linux/drivers/pci/hotplug/cpqphp_ctrl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Compaq Hot Plug Controller Driver
   4 *
   5 * Copyright (C) 1995,2001 Compaq Computer Corporation
   6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
   7 * Copyright (C) 2001 IBM Corp.
   8 *
   9 * All rights reserved.
  10 *
  11 * Send feedback to <greg@kroah.com>
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20#include <linux/interrupt.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/pci.h>
  24#include <linux/pci_hotplug.h>
  25#include <linux/kthread.h>
  26#include "cpqphp.h"
  27
  28static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
  29                        u8 behind_bridge, struct resource_lists *resources);
  30static int configure_new_function(struct controller *ctrl, struct pci_func *func,
  31                        u8 behind_bridge, struct resource_lists *resources);
  32static void interrupt_event_handler(struct controller *ctrl);
  33
  34
  35static struct task_struct *cpqhp_event_thread;
  36static struct timer_list *pushbutton_pending;   /* = NULL */
  37
  38/* delay is in jiffies to wait for */
  39static void long_delay(int delay)
  40{
  41        /*
  42         * XXX(hch): if someone is bored please convert all callers
  43         * to call msleep_interruptible directly.  They really want
  44         * to specify timeouts in natural units and spend a lot of
  45         * effort converting them to jiffies..
  46         */
  47        msleep_interruptible(jiffies_to_msecs(delay));
  48}
  49
  50
  51/* FIXME: The following line needs to be somewhere else... */
  52#define WRONG_BUS_FREQUENCY 0x07
  53static u8 handle_switch_change(u8 change, struct controller *ctrl)
  54{
  55        int hp_slot;
  56        u8 rc = 0;
  57        u16 temp_word;
  58        struct pci_func *func;
  59        struct event_info *taskInfo;
  60
  61        if (!change)
  62                return 0;
  63
  64        /* Switch Change */
  65        dbg("cpqsbd:  Switch interrupt received.\n");
  66
  67        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
  68                if (change & (0x1L << hp_slot)) {
  69                        /*
  70                         * this one changed.
  71                         */
  72                        func = cpqhp_slot_find(ctrl->bus,
  73                                (hp_slot + ctrl->slot_device_offset), 0);
  74
  75                        /* this is the structure that tells the worker thread
  76                         * what to do
  77                         */
  78                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
  79                        ctrl->next_event = (ctrl->next_event + 1) % 10;
  80                        taskInfo->hp_slot = hp_slot;
  81
  82                        rc++;
  83
  84                        temp_word = ctrl->ctrl_int_comp >> 16;
  85                        func->presence_save = (temp_word >> hp_slot) & 0x01;
  86                        func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
  87
  88                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
  89                                /*
  90                                 * Switch opened
  91                                 */
  92
  93                                func->switch_save = 0;
  94
  95                                taskInfo->event_type = INT_SWITCH_OPEN;
  96                        } else {
  97                                /*
  98                                 * Switch closed
  99                                 */
 100
 101                                func->switch_save = 0x10;
 102
 103                                taskInfo->event_type = INT_SWITCH_CLOSE;
 104                        }
 105                }
 106        }
 107
 108        return rc;
 109}
 110
 111/**
 112 * cpqhp_find_slot - find the struct slot of given device
 113 * @ctrl: scan lots of this controller
 114 * @device: the device id to find
 115 */
 116static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
 117{
 118        struct slot *slot = ctrl->slot;
 119
 120        while (slot && (slot->device != device))
 121                slot = slot->next;
 122
 123        return slot;
 124}
 125
 126
 127static u8 handle_presence_change(u16 change, struct controller *ctrl)
 128{
 129        int hp_slot;
 130        u8 rc = 0;
 131        u8 temp_byte;
 132        u16 temp_word;
 133        struct pci_func *func;
 134        struct event_info *taskInfo;
 135        struct slot *p_slot;
 136
 137        if (!change)
 138                return 0;
 139
 140        /*
 141         * Presence Change
 142         */
 143        dbg("cpqsbd:  Presence/Notify input change.\n");
 144        dbg("         Changed bits are 0x%4.4x\n", change);
 145
 146        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 147                if (change & (0x0101 << hp_slot)) {
 148                        /*
 149                         * this one changed.
