linux/drivers/of/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras       August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)     "OF: " fmt
  18
  19#include <linux/console.h>
  20#include <linux/ctype.h>
  21#include <linux/cpu.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_graph.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/string.h>
  29#include <linux/proc_fs.h>
  30
  31#include "of_private.h"
  32
  33LIST_HEAD(aliases_lookup);
  34
  35struct device_node *of_root;
  36EXPORT_SYMBOL(of_root);
  37struct device_node *of_chosen;
  38struct device_node *of_aliases;
  39struct device_node *of_stdout;
  40static const char *of_stdout_options;
  41
  42struct kset *of_kset;
  43
  44/*
  45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  46 * This mutex must be held whenever modifications are being made to the
  47 * device tree. The of_{attach,detach}_node() and
  48 * of_{add,remove,update}_property() helpers make sure this happens.
  49 */
  50DEFINE_MUTEX(of_mutex);
  51
  52/* use when traversing tree through the child, sibling,
  53 * or parent members of struct device_node.
  54 */
  55DEFINE_RAW_SPINLOCK(devtree_lock);
  56
  57int of_n_addr_cells(struct device_node *np)
  58{
  59        u32 cells;
  60
  61        do {
  62                if (np->parent)
  63                        np = np->parent;
  64                if (!of_property_read_u32(np, "#address-cells", &cells))
  65                        return cells;
  66        } while (np->parent);
  67        /* No #address-cells property for the root node */
  68        return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  69}
  70EXPORT_SYMBOL(of_n_addr_cells);
  71
  72int of_n_size_cells(struct device_node *np)
  73{
  74        u32 cells;
  75
  76        do {
  77                if (np->parent)
  78                        np = np->parent;
  79                if (!of_property_read_u32(np, "#size-cells", &cells))
  80                        return cells;
  81        } while (np->parent);
  82        /* No #size-cells property for the root node */
  83        return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  84}
  85EXPORT_SYMBOL(of_n_size_cells);
  86
  87#ifdef CONFIG_NUMA
  88int __weak of_node_to_nid(struct device_node *np)
  89{
  90        return NUMA_NO_NODE;
  91}
  92#endif
  93
  94void __init of_core_init(void)
  95{
  96        struct device_node *np;
  97
  98        /* Create the kset, and register existing nodes */
  99        mutex_lock(&of_mutex);
 100        of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 101        if (!of_kset) {
 102                mutex_unlock(&of_mutex);
 103                pr_err("failed to register existing nodes\n");
 104                return;
 105        }
 106        for_each_of_allnodes(np)
 107                __of_attach_node_sysfs(np);
 108        mutex_unlock(&of_mutex);
 109
 110        /* Symlink in /proc as required by userspace ABI */
 111        if (of_root)
 112                proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 113}
 114
 115static struct property *__of_find_property(const struct device_node *np,
 116                                           const char *name, int *lenp)
 117{
 118        struct property *pp;
 119
 120        if (!np)
 121                return NULL;
 122
 123        for (pp = np->properties; pp; pp = pp->next) {
 124                if (of_prop_cmp(pp->name, name) == 0) {
 125                        if (lenp)
 126                                *lenp = pp->length;
 127                        break;
 128                }
 129        }
 130
 131        return pp;
 132}
 133
 134struct property *of_find_property(const struct device_node *np,
 135                                  const char *name,
 136                                  int *lenp)
 137{
 138        struct property *pp;
 139        unsigned long flags;
 140
 141        raw_spin_lock_irqsave(&devtree_lock, flags);
 142        pp = __of_find_property(np, name, lenp);
 143        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 144
 145        return pp;
 146}
 147EXPORT_SYMBOL(of_find_property);
 148
 149struct device_node *__of_find_all_nodes(struct device_node *prev)
 150{
 151        struct device_node *np;
 152        if (!prev) {
 153                np = of_root;
 154        } else if (prev->child) {
 155                np = prev->child;
 156        } else {
 157                /* Walk back up looking for a sibling, or the end of the structure */
 158                np = prev;
 159                while (np->parent && !np->sibling)
 160                        np = np->parent;
 161                np = np->sibling; /* Might be null at the end of the tree */
 162        }
 163        return np;
 164}
 165
 166/**
 167 * of_find_all_nodes - Get next node in global list
 168 * @prev:       Previous node or NULL to start iteration
 169 *              of_node_put() will be called on it
 170 *
 171 * Returns a node pointer with refcount incremented, use
 172 * of_node_put() on it when done.
 173 */
 174struct device_node *of_find_all_nodes(struct device_node *prev)
 175{
 176        struct device_node *np;
 177        unsigned long flags;
 178
 179        raw_spin_lock_irqsave(&devtree_lock, flags);
 180        np = __of_find_all_nodes(prev);
 181        of_node_get(np);
 182        of_node_put(prev);
 183        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 184        return np;
 185}
 186EXPORT_SYMBOL(of_find_all_nodes);
 187
 188/*
 189 * Find a property with a given name for a given node
 190 * and return the value.
 191 */
 192const void *__of_get_property(const struct device_node *np,
 193                              const char *name, int *lenp)
 194{
 195        struct property *pp = __of_find_property(np, name, lenp);
 196
 197        return pp ? pp->value : NULL;
 198}
 199
 200/*
 201 * Find a property with a given name for a given node
 202 * and return the value.
 203 */
 204const void *of_get_property(const struct device_node *np, const char *name,
 205                            int *lenp)
 206{
 207        struct property *pp = of_find_property(np, name, lenp);
 208
 209        return pp ? pp->value : NULL;
 210}
 211EXPORT_SYMBOL(of_get_property);
 212
 213/*
 214 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 215 *
 216 * @cpu: logical cpu index of a core/thread
 217 * @phys_id: physical identifier of a core/thread
 218 *
 219 * CPU logical to physical index mapping is architecture specific.
 220 * However this __weak function provides a default match of physical
 221 * id to logical cpu index. phys_id provided here is usually values read
 222 * from the device tree which must match the hardware internal registers.
 223 *
 224 * Returns true if the physical identifier and the logical cpu index
 225 * correspond to the same core/thread, false otherwise.
 226 */
 227bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 228{
 229        return (u32)phys_id == cpu;
 230}
 231
 232/**
 233 * Checks if the given "prop_name" property holds the physical id of the
 234 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 235 * NULL, local thread number within the core is returned in it.
