linux/drivers/nvme/target/fc.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of version 2 of the GNU General Public License as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful.
   9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
  10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
  11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
  12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
  13 * See the GNU General Public License for more details, a copy of which
  14 * can be found in the file COPYING included with this package
  15 *
  16 */
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/blk-mq.h>
  21#include <linux/parser.h>
  22#include <linux/random.h>
  23#include <uapi/scsi/fc/fc_fs.h>
  24#include <uapi/scsi/fc/fc_els.h>
  25
  26#include "nvmet.h"
  27#include <linux/nvme-fc-driver.h>
  28#include <linux/nvme-fc.h>
  29
  30
  31/* *************************** Data Structures/Defines ****************** */
  32
  33
  34#define NVMET_LS_CTX_COUNT              4
  35
  36/* for this implementation, assume small single frame rqst/rsp */
  37#define NVME_FC_MAX_LS_BUFFER_SIZE              2048
  38
  39struct nvmet_fc_tgtport;
  40struct nvmet_fc_tgt_assoc;
  41
  42struct nvmet_fc_ls_iod {
  43        struct nvmefc_tgt_ls_req        *lsreq;
  44        struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
  45
  46        struct list_head                ls_list;        /* tgtport->ls_list */
  47
  48        struct nvmet_fc_tgtport         *tgtport;
  49        struct nvmet_fc_tgt_assoc       *assoc;
  50
  51        u8                              *rqstbuf;
  52        u8                              *rspbuf;
  53        u16                             rqstdatalen;
  54        dma_addr_t                      rspdma;
  55
  56        struct scatterlist              sg[2];
  57
  58        struct work_struct              work;
  59} __aligned(sizeof(unsigned long long));
  60
  61#define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
  62#define NVMET_FC_MAX_XFR_SGENTS         (NVMET_FC_MAX_SEQ_LENGTH / PAGE_SIZE)
  63
  64enum nvmet_fcp_datadir {
  65        NVMET_FCP_NODATA,
  66        NVMET_FCP_WRITE,
  67        NVMET_FCP_READ,
  68        NVMET_FCP_ABORTED,
  69};
  70
  71struct nvmet_fc_fcp_iod {
  72        struct nvmefc_tgt_fcp_req       *fcpreq;
  73
  74        struct nvme_fc_cmd_iu           cmdiubuf;
  75        struct nvme_fc_ersp_iu          rspiubuf;
  76        dma_addr_t                      rspdma;
  77        struct scatterlist              *data_sg;
  78        int                             data_sg_cnt;
  79        u32                             offset;
  80        enum nvmet_fcp_datadir          io_dir;
  81        bool                            active;
  82        bool                            abort;
  83        bool                            aborted;
  84        bool                            writedataactive;
  85        spinlock_t                      flock;
  86
  87        struct nvmet_req                req;
  88        struct work_struct              work;
  89        struct work_struct              done_work;
  90
  91        struct nvmet_fc_tgtport         *tgtport;
  92        struct nvmet_fc_tgt_queue       *queue;
  93
  94        struct list_head                fcp_list;       /* tgtport->fcp_list */
  95};
  96
  97struct nvmet_fc_tgtport {
  98
  99        struct nvmet_fc_target_port     fc_target_port;
 100
 101        struct list_head                tgt_list; /* nvmet_fc_target_list */
 102        struct device                   *dev;   /* dev for dma mapping */
 103        struct nvmet_fc_target_template *ops;
 104
 105        struct nvmet_fc_ls_iod          *iod;
 106        spinlock_t                      lock;
 107        struct list_head                ls_list;
 108        struct list_head                ls_busylist;
 109        struct list_head                assoc_list;
 110        struct ida                      assoc_cnt;
 111        struct nvmet_port               *port;
 112        struct kref                     ref;
 113        u32                             max_sg_cnt;
 114};
 115
 116struct nvmet_fc_defer_fcp_req {
 117        struct list_head                req_list;
 118        struct nvmefc_tgt_fcp_req       *fcp_req;
 119};
 120
 121struct nvmet_fc_tgt_queue {
 122        bool                            ninetypercent;
 123        u16                             qid;
 124        u16                             sqsize;
 125        u16                             ersp_ratio;
 126        __le16                          sqhd;
 127        int                             cpu;
 128        atomic_t                        connected;
 129        atomic_t                        sqtail;
 130        atomic_t                        zrspcnt;
 131        atomic_t                        rsn;
 132        spinlock_t                      qlock;
 133        struct nvmet_port               *port;
 134        struct nvmet_cq                 nvme_cq;
 135        struct nvmet_sq                 nvme_sq;
 136        struct nvmet_fc_tgt_assoc       *assoc;
 137        struct nvmet_fc_fcp_iod         *fod;           /* array of fcp_iods */
 138        struct list_head                fod_list;
 139        struct list_head                pending_cmd_list;
 140        struct list_head                avail_defer_list;
 141        struct workqueue_struct         *work_q;
 142        struct kref                     ref;
 143} __aligned(sizeof(unsigned long long));
 144
 145struct nvmet_fc_tgt_assoc {
 146        u64                             association_id;
 147        u32                             a_id;
 148        struct nvmet_fc_tgtport         *tgtport;
 149        struct list_head                a_list;
 150        struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
 151        struct kref                     ref;
 152        struct work_struct              del_work;
 153};
 154
 155
 156static inline int
 157nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
 158{
 159        return (iodptr - iodptr->tgtport->iod);
 160}
 161
 162static inline int
 163nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
 164{
 165        return (fodptr - fodptr->queue->fod);
 166}
 167
 168
 169/*
 170 * Association and Connection IDs:
 171 *
 172 * Association ID will have random number in upper 6 bytes and zero
 173 *   in lower 2 bytes
 174 *
 175 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
 176 *
 177 * note: Association ID = Connection ID for queue 0
 178 */
 179#define BYTES_FOR_QID                   sizeof(u16)
 180#define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
 181#define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
 182
 183static inline u64
 184nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
 185{
 186        return (assoc->association_id | qid);
 187}
 188
 189static inline u64
 190nvmet_fc_getassociationid(u64 connectionid)
 191{
 192        return connectionid & ~NVMET_FC_QUEUEID_MASK;
 193}
 194
 195static inline u16
 196nvmet_fc_getqueueid(u64 connectionid)
 197{
 198        return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
 199}
 200
 201static inline struct nvmet_fc_tgtport *
 202targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
 203{
 204        return container_of(targetport, struct nvmet_fc_tgtport,
 205                                 fc_target_port);
 206}
 207
 208static inline struct nvmet_fc_fcp_iod *
 209nvmet_req_to_fod(struct nvmet_req *nvme_req)
 210{
 211        return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
 212}
 213
 214
 215/* *************************** Globals **************************** */
 216
 217
 218static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
 219
 220static LIST_HEAD(nvmet_fc_target_list);
 221static DEFINE_IDA(nvmet_fc_tgtport_cnt);
 222
 223
 224static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
 225static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
 226static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
 227static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
 228static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
 229static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
 230static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
 231static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
 232static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
 233static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
 234                                        struct nvmet_fc_fcp_iod *fod);
 235static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
 236
 237
 238/* *********************** FC-NVME DMA Handling **************************** */
 239
 240/*
 241 * The fcloop device passes in a NULL device pointer. Real LLD's will
 242 * pass in a valid device pointer. If NULL is passed to the dma mapping
 243 * routines, depending on the platform, it may or may not succeed, and
 244 * may crash.
 245 *
 246 * As such:
 247 * Wrapper all the dma routines and check the dev pointer.
 248 *
 249 * If simple mappings (return just a dma address, we'll noop them,
 250 * returning a dma address of 0.
 251 *
 252 * On more complex mappings (dma_map_sg), a pseudo routine fills
 253 * in the scatter list, setting all dma addresses to 0.
