |= E1000_CONNSW_ENRGSRC;
1725                wr32(E1000_CONNSW, reg);
1726        }
1727
1728        reg = rd32(E1000_PCS_LCTL);
1729
1730        /* default pcs_autoneg to the same setting as mac autoneg */
1731        pcs_autoneg = hw->mac.autoneg;
1732
1733        switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1734        case E1000_CTRL_EXT_LINK_MODE_SGMII:
1735                /* sgmii mode lets the phy handle forcing speed/duplex */
1736                pcs_autoneg = true;
1737                /* autoneg time out should be disabled for SGMII mode */
1738                reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1739                break;
1740        case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1741                /* disable PCS autoneg and support parallel detect only */
1742                pcs_autoneg = false;
1743        default:
1744                if (hw->mac.type == e1000_82575 ||
1745                    hw->mac.type == e1000_82576) {
1746                        ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1747                        if (ret_val) {
1748                                hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1749                                return ret_val;
1750                        }
1751
1752                        if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1753                                pcs_autoneg = false;
1754                }
1755
1756                /* non-SGMII modes only supports a speed of 1000/Full for the
1757                 * link so it is best to just force the MAC and let the pcs
1758                 * link either autoneg or be forced to 1000/Full
1759                 */
1760                ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1761                                E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1762
1763                /* set speed of 1000/Full if speed/duplex is forced */
1764                reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1765                break;
1766        }
1767
1768        wr32(E1000_CTRL, ctrl_reg);
1769
1770        /* New SerDes mode allows for forcing speed or autonegotiating speed
1771         * at 1gb. Autoneg should be default set by most drivers. This is the
1772         * mode that will be compatible with older link partners and switches.
1773         * However, both are supported by the hardware and some drivers/tools.
1774         */
1775        reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1776                E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1777
1778        if (pcs_autoneg) {
1779                /* Set PCS register for autoneg */
1780                reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1781                       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1782
1783                /* Disable force flow control for autoneg */
1784                reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1785
1786                /* Configure flow control advertisement for autoneg */
1787                anadv_reg = rd32(E1000_PCS_ANADV);
1788                anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1789                switch (hw->fc.requested_mode) {
1790                case e1000_fc_full:
1791                case e1000_fc_rx_pause:
1792                        anadv_reg |= E1000_TXCW_ASM_DIR;
1793                        anadv_reg |= E1000_TXCW_PAUSE;
1794                        break;
1795                case e1000_fc_tx_pause:
1796                        anadv_reg |= E1000_TXCW_ASM_DIR;
1797                        break;
1798                default:
1799                        break;
1800                }
1801                wr32(E1000_PCS_ANADV, anadv_reg);
1802
1803                hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1804        } else {
1805                /* Set PCS register for forced link */
1806                reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1807
1808                /* Force flow control for forced link */
1809                reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1810
1811                hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1812        }
1813
1814        wr32(E1000_PCS_LCTL, reg);
1815
1816        if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1817                igb_force_mac_fc(hw);
1818
1819        return ret_val;
1820}
1821
1822/**
1823 *  igb_sgmii_active_82575 - Return sgmii state
1824 *  @hw: pointer to the HW structure
1825 *
1826 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1827 *  which can be enabled for use in the embedded applications.  Simply
1828 *  return the current state of the sgmii interface.
1829 **/
1830static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1831{
1832        struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1833        return dev_spec->sgmii_active;
1834}
1835
1836/**
1837 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1838 *  @hw: pointer to the HW structure
1839 *
1840 *  Inits recommended HW defaults after a reset when there is no EEPROM
1841 *  detected. This is only for the 82575.
1842 **/
1843static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1844{
1845        if (hw->mac.type == e1000_82575) {
1846                hw_dbg("Running reset init script for 82575\n");
1847                /* SerDes configuration via SERDESCTRL */
1848                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1849                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1850                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1851                igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1852
1853                /* CCM configuration via CCMCTL register */
1854                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1855                igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1856
1857                /* PCIe lanes configuration */
1858                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1859                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1860                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1861                igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1862
1863                /* PCIe PLL Configuration */
1864                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1865                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1866                igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1867        }
1868
1869        return 0;
1870}
1871
1872/**
1873 *  igb_read_mac_addr_82575 - Read device MAC address
1874 *  @hw: pointer to the HW structure
1875 **/
1876static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1877{
1878        s32 ret_val = 0;
1879
1880        /* If there's an alternate MAC address place it in RAR0
1881         * so that it will override the Si installed default perm
1882         * address.