 236 */
 237static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 238                        const char *prop_name, int cpu, unsigned int *thread)
 239{
 240        const __be32 *cell;
 241        int ac, prop_len, tid;
 242        u64 hwid;
 243
 244        ac = of_n_addr_cells(cpun);
 245        cell = of_get_property(cpun, prop_name, &prop_len);
 246        if (!cell || !ac)
 247                return false;
 248        prop_len /= sizeof(*cell) * ac;
 249        for (tid = 0; tid < prop_len; tid++) {
 250                hwid = of_read_number(cell, ac);
 251                if (arch_match_cpu_phys_id(cpu, hwid)) {
 252                        if (thread)
 253                                *thread = tid;
 254                        return true;
 255                }
 256                cell += ac;
 257        }
 258        return false;
 259}
 260
 261/*
 262 * arch_find_n_match_cpu_physical_id - See if the given device node is
 263 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 264 * else false.  If 'thread' is non-NULL, the local thread number within the
 265 * core is returned in it.
 266 */
 267bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 268                                              int cpu, unsigned int *thread)
 269{
 270        /* Check for non-standard "ibm,ppc-interrupt-server#s" property
 271         * for thread ids on PowerPC. If it doesn't exist fallback to
 272         * standard "reg" property.
 273         */
 274        if (IS_ENABLED(CONFIG_PPC) &&
 275            __of_find_n_match_cpu_property(cpun,
 276                                           "ibm,ppc-interrupt-server#s",
 277                                           cpu, thread))
 278                return true;
 279
 280        return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 281}
 282
 283/**
 284 * of_get_cpu_node - Get device node associated with the given logical CPU
 285 *
 286 * @cpu: CPU number(logical index) for which device node is required
 287 * @thread: if not NULL, local thread number within the physical core is
 288 *          returned
 289 *
 290 * The main purpose of this function is to retrieve the device node for the
 291 * given logical CPU index. It should be used to initialize the of_node in
 292 * cpu device. Once of_node in cpu device is populated, all the further
 293 * references can use that instead.
 294 *
 295 * CPU logical to physical index mapping is architecture specific and is built
 296 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 297 * which can be overridden by architecture specific implementation.
 298 *
 299 * Returns a node pointer for the logical cpu with refcount incremented, use
 300 * of_node_put() on it when done. Returns NULL if not found.
 301 */
 302struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 303{
 304        struct device_node *cpun;
 305
 306        for_each_node_by_type(cpun, "cpu") {
 307                if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 308                        return cpun;
 309        }
 310        return NULL;
 311}
 312EXPORT_SYMBOL(of_get_cpu_node);
 313
 314/**
 315 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 316 *
 317 * @cpu_node: Pointer to the device_node for CPU.
 318 *
 319 * Returns the logical CPU number of the given CPU device_node.
 320 * Returns -ENODEV if the CPU is not found.
 321 */
 322int of_cpu_node_to_id(struct device_node *cpu_node)
 323{
 324        int cpu;
 325        bool found = false;
 326        struct device_node *np;
 327
 328        for_each_possible_cpu(cpu) {
 329                np = of_cpu_device_node_get(cpu);
 330                found = (cpu_node == np);
 331                of_node_put(np);
 332                if (found)
 333                        return cpu;
 334        }
 335
 336        return -ENODEV;
 337}
 338EXPORT_SYMBOL(of_cpu_node_to_id);
 339
 340/**
 341 * __of_device_is_compatible() - Check if the node matches given constraints
 342 * @device: pointer to node
 343 * @compat: required compatible string, NULL or "" for any match
 344 * @type: required device_type value, NULL or "" for any match
 345 * @name: required node name, NULL or "" for any match
 346 *
 347 * Checks if the given @compat, @type and @name strings match the
 348 * properties of the given @device. A constraints can be skipped by
 349 * passing NULL or an empty string as the constraint.
 350 *
 351 * Returns 0 for no match, and a positive integer on match. The return
 352 * value is a relative score with larger values indicating better
 353 * matches. The score is weighted for the most specific compatible value
 354 * to get the highest score. Matching type is next, followed by matching
 355 * name. Practically speaking, this results in the following priority
 356 * order for matches:
 357 *
 358 * 1. specific compatible && type && name
 359 * 2. specific compatible && type
 360 * 3. specific compatible && name
 361 * 4. specific compatible
 362 * 5. general compatible && type && name
 363 * 6. general compatible && type
 364 * 7. general compatible && name
 365 * 8. general compatible
 366 * 9. type && name
 367 * 10. type
 368 * 11. name
 369 */
 370static int __of_device_is_compatible(const struct device_node *device,
 371                                     const char *compat, const char *type, const char *name)
 372{
 373        struct property *prop;
 374        const char *cp;
 375        int index = 0, score = 0;
 376
 377        /* Compatible match has highest priority */
 378        if (compat && compat[0]) {
 379                prop = __of_find_property(device, "compatible", NULL);
 380                for (cp = of_prop_next_string(prop, NULL); cp;
 381                     cp = of_prop_next_string(prop, cp), index++) {
 382                        if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 383                                score = INT_MAX/2 - (index << 2);
 384                                break;
 385                        }
 386                }
 387                if (!score)
 388                        return 0;
 389        }
 390
 391        /* Matching type is better than matching name */
 392        if (type && type[0]) {
 393                if (!device->type || of_node_cmp(type, device->type))
 394                        return 0;
 395                score += 2;
 396        }
 397
 398        /* Matching name is a bit better than not */
 399        if (name && name[0]) {
 400                if (!device->name || of_node_cmp(name, device->name))
 401                        return 0;
 402                score++;
 403        }
 404
 405        return score;
 406}
 407
 408/** Checks if the given "compat" string matches one of the strings in
 409 * the device's "compatible" property
 410 */
 411int of_device_is_compatible(const struct device_node *device,
 412                const char *compat)
 413{
 414        unsigned long flags;
 415        int res;
 416
 417        raw_spin_lock_irqsave(&devtree_lock, flags);
 418        res = __of_device_is_compatible(device, compat, NULL, NULL);
 419        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 420        return res;
 421}
 422EXPORT_SYMBOL(of_device_is_compatible);
 423
 424/** Checks if the device is compatible with any of the entries in
 425 *  a NULL terminated array of strings. Returns the best match
 426 *  score or 0.
 427 */
 428int of_device_compatible_match(struct device_node *device,
 429                               const char *const *compat)
 430{
 431        unsigned int tmp, score = 0;
 432
 433        if (!compat)
 434                return 0;
 435
 436        while (*compat) {
 437                tmp = of_device_is_compatible(device, *compat);
 438                if (tmp > score)
 439                        score = tmp;
 440                compat++;
 441        }
 442
 443        return score;
 444}
 445
 446/**
 447 * of_machine_is_compatible - Test root of device tree for a given compatible value
 448 * @compat: compatible string to look for in root node's compatible property.
 449 *
 450 * Returns a positive integer if the root node has the given value in its
 451 * compatible property.