 254 */
 255
 256static inline dma_addr_t
 257fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 258                enum dma_data_direction dir)
 259{
 260        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 261}
 262
 263static inline int
 264fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 265{
 266        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 267}
 268
 269static inline void
 270fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 271        enum dma_data_direction dir)
 272{
 273        if (dev)
 274                dma_unmap_single(dev, addr, size, dir);
 275}
 276
 277static inline void
 278fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 279                enum dma_data_direction dir)
 280{
 281        if (dev)
 282                dma_sync_single_for_cpu(dev, addr, size, dir);
 283}
 284
 285static inline void
 286fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 287                enum dma_data_direction dir)
 288{
 289        if (dev)
 290                dma_sync_single_for_device(dev, addr, size, dir);
 291}
 292
 293/* pseudo dma_map_sg call */
 294static int
 295fc_map_sg(struct scatterlist *sg, int nents)
 296{
 297        struct scatterlist *s;
 298        int i;
 299
 300        WARN_ON(nents == 0 || sg[0].length == 0);
 301
 302        for_each_sg(sg, s, nents, i) {
 303                s->dma_address = 0L;
 304#ifdef CONFIG_NEED_SG_DMA_LENGTH
 305                s->dma_length = s->length;
 306#endif
 307        }
 308        return nents;
 309}
 310
 311static inline int
 312fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 313                enum dma_data_direction dir)
 314{
 315        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 316}
 317
 318static inline void
 319fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 320                enum dma_data_direction dir)
 321{
 322        if (dev)
 323                dma_unmap_sg(dev, sg, nents, dir);
 324}
 325
 326
 327/* *********************** FC-NVME Port Management ************************ */
 328
 329
 330static int
 331nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 332{
 333        struct nvmet_fc_ls_iod *iod;
 334        int i;
 335
 336        iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
 337                        GFP_KERNEL);
 338        if (!iod)
 339                return -ENOMEM;
 340
 341        tgtport->iod = iod;
 342
 343        for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 344                INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
 345                iod->tgtport = tgtport;
 346                list_add_tail(&iod->ls_list, &tgtport->ls_list);
 347
 348                iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
 349                        GFP_KERNEL);
 350                if (!iod->rqstbuf)
 351                        goto out_fail;
 352
 353                iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
 354
 355                iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
 356                                                NVME_FC_MAX_LS_BUFFER_SIZE,
 357                                                DMA_TO_DEVICE);
 358                if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
 359                        goto out_fail;
 360        }
 361
 362        return 0;
 363
 364out_fail:
 365        kfree(iod->rqstbuf);
 366        list_del(&iod->ls_list);
 367        for (iod--, i--; i >= 0; iod--, i--) {
 368                fc_dma_unmap_single(tgtport->dev, iod->rspdma,
 369                                NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
 370                kfree(iod->rqstbuf);
 371                list_del(&iod->ls_list);
 372        }
 373
 374        kfree(iod);
 375
 376        return -EFAULT;
 377}
 378
 379static void
 380nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 381{
 382        struct nvmet_fc_ls_iod *iod = tgtport->iod;
 383        int i;
 384
 385        for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 386                fc_dma_unmap_single(tgtport->dev,
 387                                iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
 388                                DMA_TO_DEVICE);
 389                kfree(iod->rqstbuf);
 390                list_del(&iod->ls_list);
 391        }
 392        kfree(tgtport->iod);
 393}
 394
 395static struct nvmet_fc_ls_iod *
 396nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
 397{
 398        struct nvmet_fc_ls_iod *iod;
 399        unsigned long flags;
 400
 401        spin_lock_irqsave(&tgtport->lock, flags);
 402        iod = list_first_entry_or_null(&tgtport->ls_list,
 403                                        struct nvmet_fc_ls_iod, ls_list);
 404        if (iod)
 405                list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
 406        spin_unlock_irqrestore(&tgtport->lock, flags);
 407        return iod;
 408}
 409
 410
 411static void
 412nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
 413                        struct nvmet_fc_ls_iod *iod)
 414{
 415        unsigned long flags;
 416
 417        spin_lock_irqsave(&tgtport->lock, flags);
 418        list_move(&iod->ls_list, &tgtport->ls_list);
 419        spin_unlock_irqrestore(&tgtport->lock, flags);
 420}
 421
 422static void
 423nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 424                                struct nvmet_fc_tgt_queue *queue)
 425{
 426        struct nvmet_fc_fcp_iod *fod = queue->fod;
 427        int i;
 428
 429        for (i = 0; i < queue->sqsize; fod++, i++) {
 430                INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
 431                INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
 432                fod->tgtport = tgtport;
 433                fod->queue = queue;
 434                fod->active = false;
 435                fod->abort = false;
 436                fod->aborted = false;
 437                fod->fcpreq = NULL;
 438                list_add_tail(&fod->fcp_list, &queue->fod_list);
 439                spin_lock_init(&fod->flock);
 440
 441                fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
 442                                        sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 443                if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
 444                        list_del(&fod->fcp_list);
 445                        for (fod--, i--; i >= 0; fod--, i--) {
 446                                fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 447                                                sizeof(fod->rspiubuf),
 448                                                DMA_TO_DEVICE);
 449                                fod->rspdma = 0L;
 450                                list_del(&fod->fcp_list);
 451                        }
 452
 453                        return;
 454                }
 455        }
 456}
 457
 458static void
 459nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 460                                struct nvmet_fc_tgt_queue *queue)
 461{
 462        struct nvmet_fc_fcp_iod *fod = queue->fod;
 463        int i;
 464
 465        for (i = 0; i < queue->sqsize; fod++, i++) {
 466                if (fod->rspdma)
 467                        fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 468                                sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 469        }
 470}
 471
 472static struct nvmet_fc_fcp_iod *
 473nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
 474{
 475        struct nvmet_fc_fcp_iod *fod;
 476
 477        lockdep_assert_held(&queue->qlock);
 478
 479        fod = list_first_entry_or_null(&queue->fod_list,
 480                                        struct nvmet_fc_fcp_iod, fcp_list);
 481        if (fod) {
 482                list_del(&fod->fcp_list);
 483                fod->active = true;
 484                /*
 485                 * no queue reference is taken, as it was taken by the
 486                 * queue lookup just prior to the allocation. The iod
 487                 * will "inherit" that reference.
 488                 */
 489        }
 490        return fod;
 491}
 492
 493
 494static void
 495nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
 496                       struct nvmet_fc_tgt_queue *queue,
 497                       struct nvmefc_tgt_fcp_req *fcpreq)
 498{
 499        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
 500
 501        /*
 502         * put all admin cmds on hw queue id 0. All io commands go to
 503         * the respective hw queue based on a modulo basis
 504         */
 505        fcpreq->hwqid = queue->qid ?
 506                        ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
 507
 508        if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
 509                queue_work_on(queue->cpu, queue->work_q, &fod->work);
 510        else
 511                nvmet_fc_handle_fcp_rqst(tgtport, fod);
 512}
 513
 514static void
 515nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
 516                        struct nvmet_fc_fcp_iod *fod)
 517{
 518        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
 519        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
 520        struct nvmet_fc_defer_fcp_req *deferfcp;
 521        unsigned long flags;
 522
 523        fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
 524                                sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 525
 526        fcpreq->nvmet_fc_private = NULL;
 527
 528        fod->active = false;
 529        fod->abort = false;
 530        fod->aborted = false;
 531        fod->writedataactive = false;
 532        fod->fcpreq = NULL;
 533
 534        tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
 535
 536        /* release the queue lookup reference on the completed IO */
 537        nvmet_fc_tgt_q_put(queue);
 538
 539        spin_lock_irqsave(&queue->qlock, flags);
 540        deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 541                                struct nvmet_fc_defer_fcp_req, req_list);
 542        if (!deferfcp) {
 543                list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
 544                spin_unlock_irqrestore(&queue->qlock, flags);
 545                return;
 546        }
 547
 548        /* Re-use the fod for the next pending cmd that was deferred */
 549        list_del(&deferfcp->req_list);
 550
 551        fcpreq = deferfcp->fcp_req;
 552
 553        /* deferfcp can be reused for another IO at a later date */
 554        list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
 555
 556        spin_unlock_irqrestore(&queue->qlock, flags);
 557
 558        /* Save NVME CMD IO in fod */
 559        memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
 560
 561        /* Setup new fcpreq to be processed */
 562        fcpreq->rspaddr = NULL;
 563        fcpreq->rsplen  = 0;
 564        fcpreq->nvmet_fc_private = fod;
 565        fod->fcpreq = fcpreq;
 566        fod->active = true;
 567
 568        /* inform LLDD IO is now being processed */
 569        tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
 570
 571        /* Submit deferred IO for processing */
 572        nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
 573
 574        /*
 575         * Leave the queue lookup get reference taken when
 576         * fod was originally allocated.
 577         */
 578}
 579
 580static int
 581nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
 582{
 583        int cpu, idx, cnt;
 584
 585        if (tgtport->ops->max_hw_queues == 1)
 586                return WORK_CPU_UNBOUND;
 587
 588        /* Simple cpu selection based on qid modulo active cpu count */
 589        idx = !qid ? 0 : (qid - 1) % num_active_cpus();
 590
 591        /* find the n'th active cpu */
 592        for (cpu = 0, cnt = 0; ; ) {
 593                if (cpu_active(cpu)) {
 594                        if (cnt == idx)
 595                                break;
 596                        cnt++;
 597                }
 598                cpu = (cpu + 1) % num_possible_cpus();
 599        }
 600
 601        return cpu;
 602}
 603
 604static struct nvmet_fc_tgt_queue *
 605nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
 606                        u16 qid, u16 sqsize)
 607{
 608        struct nvmet_fc_tgt_queue *queue;
 609        unsigned long flags;
 610        int ret;
 611
 612        if (qid > NVMET_NR_QUEUES)
 613                return NULL;
 614
 615        queue = kzalloc((sizeof(*queue) +
 616                                (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
 617                                GFP_KERNEL);
 618        if (!queue)
 619                return NULL;
 620
 621        if (!nvmet_fc_tgt_a_get(assoc))
 622                goto out_free_queue;
 623
 624        queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
 625                                assoc->tgtport->fc_target_port.port_num,
 626                                assoc->a_id, qid);
 627        if (!queue->work_q)
 628                goto out_a_put;
 629
 630        queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
 631        queue->qid = qid;
 632        queue->sqsize = sqsize;
 633        queue->assoc = assoc;
 634        queue->port = assoc->tgtport->port;
 635        queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
 636        INIT_LIST_HEAD(&queue->fod_list);
 637        INIT_LIST_HEAD(&queue->avail_defer_list);
 638        INIT_LIST_HEAD(&queue->pending_cmd_list);
 639        atomic_set(&queue->connected, 0);
 640        atomic_set(&queue->sqtail, 0);
 641        atomic_set(&queue->rsn, 1);
 642        atomic_set(&queue->zrspcnt, 0);
 643        spin_lock_init(&queue->qlock);
 644        kref_init(&queue->ref);
 645
 646        nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
 647
 648        ret = nvmet_sq_init(&queue->nvme_sq);
 649        if (ret)
 650                goto out_fail_iodlist;
 651
 652        WARN_ON(assoc->queues[qid]);
 653        spin_lock_irqsave(&assoc->tgtport->lock, flags);
 654        assoc->queues[qid] = queue;
 655        spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
 656
 657        return queue;
 658
 659out_fail_iodlist:
 660        nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
 661        destroy_workqueue(queue->work_q);
 662out_a_put:
 663        nvmet_fc_tgt_a_put(assoc);
 664out_free_queue:
 665        kfree(queue);
 666        return NULL;
 667}
 668
 669
 670static void
 671nvmet_fc_tgt_queue_free(struct kref *ref)
 672{
 673        struct nvmet_fc_tgt_queue *queue =
 674                container_of(ref, struct nvmet_fc_tgt_queue, ref);
 675        unsigned long flags;
 676
 677        spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
 678        queue->assoc->queues[queue->qid] = NULL;
 679        spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
 680
 681        nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
 682
 683        nvmet_fc_tgt_a_put(queue->assoc);
 684
 685        destroy_workqueue(queue->work_q);
 686
 687        kfree(queue);
 688}
 689
 690static void
 691nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
 692{
 693        kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
 694}
 695
 696static int
 697nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
 698{
 699        return kref_get_unless_zero(&queue->ref);
 700}
 701
 702
 703static void
 704nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
 705{
 706        struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
 707        struct nvmet_fc_fcp_iod *fod = queue->fod;
 708        struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
 709        unsigned long flags;
 710        int i, writedataactive;
 711        bool disconnect;
 712
 713        disconnect = atomic_xchg(&queue->connected, 0);
 714
 715        spin_lock_irqsave(&queue->qlock, flags);
 716        /* about outstanding io's */
 717        for (i = 0; i < queue->sqsize; fod++, i++) {
 718                if (fod->active) {
 719                        spin_lock(&fod->flock);
 720                        fod->abort = true;
 721                        writedataactive = fod->writedataactive;
 722                        spin_unlock(&fod->flock);
 723                        /*
 724                         * only call lldd abort routine if waiting for
 725                         * writedata. other outstanding ops should finish
 726                         * on their own.