1883         */
1884        ret_val = igb_check_alt_mac_addr(hw);
1885        if (ret_val)
1886                goto out;
1887
1888        ret_val = igb_read_mac_addr(hw);
1889
1890out:
1891        return ret_val;
1892}
1893
1894/**
1895 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1896 * @hw: pointer to the HW structure
1897 *
1898 * In the case of a PHY power down to save power, or to turn off link during a
1899 * driver unload, or wake on lan is not enabled, remove the link.
1900 **/
1901void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1902{
1903        /* If the management interface is not enabled, then power down */
1904        if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1905                igb_power_down_phy_copper(hw);
1906}
1907
1908/**
1909 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1910 *  @hw: pointer to the HW structure
1911 *
1912 *  Clears the hardware counters by reading the counter registers.
1913 **/
1914static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1915{
1916        igb_clear_hw_cntrs_base(hw);
1917
1918        rd32(E1000_PRC64);
1919        rd32(E1000_PRC127);
1920        rd32(E1000_PRC255);
1921        rd32(E1000_PRC511);
1922        rd32(E1000_PRC1023);
1923        rd32(E1000_PRC1522);
1924        rd32(E1000_PTC64);
1925        rd32(E1000_PTC127);
1926        rd32(E1000_PTC255);
1927        rd32(E1000_PTC511);
1928        rd32(E1000_PTC1023);
1929        rd32(E1000_PTC1522);
1930
1931        rd32(E1000_ALGNERRC);
1932        rd32(E1000_RXERRC);
1933        rd32(E1000_TNCRS);
1934        rd32(E1000_CEXTERR);
1935        rd32(E1000_TSCTC);
1936        rd32(E1000_TSCTFC);
1937
1938        rd32(E1000_MGTPRC);
1939        rd32(E1000_MGTPDC);
1940        rd32(E1000_MGTPTC);
1941
1942        rd32(E1000_IAC);
1943        rd32(E1000_ICRXOC);
1944
1945        rd32(E1000_ICRXPTC);
1946        rd32(E1000_ICRXATC);
1947        rd32(E1000_ICTXPTC);
1948        rd32(E1000_ICTXATC);
1949        rd32(E1000_ICTXQEC);
1950        rd32(E1000_ICTXQMTC);
1951        rd32(E1000_ICRXDMTC);
1952
1953        rd32(E1000_CBTMPC);
1954        rd32(E1000_HTDPMC);
1955        rd32(E1000_CBRMPC);
1956        rd32(E1000_RPTHC);
1957        rd32(E1000_HGPTC);
1958        rd32(E1000_HTCBDPC);
1959        rd32(E1000_HGORCL);
1960        rd32(E1000_HGORCH);
1961        rd32(E1000_HGOTCL);
1962        rd32(E1000_HGOTCH);
1963        rd32(E1000_LENERRS);
1964
1965        /* This register should not be read in copper configurations */
1966        if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1967            igb_sgmii_active_82575(hw))
1968                rd32(E1000_SCVPC);
1969}
1970
1971/**
1972 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1973 *  @hw: pointer to the HW structure
1974 *
1975 *  After rx enable if manageability is enabled then there is likely some
1976 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1977 *  function clears the fifos and flushes any packets that came in as rx was
1978 *  being enabled.