 452 */
 453int of_machine_is_compatible(const char *compat)
 454{
 455        struct device_node *root;
 456        int rc = 0;
 457
 458        root = of_find_node_by_path("/");
 459        if (root) {
 460                rc = of_device_is_compatible(root, compat);
 461                of_node_put(root);
 462        }
 463        return rc;
 464}
 465EXPORT_SYMBOL(of_machine_is_compatible);
 466
 467/**
 468 *  __of_device_is_available - check if a device is available for use
 469 *
 470 *  @device: Node to check for availability, with locks already held
 471 *
 472 *  Returns true if the status property is absent or set to "okay" or "ok",
 473 *  false otherwise
 474 */
 475static bool __of_device_is_available(const struct device_node *device)
 476{
 477        const char *status;
 478        int statlen;
 479
 480        if (!device)
 481                return false;
 482
 483        status = __of_get_property(device, "status", &statlen);
 484        if (status == NULL)
 485                return true;
 486
 487        if (statlen > 0) {
 488                if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 489                        return true;
 490        }
 491
 492        return false;
 493}
 494
 495/**
 496 *  of_device_is_available - check if a device is available for use
 497 *
 498 *  @device: Node to check for availability
 499 *
 500 *  Returns true if the status property is absent or set to "okay" or "ok",
 501 *  false otherwise
 502 */
 503bool of_device_is_available(const struct device_node *device)
 504{
 505        unsigned long flags;
 506        bool res;
 507
 508        raw_spin_lock_irqsave(&devtree_lock, flags);
 509        res = __of_device_is_available(device);
 510        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 511        return res;
 512
 513}
 514EXPORT_SYMBOL(of_device_is_available);
 515
 516/**
 517 *  of_device_is_big_endian - check if a device has BE registers
 518 *
 519 *  @device: Node to check for endianness
 520 *
 521 *  Returns true if the device has a "big-endian" property, or if the kernel
 522 *  was compiled for BE *and* the device has a "native-endian" property.
 523 *  Returns false otherwise.
 524 *
 525 *  Callers would nominally use ioread32be/iowrite32be if
 526 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 527 */
 528bool of_device_is_big_endian(const struct device_node *device)
 529{
 530        if (of_property_read_bool(device, "big-endian"))
 531                return true;
 532        if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 533            of_property_read_bool(device, "native-endian"))
 534                return true;
 535        return false;
 536}
 537EXPORT_SYMBOL(of_device_is_big_endian);
 538
 539/**
 540 *      of_get_parent - Get a node's parent if any
 541 *      @node:  Node to get parent
 542 *
 543 *      Returns a node pointer with refcount incremented, use
 544 *      of_node_put() on it when done.
 545 */
 546struct device_node *of_get_parent(const struct device_node *node)
 547{
 548        struct device_node *np;
 549        unsigned long flags;
 550
 551        if (!node)
 552                return NULL;
 553
 554        raw_spin_lock_irqsave(&devtree_lock, flags);
 555        np = of_node_get(node->parent);
 556        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 557        return np;
 558}
 559EXPORT_SYMBOL(of_get_parent);
 560
 561/**
 562 *      of_get_next_parent - Iterate to a node's parent
 563 *      @node:  Node to get parent of
 564 *
 565 *      This is like of_get_parent() except that it drops the
 566 *      refcount on the passed node, making it suitable for iterating
 567 *      through a node's parents.
 568 *
 569 *      Returns a node pointer with refcount incremented, use
 570 *      of_node_put() on it when done.
 571 */
 572struct device_node *of_get_next_parent(struct device_node *node)
 573{
 574        struct device_node *parent;
 575        unsigned long flags;
 576
 577        if (!node)
 578                return NULL;
 579
 580        raw_spin_lock_irqsave(&devtree_lock, flags);
 581        parent = of_node_get(node->parent);
 582        of_node_put(node);
 583        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 584        return parent;
 585}
 586EXPORT_SYMBOL(of_get_next_parent);
 587
 588static struct device_node *__of_get_next_child(const struct device_node *node,
 589                                                struct device_node *prev)
 590{
 591        struct device_node *next;
 592
 593        if (!node)
 594                return NULL;
 595
 596        next = prev ? prev->sibling : node->child;
 597        for (; next; next = next->sibling)
 598                if (of_node_get(next))
 599                        break;
 600        of_node_put(prev);
 601        return next;
 602}
 603#define __for_each_child_of_node(parent, child) \
 604        for (child = __of_get_next_child(parent, NULL); child != NULL; \
 605             child = __of_get_next_child(parent, child))
 606
 607/**
 608 *      of_get_next_child - Iterate a node childs
 609 *      @node:  parent node
 610 *      @prev:  previous child of the parent node, or NULL to get first
 611 *
 612 *      Returns a node pointer with refcount incremented, use of_node_put() on
 613 *      it when done. Returns NULL when prev is the last child. Decrements the
 614 *      refcount of prev.
 615 */
 616struct device_node *of_get_next_child(const struct device_node *node,
 617        struct device_node *prev)
 618{
 619        struct device_node *next;
 620        unsigned long flags;
 621
 622        raw_spin_lock_irqsave(&devtree_lock, flags);
 623        next = __of_get_next_child(node, prev);
 624        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 625        return next;
 626}
 627EXPORT_SYMBOL(of_get_next_child);
 628
 629/**
 630 *      of_get_next_available_child - Find the next available child node
 631 *      @node:  parent node
 632 *      @prev:  previous child of the parent node, or NULL to get first
 633 *
 634 *      This function is like of_get_next_child(), except that it
 635 *      automatically skips any disabled nodes (i.e. status = "disabled").
 636 */
 637struct device_node *of_get_next_available_child(const struct device_node *node,
 638        struct device_node *prev)
 639{
 640        struct device_node *next;
 641        unsigned long flags;
 642
 643        if (!node)
 644                return NULL;
 645
 646        raw_spin_lock_irqsave(&devtree_lock, flags);
 647        next = prev ? prev->sibling : node->child;
 648        for (; next; next = next->sibling) {
 649                if (!__of_device_is_available(next))
 650                        continue;
 651                if (of_node_get(next))
 652                        break;
 653        }
 654        of_node_put(prev);
 655        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 656        return next;
 657}
 658EXPORT_SYMBOL(of_get_next_available_child);
 659
 660/**
 661 *      of_get_child_by_name - Find the child node by name for a given parent
 662 *      @node:  parent node
 663 *      @name:  child name to look for.
 664 *
 665 *      This function looks for child node for given matching name
 666 *
 667 *      Returns a node pointer if found, with refcount incremented, use
 668 *      of_node_put() on it when done.