 727                         */
 728                        if (writedataactive) {
 729                                spin_lock(&fod->flock);
 730                                fod->aborted = true;
 731                                spin_unlock(&fod->flock);
 732                                tgtport->ops->fcp_abort(
 733                                        &tgtport->fc_target_port, fod->fcpreq);
 734                        }
 735                }
 736        }
 737
 738        /* Cleanup defer'ed IOs in queue */
 739        list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
 740                                req_list) {
 741                list_del(&deferfcp->req_list);
 742                kfree(deferfcp);
 743        }
 744
 745        for (;;) {
 746                deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 747                                struct nvmet_fc_defer_fcp_req, req_list);
 748                if (!deferfcp)
 749                        break;
 750
 751                list_del(&deferfcp->req_list);
 752                spin_unlock_irqrestore(&queue->qlock, flags);
 753
 754                tgtport->ops->defer_rcv(&tgtport->fc_target_port,
 755                                deferfcp->fcp_req);
 756
 757                tgtport->ops->fcp_abort(&tgtport->fc_target_port,
 758                                deferfcp->fcp_req);
 759
 760                tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
 761                                deferfcp->fcp_req);
 762
 763                /* release the queue lookup reference */
 764                nvmet_fc_tgt_q_put(queue);
 765
 766                kfree(deferfcp);
 767
 768                spin_lock_irqsave(&queue->qlock, flags);
 769        }
 770        spin_unlock_irqrestore(&queue->qlock, flags);
 771
 772        flush_workqueue(queue->work_q);
 773
 774        if (disconnect)
 775                nvmet_sq_destroy(&queue->nvme_sq);
 776
 777        nvmet_fc_tgt_q_put(queue);
 778}
 779
 780static struct nvmet_fc_tgt_queue *
 781nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
 782                                u64 connection_id)
 783{
 784        struct nvmet_fc_tgt_assoc *assoc;
 785        struct nvmet_fc_tgt_queue *queue;
 786        u64 association_id = nvmet_fc_getassociationid(connection_id);
 787        u16 qid = nvmet_fc_getqueueid(connection_id);
 788        unsigned long flags;
 789
 790        if (qid > NVMET_NR_QUEUES)
 791                return NULL;
 792
 793        spin_lock_irqsave(&tgtport->lock, flags);
 794        list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
 795                if (association_id == assoc->association_id) {
 796                        queue = assoc->queues[qid];
 797                        if (queue &&
 798                            (!atomic_read(&queue->connected) ||
 799                             !nvmet_fc_tgt_q_get(queue)))
 800                                queue = NULL;
 801                        spin_unlock_irqrestore(&tgtport->lock, flags);
 802                        return queue;
 803                }
 804        }
 805        spin_unlock_irqrestore(&tgtport->lock, flags);
 806        return NULL;
 807}
 808
 809static void
 810nvmet_fc_delete_assoc(struct work_struct *work)
 811{
 812        struct nvmet_fc_tgt_assoc *assoc =
 813                container_of(work, struct nvmet_fc_tgt_assoc, del_work);
 814
 815        nvmet_fc_delete_target_assoc(assoc);
 816        nvmet_fc_tgt_a_put(assoc);
 817}
 818
 819static struct nvmet_fc_tgt_assoc *
 820nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
 821{
 822        struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
 823        unsigned long flags;
 824        u64 ran;
 825        int idx;
 826        bool needrandom = true;
 827
 828        assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
 829        if (!assoc)
 830                return NULL;
 831
 832        idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
 833        if (idx < 0)
 834                goto out_free_assoc;
 835
 836        if (!nvmet_fc_tgtport_get(tgtport))
 837                goto out_ida_put;
 838
 839        assoc->tgtport = tgtport;
 840        assoc->a_id = idx;
 841        INIT_LIST_HEAD(&assoc->a_list);
 842        kref_init(&assoc->ref);
 843        INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
 844
 845        while (needrandom) {
 846                get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
 847                ran = ran << BYTES_FOR_QID_SHIFT;
 848
 849                spin_lock_irqsave(&tgtport->lock, flags);
 850                needrandom = false;
 851                list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
 852                        if (ran == tmpassoc->association_id) {
 853                                needrandom = true;
 854                                break;
 855                        }
 856                if (!needrandom) {
 857                        assoc->association_id = ran;
 858                        list_add_tail(&assoc->a_list, &tgtport->assoc_list);
 859                }
 860                spin_unlock_irqrestore(&tgtport->lock, flags);
 861        }
 862
 863        return assoc;
 864
 865out_ida_put:
 866        ida_simple_remove(&tgtport->assoc_cnt, idx);
 867out_free_assoc:
 868        kfree(assoc);
 869        return NULL;
 870}
 871
 872static void
 873nvmet_fc_target_assoc_free(struct kref *ref)
 874{
 875        struct nvmet_fc_tgt_assoc *assoc =
 876                container_of(ref, struct nvmet_fc_tgt_assoc, ref);
 877        struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
 878        unsigned long flags;
 879
 880        spin_lock_irqsave(&tgtport->lock, flags);
 881        list_del(&assoc->a_list);
 882        spin_unlock_irqrestore(&tgtport->lock, flags);
 883        ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
 884        kfree(assoc);
 885        nvmet_fc_tgtport_put(tgtport);
 886}
 887
 888static void
 889nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
 890{
 891        kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
 892}
 893
 894static int
 895nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
 896{
 897        return kref_get_unless_zero(&assoc->ref);
 898}
 899
 900static void
 901nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
 902{
 903        struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
 904        struct nvmet_fc_tgt_queue *queue;
 905        unsigned long flags;
 906        int i;
 907
 908        spin_lock_irqsave(&tgtport->lock, flags);
 909        for (i = NVMET_NR_QUEUES; i >= 0; i--) {
 910                queue = assoc->queues[i];
 911                if (queue) {
 912                        if (!nvmet_fc_tgt_q_get(queue))
 913                                continue;
 914                        spin_unlock_irqrestore(&tgtport->lock, flags);
 915                        nvmet_fc_delete_target_queue(queue);
 916                        nvmet_fc_tgt_q_put(queue);
 917                        spin_lock_irqsave(&tgtport->lock, flags);
 918                }
 919        }
 920        spin_unlock_irqrestore(&tgtport->lock, flags);
 921
 922        nvmet_fc_tgt_a_put(assoc);
 923}
 924
 925static struct nvmet_fc_tgt_assoc *
 926nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
 927                                u64 association_id)
 928{
 929        struct nvmet_fc_tgt_assoc *assoc;
 930        struct nvmet_fc_tgt_assoc *ret = NULL;
 931        unsigned long flags;
 932
 933        spin_lock_irqsave(&tgtport->lock, flags);
 934        list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
 935                if (association_id == assoc->association_id) {
 936                        ret = assoc;
 937                        nvmet_fc_tgt_a_get(assoc);
 938                        break;
 939                }
 940        }
 941        spin_unlock_irqrestore(&tgtport->lock, flags);
 942
 943        return ret;
 944}
 945
 946
 947/**
 948 * nvme_fc_register_targetport - transport entry point called by an
 949 *                              LLDD to register the existence of a local
 950 *                              NVME subystem FC port.
 951 * @pinfo:     pointer to information about the port to be registered
 952 * @template:  LLDD entrypoints and operational parameters for the port
 953 * @dev:       physical hardware device node port corresponds to. Will be
 954 *             used for DMA mappings
 955 * @portptr:   pointer to a local port pointer. Upon success, the routine
 956 *             will allocate a nvme_fc_local_port structure and place its
 957 *             address in the local port pointer. Upon failure, local port
 958 *             pointer will be set to NULL.
 959 *
 960 * Returns:
 961 * a completion status. Must be 0 upon success; a negative errno
 962 * (ex: -ENXIO) upon failure.