1979 **/
1980void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1981{
1982        u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1983        int i, ms_wait;
1984
1985        /* disable IPv6 options as per hardware errata */
1986        rfctl = rd32(E1000_RFCTL);
1987        rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1988        wr32(E1000_RFCTL, rfctl);
1989
1990        if (hw->mac.type != e1000_82575 ||
1991            !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1992                return;
1993
1994        /* Disable all RX queues */
1995        for (i = 0; i < 4; i++) {
1996                rxdctl[i] = rd32(E1000_RXDCTL(i));
1997                wr32(E1000_RXDCTL(i),
1998                     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1999        }
2000        /* Poll all queues to verify they have shut down */
2001        for (ms_wait = 0; ms_wait < 10; ms_wait++) {
2002                usleep_range(1000, 2000);
2003                rx_enabled = 0;
2004                for (i = 0; i < 4; i++)
2005                        rx_enabled |= rd32(E1000_RXDCTL(i));
2006                if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
2007                        break;
2008        }
2009
2010        if (ms_wait == 10)
2011                hw_dbg("Queue disable timed out after 10ms\n");
2012
2013        /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
2014         * incoming packets are rejected.  Set enable and wait 2ms so that
2015         * any packet that was coming in as RCTL.EN was set is flushed
2016         */
2017        wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2018
2019        rlpml = rd32(E1000_RLPML);
2020        wr32(E1000_RLPML, 0);
2021
2022        rctl = rd32(E1000_RCTL);
2023        temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2024        temp_rctl |= E1000_RCTL_LPE;
2025
2026        wr32(E1000_RCTL, temp_rctl);
2027        wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2028        wrfl();
2029        usleep_range(2000, 3000);
2030
2031        /* Enable RX queues that were previously enabled and restore our
2032         * previous state
2033         */
2034        for (i = 0; i < 4; i++)
2035                wr32(E1000_RXDCTL(i), rxdctl[i]);
2036        wr32(E1000_RCTL, rctl);
2037        wrfl();
2038
2039        wr32(E1000_RLPML, rlpml);
2040        wr32(E1000_RFCTL, rfctl);
2041
2042        /* Flush receive errors generated by workaround */
2043        rd32(E1000_ROC);
2044        rd32(E1000_RNBC);
2045        rd32(E1000_MPC);
2046}
2047
2048/**
2049 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2050 *  @hw: pointer to the HW structure
2051 *
2052 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2053 *  however the hardware default for these parts is 500us to 1ms which is less
2054 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2055 *  increase the value to either 10ms to 200ms for capability version 1 config,
2056 *  or 16ms to 55ms for version 2.
2057 **/
2058static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2059{
2060        u32 gcr = rd32(E1000_GCR);
2061        s32 ret_val = 0;
2062        u16 pcie_devctl2;
2063
2064        /* only take action if timeout value is defaulted to 0 */
2065        if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2066                goto out;
2067
2068        /* if capabilities version is type 1 we can write the
2069         * timeout of 10ms to 200ms through the GCR register
2070         */
2071        if (!(gcr & E1000_GCR_CAP_VER2)) {
2072                gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2073                goto out;
2074        }
2075
2076        /* for version 2 capabilities we need to write the config space
2077         * directly in order to set the completion timeout value for
2078         * 16ms to 55ms
2079         */
2080        ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2081                                        &pcie_devctl2);
2082        if (ret_val)
2083                goto out;
2084
2085        pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2086
2087        ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2088                                         &pcie_devctl2);
2089out:
2090        /* disable completion timeout resend */
2091        gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2092
2093        wr32(E1000_GCR, gcr);
2094        return ret_val;
2095}
2096
2097/**
2098 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2099 *  @hw: pointer to the hardware struct
2100 *  @enable: state to enter, either enabled or disabled
2101 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2102 *
2103 *  enables/disables L2 switch anti-spoofing functionality.
2104 **/
2105void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2106{
2107        u32 reg_val, reg_offset;
2108
2109        switch (hw->mac.type) {
2110        case e1000_82576:
2111                reg_offset = E1000_DTXSWC;
2112                break;
2113        case e1000_i350:
2114        case e1000_i354:
2115                reg_offset = E1000_TXSWC;
2116                break;
2117        default:
2118                return;
2119        }
2120
2121        reg_val = rd32(reg_offset);
2122        if (enable) {
2123                reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2124                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2125                /* The PF can spoof - it has to in order to
2126                 * support emulation mode NICs
2127                 */
2128                reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2129        } else {
2130                reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2131                             E1000_DTXSWC_VLAN_SPOOF_MASK);
2132        }
2133        wr32(reg_offset, reg_val);
2134}
2135
2136/**
2137 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2138 *  @hw: pointer to the hardware struct
2139 *  @enable: state to enter, either enabled or disabled
2140 *
2141 *  enables/disables L2 switch loopback functionality.
2142 **/
2143void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2144{
2145        u32 dtxswc;
2146
2147        switch (hw->mac.type) {
2148        case e1000_82576:
2149                dtxswc = rd32(E1000_DTXSWC);
2150                if (enable)
2151                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2152                else
2153                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2154                wr32(E1000_DTXSWC, dtxswc);
2155                break;
2156        case e1000_i354:
2157        case e1000_i350:
2158                dtxswc = rd32(E1000_TXSWC);
2159                if (enable)
2160                        dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2161                else
2162                        dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2163                wr32(E1000_TXSWC, dtxswc);
2164                break;
2165        default:
2166                /* Currently no other hardware supports loopback */
2167                break;
2168        }
2169
2170}
2171
2172/**
2173 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2174 *  @hw: pointer to the hardware struct
2175 *  @enable: state to enter, either enabled or disabled
2176 *
2177 *  enables/disables replication of packets across multiple pools.