 669 *      Returns NULL if node is not found.
 670 */
 671struct device_node *of_get_child_by_name(const struct device_node *node,
 672                                const char *name)
 673{
 674        struct device_node *child;
 675
 676        for_each_child_of_node(node, child)
 677                if (child->name && (of_node_cmp(child->name, name) == 0))
 678                        break;
 679        return child;
 680}
 681EXPORT_SYMBOL(of_get_child_by_name);
 682
 683struct device_node *__of_find_node_by_path(struct device_node *parent,
 684                                                const char *path)
 685{
 686        struct device_node *child;
 687        int len;
 688
 689        len = strcspn(path, "/:");
 690        if (!len)
 691                return NULL;
 692
 693        __for_each_child_of_node(parent, child) {
 694                const char *name = kbasename(child->full_name);
 695                if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 696                        return child;
 697        }
 698        return NULL;
 699}
 700
 701struct device_node *__of_find_node_by_full_path(struct device_node *node,
 702                                                const char *path)
 703{
 704        const char *separator = strchr(path, ':');
 705
 706        while (node && *path == '/') {
 707                struct device_node *tmp = node;
 708
 709                path++; /* Increment past '/' delimiter */
 710                node = __of_find_node_by_path(node, path);
 711                of_node_put(tmp);
 712                path = strchrnul(path, '/');
 713                if (separator && separator < path)
 714                        break;
 715        }
 716        return node;
 717}
 718
 719/**
 720 *      of_find_node_opts_by_path - Find a node matching a full OF path
 721 *      @path: Either the full path to match, or if the path does not
 722 *             start with '/', the name of a property of the /aliases
 723 *             node (an alias).  In the case of an alias, the node
 724 *             matching the alias' value will be returned.
 725 *      @opts: Address of a pointer into which to store the start of
 726 *             an options string appended to the end of the path with
 727 *             a ':' separator.
 728 *
 729 *      Valid paths:
 730 *              /foo/bar        Full path
 731 *              foo             Valid alias
 732 *              foo/bar         Valid alias + relative path
 733 *
 734 *      Returns a node pointer with refcount incremented, use
 735 *      of_node_put() on it when done.
 736 */
 737struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 738{
 739        struct device_node *np = NULL;
 740        struct property *pp;
 741        unsigned long flags;
 742        const char *separator = strchr(path, ':');
 743
 744        if (opts)
 745                *opts = separator ? separator + 1 : NULL;
 746
 747        if (strcmp(path, "/") == 0)
 748                return of_node_get(of_root);
 749
 750        /* The path could begin with an alias */
 751        if (*path != '/') {
 752                int len;
 753                const char *p = separator;
 754
 755                if (!p)
 756                        p = strchrnul(path, '/');
 757                len = p - path;
 758
 759                /* of_aliases must not be NULL */
 760                if (!of_aliases)
 761                        return NULL;
 762
 763                for_each_property_of_node(of_aliases, pp) {
 764                        if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 765                                np = of_find_node_by_path(pp->value);
 766                                break;
 767                        }
 768                }
 769                if (!np)
 770                        return NULL;
 771                path = p;
 772        }
 773
 774        /* Step down the tree matching path components */
 775        raw_spin_lock_irqsave(&devtree_lock, flags);
 776        if (!np)
 777                np = of_node_get(of_root);
 778        np = __of_find_node_by_full_path(np, path);
 779        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 780        return np;
 781}
 782EXPORT_SYMBOL(of_find_node_opts_by_path);
 783
 784/**
 785 *      of_find_node_by_name - Find a node by its "name" property
 786 *      @from:  The node to start searching from or NULL; the node
 787 *              you pass will not be searched, only the next one
 788 *              will. Typically, you pass what the previous call
 789 *              returned. of_node_put() will be called on @from.
 790 *      @name:  The name string to match against
 791 *
 792 *      Returns a node pointer with refcount incremented, use
 793 *      of_node_put() on it when done.
 794 */
 795struct device_node *of_find_node_by_name(struct device_node *from,
 796        const char *name)
 797{
 798        struct device_node *np;
 799        unsigned long flags;
 800
 801        raw_spin_lock_irqsave(&devtree_lock, flags);
 802        for_each_of_allnodes_from(from, np)
 803                if (np->name && (of_node_cmp(np->name, name) == 0)
 804                    && of_node_get(np))
 805                        break;
 806        of_node_put(from);
 807        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 808        return np;
 809}
 810EXPORT_SYMBOL(of_find_node_by_name);
 811
 812/**
 813 *      of_find_node_by_type - Find a node by its "device_type" property
 814 *      @from:  The node to start searching from, or NULL to start searching
 815 *              the entire device tree. The node you pass will not be
 816 *              searched, only the next one will; typically, you pass
 817 *              what the previous call returned. of_node_put() will be
 818 *              called on from for you.
 819 *      @type:  The type string to match against
 820 *
 821 *      Returns a node pointer with refcount incremented, use
 822 *      of_node_put() on it when done.
 823 */
 824struct device_node *of_find_node_by_type(struct device_node *from,
 825        const char *type)
 826{
 827        struct device_node *np;
 828        unsigned long flags;
 829
 830        raw_spin_lock_irqsave(&devtree_lock, flags);
 831        for_each_of_allnodes_from(from, np)
 832                if (np->type && (of_node_cmp(np->type, type) == 0)
 833                    && of_node_get(np))
 834                        break;
 835        of_node_put(from);
 836        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 837        return np;
 838}
 839EXPORT_SYMBOL(of_find_node_by_type);
 840
 841/**
 842 *      of_find_compatible_node - Find a node based on type and one of the
 843 *                                tokens in its "compatible" property
 844 *      @from:          The node to start searching from or NULL, the node
 845 *                      you pass will not be searched, only the next one
 846 *                      will; typically, you pass what the previous call
 847 *                      returned. of_node_put() will be called on it
 848 *      @type:          The type string to match "device_type" or NULL to ignore
 849 *      @compatible:    The string to match to one of the tokens in the device
 850 *                      "compatible" list.
 851 *
 852 *      Returns a node pointer with refcount incremented, use
 853 *      of_node_put() on it when done.
 854 */
 855struct device_node *of_find_compatible_node(struct device_node *from,
 856        const char *type, const char *compatible)
 857{
 858        struct device_node *np;
 859        unsigned long flags;
 860
 861        raw_spin_lock_irqsave(&devtree_lock, flags);
 862        for_each_of_allnodes_from(from, np)
 863                if (__of_device_is_compatible(np, compatible, type, NULL) &&
 864                    of_node_get(np))
 865                        break;
 866        of_node_put(from);
 867        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 868        return np;
 869}
 870EXPORT_SYMBOL(of_find_compatible_node);
 871
 872/**
 873 *      of_find_node_with_property - Find a node which has a property with
 874 *                                   the given name.