 963 */
 964int
 965nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
 966                        struct nvmet_fc_target_template *template,
 967                        struct device *dev,
 968                        struct nvmet_fc_target_port **portptr)
 969{
 970        struct nvmet_fc_tgtport *newrec;
 971        unsigned long flags;
 972        int ret, idx;
 973
 974        if (!template->xmt_ls_rsp || !template->fcp_op ||
 975            !template->fcp_abort ||
 976            !template->fcp_req_release || !template->targetport_delete ||
 977            !template->max_hw_queues || !template->max_sgl_segments ||
 978            !template->max_dif_sgl_segments || !template->dma_boundary) {
 979                ret = -EINVAL;
 980                goto out_regtgt_failed;
 981        }
 982
 983        newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
 984                         GFP_KERNEL);
 985        if (!newrec) {
 986                ret = -ENOMEM;
 987                goto out_regtgt_failed;
 988        }
 989
 990        idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
 991        if (idx < 0) {
 992                ret = -ENOSPC;
 993                goto out_fail_kfree;
 994        }
 995
 996        if (!get_device(dev) && dev) {
 997                ret = -ENODEV;
 998                goto out_ida_put;
 999        }
1000
1001        newrec->fc_target_port.node_name = pinfo->node_name;
1002        newrec->fc_target_port.port_name = pinfo->port_name;
1003        newrec->fc_target_port.private = &newrec[1];
1004        newrec->fc_target_port.port_id = pinfo->port_id;
1005        newrec->fc_target_port.port_num = idx;
1006        INIT_LIST_HEAD(&newrec->tgt_list);
1007        newrec->dev = dev;
1008        newrec->ops = template;
1009        spin_lock_init(&newrec->lock);
1010        INIT_LIST_HEAD(&newrec->ls_list);
1011        INIT_LIST_HEAD(&newrec->ls_busylist);
1012        INIT_LIST_HEAD(&newrec->assoc_list);
1013        kref_init(&newrec->ref);
1014        ida_init(&newrec->assoc_cnt);
1015        newrec->max_sg_cnt = min_t(u32, NVMET_FC_MAX_XFR_SGENTS,
1016                                        template->max_sgl_segments);
1017
1018        ret = nvmet_fc_alloc_ls_iodlist(newrec);
1019        if (ret) {
1020                ret = -ENOMEM;
1021                goto out_free_newrec;
1022        }
1023
1024        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1025        list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1026        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1027
1028        *portptr = &newrec->fc_target_port;
1029        return 0;
1030
1031out_free_newrec:
1032        put_device(dev);
1033out_ida_put:
1034        ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1035out_fail_kfree:
1036        kfree(newrec);
1037out_regtgt_failed:
1038        *portptr = NULL;
1039        return ret;
1040}
1041EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1042
1043
1044static void
1045nvmet_fc_free_tgtport(struct kref *ref)
1046{
1047        struct nvmet_fc_tgtport *tgtport =
1048                container_of(ref, struct nvmet_fc_tgtport, ref);
1049        struct device *dev = tgtport->dev;
1050        unsigned long flags;
1051
1052        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1053        list_del(&tgtport->tgt_list);
1054        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1055
1056        nvmet_fc_free_ls_iodlist(tgtport);
1057
1058        /* let the LLDD know we've finished tearing it down */
1059        tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1060
1061        ida_simple_remove(&nvmet_fc_tgtport_cnt,
1062                        tgtport->fc_target_port.port_num);
1063
1064        ida_destroy(&tgtport->assoc_cnt);
1065
1066        kfree(tgtport);
1067
1068        put_device(dev);
1069}
1070
1071static void
1072nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1073{
1074        kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1075}
1076
1077static int
1078nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1079{
1080        return kref_get_unless_zero(&tgtport->ref);
1081}
1082
1083static void
1084__nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1085{
1086        struct nvmet_fc_tgt_assoc *assoc, *next;
1087        unsigned long flags;
1088
1089        spin_lock_irqsave(&tgtport->lock, flags);
1090        list_for_each_entry_safe(assoc, next,
1091                                &tgtport->assoc_list, a_list) {
1092                if (!nvmet_fc_tgt_a_get(assoc))
1093                        continue;
1094                spin_unlock_irqrestore(&tgtport->lock, flags);
1095                nvmet_fc_delete_target_assoc(assoc);
1096                nvmet_fc_tgt_a_put(assoc);
1097                spin_lock_irqsave(&tgtport->lock, flags);
1098        }
1099        spin_unlock_irqrestore(&tgtport->lock, flags);
1100}
1101
1102/*
1103 * nvmet layer has called to terminate an association
1104 */
1105static void
1106nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1107{
1108        struct nvmet_fc_tgtport *tgtport, *next;
1109        struct nvmet_fc_tgt_assoc *assoc;
1110        struct nvmet_fc_tgt_queue *queue;
1111        unsigned long flags;
1112        bool found_ctrl = false;
1113
1114        /* this is a bit ugly, but don't want to make locks layered */
1115        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1116        list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1117                        tgt_list) {
1118                if (!nvmet_fc_tgtport_get(tgtport))
1119                        continue;
1120                spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1121
1122                spin_lock_irqsave(&tgtport->lock, flags);
1123                list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1124                        queue = assoc->queues[0];
1125                        if (queue && queue->nvme_sq.ctrl == ctrl) {
1126                                if (nvmet_fc_tgt_a_get(assoc))
1127                                        found_ctrl = true;
1128                                break;
1129                        }
1130                }
1131                spin_unlock_irqrestore(&tgtport->lock, flags);
1132
1133                nvmet_fc_tgtport_put(tgtport);
1134
1135                if (found_ctrl) {
1136                        schedule_work(&assoc->del_work);
1137                        return;
1138                }
1139
1140                spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1141        }
1142        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1143}
1144
1145/**
1146 * nvme_fc_unregister_targetport - transport entry point called by an
1147 *                              LLDD to deregister/remove a previously
1148 *                              registered a local NVME subsystem FC port.
1149 * @tgtport: pointer to the (registered) target port that is to be
1150 *           deregistered.
1151 *
1152 * Returns:
1153 * a completion status. Must be 0 upon success; a negative errno
1154 * (ex: -ENXIO) upon failure.
1155 */
1156int
1157nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1158{
1159        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1160
1161        /* terminate any outstanding associations */
1162        __nvmet_fc_free_assocs(tgtport);
1163
1164        nvmet_fc_tgtport_put(tgtport);
1165
1166        return 0;
1167}
1168EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1169
1170
1171/* *********************** FC-NVME LS Handling **************************** */
1172
1173
1174static void
1175nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1176{
1177        struct fcnvme_ls_acc_hdr *acc = buf;
1178
1179        acc->w0.ls_cmd = ls_cmd;
1180        acc->desc_list_len = desc_len;
1181        acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1182        acc->rqst.desc_len =
1183                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1184        acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1185}
1186
1187static int
1188nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1189                        u8 reason, u8 explanation, u8 vendor)
1190{
1191        struct fcnvme_ls_rjt *rjt = buf;
1192
1193        nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1194                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1195                        ls_cmd);
1196        rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1197        rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1198        rjt->rjt.reason_code = reason;
1199        rjt->rjt.reason_explanation = explanation;
1200        rjt->rjt.vendor = vendor;
1201
1202        return sizeof(struct fcnvme_ls_rjt);
1203}
1204
1205/* Validation Error indexes into the string table below */
1206enum {
1207        VERR_NO_ERROR           = 0,
1208        VERR_CR_ASSOC_LEN       = 1,
1209        VERR_CR_ASSOC_RQST_LEN  = 2,
1210        VERR_CR_ASSOC_CMD       = 3,
1211        VERR_CR_ASSOC_CMD_LEN   = 4,
1212        VERR_ERSP_RATIO         = 5,
1213        VERR_ASSOC_ALLOC_FAIL   = 6,
1214        VERR_QUEUE_ALLOC_FAIL   = 7,
1215        VERR_CR_CONN_LEN        = 8,
1216        VERR_CR_CONN_RQST_LEN   = 9,
1217        VERR_ASSOC_ID           = 10,
1218        VERR_ASSOC_ID_LEN       = 11,
1219        VERR_NO_ASSOC           = 12,
1220        VERR_CONN_ID            = 13,
1221        VERR_CONN_ID_LEN        = 14,
1222        VERR_NO_CONN            = 15,
1223        VERR_CR_CONN_CMD        = 16,
1224        VERR_CR_CONN_CMD_LEN    = 17,
1225        VERR_DISCONN_LEN        = 18,
1226        VERR_DISCONN_RQST_LEN   = 19,
1227        VERR_DISCONN_CMD        = 20,
1228        VERR_DISCONN_CMD_LEN    = 21,
1229        VERR_DISCONN_SCOPE      = 22,
1230        VERR_RS_LEN             = 23,
1231        VERR_RS_RQST_LEN        = 24,
1232        VERR_RS_CMD             = 25,
1233        VERR_RS_CMD_LEN         = 26,
1234        VERR_RS_RCTL            = 27,
1235        VERR_RS_RO              = 28,
1236};
1237
1238static char *validation_errors[] = {
1239        "OK",
1240        "Bad CR_ASSOC Length",
1241        "Bad CR_ASSOC Rqst Length",
1242        "Not CR_ASSOC Cmd",
1243        "Bad CR_ASSOC Cmd Length",
1244        "Bad Ersp Ratio",
1245        "Association Allocation Failed",
1246        "Queue Allocation Failed",
1247        "Bad CR_CONN Length",
1248        "Bad CR_CONN Rqst Length",
1249        "Not Association ID",
1250        "Bad Association ID Length",
1251        "No Association",
1252        "Not Connection ID",
1253        "Bad Connection ID Length",
1254        "No Connection",
1255        "Not CR_CONN Cmd",
1256        "Bad CR_CONN Cmd Length",
1257        "Bad DISCONN Length",
1258        "Bad DISCONN Rqst Length",
1259        "Not DISCONN Cmd",
1260        "Bad DISCONN Cmd Length",
1261        "Bad Disconnect Scope",
1262        "Bad RS Length",
1263        "Bad RS Rqst Length",
1264        "Not RS Cmd",
1265        "Bad RS Cmd Length",
1266        "Bad RS R_CTL",
1267        "Bad RS Relative Offset",
1268};
1269
1270static void
1271nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1272                        struct nvmet_fc_ls_iod *iod)
1273{
1274        struct fcnvme_ls_cr_assoc_rqst *rqst =
1275                                (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1276        struct fcnvme_ls_cr_assoc_acc *acc =
1277                                (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1278        struct nvmet_fc_tgt_queue *queue;
1279        int ret = 0;
1280
1281        memset(acc, 0, sizeof(*acc));
1282
1283        /*
1284         * FC-NVME spec changes. There are initiators sending different
1285         * lengths as padding sizes for Create Association Cmd descriptor
1286         * was incorrect.