2178 **/
2179void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2180{
2181        u32 vt_ctl = rd32(E1000_VT_CTL);
2182
2183        if (enable)
2184                vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2185        else
2186                vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2187
2188        wr32(E1000_VT_CTL, vt_ctl);
2189}
2190
2191/**
2192 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2193 *  @hw: pointer to the HW structure
2194 *  @offset: register offset to be read
2195 *  @data: pointer to the read data
2196 *
2197 *  Reads the MDI control register in the PHY at offset and stores the
2198 *  information read to data.
2199 **/
2200s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2201{
2202        s32 ret_val;
2203
2204        ret_val = hw->phy.ops.acquire(hw);
2205        if (ret_val)
2206                goto out;
2207
2208        ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2209
2210        hw->phy.ops.release(hw);
2211
2212out:
2213        return ret_val;
2214}
2215
2216/**
2217 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2218 *  @hw: pointer to the HW structure
2219 *  @offset: register offset to write to
2220 *  @data: data to write to register at offset
2221 *
2222 *  Writes data to MDI control register in the PHY at offset.
2223 **/
2224s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2225{
2226        s32 ret_val;
2227
2228
2229        ret_val = hw->phy.ops.acquire(hw);
2230        if (ret_val)
2231                goto out;
2232
2233        ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2234
2235        hw->phy.ops.release(hw);
2236
2237out:
2238        return ret_val;
2239}
2240
2241/**
2242 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2243 *  @hw: pointer to the HW structure
2244 *
2245 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2246 *  the values found in the EEPROM.  This addresses an issue in which these
2247 *  bits are not restored from EEPROM after reset.
2248 **/
2249static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2250{
2251        s32 ret_val = 0;
2252        u32 mdicnfg;
2253        u16 nvm_data = 0;
2254
2255        if (hw->mac.type != e1000_82580)
2256                goto out;
2257        if (!igb_sgmii_active_82575(hw))
2258                goto out;
2259
2260        ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2261                                   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2262                                   &nvm_data);
2263        if (ret_val) {
2264                hw_dbg("NVM Read Error\n");
2265                goto out;
2266        }
2267
2268        mdicnfg = rd32(E1000_MDICNFG);
2269        if (nvm_data & NVM_WORD24_EXT_MDIO)
2270                mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2271        if (nvm_data & NVM_WORD24_COM_MDIO)
2272                mdicnfg |= E1000_MDICNFG_COM_MDIO;
2273        wr32(E1000_MDICNFG, mdicnfg);
2274out:
2275        return ret_val;
2276}
2277
2278/**
2279 *  igb_reset_hw_82580 - Reset hardware
2280 *  @hw: pointer to the HW structure
2281 *
2282 *  This resets function or entire device (all ports, etc.)
2283 *  to a known state.
2284 **/
2285static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2286{
2287        s32 ret_val = 0;
2288        /* BH SW mailbox bit in SW_FW_SYNC */
2289        u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2290        u32 ctrl;
2291        bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2292
2293        hw->dev_spec._82575.global_device_reset = false;
2294
2295        /* due to hw errata, global device reset doesn't always
2296         * work on 82580
2297         */
2298        if (hw->mac.type == e1000_82580)
2299                global_device_reset = false;
2300
2301        /* Get current control state. */
2302        ctrl = rd32(E1000_CTRL);
2303
2304        /* Prevent the PCI-E bus from sticking if there is no TLP connection
2305         * on the last TLP read/write transaction when MAC is reset.
2306         */
2307        ret_val = igb_disable_pcie_master(hw);
2308        if (ret_val)
2309                hw_dbg("PCI-E Master disable polling has failed.\n");
2310
2311        hw_dbg("Masking off all interrupts\n");
2312        wr32(E1000_IMC, 0xffffffff);
2313        wr32(E1000_RCTL, 0);
2314        wr32(E1000_TCTL, E1000_TCTL_PSP);
2315        wrfl();
2316
2317        usleep_range(10000, 11000);
2318
2319        /* Determine whether or not a global dev reset is requested */
2320        if (global_device_reset &&
2321                hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2322                        global_device_reset = false;
2323
2324        if (global_device_reset &&
2325                !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2326                ctrl |= E1000_CTRL_DEV_RST;
2327        else
2328                ctrl |= E1000_CTRL_RST;
2329
2330        wr32(E1000_CTRL, ctrl);
2331        wrfl();
2332
2333        /* Add delay to insure DEV_RST has time to complete */
2334        if (global_device_reset)
2335                usleep_range(5000, 6000);
2336
2337        ret_val = igb_get_auto_rd_done(hw);
2338        if (ret_val) {
2339                /* When auto config read does not complete, do not
2340                 * return with an error. This can happen in situations
2341                 * where there is no eeprom and prevents getting link.