 875 *      @from:          The node to start searching from or NULL, the node
 876 *                      you pass will not be searched, only the next one
 877 *                      will; typically, you pass what the previous call
 878 *                      returned. of_node_put() will be called on it
 879 *      @prop_name:     The name of the property to look for.
 880 *
 881 *      Returns a node pointer with refcount incremented, use
 882 *      of_node_put() on it when done.
 883 */
 884struct device_node *of_find_node_with_property(struct device_node *from,
 885        const char *prop_name)
 886{
 887        struct device_node *np;
 888        struct property *pp;
 889        unsigned long flags;
 890
 891        raw_spin_lock_irqsave(&devtree_lock, flags);
 892        for_each_of_allnodes_from(from, np) {
 893                for (pp = np->properties; pp; pp = pp->next) {
 894                        if (of_prop_cmp(pp->name, prop_name) == 0) {
 895                                of_node_get(np);
 896                                goto out;
 897                        }
 898                }
 899        }
 900out:
 901        of_node_put(from);
 902        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 903        return np;
 904}
 905EXPORT_SYMBOL(of_find_node_with_property);
 906
 907static
 908const struct of_device_id *__of_match_node(const struct of_device_id *matches,
 909                                           const struct device_node *node)
 910{
 911        const struct of_device_id *best_match = NULL;
 912        int score, best_score = 0;
 913
 914        if (!matches)
 915                return NULL;
 916
 917        for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
 918                score = __of_device_is_compatible(node, matches->compatible,
 919                                                  matches->type, matches->name);
 920                if (score > best_score) {
 921                        best_match = matches;
 922                        best_score = score;
 923                }
 924        }
 925
 926        return best_match;
 927}
 928
 929/**
 930 * of_match_node - Tell if a device_node has a matching of_match structure
 931 *      @matches:       array of of device match structures to search in
 932 *      @node:          the of device structure to match against
 933 *
 934 *      Low level utility function used by device matching.
 935 */
 936const struct of_device_id *of_match_node(const struct of_device_id *matches,
 937                                         const struct device_node *node)
 938{
 939        const struct of_device_id *match;
 940        unsigned long flags;
 941
 942        raw_spin_lock_irqsave(&devtree_lock, flags);
 943        match = __of_match_node(matches, node);
 944        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 945        return match;
 946}
 947EXPORT_SYMBOL(of_match_node);
 948
 949/**
 950 *      of_find_matching_node_and_match - Find a node based on an of_device_id
 951 *                                        match table.
 952 *      @from:          The node to start searching from or NULL, the node
 953 *                      you pass will not be searched, only the next one
 954 *                      will; typically, you pass what the previous call
 955 *                      returned. of_node_put() will be called on it
 956 *      @matches:       array of of device match structures to search in
 957 *      @match          Updated to point at the matches entry which matched
 958 *
 959 *      Returns a node pointer with refcount incremented, use
 960 *      of_node_put() on it when done.
 961 */
 962struct device_node *of_find_matching_node_and_match(struct device_node *from,
 963                                        const struct of_device_id *matches,
 964                                        const struct of_device_id **match)
 965{
 966        struct device_node *np;
 967        const struct of_device_id *m;
 968        unsigned long flags;
 969
 970        if (match)
 971                *match = NULL;
 972
 973        raw_spin_lock_irqsave(&devtree_lock, flags);
 974        for_each_of_allnodes_from(from, np) {
 975                m = __of_match_node(matches, np);
 976                if (m && of_node_get(np)) {
 977                        if (match)
 978                                *match = m;
 979                        break;
 980                }
 981        }
 982        of_node_put(from);
 983        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 984        return np;
 985}
 986EXPORT_SYMBOL(of_find_matching_node_and_match);
 987
 988/**
 989 * of_modalias_node - Lookup appropriate modalias for a device node
 990 * @node:       pointer to a device tree node
 991 * @modalias:   Pointer to buffer that modalias value will be copied into
 992 * @len:        Length of modalias value
 993 *
 994 * Based on the value of the compatible property, this routine will attempt
 995 * to choose an appropriate modalias value for a particular device tree node.
 996 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 997 * from the first entry in the compatible list property.
 998 *
 999 * This routine returns 0 on success, <0 on failure.
1000 */
1001int of_modalias_node(struct device_node *node, char *modalias, int len)
1002{
1003        const char *compatible, *p;
1004        int cplen;
1005
1006        compatible = of_get_property(node, "compatible", &cplen);
1007        if (!compatible || strlen(compatible) > cplen)
1008                return -ENODEV;
1009        p = strchr(compatible, ',');
1010        strlcpy(modalias, p ? p + 1 : compatible, len);
1011        return 0;
1012}
1013EXPORT_SYMBOL_GPL(of_modalias_node);
1014
1015/**
1016 * of_find_node_by_phandle - Find a node given a phandle
1017 * @handle:     phandle of the node to find
1018 *
1019 * Returns a node pointer with refcount incremented, use
1020 * of_node_put() on it when done.
1021 */
1022struct device_node *of_find_node_by_phandle(phandle handle)
1023{
1024        struct device_node *np;
1025        unsigned long flags;
1026
1027        if (!handle)
1028                return NULL;
1029
1030        raw_spin_lock_irqsave(&devtree_lock, flags);
1031        for_each_of_allnodes(np)
1032                if (np->phandle == handle)
1033                        break;
1034        of_node_get(np);
1035        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1036        return np;
1037}
1038EXPORT_SYMBOL(of_find_node_by_phandle);
1039
1040void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1041{
1042        int i;
1043        printk("%s %pOF", msg, args->np);
1044        for (i = 0; i < args->args_count; i++) {
1045                const char delim = i ? ',' : ':';
1046
1047                pr_cont("%c%08x", delim, args->args[i]);
1048        }
1049        pr_cont("\n");
1050}
1051
1052int of_phandle_iterator_init(struct of_phandle_iterator *it,
1053                const struct device_node *np,
1054                const char *list_name,
1055                const char *cells_name,
1056                int cell_count)
1057{
1058        const __be32 *list;
1059        int size;
1060
1061        memset(it, 0, sizeof(*it));
1062
1063        list = of_get_property(np, list_name, &size);
1064        if (!list)
1065                return -ENOENT;
1066
1067        it->cells_name = cells_name;
1068        it->cell_count = cell_count;
1069        it->parent = np;
1070        it->list_end = list + size / sizeof(*list);
1071        it->phandle_end = list;
1072        it->cur = list;
1073
1074        return 0;
1075}
1076EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1077
1078int of_phandle_iterator_next(struct of_phandle_iterator *it)
1079{
1080        uint32_t count = 0;
1081
1082        if (it->node) {
1083                of_node_put(it->node);
1084                it->node = NULL;
1085        }
1086
1087        if (!it->cur || it->phandle_end >= it->list_end)
1088                return -ENOENT;
1089
1090        it->cur = it->phandle_end;
1091
1092        /* If phandle is 0, then it is an empty entry with no arguments. */
1093        it->phandle = be32_to_cpup(it->cur++);
1094
1095        if (it->phandle) {
1096
1097                /*
1098                 * Find the provider node and parse the #*-cells property to
1099                 * determine the argument length.