1287         * Accept anything of "minimum" length. Assume format per 1.15
1288         * spec (with HOSTID reduced to 16 bytes), ignore how long the
1289         * trailing pad length is.
1290         */
1291        if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1292                ret = VERR_CR_ASSOC_LEN;
1293        else if (be32_to_cpu(rqst->desc_list_len) <
1294                        FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1295                ret = VERR_CR_ASSOC_RQST_LEN;
1296        else if (rqst->assoc_cmd.desc_tag !=
1297                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1298                ret = VERR_CR_ASSOC_CMD;
1299        else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1300                        FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1301                ret = VERR_CR_ASSOC_CMD_LEN;
1302        else if (!rqst->assoc_cmd.ersp_ratio ||
1303                 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1304                                be16_to_cpu(rqst->assoc_cmd.sqsize)))
1305                ret = VERR_ERSP_RATIO;
1306
1307        else {
1308                /* new association w/ admin queue */
1309                iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1310                if (!iod->assoc)
1311                        ret = VERR_ASSOC_ALLOC_FAIL;
1312                else {
1313                        queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1314                                        be16_to_cpu(rqst->assoc_cmd.sqsize));
1315                        if (!queue)
1316                                ret = VERR_QUEUE_ALLOC_FAIL;
1317                }
1318        }
1319
1320        if (ret) {
1321                dev_err(tgtport->dev,
1322                        "Create Association LS failed: %s\n",
1323                        validation_errors[ret]);
1324                iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1325                                NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1326                                FCNVME_RJT_RC_LOGIC,
1327                                FCNVME_RJT_EXP_NONE, 0);
1328                return;
1329        }
1330
1331        queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1332        atomic_set(&queue->connected, 1);
1333        queue->sqhd = 0;        /* best place to init value */
1334
1335        /* format a response */
1336
1337        iod->lsreq->rsplen = sizeof(*acc);
1338
1339        nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1340                        fcnvme_lsdesc_len(
1341                                sizeof(struct fcnvme_ls_cr_assoc_acc)),
1342                        FCNVME_LS_CREATE_ASSOCIATION);
1343        acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1344        acc->associd.desc_len =
1345                        fcnvme_lsdesc_len(
1346                                sizeof(struct fcnvme_lsdesc_assoc_id));
1347        acc->associd.association_id =
1348                        cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1349        acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1350        acc->connectid.desc_len =
1351                        fcnvme_lsdesc_len(
1352                                sizeof(struct fcnvme_lsdesc_conn_id));
1353        acc->connectid.connection_id = acc->associd.association_id;
1354}
1355
1356static void
1357nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1358                        struct nvmet_fc_ls_iod *iod)
1359{
1360        struct fcnvme_ls_cr_conn_rqst *rqst =
1361                                (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1362        struct fcnvme_ls_cr_conn_acc *acc =
1363                                (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1364        struct nvmet_fc_tgt_queue *queue;
1365        int ret = 0;
1366
1367        memset(acc, 0, sizeof(*acc));
1368
1369        if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1370                ret = VERR_CR_CONN_LEN;
1371        else if (rqst->desc_list_len !=
1372                        fcnvme_lsdesc_len(
1373                                sizeof(struct fcnvme_ls_cr_conn_rqst)))
1374                ret = VERR_CR_CONN_RQST_LEN;
1375        else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1376                ret = VERR_ASSOC_ID;
1377        else if (rqst->associd.desc_len !=
1378                        fcnvme_lsdesc_len(
1379                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1380                ret = VERR_ASSOC_ID_LEN;
1381        else if (rqst->connect_cmd.desc_tag !=
1382                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1383                ret = VERR_CR_CONN_CMD;
1384        else if (rqst->connect_cmd.desc_len !=
1385                        fcnvme_lsdesc_len(
1386                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1387                ret = VERR_CR_CONN_CMD_LEN;
1388        else if (!rqst->connect_cmd.ersp_ratio ||
1389                 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1390                                be16_to_cpu(rqst->connect_cmd.sqsize)))
1391                ret = VERR_ERSP_RATIO;
1392
1393        else {
1394                /* new io queue */
1395                iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1396                                be64_to_cpu(rqst->associd.association_id));
1397                if (!iod->assoc)
1398                        ret = VERR_NO_ASSOC;
1399                else {
1400                        queue = nvmet_fc_alloc_target_queue(iod->assoc,
1401                                        be16_to_cpu(rqst->connect_cmd.qid),
1402                                        be16_to_cpu(rqst->connect_cmd.sqsize));
1403                        if (!queue)
1404                                ret = VERR_QUEUE_ALLOC_FAIL;
1405
1406                        /* release get taken in nvmet_fc_find_target_assoc */
1407                        nvmet_fc_tgt_a_put(iod->assoc);
1408                }
1409        }
1410
1411        if (ret) {
1412                dev_err(tgtport->dev,
1413                        "Create Connection LS failed: %s\n",
1414                        validation_errors[ret]);
1415                iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1416                                NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1417                                (ret == VERR_NO_ASSOC) ?
1418                                        FCNVME_RJT_RC_INV_ASSOC :
1419                                        FCNVME_RJT_RC_LOGIC,
1420                                FCNVME_RJT_EXP_NONE, 0);
1421                return;
1422        }
1423
1424        queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1425        atomic_set(&queue->connected, 1);
1426        queue->sqhd = 0;        /* best place to init value */
1427
1428        /* format a response */
1429
1430        iod->lsreq->rsplen = sizeof(*acc);
1431
1432        nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1433                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1434                        FCNVME_LS_CREATE_CONNECTION);
1435        acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1436        acc->connectid.desc_len =
1437                        fcnvme_lsdesc_len(
1438                                sizeof(struct fcnvme_lsdesc_conn_id));
1439        acc->connectid.connection_id =
1440                        cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1441                                be16_to_cpu(rqst->connect_cmd.qid)));
1442}
1443
1444static void
1445nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1446                        struct nvmet_fc_ls_iod *iod)
1447{
1448        struct fcnvme_ls_disconnect_rqst *rqst =
1449                        (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1450        struct fcnvme_ls_disconnect_acc *acc =
1451                        (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1452        struct nvmet_fc_tgt_queue *queue = NULL;
1453        struct nvmet_fc_tgt_assoc *assoc;
1454        int ret = 0;
1455        bool del_assoc = false;
1456
1457        memset(acc, 0, sizeof(*acc));
1458
1459        if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1460                ret = VERR_DISCONN_LEN;
1461        else if (rqst->desc_list_len !=
1462                        fcnvme_lsdesc_len(
1463                                sizeof(struct fcnvme_ls_disconnect_rqst)))
1464                ret = VERR_DISCONN_RQST_LEN;
1465        else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1466                ret = VERR_ASSOC_ID;
1467        else if (rqst->associd.desc_len !=
1468                        fcnvme_lsdesc_len(
1469                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1470                ret = VERR_ASSOC_ID_LEN;
1471        else if (rqst->discon_cmd.desc_tag !=
1472                        cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1473                ret = VERR_DISCONN_CMD;
1474        else if (rqst->discon_cmd.desc_len !=
1475                        fcnvme_lsdesc_len(
1476                                sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1477                ret = VERR_DISCONN_CMD_LEN;
1478        else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1479                        (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1480                ret = VERR_DISCONN_SCOPE;
1481        else {
1482                /* match an active association */
1483                assoc = nvmet_fc_find_target_assoc(tgtport,
1484                                be64_to_cpu(rqst->associd.association_id));
1485                iod->assoc = assoc;
1486                if (assoc) {
1487                        if (rqst->discon_cmd.scope ==
1488                                        FCNVME_DISCONN_CONNECTION) {
1489                                queue = nvmet_fc_find_target_queue(tgtport,
1490                                                be64_to_cpu(
1491                                                        rqst->discon_cmd.id));
1492                                if (!queue) {
1493                                        nvmet_fc_tgt_a_put(assoc);
1494                                        ret = VERR_NO_CONN;
1495                                }
1496                        }
1497                } else
1498                        ret = VERR_NO_ASSOC;
1499        }
1500
1501        if (ret) {
1502                dev_err(tgtport->dev,
1503                        "Disconnect LS failed: %s\n",
1504                        validation_errors[ret]);
1505                iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1506                                NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1507                                (ret == VERR_NO_ASSOC) ?
1508                                        FCNVME_RJT_RC_INV_ASSOC :
1509                                        (ret == VERR_NO_CONN) ?