2342                 */
2343                hw_dbg("Auto Read Done did not complete\n");
2344        }
2345
2346        /* clear global device reset status bit */
2347        wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2348
2349        /* Clear any pending interrupt events. */
2350        wr32(E1000_IMC, 0xffffffff);
2351        rd32(E1000_ICR);
2352
2353        ret_val = igb_reset_mdicnfg_82580(hw);
2354        if (ret_val)
2355                hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2356
2357        /* Install any alternate MAC address into RAR0 */
2358        ret_val = igb_check_alt_mac_addr(hw);
2359
2360        /* Release semaphore */
2361        if (global_device_reset)
2362                hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2363
2364        return ret_val;
2365}
2366
2367/**
2368 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2369 *  @data: data received by reading RXPBS register
2370 *
2371 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2372 *  This function converts the retrieved value into the correct table value
2373 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2374 *  0x0 36  72 144   1   2   4   8  16
2375 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2376 */
2377u16 igb_rxpbs_adjust_82580(u32 data)
2378{
2379        u16 ret_val = 0;
2380
2381        if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2382                ret_val = e1000_82580_rxpbs_table[data];
2383
2384        return ret_val;
2385}
2386
2387/**
2388 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2389 *  checksum
2390 *  @hw: pointer to the HW structure
2391 *  @offset: offset in words of the checksum protected region
2392 *
2393 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2394 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2395 **/
2396static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2397                                                 u16 offset)
2398{
2399        s32 ret_val = 0;
2400        u16 checksum = 0;
2401        u16 i, nvm_data;
2402
2403        for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2404                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2405                if (ret_val) {
2406                        hw_dbg("NVM Read Error\n");
2407                        goto out;
2408                }
2409                checksum += nvm_data;
2410        }
2411
2412        if (checksum != (u16) NVM_SUM) {
2413                hw_dbg("NVM Checksum Invalid\n");
2414                ret_val = -E1000_ERR_NVM;
2415                goto out;
2416        }
2417
2418out:
2419        return ret_val;
2420}
2421
2422/**
2423 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2424 *  checksum
2425 *  @hw: pointer to the HW structure
2426 *  @offset: offset in words of the checksum protected region
2427 *
2428 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2429 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2430 *  value to the EEPROM.
2431 **/
2432static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2433{
2434        s32 ret_val;
2435        u16 checksum = 0;
2436        u16 i, nvm_data;
2437
2438        for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2439                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2440                if (ret_val) {
2441                        hw_dbg("NVM Read Error while updating checksum.\n");
2442                        goto out;
2443                }
2444                checksum += nvm_data;
2445        }
2446        checksum = (u16) NVM_SUM - checksum;
2447        ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2448                                &checksum);
2449        if (ret_val)
2450                hw_dbg("NVM Write Error while updating checksum.\n");
2451
2452out:
2453        return ret_val;
2454}
2455
2456/**
2457 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2458 *  @hw: pointer to the HW structure
2459 *
2460 *  Calculates the EEPROM section checksum by reading/adding each word of
2461 *  the EEPROM and then verifies that the sum of the EEPROM is
2462 *  equal to 0xBABA.
2463 **/
2464static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2465{
2466        s32 ret_val = 0;
2467        u16 eeprom_regions_count = 1;
2468        u16 j, nvm_data;
2469        u16 nvm_offset;
2470
2471        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2472        if (ret_val) {
2473                hw_dbg("NVM Read Error\n");
2474                goto out;
2475        }
2476
2477        if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2478                /* if checksums compatibility bit is set validate checksums
2479                 * for all 4 ports.
2480                 */
2481                eeprom_regions_count = 4;
2482        }
2483
2484        for (j = 0; j < eeprom_regions_count; j++) {
2485                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2486                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2487                                                                nvm_offset);
2488                if (ret_val != 0)
2489                        goto out;
2490        }
2491
2492out:
2493        return ret_val;
2494}
2495
2496/**
2497 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2498 *  @hw: pointer to the HW structure
2499 *
2500 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2501 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2502 *  checksum and writes the value to the EEPROM.