1100                 */
1101                it->node = of_find_node_by_phandle(it->phandle);
1102
1103                if (it->cells_name) {
1104                        if (!it->node) {
1105                                pr_err("%pOF: could not find phandle\n",
1106                                       it->parent);
1107                                goto err;
1108                        }
1109
1110                        if (of_property_read_u32(it->node, it->cells_name,
1111                                                 &count)) {
1112                                pr_err("%pOF: could not get %s for %pOF\n",
1113                                       it->parent,
1114                                       it->cells_name,
1115                                       it->node);
1116                                goto err;
1117                        }
1118                } else {
1119                        count = it->cell_count;
1120                }
1121
1122                /*
1123                 * Make sure that the arguments actually fit in the remaining
1124                 * property data length
1125                 */
1126                if (it->cur + count > it->list_end) {
1127                        pr_err("%pOF: arguments longer than property\n",
1128                               it->parent);
1129                        goto err;
1130                }
1131        }
1132
1133        it->phandle_end = it->cur + count;
1134        it->cur_count = count;
1135
1136        return 0;
1137
1138err:
1139        if (it->node) {
1140                of_node_put(it->node);
1141                it->node = NULL;
1142        }
1143
1144        return -EINVAL;
1145}
1146EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1147
1148int of_phandle_iterator_args(struct of_phandle_iterator *it,
1149                             uint32_t *args,
1150                             int size)
1151{
1152        int i, count;
1153
1154        count = it->cur_count;
1155
1156        if (WARN_ON(size < count))
1157                count = size;
1158
1159        for (i = 0; i < count; i++)
1160                args[i] = be32_to_cpup(it->cur++);
1161
1162        return count;
1163}
1164
1165static int __of_parse_phandle_with_args(const struct device_node *np,
1166                                        const char *list_name,
1167                                        const char *cells_name,
1168                                        int cell_count, int index,
1169                                        struct of_phandle_args *out_args)
1170{
1171        struct of_phandle_iterator it;
1172        int rc, cur_index = 0;
1173
1174        /* Loop over the phandles until all the requested entry is found */
1175        of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1176                /*
1177                 * All of the error cases bail out of the loop, so at
1178                 * this point, the parsing is successful. If the requested
1179                 * index matches, then fill the out_args structure and return,
1180                 * or return -ENOENT for an empty entry.
1181                 */
1182                rc = -ENOENT;
1183                if (cur_index == index) {
1184                        if (!it.phandle)
1185                                goto err;
1186
1187                        if (out_args) {
1188                                int c;
1189
1190                                c = of_phandle_iterator_args(&it,
1191                                                             out_args->args,
1192                                                             MAX_PHANDLE_ARGS);
1193                                out_args->np = it.node;
1194                                out_args->args_count = c;
1195                        } else {
1196                                of_node_put(it.node);
1197                        }
1198
1199                        /* Found it! return success */
1200                        return 0;
1201                }
1202
1203                cur_index++;
1204        }
1205
1206        /*
1207         * Unlock node before returning result; will be one of:
1208         * -ENOENT : index is for empty phandle
1209         * -EINVAL : parsing error on data
1210         */
1211
1212 err:
1213        of_node_put(it.node);
1214        return rc;
1215}
1216
1217/**
1218 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1219 * @np: Pointer to device node holding phandle property
1220 * @phandle_name: Name of property holding a phandle value
1221 * @index: For properties holding a table of phandles, this is the index into
1222 *         the table
1223 *
1224 * Returns the device_node pointer with refcount incremented.  Use
1225 * of_node_put() on it when done.
1226 */
1227struct device_node *of_parse_phandle(const struct device_node *np,
1228                                     const char *phandle_name, int index)
1229{
1230        struct of_phandle_args args;
1231
1232        if (index < 0)
1233                return NULL;
1234
1235        if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1236                                         index, &args))
1237                return NULL;
1238
1239        return args.np;
1240}
1241EXPORT_SYMBOL(of_parse_phandle);
1242
1243/**
1244 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1245 * @np:         pointer to a device tree node containing a list
1246 * @list_name:  property name that contains a list
1247 * @cells_name: property name that specifies phandles' arguments count
1248 * @index:      index of a phandle to parse out
1249 * @out_args:   optional pointer to output arguments structure (will be filled)
1250 *
1251 * This function is useful to parse lists of phandles and their arguments.
1252 * Returns 0 on success and fills out_args, on error returns appropriate
1253 * errno value.
1254 *
1255 * Caller is responsible to call of_node_put() on the returned out_args->np
1256 * pointer.
1257 *
1258 * Example:
1259 *
1260 * phandle1: node1 {
1261 *      #list-cells = <2>;
1262 * }
1263 *
1264 * phandle2: node2 {
1265 *      #list-cells = <1>;
1266 * }
1267 *
1268 * node3 {
1269 *      list = <&phandle1 1 2 &phandle2 3>;
1270 * }
1271 *
1272 * To get a device_node of the `node2' node you may call this:
1273 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1274 */
1275int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1276                                const char *cells_name, int index,
1277                                struct of_phandle_args *out_args)
1278{
1279        if (index < 0)
1280                return -EINVAL;
1281        return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1282                                            index, out_args);
1283}
1284EXPORT_SYMBOL(of_parse_phandle_with_args);
1285
1286/**
1287 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1288 * @np:         pointer to a device tree node containing a list
1289 * @list_name:  property name that contains a list
1290 * @cell_count: number of argument cells following the phandle
1291 * @index:      index of a phandle to parse out
1292 * @out_args:   optional pointer to output arguments structure (will be filled)
1293 *
1294 * This function is useful to parse lists of phandles and their arguments.
1295 * Returns 0 on success and fills out_args, on error returns appropriate
1296 * errno value.
1297 *
1298 * Caller is responsible to call of_node_put() on the returned out_args->np
1299 * pointer.