1510                                                FCNVME_RJT_RC_INV_CONN :
1511                                                FCNVME_RJT_RC_LOGIC,
1512                                FCNVME_RJT_EXP_NONE, 0);
1513                return;
1514        }
1515
1516        /* format a response */
1517
1518        iod->lsreq->rsplen = sizeof(*acc);
1519
1520        nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1521                        fcnvme_lsdesc_len(
1522                                sizeof(struct fcnvme_ls_disconnect_acc)),
1523                        FCNVME_LS_DISCONNECT);
1524
1525
1526        /* are we to delete a Connection ID (queue) */
1527        if (queue) {
1528                int qid = queue->qid;
1529
1530                nvmet_fc_delete_target_queue(queue);
1531
1532                /* release the get taken by find_target_queue */
1533                nvmet_fc_tgt_q_put(queue);
1534
1535                /* tear association down if io queue terminated */
1536                if (!qid)
1537                        del_assoc = true;
1538        }
1539
1540        /* release get taken in nvmet_fc_find_target_assoc */
1541        nvmet_fc_tgt_a_put(iod->assoc);
1542
1543        if (del_assoc)
1544                nvmet_fc_delete_target_assoc(iod->assoc);
1545}
1546
1547
1548/* *********************** NVME Ctrl Routines **************************** */
1549
1550
1551static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1552
1553static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1554
1555static void
1556nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1557{
1558        struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1559        struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1560
1561        fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1562                                NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1563        nvmet_fc_free_ls_iod(tgtport, iod);
1564        nvmet_fc_tgtport_put(tgtport);
1565}
1566
1567static void
1568nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1569                                struct nvmet_fc_ls_iod *iod)
1570{
1571        int ret;
1572
1573        fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1574                                  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1575
1576        ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1577        if (ret)
1578                nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1579}
1580
1581/*
1582 * Actual processing routine for received FC-NVME LS Requests from the LLD
1583 */
1584static void
1585nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1586                        struct nvmet_fc_ls_iod *iod)
1587{
1588        struct fcnvme_ls_rqst_w0 *w0 =
1589                        (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1590
1591        iod->lsreq->nvmet_fc_private = iod;
1592        iod->lsreq->rspbuf = iod->rspbuf;
1593        iod->lsreq->rspdma = iod->rspdma;
1594        iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1595        /* Be preventative. handlers will later set to valid length */
1596        iod->lsreq->rsplen = 0;
1597
1598        iod->assoc = NULL;
1599
1600        /*
1601         * handlers:
1602         *   parse request input, execute the request, and format the
1603         *   LS response
1604         */
1605        switch (w0->ls_cmd) {
1606        case FCNVME_LS_CREATE_ASSOCIATION:
1607                /* Creates Association and initial Admin Queue/Connection */
1608                nvmet_fc_ls_create_association(tgtport, iod);
1609                break;
1610        case FCNVME_LS_CREATE_CONNECTION:
1611                /* Creates an IO Queue/Connection */
1612                nvmet_fc_ls_create_connection(tgtport, iod);
1613                break;
1614        case FCNVME_LS_DISCONNECT:
1615                /* Terminate a Queue/Connection or the Association */
1616                nvmet_fc_ls_disconnect(tgtport, iod);
1617                break;
1618        default:
1619                iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1620                                NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1621                                FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1622        }
1623
1624        nvmet_fc_xmt_ls_rsp(tgtport, iod);
1625}
1626
1627/*
1628 * Actual processing routine for received FC-NVME LS Requests from the LLD
1629 */
1630static void
1631nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1632{
1633        struct nvmet_fc_ls_iod *iod =
1634                container_of(work, struct nvmet_fc_ls_iod, work);
1635        struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1636
1637        nvmet_fc_handle_ls_rqst(tgtport, iod);
1638}
1639
1640
1641/**
1642 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1643 *                       upon the reception of a NVME LS request.
1644 *
1645 * The nvmet-fc layer will copy payload to an internal structure for
1646 * processing.  As such, upon completion of the routine, the LLDD may
1647 * immediately free/reuse the LS request buffer passed in the call.
1648 *
1649 * If this routine returns error, the LLDD should abort the exchange.
1650 *
1651 * @tgtport:    pointer to the (registered) target port the LS was
1652 *              received on.
1653 * @lsreq:      pointer to a lsreq request structure to be used to reference
1654 *              the exchange corresponding to the LS.
1655 * @lsreqbuf:   pointer to the buffer containing the LS Request
1656 * @lsreqbuf_len: length, in bytes, of the received LS request
1657 */
1658int
1659nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1660                        struct nvmefc_tgt_ls_req *lsreq,
1661                        void *lsreqbuf, u32 lsreqbuf_len)
1662{
1663        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1664        struct nvmet_fc_ls_iod *iod;
1665
1666        if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1667                return -E2BIG;
1668
1669        if (!nvmet_fc_tgtport_get(tgtport))
1670                return -ESHUTDOWN;
1671
1672        iod = nvmet_fc_alloc_ls_iod(tgtport);
1673        if (!iod) {
1674                nvmet_fc_tgtport_put(tgtport);
1675                return -ENOENT;
1676        }
1677
1678        iod->lsreq = lsreq;
1679        iod->fcpreq = NULL;
1680        memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1681        iod->rqstdatalen = lsreqbuf_len;
1682
1683        schedule_work(&iod->work);
1684
1685        return 0;
1686}
1687EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1688
1689
1690/*
1691 * **********************
1692 * Start of FCP handling
1693 * **********************
1694 */
1695
1696static int
1697nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1698{
1699        struct scatterlist *sg;
1700        unsigned int nent;
1701
1702        sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1703        if (!sg)
1704                goto out;
1705
1706        fod->data_sg = sg;
1707        fod->data_sg_cnt = nent;
1708        fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1709                                ((fod->io_dir == NVMET_FCP_WRITE) ?
1710                                        DMA_FROM_DEVICE : DMA_TO_DEVICE));
1711                                /* note: write from initiator perspective */
1712
1713        return 0;
1714
1715out:
1716        return NVME_SC_INTERNAL;
1717}
1718
1719static void
1720nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1721{
1722        if (!fod->data_sg || !fod->data_sg_cnt)
1723                return;
1724
1725        fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1726                                ((fod->io_dir == NVMET_FCP_WRITE) ?
1727                                        DMA_FROM_DEVICE : DMA_TO_DEVICE));
1728        sgl_free(fod->data_sg);
1729        fod->data_sg = NULL;
1730        fod->data_sg_cnt = 0;
1731}
1732
1733
1734static bool
1735queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1736{
1737        u32 sqtail, used;
1738
1739        /* egad, this is ugly. And sqtail is just a best guess */
1740        sqtail = atomic_read(&q->sqtail) % q->sqsize;
1741
1742        used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1743        return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1744}
1745
1746/*
1747 * Prep RSP payload.
1748 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1749 */
1750static void
1751nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1752                                struct nvmet_fc_fcp_iod *fod)
1753{
1754        struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1755        struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1756        struct nvme_completion *cqe = &ersp->cqe;
1757        u32 *cqewd = (u32 *)cqe;
1758        bool send_ersp = false;
1759        u32 rsn, rspcnt, xfr_length;
1760
1761        if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1762                xfr_length = fod->req.transfer_len;
1763        else
1764                xfr_length = fod->offset;
1765
1766        /*
1767         * check to see if we can send a 0's rsp.
1768         *   Note: to send a 0's response, the NVME-FC host transport will
1769         *   recreate the CQE. The host transport knows: sq id, SQHD (last
1770         *   seen in an ersp), and command_id. Thus it will create a
1771         *   zero-filled CQE with those known fields filled in. Transport
1772         *   must send an ersp for any condition where the cqe won't match
1773         *   this.
1774         *
1775         * Here are the FC-NVME mandated cases where we must send an ersp:
1776         *  every N responses, where N=ersp_ratio
1777         *  force fabric commands to send ersp's (not in FC-NVME but good
1778         *    practice)
1779         *  normal cmds: any time status is non-zero, or status is zero
1780         *     but words 0 or 1 are non-zero.
1781         *  the SQ is 90% or more full
1782         *  the cmd is a fused command
1783         *  transferred data length not equal to cmd iu length
1784         */
1785        rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1786        if (!(rspcnt % fod->queue->ersp_ratio) ||
1787            sqe->opcode == nvme_fabrics_command ||
1788            xfr_length != fod->req.transfer_len ||
1789            (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1790            (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1791            queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1792                send_ersp = true;
1793
1794        /* re-set the fields */
1795        fod->fcpreq->rspaddr = ersp;
1796        fod->fcpreq->rspdma = fod->rspdma;
1797
1798        if (!send_ersp) {
1799                memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1800                fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1801        } else {
1802                ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1803                rsn = atomic_inc_return(&fod->queue->rsn);
1804                ersp->rsn = cpu_to_be32(rsn);
1805                ersp->xfrd_len = cpu_to_be32(xfr_length);
1806                fod->fcpreq->rsplen = sizeof(*ersp);
1807        }
1808
1809        fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1810                                  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1811}
1812
1813static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1814
1815static void
1816nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1817                                struct nvmet_fc_fcp_iod *fod)
1818{
1819        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1820
1821        /* data no longer needed */
1822        nvmet_fc_free_tgt_pgs(fod);
1823
1824        /*
1825         * if an ABTS was received or we issued the fcp_abort early
1826         * don't call abort routine again.
1827         */
1828        /* no need to take lock - lock was taken earlier to get here */
1829        if (!fod->aborted)
1830                tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1831
1832        nvmet_fc_free_fcp_iod(fod->queue, fod);
1833}
1834
1835static void
1836nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1837                                struct nvmet_fc_fcp_iod *fod)
1838{
1839        int ret;
1840
1841        fod->fcpreq->op = NVMET_FCOP_RSP;
1842        fod->fcpreq->timeout = 0;
1843
1844        nvmet_fc_prep_fcp_rsp(tgtport, fod);
1845
1846        ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1847        if (ret)
1848                nvmet_fc_abort_op(tgtport, fod);
1849}
1850
1851static void
1852nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1853                                struct nvmet_fc_fcp_iod *fod, u8 op)
1854{
1855        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1856        unsigned long flags;
1857        u32 tlen;
1858        int ret;
1859
1860        fcpreq->op = op;
1861        fcpreq->offset = fod->offset;
1862        fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1863
1864        tlen = min_t(u32, tgtport->max_sg_cnt * PAGE_SIZE,
1865                        (fod->req.transfer_len - fod->offset));
1866        fcpreq->transfer_length = tlen;
1867        fcpreq->transferred_length = 0;
1868        fcpreq->fcp_error = 0;
1869        fcpreq->rsplen = 0;
1870
1871        fcpreq->sg = &fod->data_sg[fod->offset / PAGE_SIZE];
1872        fcpreq->sg_cnt = DIV_ROUND_UP(tlen, PAGE_SIZE);
1873
1874        /*
1875         * If the last READDATA request: check if LLDD supports
1876         * combined xfr with response.