2503 **/
2504static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2505{
2506        s32 ret_val;
2507        u16 j, nvm_data;
2508        u16 nvm_offset;
2509
2510        ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2511        if (ret_val) {
2512                hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2513                goto out;
2514        }
2515
2516        if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2517                /* set compatibility bit to validate checksums appropriately */
2518                nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2519                ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2520                                        &nvm_data);
2521                if (ret_val) {
2522                        hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2523                        goto out;
2524                }
2525        }
2526
2527        for (j = 0; j < 4; j++) {
2528                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2529                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2530                if (ret_val)
2531                        goto out;
2532        }
2533
2534out:
2535        return ret_val;
2536}
2537
2538/**
2539 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2540 *  @hw: pointer to the HW structure
2541 *
2542 *  Calculates the EEPROM section checksum by reading/adding each word of
2543 *  the EEPROM and then verifies that the sum of the EEPROM is
2544 *  equal to 0xBABA.
2545 **/
2546static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2547{
2548        s32 ret_val = 0;
2549        u16 j;
2550        u16 nvm_offset;
2551
2552        for (j = 0; j < 4; j++) {
2553                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2554                ret_val = igb_validate_nvm_checksum_with_offset(hw,
2555                                                                nvm_offset);
2556                if (ret_val != 0)
2557                        goto out;
2558        }
2559
2560out:
2561        return ret_val;
2562}
2563
2564/**
2565 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2566 *  @hw: pointer to the HW structure
2567 *
2568 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2569 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2570 *  checksum and writes the value to the EEPROM.
2571 **/
2572static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2573{
2574        s32 ret_val = 0;
2575        u16 j;
2576        u16 nvm_offset;
2577
2578        for (j = 0; j < 4; j++) {
2579                nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2580                ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2581                if (ret_val != 0)
2582                        goto out;
2583        }
2584
2585out:
2586        return ret_val;
2587}
2588
2589/**
2590 *  __igb_access_emi_reg - Read/write EMI register
2591 *  @hw: pointer to the HW structure
2592 *  @addr: EMI address to program
2593 *  @data: pointer to value to read/write from/to the EMI address
2594 *  @read: boolean flag to indicate read or write
2595 **/
2596static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2597                                  u16 *data, bool read)
2598{
2599        s32 ret_val = 0;
2600
2601        ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2602        if (ret_val)
2603                return ret_val;
2604
2605        if (read)
2606                ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2607        else
2608                ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2609
2610        return ret_val;
2611}
2612
2613/**
2614 *  igb_read_emi_reg - Read Extended Management Interface register
2615 *  @hw: pointer to the HW structure
2616 *  @addr: EMI address to program
2617 *  @data: value to be read from the EMI address
2618 **/
2619s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2620{
2621        return __igb_access_emi_reg(hw, addr, data, true);
2622}
2623
2624/**
2625 *  igb_set_eee_i350 - Enable/disable EEE support
2626 *  @hw: pointer to the HW structure
2627 *  @adv1G: boolean flag enabling 1G EEE advertisement
2628 *  @adv100m: boolean flag enabling 100M EEE advertisement
2629 *
2630 *  Enable/disable EEE based on setting in dev_spec structure.
2631 *
2632 **/
2633s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2634{
2635        u32 ipcnfg, eeer;
2636
2637        if ((hw->mac.type < e1000_i350) ||
2638            (hw->phy.media_type != e1000_media_type_copper))
2639                goto out;
2640        ipcnfg = rd32(E1000_IPCNFG);
2641        eeer = rd32(E1000_EEER);
2642
2643        /* enable or disable per user setting */
2644        if (!(hw->dev_spec._82575.eee_disable)) {
2645                u32 eee_su = rd32(E1000_EEE_SU);
2646
2647                if (adv100M)
2648                        ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2649                else
2650                        ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2651
2652                if (adv1G)
2653                        ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2654                else
2655                        ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2656
2657                eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2658                        E1000_EEER_LPI_FC);
2659
2660                /* This bit should not be set in normal operation. */
2661                if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2662                        hw_dbg("LPI Clock Stop Bit should not be set!\n");
2663
2664        } else {
2665                ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2666                        E1000_IPCNFG_EEE_100M_AN);
2667                eeer &= ~(E1000_EEER_TX_LPI_EN |
2668                        E1000_EEER_RX_LPI_EN |