1300 *
1301 * Example:
1302 *
1303 * phandle1: node1 {
1304 * }
1305 *
1306 * phandle2: node2 {
1307 * }
1308 *
1309 * node3 {
1310 *      list = <&phandle1 0 2 &phandle2 2 3>;
1311 * }
1312 *
1313 * To get a device_node of the `node2' node you may call this:
1314 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1315 */
1316int of_parse_phandle_with_fixed_args(const struct device_node *np,
1317                                const char *list_name, int cell_count,
1318                                int index, struct of_phandle_args *out_args)
1319{
1320        if (index < 0)
1321                return -EINVAL;
1322        return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1323                                           index, out_args);
1324}
1325EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1326
1327/**
1328 * of_count_phandle_with_args() - Find the number of phandles references in a property
1329 * @np:         pointer to a device tree node containing a list
1330 * @list_name:  property name that contains a list
1331 * @cells_name: property name that specifies phandles' arguments count
1332 *
1333 * Returns the number of phandle + argument tuples within a property. It
1334 * is a typical pattern to encode a list of phandle and variable
1335 * arguments into a single property. The number of arguments is encoded
1336 * by a property in the phandle-target node. For example, a gpios
1337 * property would contain a list of GPIO specifies consisting of a
1338 * phandle and 1 or more arguments. The number of arguments are
1339 * determined by the #gpio-cells property in the node pointed to by the
1340 * phandle.
1341 */
1342int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1343                                const char *cells_name)
1344{
1345        struct of_phandle_iterator it;
1346        int rc, cur_index = 0;
1347
1348        rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1349        if (rc)
1350                return rc;
1351
1352        while ((rc = of_phandle_iterator_next(&it)) == 0)
1353                cur_index += 1;
1354
1355        if (rc != -ENOENT)
1356                return rc;
1357
1358        return cur_index;
1359}
1360EXPORT_SYMBOL(of_count_phandle_with_args);
1361
1362/**
1363 * __of_add_property - Add a property to a node without lock operations
1364 */
1365int __of_add_property(struct device_node *np, struct property *prop)
1366{
1367        struct property **next;
1368
1369        prop->next = NULL;
1370        next = &np->properties;
1371        while (*next) {
1372                if (strcmp(prop->name, (*next)->name) == 0)
1373                        /* duplicate ! don't insert it */
1374                        return -EEXIST;
1375
1376                next = &(*next)->next;
1377        }
1378        *next = prop;
1379
1380        return 0;
1381}
1382
1383/**
1384 * of_add_property - Add a property to a node
1385 */
1386int of_add_property(struct device_node *np, struct property *prop)
1387{
1388        unsigned long flags;
1389        int rc;
1390
1391        mutex_lock(&of_mutex);
1392
1393        raw_spin_lock_irqsave(&devtree_lock, flags);
1394        rc = __of_add_property(np, prop);
1395        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1396
1397        if (!rc)
1398                __of_add_property_sysfs(np, prop);
1399
1400        mutex_unlock(&of_mutex);
1401
1402        if (!rc)
1403                of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1404
1405        return rc;
1406}
1407
1408int __of_remove_property(struct device_node *np, struct property *prop)
1409{
1410        struct property **next;
1411
1412        for (next = &np->properties; *next; next = &(*next)->next) {
1413                if (*next == prop)
1414                        break;
1415        }
1416        if (*next == NULL)
1417                return -ENODEV;
1418
1419        /* found the node */
1420        *next = prop->next;
1421        prop->next = np->deadprops;
1422        np->deadprops = prop;
1423
1424        return 0;
1425}
1426
1427/**
1428 * of_remove_property - Remove a property from a node.
1429 *
1430 * Note that we don't actually remove it, since we have given out
1431 * who-knows-how-many pointers to the data using get-property.
1432 * Instead we just move the property to the "dead properties"
1433 * list, so it won't be found any more.
1434 */
1435int of_remove_property(struct device_node *np, struct property *prop)
1436{
1437        unsigned long flags;
1438        int rc;
1439
1440        if (!prop)
1441                return -ENODEV;
1442
1443        mutex_lock(&of_mutex);
1444
1445        raw_spin_lock_irqsave(&devtree_lock, flags);
1446        rc = __of_remove_property(np, prop);
1447        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1448
1449        if (!rc)
1450                __of_remove_property_sysfs(np, prop);
1451
1452        mutex_unlock(&of_mutex);
1453
1454        if (!rc)
1455                of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1456
1457        return rc;
1458}
1459
1460int __of_update_property(struct device_node *np, struct property *newprop,
1461                struct property **oldpropp)
1462{
1463        struct property **next, *oldprop;
1464
1465        for (next = &np->properties; *next; next = &(*next)->next) {
1466                if (of_prop_cmp((*next)->name, newprop->name) == 0)
1467                        break;
1468        }
1469        *oldpropp = oldprop = *next;
1470
1471        if (oldprop) {
1472                /* replace the node */
1473                newprop->next = oldprop->next;
1474                *next = newprop;
1475                oldprop->next = np->deadprops;
1476                np->deadprops = oldprop;
1477        } else {
1478                /* new node */
1479                newprop->next = NULL;
1480                *next = newprop;
1481        }
1482
1483        return 0;
1484}
1485
1486/*
1487 * of_update_property - Update a property in a node, if the property does
1488 * not exist, add it.
1489 *
1490 * Note that we don't actually remove it, since we have given out
1491 * who-knows-how-many pointers to the data using get-property.
1492 * Instead we just move the property to the "dead properties" list,
1493 * and add the new property to the property list
1494 */
1495int of_update_property(struct device_node *np, struct property *newprop)
1496{
1497        struct property *oldprop;
1498        unsigned long flags;
1499        int rc;
1500
1501        if (!newprop->name)
1502                return -EINVAL;
1503
1504        mutex_lock(&of_mutex);
1505
1506        raw_spin_lock_irqsave(&devtree_lock, flags);
1507        rc = __of_update_property(np, newprop, &oldprop);
1508        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1509
1510        if (!rc)
1511                __of_update_property_sysfs(np, newprop, oldprop);
1512
1513        mutex_unlock(&of_mutex);
1514
1515        if (!rc)
1516                of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1517
1518        return rc;
1519}
1520
1521static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1522                         int id, const char *stem, int stem_len)
1523{
1524        ap->np = np;
1525        ap->id = id;
1526        strncpy(ap->stem, stem, stem_len);
1527        ap->stem[stem_len] = 0;
1528        list_add_tail(&ap->link, &aliases_lookup);
1529        pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1530                 ap->alias, ap->stem, ap->id, np);
1531}
1532
1533/**
1534 * of_alias_scan - Scan all properties of the 'aliases' node
1535 *
1536 * The function scans all the properties of the 'aliases' node and populates
1537 * the global lookup table with the properties.  It returns the
1538 * number of alias properties found, or an error code in case of failure.