1877         */
1878        if ((op == NVMET_FCOP_READDATA) &&
1879            ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1880            (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1881                fcpreq->op = NVMET_FCOP_READDATA_RSP;
1882                nvmet_fc_prep_fcp_rsp(tgtport, fod);
1883        }
1884
1885        ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1886        if (ret) {
1887                /*
1888                 * should be ok to set w/o lock as its in the thread of
1889                 * execution (not an async timer routine) and doesn't
1890                 * contend with any clearing action
1891                 */
1892                fod->abort = true;
1893
1894                if (op == NVMET_FCOP_WRITEDATA) {
1895                        spin_lock_irqsave(&fod->flock, flags);
1896                        fod->writedataactive = false;
1897                        spin_unlock_irqrestore(&fod->flock, flags);
1898                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1899                } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1900                        fcpreq->fcp_error = ret;
1901                        fcpreq->transferred_length = 0;
1902                        nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1903                }
1904        }
1905}
1906
1907static inline bool
1908__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1909{
1910        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1911        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1912
1913        /* if in the middle of an io and we need to tear down */
1914        if (abort) {
1915                if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1916                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1917                        return true;
1918                }
1919
1920                nvmet_fc_abort_op(tgtport, fod);
1921                return true;
1922        }
1923
1924        return false;
1925}
1926
1927/*
1928 * actual done handler for FCP operations when completed by the lldd
1929 */
1930static void
1931nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1932{
1933        struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1934        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1935        unsigned long flags;
1936        bool abort;
1937
1938        spin_lock_irqsave(&fod->flock, flags);
1939        abort = fod->abort;
1940        fod->writedataactive = false;
1941        spin_unlock_irqrestore(&fod->flock, flags);
1942
1943        switch (fcpreq->op) {
1944
1945        case NVMET_FCOP_WRITEDATA:
1946                if (__nvmet_fc_fod_op_abort(fod, abort))
1947                        return;
1948                if (fcpreq->fcp_error ||
1949                    fcpreq->transferred_length != fcpreq->transfer_length) {
1950                        spin_lock(&fod->flock);
1951                        fod->abort = true;
1952                        spin_unlock(&fod->flock);
1953
1954                        nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1955                        return;
1956                }
1957
1958                fod->offset += fcpreq->transferred_length;
1959                if (fod->offset != fod->req.transfer_len) {
1960                        spin_lock_irqsave(&fod->flock, flags);
1961                        fod->writedataactive = true;
1962                        spin_unlock_irqrestore(&fod->flock, flags);
1963
1964                        /* transfer the next chunk */
1965                        nvmet_fc_transfer_fcp_data(tgtport, fod,
1966                                                NVMET_FCOP_WRITEDATA);
1967                        return;
1968                }
1969
1970                /* data transfer complete, resume with nvmet layer */
1971                nvmet_req_execute(&fod->req);
1972                break;
1973
1974        case NVMET_FCOP_READDATA:
1975        case NVMET_FCOP_READDATA_RSP:
1976                if (__nvmet_fc_fod_op_abort(fod, abort))
1977                        return;
1978                if (fcpreq->fcp_error ||
1979                    fcpreq->transferred_length != fcpreq->transfer_length) {
1980                        nvmet_fc_abort_op(tgtport, fod);
1981                        return;
1982                }
1983
1984                /* success */
1985
1986                if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
1987                        /* data no longer needed */
1988                        nvmet_fc_free_tgt_pgs(fod);
1989                        nvmet_fc_free_fcp_iod(fod->queue, fod);
1990                        return;
1991                }
1992
1993                fod->offset += fcpreq->transferred_length;
1994                if (fod->offset != fod->req.transfer_len) {
1995                        /* transfer the next chunk */
1996                        nvmet_fc_transfer_fcp_data(tgtport, fod,
1997                                                NVMET_FCOP_READDATA);
1998                        return;
1999                }
2000
2001                /* data transfer complete, send response */
2002
2003                /* data no longer needed */
2004                nvmet_fc_free_tgt_pgs(fod);
2005
2006                nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2007
2008                break;
2009
2010        case NVMET_FCOP_RSP:
2011                if (__nvmet_fc_fod_op_abort(fod, abort))
2012                        return;
2013                nvmet_fc_free_fcp_iod(fod->queue, fod);
2014                break;
2015
2016        default:
2017                break;
2018        }
2019}
2020
2021static void
2022nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
2023{
2024        struct nvmet_fc_fcp_iod *fod =
2025                container_of(work, struct nvmet_fc_fcp_iod, done_work);
2026
2027        nvmet_fc_fod_op_done(fod);
2028}
2029
2030static void
2031nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2032{
2033        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2034        struct nvmet_fc_tgt_queue *queue = fod->queue;
2035
2036        if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
2037                /* context switch so completion is not in ISR context */
2038                queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
2039        else
2040                nvmet_fc_fod_op_done(fod);
2041}
2042
2043/*
2044 * actual completion handler after execution by the nvmet layer
2045 */
2046static void
2047__nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2048                        struct nvmet_fc_fcp_iod *fod, int status)
2049{
2050        struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2051        struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2052        unsigned long flags;
2053        bool abort;
2054
2055        spin_lock_irqsave(&fod->flock, flags);
2056        abort = fod->abort;
2057        spin_unlock_irqrestore(&fod->flock, flags);
2058
2059        /* if we have a CQE, snoop the last sq_head value */
2060        if (!status)
2061                fod->queue->sqhd = cqe->sq_head;
2062
2063        if (abort) {
2064                nvmet_fc_abort_op(tgtport, fod);
2065                return;
2066        }
2067
2068        /* if an error handling the cmd post initial parsing */
2069        if (status) {
2070                /* fudge up a failed CQE status for our transport error */
2071                memset(cqe, 0, sizeof(*cqe));
2072                cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2073                cqe->sq_id = cpu_to_le16(fod->queue->qid);
2074                cqe->command_id = sqe->command_id;
2075                cqe->status = cpu_to_le16(status);
2076        } else {
2077
2078                /*
2079                 * try to push the data even if the SQE status is non-zero.
2080                 * There may be a status where data still was intended to
2081                 * be moved
2082                 */
2083                if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2084                        /* push the data over before sending rsp */
2085                        nvmet_fc_transfer_fcp_data(tgtport, fod,
2086                                                NVMET_FCOP_READDATA);
2087                        return;
2088                }
2089
2090                /* writes & no data - fall thru */
2091        }
2092
2093        /* data no longer needed */
2094        nvmet_fc_free_tgt_pgs(fod);
2095
2096        nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2097}
2098
2099
2100static void
2101nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2102{
2103        struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2104        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2105
2106        __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2107}
2108
2109
2110/*
2111 * Actual processing routine for received FC-NVME LS Requests from the LLD
2112 */
2113static void
2114nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2115                        struct nvmet_fc_fcp_iod *fod)
2116{
2117        struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2118        u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2119        int ret;
2120
2121        /*
2122         * Fused commands are currently not supported in the linux
2123         * implementation.
2124         *
2125         * As such, the implementation of the FC transport does not
2126         * look at the fused commands and order delivery to the upper
2127         * layer until we have both based on csn.
2128         */
2129
2130        fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2131
2132        if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2133                fod->io_dir = NVMET_FCP_WRITE;
2134                if (!nvme_is_write(&cmdiu->sqe))
2135                        goto transport_error;
2136        } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2137                fod->io_dir = NVMET_FCP_READ;
2138                if (nvme_is_write(&cmdiu->sqe))
2139                        goto transport_error;
2140        } else {
2141                fod->io_dir = NVMET_FCP_NODATA;
2142                if (xfrlen)
2143                        goto transport_error;
2144        }
2145
2146        fod->req.cmd = &fod->cmdiubuf.sqe;
2147        fod->req.rsp = &fod->rspiubuf.cqe;
2148        fod->req.port = fod->queue->port;
2149
2150        /* clear any response payload */
2151        memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2152
2153        fod->data_sg = NULL;
2154        fod->data_sg_cnt = 0;
2155
2156        ret = nvmet_req_init(&fod->req,
2157                                &fod->queue->nvme_cq,
2158                                &fod->queue->nvme_sq,
2159                                &nvmet_fc_tgt_fcp_ops);
2160        if (!ret) {
2161                /* bad SQE content or invalid ctrl state */
2162                /* nvmet layer has already called op done to send rsp. */
2163                return;
2164        }
2165
2166        fod->req.transfer_len = xfrlen;
2167
2168        /* keep a running counter of tail position */
2169        atomic_inc(&fod->queue->sqtail);
2170
2171        if (fod->req.transfer_len) {
2172                ret = nvmet_fc_alloc_tgt_pgs(fod);
2173                if (ret) {
2174                        nvmet_req_complete(&fod->req, ret);
2175                        return;
2176                }
2177        }
2178        fod->req.sg = fod->data_sg;
2179        fod->req.sg_cnt = fod->data_sg_cnt;
2180        fod->offset = 0;
2181
2182        if (fod->io_dir == NVMET_FCP_WRITE) {
2183                /* pull the data over before invoking nvmet layer */
2184                nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2185                return;
2186        }
2187
2188        /*
2189         * Reads or no data:
2190         *
2191         * can invoke the nvmet_layer now. If read data, cmd completion will
2192         * push the data
2193         */
2194        nvmet_req_execute(&fod->req);
2195        return;
2196
2197transport_error:
2198        nvmet_fc_abort_op(tgtport, fod);
2199}
2200
2201/*
2202 * Actual processing routine for received FC-NVME LS Requests from the LLD
2203 */
2204static void
2205nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2206{
2207        struct nvmet_fc_fcp_iod *fod =
2208                container_of(work, struct nvmet_fc_fcp_iod, work);
2209        struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2210
2211        nvmet_fc_handle_fcp_rqst(tgtport, fod);
2212}
2213
2214/**
2215 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2216 *                       upon the reception of a NVME FCP CMD IU.
2217 *
2218 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2219 * layer for processing.