2669                        E1000_EEER_LPI_FC);
2670        }
2671        wr32(E1000_IPCNFG, ipcnfg);
2672        wr32(E1000_EEER, eeer);
2673        rd32(E1000_IPCNFG);
2674        rd32(E1000_EEER);
2675out:
2676
2677        return 0;
2678}
2679
2680/**
2681 *  igb_set_eee_i354 - Enable/disable EEE support
2682 *  @hw: pointer to the HW structure
2683 *  @adv1G: boolean flag enabling 1G EEE advertisement
2684 *  @adv100m: boolean flag enabling 100M EEE advertisement
2685 *
2686 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2687 *
2688 **/
2689s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2690{
2691        struct e1000_phy_info *phy = &hw->phy;
2692        s32 ret_val = 0;
2693        u16 phy_data;
2694
2695        if ((hw->phy.media_type != e1000_media_type_copper) ||
2696            ((phy->id != M88E1543_E_PHY_ID) &&
2697             (phy->id != M88E1512_E_PHY_ID)))
2698                goto out;
2699
2700        if (!hw->dev_spec._82575.eee_disable) {
2701                /* Switch to PHY page 18. */
2702                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2703                if (ret_val)
2704                        goto out;
2705
2706                ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2707                                            &phy_data);
2708                if (ret_val)
2709                        goto out;
2710
2711                phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2712                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2713                                             phy_data);
2714                if (ret_val)
2715                        goto out;
2716
2717                /* Return the PHY to page 0. */
2718                ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2719                if (ret_val)
2720                        goto out;
2721
2722                /* Turn on EEE advertisement. */
2723                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2724                                             E1000_EEE_ADV_DEV_I354,
2725                                             &phy_data);
2726                if (ret_val)
2727                        goto out;
2728
2729                if (adv100M)
2730                        phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2731                else
2732                        phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2733
2734                if (adv1G)
2735                        phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2736                else
2737                        phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2738
2739                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2740                                                E1000_EEE_ADV_DEV_I354,
2741                                                phy_data);
2742        } else {
2743                /* Turn off EEE advertisement. */
2744                ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2745                                             E1000_EEE_ADV_DEV_I354,
2746                                             &phy_data);
2747                if (ret_val)
2748                        goto out;
2749
2750                phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2751                              E1000_EEE_ADV_1000_SUPPORTED);
2752                ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2753                                              E1000_EEE_ADV_DEV_I354,
2754                                              phy_data);
2755        }
2756
2757out:
2758        return ret_val;
2759}
2760
2761/**
2762 *  igb_get_eee_status_i354 - Get EEE status
2763 *  @hw: pointer to the HW structure
2764 *  @status: EEE status
2765 *
2766 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2767 *  been received.
2768 **/
2769s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2770{
2771        struct e1000_phy_info *phy = &hw->phy;
2772        s32 ret_val = 0;
2773        u16 phy_data;
2774
2775        /* Check if EEE is supported on this device. */
2776        if ((hw->phy.media_type != e1000_media_type_copper) ||
2777            ((phy->id != M88E1543_E_PHY_ID) &&
2778             (phy->id != M88E1512_E_PHY_ID)))
2779                goto out;
2780
2781        ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2782                                     E1000_PCS_STATUS_DEV_I354,
2783                                     &phy_data);
2784        if (ret_val)
2785                goto out;
2786
2787        *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2788                              E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2789
2790out:
2791        return ret_val;
2792}
2793
2794static const u8 e1000_emc_temp_data[4] = {
2795        E1000_EMC_INTERNAL_DATA,
2796        E1000_EMC_DIODE1_DATA,
2797        E1000_EMC_DIODE2_DATA,
2798        E1000_EMC_DIODE3_DATA
2799};
2800static const u8 e1000_emc_therm_limit[4] = {
2801        E1000_EMC_INTERNAL_THERM_LIMIT,
2802        E1000_EMC_DIODE1_THERM_LIMIT,
2803        E1000_EMC_DIODE2_THERM_LIMIT,
2804        E1000_EMC_DIODE3_THERM_LIMIT
2805};
2806
2807#ifdef CONFIG_IGB_HWMON
2808/**
2809 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2810 *  @hw: pointer to hardware structure
2811 *
2812 *  Updates the temperatures in mac.thermal_sensor_data
2813 **/
2814static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2815{
2816        u16 ets_offset;
2817        u16 ets_cfg;
2818        u16 ets_sensor;
2819        u8  num_sensors;
2820        u8  sensor_index;
2821        u8  sensor_location;
2822        u8  i;
2823        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2824
2825        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2826                return E1000_NOT_IMPLEMENTED;