1539 *
1540 * @dt_alloc:   An allocator that provides a virtual address to memory
1541 *              for storing the resulting tree
1542 */
1543void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1544{
1545        struct property *pp;
1546
1547        of_aliases = of_find_node_by_path("/aliases");
1548        of_chosen = of_find_node_by_path("/chosen");
1549        if (of_chosen == NULL)
1550                of_chosen = of_find_node_by_path("/chosen@0");
1551
1552        if (of_chosen) {
1553                /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1554                const char *name = NULL;
1555
1556                if (of_property_read_string(of_chosen, "stdout-path", &name))
1557                        of_property_read_string(of_chosen, "linux,stdout-path",
1558                                                &name);
1559                if (IS_ENABLED(CONFIG_PPC) && !name)
1560                        of_property_read_string(of_aliases, "stdout", &name);
1561                if (name)
1562                        of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1563        }
1564
1565        if (!of_aliases)
1566                return;
1567
1568        for_each_property_of_node(of_aliases, pp) {
1569                const char *start = pp->name;
1570                const char *end = start + strlen(start);
1571                struct device_node *np;
1572                struct alias_prop *ap;
1573                int id, len;
1574
1575                /* Skip those we do not want to proceed */
1576                if (!strcmp(pp->name, "name") ||
1577                    !strcmp(pp->name, "phandle") ||
1578                    !strcmp(pp->name, "linux,phandle"))
1579                        continue;
1580
1581                np = of_find_node_by_path(pp->value);
1582                if (!np)
1583                        continue;
1584
1585                /* walk the alias backwards to extract the id and work out
1586                 * the 'stem' string */
1587                while (isdigit(*(end-1)) && end > start)
1588                        end--;
1589                len = end - start;
1590
1591                if (kstrtoint(end, 10, &id) < 0)
1592                        continue;
1593
1594                /* Allocate an alias_prop with enough space for the stem */
1595                ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1596                if (!ap)
1597                        continue;
1598                memset(ap, 0, sizeof(*ap) + len + 1);
1599                ap->alias = start;
1600                of_alias_add(ap, np, id, start, len);
1601        }
1602}
1603
1604/**
1605 * of_alias_get_id - Get alias id for the given device_node
1606 * @np:         Pointer to the given device_node
1607 * @stem:       Alias stem of the given device_node
1608 *
1609 * The function travels the lookup table to get the alias id for the given
1610 * device_node and alias stem.  It returns the alias id if found.
1611 */
1612int of_alias_get_id(struct device_node *np, const char *stem)
1613{
1614        struct alias_prop *app;
1615        int id = -ENODEV;
1616
1617        mutex_lock(&of_mutex);
1618        list_for_each_entry(app, &aliases_lookup, link) {
1619                if (strcmp(app->stem, stem) != 0)
1620                        continue;
1621
1622                if (np == app->np) {
1623                        id = app->id;
1624                        break;
1625                }
1626        }
1627        mutex_unlock(&of_mutex);
1628
1629        return id;
1630}
1631EXPORT_SYMBOL_GPL(of_alias_get_id);
1632
1633/**
1634 * of_alias_get_highest_id - Get highest alias id for the given stem
1635 * @stem:       Alias stem to be examined
1636 *
1637 * The function travels the lookup table to get the highest alias id for the
1638 * given alias stem.  It returns the alias id if found.
1639 */
1640int of_alias_get_highest_id(const char *stem)
1641{
1642        struct alias_prop *app;
1643        int id = -ENODEV;
1644
1645        mutex_lock(&of_mutex);
1646        list_for_each_entry(app, &aliases_lookup, link) {
1647                if (strcmp(app->stem, stem) != 0)
1648                        continue;
1649
1650                if (app->id > id)
1651                        id = app->id;
1652        }
1653        mutex_unlock(&of_mutex);
1654
1655        return id;
1656}
1657EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1658
1659/**
1660 * of_console_check() - Test and setup console for DT setup
1661 * @dn - Pointer to device node
1662 * @name - Name to use for preferred console without index. ex. "ttyS"
1663 * @index - Index to use for preferred console.
1664 *
1665 * Check if the given device node matches the stdout-path property in the
1666 * /chosen node. If it does then register it as the preferred console and return
1667 * TRUE. Otherwise return FALSE.
1668 */
1669bool of_console_check(struct device_node *dn, char *name, int index)
1670{
1671        if (!dn || dn != of_stdout || console_set_on_cmdline)
1672                return false;
1673
1674        /*
1675         * XXX: cast `options' to char pointer to suppress complication
1676         * warnings: printk, UART and console drivers expect char pointer.
1677         */
1678        return !add_preferred_console(name, index, (char *)of_stdout_options);
1679}
1680EXPORT_SYMBOL_GPL(of_console_check);
1681
1682/**
1683 *      of_find_next_cache_node - Find a node's subsidiary cache
1684 *      @np:    node of type "cpu" or "cache"
1685 *
1686 *      Returns a node pointer with refcount incremented, use
1687 *      of_node_put() on it when done.  Caller should hold a reference
1688 *      to np.
1689 */
1690struct device_node *of_find_next_cache_node(const struct device_node *np)
1691{
1692        struct device_node *child, *cache_node;
1693
1694        cache_node = of_parse_phandle(np, "l2-cache", 0);
1695        if (!cache_node)
1696                cache_node = of_parse_phandle(np, "next-level-cache", 0);
1697
1698        if (cache_node)
1699                return cache_node;
1700
1701        /* OF on pmac has nodes instead of properties named "l2-cache"
1702         * beneath CPU nodes.
1703         */
1704        if (!strcmp(np->type, "cpu"))
1705                for_each_child_of_node(np, child)
1706                        if (!strcmp(child->type, "cache"))
1707                                return child;
1708
1709        return NULL;
1710}
1711
1712/**
1713 * of_find_last_cache_level - Find the level at which the last cache is
1714 *              present for the given logical cpu
1715 *
1716 * @cpu: cpu number(logical index) for which the last cache level is needed
1717 *
1718 * Returns the the level at which the last cache is present. It is exactly
1719 * same as  the total number of cache levels for the given logical cpu.
1720 */
1721int of_find_last_cache_level(unsigned int cpu)
1722{
1723        u32 cache_level = 0;
1724        struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1725
1726        while (np) {
1727                prev = np;
1728                of_node_put(np);
1729                np = of_find_next_cache_node(np);
1730        }
1731
1732        of_property_read_u32(prev, "cache-level", &cache_level);
1733
1734        return cache_level;
1735}
1736