2220 *
2221 * The nvmet_fc layer allocates a local job structure (struct
2222 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2223 * CMD IU buffer to the job structure. As such, on a successful
2224 * completion (returns 0), the LLDD may immediately free/reuse
2225 * the CMD IU buffer passed in the call.
2226 *
2227 * However, in some circumstances, due to the packetized nature of FC
2228 * and the api of the FC LLDD which may issue a hw command to send the
2229 * response, but the LLDD may not get the hw completion for that command
2230 * and upcall the nvmet_fc layer before a new command may be
2231 * asynchronously received - its possible for a command to be received
2232 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2233 * the appearance of more commands received than fits in the sq.
2234 * To alleviate this scenario, a temporary queue is maintained in the
2235 * transport for pending LLDD requests waiting for a queue job structure.
2236 * In these "overrun" cases, a temporary queue element is allocated
2237 * the LLDD request and CMD iu buffer information remembered, and the
2238 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2239 * structure is freed, it is immediately reallocated for anything on the
2240 * pending request list. The LLDDs defer_rcv() callback is called,
2241 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2242 * is then started normally with the transport.
2243 *
2244 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2245 * the completion as successful but must not reuse the CMD IU buffer
2246 * until the LLDD's defer_rcv() callback has been called for the
2247 * corresponding struct nvmefc_tgt_fcp_req pointer.
2248 *
2249 * If there is any other condition in which an error occurs, the
2250 * transport will return a non-zero status indicating the error.
2251 * In all cases other than -EOVERFLOW, the transport has not accepted the
2252 * request and the LLDD should abort the exchange.
2253 *
2254 * @target_port: pointer to the (registered) target port the FCP CMD IU
2255 *              was received on.
2256 * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2257 *              the exchange corresponding to the FCP Exchange.
2258 * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2259 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2260 */
2261int
2262nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2263                        struct nvmefc_tgt_fcp_req *fcpreq,
2264                        void *cmdiubuf, u32 cmdiubuf_len)
2265{
2266        struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2267        struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2268        struct nvmet_fc_tgt_queue *queue;
2269        struct nvmet_fc_fcp_iod *fod;
2270        struct nvmet_fc_defer_fcp_req *deferfcp;
2271        unsigned long flags;
2272
2273        /* validate iu, so the connection id can be used to find the queue */
2274        if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2275                        (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2276                        (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2277                        (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2278                return -EIO;
2279
2280        queue = nvmet_fc_find_target_queue(tgtport,
2281                                be64_to_cpu(cmdiu->connection_id));
2282        if (!queue)
2283                return -ENOTCONN;
2284
2285        /*
2286         * note: reference taken by find_target_queue
2287         * After successful fod allocation, the fod will inherit the
2288         * ownership of that reference and will remove the reference
2289         * when the fod is freed.
2290         */
2291
2292        spin_lock_irqsave(&queue->qlock, flags);
2293
2294        fod = nvmet_fc_alloc_fcp_iod(queue);
2295        if (fod) {
2296                spin_unlock_irqrestore(&queue->qlock, flags);
2297
2298                fcpreq->nvmet_fc_private = fod;
2299                fod->fcpreq = fcpreq;
2300
2301                memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2302
2303                nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2304
2305                return 0;
2306        }
2307
2308        if (!tgtport->ops->defer_rcv) {
2309                spin_unlock_irqrestore(&queue->qlock, flags);
2310                /* release the queue lookup reference */
2311                nvmet_fc_tgt_q_put(queue);
2312                return -ENOENT;
2313        }
2314
2315        deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2316                        struct nvmet_fc_defer_fcp_req, req_list);
2317        if (deferfcp) {
2318                /* Just re-use one that was previously allocated */
2319                list_del(&deferfcp->req_list);
2320        } else {
2321                spin_unlock_irqrestore(&queue->qlock, flags);
2322
2323                /* Now we need to dynamically allocate one */
2324                deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2325                if (!deferfcp) {
2326                        /* release the queue lookup reference */
2327                        nvmet_fc_tgt_q_put(queue);
2328                        return -ENOMEM;
2329                }
2330                spin_lock_irqsave(&queue->qlock, flags);
2331        }
2332
2333        /* For now, use rspaddr / rsplen to save payload information */
2334        fcpreq->rspaddr = cmdiubuf;
2335        fcpreq->rsplen  = cmdiubuf_len;
2336        deferfcp->fcp_req = fcpreq;
2337
2338        /* defer processing till a fod becomes available */
2339        list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2340
2341        /* NOTE: the queue lookup reference is still valid */
2342
2343        spin_unlock_irqrestore(&queue->qlock, flags);
2344
2345        return -EOVERFLOW;
2346}
2347EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2348
2349/**
2350 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2351 *                       upon the reception of an ABTS for a FCP command
2352 *
2353 * Notify the transport that an ABTS has been received for a FCP command
2354 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2355 * LLDD believes the command is still being worked on
2356 * (template_ops->fcp_req_release() has not been called).
2357 *
2358 * The transport will wait for any outstanding work (an op to the LLDD,
2359 * which the lldd should complete with error due to the ABTS; or the
2360 * completion from the nvmet layer of the nvme command), then will
2361 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2362 * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2363 * to the ABTS either after return from this function (assuming any
2364 * outstanding op work has been terminated) or upon the callback being
2365 * called.
2366 *
2367 * @target_port: pointer to the (registered) target port the FCP CMD IU
2368 *              was received on.
2369 * @fcpreq:     pointer to the fcpreq request structure that corresponds
2370 *              to the exchange that received the ABTS.
2371 */
2372void
2373nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2374                        struct nvmefc_tgt_fcp_req *fcpreq)
2375{
2376        struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2377        struct nvmet_fc_tgt_queue *queue;
2378        unsigned long flags;
2379
2380        if (!fod || fod->fcpreq != fcpreq)
2381                /* job appears to have already completed, ignore abort */
2382                return;
2383
2384        queue = fod->queue;
2385
2386        spin_lock_irqsave(&queue->qlock, flags);
2387        if (fod->active) {
2388                /*
2389                 * mark as abort. The abort handler, invoked upon completion
2390                 * of any work, will detect the aborted status and do the
2391                 * callback.
2392                 */
2393                spin_lock(&fod->flock);
2394                fod->abort = true;
2395                fod->aborted = true;
2396                spin_unlock(&fod->flock);
2397        }
2398        spin_unlock_irqrestore(&queue->qlock, flags);
2399}
2400EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2401
2402
2403struct nvmet_fc_traddr {
2404        u64     nn;
2405        u64     pn;
2406};
2407
2408static int
2409__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2410{
2411        u64 token64;
2412
2413        if (match_u64(sstr, &token64))
2414                return -EINVAL;
2415        *val = token64;
2416
2417        return 0;
2418}
2419
2420/*
2421 * This routine validates and extracts the WWN's from the TRADDR string.
2422 * As kernel parsers need the 0x to determine number base, universally
2423 * build string to parse with 0x prefix before parsing name strings.
2424 */
2425static int
2426nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2427{
2428        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2429        substring_t wwn = { name, &name[sizeof(name)-1] };
2430        int nnoffset, pnoffset;
2431
2432        /* validate it string one of the 2 allowed formats */
2433        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2434                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2435                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2436                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2437                nnoffset = NVME_FC_TRADDR_OXNNLEN;
2438                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2439                                                NVME_FC_TRADDR_OXNNLEN;
2440        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2441                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2442                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2443                                "pn-", NVME_FC_TRADDR_NNLEN))) {
2444                nnoffset = NVME_FC_TRADDR_NNLEN;
2445                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2446        } else
2447                goto out_einval;
2448
2449        name[0] = '0';
2450        name[1] = 'x';
2451        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2452
2453        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2454        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2455                goto out_einval;
2456
2457        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2458        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2459                goto out_einval;
2460
2461        return 0;
2462
2463out_einval:
2464        pr_warn("%s: bad traddr string\n", __func__);
2465        return -EINVAL;
2466}
2467
2468static int
2469nvmet_fc_add_port(struct nvmet_port *port)
2470{
2471        struct nvmet_fc_tgtport *tgtport;
2472        struct nvmet_fc_traddr traddr = { 0L, 0L };
2473        unsigned long flags;
2474        int ret;
2475
2476        /* validate the address info */
2477        if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2478            (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2479                return -EINVAL;
2480
2481        /* map the traddr address info to a target port */
2482
2483        ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2484                        sizeof(port->disc_addr.traddr));
2485        if (ret)
2486                return ret;
2487
2488        ret = -ENXIO;
2489        spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2490        list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2491                if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2492                    (tgtport->fc_target_port.port_name == traddr.pn)) {
2493                        tgtport->port = port;
2494                        ret = 0;
2495                        break;
2496                }
2497        }
2498        spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2499        return ret;
2500}
2501
2502static void
2503nvmet_fc_remove_port(struct nvmet_port *port)
2504{
2505        /* nothing to do */
2506}
2507
2508static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2509        .owner                  = THIS_MODULE,
2510        .type                   = NVMF_TRTYPE_FC,
2511        .msdbd                  = 1,
2512        .add_port               = nvmet_fc_add_port,
2513        .remove_port            = nvmet_fc_remove_port,
2514        .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2515        .delete_ctrl            = nvmet_fc_delete_ctrl,
2516};
2517
2518static int __init nvmet_fc_init_module(void)
2519{
2520        return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2521}
2522
2523static void __exit nvmet_fc_exit_module(void)
2524{
2525        /* sanity check - all lports should be removed */
2526        if (!list_empty(&nvmet_fc_target_list))
2527                pr_warn("%s: targetport list not empty\n", __func__);
2528
2529        nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2530
2531        ida_destroy(&nvmet_fc_tgtport_cnt);
2532}
2533
2534module_init(nvmet_fc_init_module);
2535module_exit(nvmet_fc_exit_module);
2536
2537MODULE_LICENSE("GPL v2");
2538