2827
2828        data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2829
2830        /* Return the internal sensor only if ETS is unsupported */
2831        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2832        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2833                return 0;
2834
2835        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2836        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2837            != NVM_ETS_TYPE_EMC)
2838                return E1000_NOT_IMPLEMENTED;
2839
2840        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2841        if (num_sensors > E1000_MAX_SENSORS)
2842                num_sensors = E1000_MAX_SENSORS;
2843
2844        for (i = 1; i < num_sensors; i++) {
2845                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2846                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2847                                NVM_ETS_DATA_INDEX_SHIFT);
2848                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2849                                   NVM_ETS_DATA_LOC_SHIFT);
2850
2851                if (sensor_location != 0)
2852                        hw->phy.ops.read_i2c_byte(hw,
2853                                        e1000_emc_temp_data[sensor_index],
2854                                        E1000_I2C_THERMAL_SENSOR_ADDR,
2855                                        &data->sensor[i].temp);
2856        }
2857        return 0;
2858}
2859
2860/**
2861 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2862 *  @hw: pointer to hardware structure
2863 *
2864 *  Sets the thermal sensor thresholds according to the NVM map
2865 *  and save off the threshold and location values into mac.thermal_sensor_data
2866 **/
2867static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2868{
2869        u16 ets_offset;
2870        u16 ets_cfg;
2871        u16 ets_sensor;
2872        u8  low_thresh_delta;
2873        u8  num_sensors;
2874        u8  sensor_index;
2875        u8  sensor_location;
2876        u8  therm_limit;
2877        u8  i;
2878        struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2879
2880        if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2881                return E1000_NOT_IMPLEMENTED;
2882
2883        memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2884
2885        data->sensor[0].location = 0x1;
2886        data->sensor[0].caution_thresh =
2887                (rd32(E1000_THHIGHTC) & 0xFF);
2888        data->sensor[0].max_op_thresh =
2889                (rd32(E1000_THLOWTC) & 0xFF);
2890
2891        /* Return the internal sensor only if ETS is unsupported */
2892        hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2893        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2894                return 0;
2895
2896        hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2897        if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2898            != NVM_ETS_TYPE_EMC)
2899                return E1000_NOT_IMPLEMENTED;
2900
2901        low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2902                            NVM_ETS_LTHRES_DELTA_SHIFT);
2903        num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2904
2905        for (i = 1; i <= num_sensors; i++) {
2906                hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2907                sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2908                                NVM_ETS_DATA_INDEX_SHIFT);
2909                sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2910                                   NVM_ETS_DATA_LOC_SHIFT);
2911                therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2912
2913                hw->phy.ops.write_i2c_byte(hw,
2914                        e1000_emc_therm_limit[sensor_index],
2915                        E1000_I2C_THERMAL_SENSOR_ADDR,
2916                        therm_limit);
2917
2918                if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2919                        data->sensor[i].location = sensor_location;
2920                        data->sensor[i].caution_thresh = therm_limit;
2921                        data->sensor[i].max_op_thresh = therm_limit -
2922                                                        low_thresh_delta;
2923                }
2924        }
2925        return 0;
2926}
2927
2928#endif
2929static struct e1000_mac_operations e1000_mac_ops_82575 = {
2930        .init_hw              = igb_init_hw_82575,
2931        .check_for_link       = igb_check_for_link_82575,
2932        .rar_set              = igb_rar_set,
2933        .read_mac_addr        = igb_read_mac_addr_82575,
2934        .get_speed_and_duplex = igb_get_link_up_info_82575,
2935#ifdef CONFIG_IGB_HWMON
2936        .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2937        .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2938#endif
2939};
2940
2941static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2942        .acquire              = igb_acquire_phy_82575,
2943        .get_cfg_done         = igb_get_cfg_done_82575,
2944        .release              = igb_release_phy_82575,
2945        .write_i2c_byte       = igb_write_i2c_byte,
2946        .read_i2c_byte        = igb_read_i2c_byte,
2947};
2948
2949static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2950        .acquire              = igb_acquire_nvm_82575,
2951        .read                 = igb_read_nvm_eerd,
2952        .release              = igb_release_nvm_82575,
2953        .write                = igb_write_nvm_spi,
2954};
2955
2956const struct e1000_info e1000_82575_info = {
2957        .get_invariants = igb_get_invariants_82575,
2958        .mac_ops = &e1000_mac_ops_82575,
2959        .phy_ops = &e1000_phy_ops_82575,
2960        .nvm_ops = &e1000_nvm_ops_82575,
2961};
2962
2963