 150                         */
 151                        func = cpqhp_slot_find(ctrl->bus,
 152                                (hp_slot + ctrl->slot_device_offset), 0);
 153
 154                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 155                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 156                        taskInfo->hp_slot = hp_slot;
 157
 158                        rc++;
 159
 160                        p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
 161                        if (!p_slot)
 162                                return 0;
 163
 164                        /* If the switch closed, must be a button
 165                         * If not in button mode, nevermind
 166                         */
 167                        if (func->switch_save && (ctrl->push_button == 1)) {
 168                                temp_word = ctrl->ctrl_int_comp >> 16;
 169                                temp_byte = (temp_word >> hp_slot) & 0x01;
 170                                temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
 171
 172                                if (temp_byte != func->presence_save) {
 173                                        /*
 174                                         * button Pressed (doesn't do anything)
 175                                         */
 176                                        dbg("hp_slot %d button pressed\n", hp_slot);
 177                                        taskInfo->event_type = INT_BUTTON_PRESS;
 178                                } else {
 179                                        /*
 180                                         * button Released - TAKE ACTION!!!!
 181                                         */
 182                                        dbg("hp_slot %d button released\n", hp_slot);
 183                                        taskInfo->event_type = INT_BUTTON_RELEASE;
 184
 185                                        /* Cancel if we are still blinking */
 186                                        if ((p_slot->state == BLINKINGON_STATE)
 187                                            || (p_slot->state == BLINKINGOFF_STATE)) {
 188                                                taskInfo->event_type = INT_BUTTON_CANCEL;
 189                                                dbg("hp_slot %d button cancel\n", hp_slot);
 190                                        } else if ((p_slot->state == POWERON_STATE)
 191                                                   || (p_slot->state == POWEROFF_STATE)) {
 192                                                /* info(msg_button_ignore, p_slot->number); */
 193                                                taskInfo->event_type = INT_BUTTON_IGNORE;
 194                                                dbg("hp_slot %d button ignore\n", hp_slot);
 195                                        }
 196                                }
 197                        } else {
 198                                /* Switch is open, assume a presence change
 199                                 * Save the presence state
 200                                 */
 201                                temp_word = ctrl->ctrl_int_comp >> 16;
 202                                func->presence_save = (temp_word >> hp_slot) & 0x01;
 203                                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
 204
 205                                if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
 206                                    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
 207                                        /* Present */
 208                                        taskInfo->event_type = INT_PRESENCE_ON;
 209                                } else {
 210                                        /* Not Present */
 211                                        taskInfo->event_type = INT_PRESENCE_OFF;
 212                                }
 213                        }
 214                }
 215        }
 216
 217        return rc;
 218}
 219
 220
 221static u8 handle_power_fault(u8 change, struct controller *ctrl)
 222{
 223        int hp_slot;
 224        u8 rc = 0;
 225        struct pci_func *func;
 226        struct event_info *taskInfo;
 227
 228        if (!change)
 229                return 0;
 230
 231        /*
 232         * power fault
 233         */
 234
 235        info("power fault interrupt\n");
 236
 237        for (hp_slot = 0; hp_slot < 6; hp_slot++) {
 238                if (change & (0x01 << hp_slot)) {
 239                        /*
 240                         * this one changed.
 241                         */
 242                        func = cpqhp_slot_find(ctrl->bus,
 243                                (hp_slot + ctrl->slot_device_offset), 0);
 244
 245                        taskInfo = &(ctrl->event_queue[ctrl->next_event]);
 246                        ctrl->next_event = (ctrl->next_event + 1) % 10;
 247                        taskInfo->hp_slot = hp_slot;
 248
 249                        rc++;
 250
 251                        if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
 252                                /*
 253                                 * power fault Cleared
 254                                 */
 255                                func->status = 0x00;
 256
 257                                taskInfo->event_type = INT_POWER_FAULT_CLEAR;
 258                        } else {
 259                                /*
 260                                 * power fault
 261                                 */
 262                                taskInfo->event_type = INT_POWER_FAULT;
 263
 264                                if (ctrl->rev < 4) {
 265                                        amber_LED_on(ctrl, hp_slot);
 266                                        green_LED_off(ctrl, hp_slot);
 267                                        set_SOGO(ctrl);
 268
 269                                        /* this is a fatal condition, we want
 270                                         * to crash the machine to protect from
 271                                         * data corruption. simulated_NMI
 272                                         * shouldn't ever return */
 273                                        /* FIXME
 274                                        simulated_NMI(hp_slot, ctrl); */
 275
 276                                        /* The following code causes a software
 277                                         * crash just in case simulated_NMI did
 278                                         * return */
 279                                        /*FIXME
 280                                        panic(msg_power_fault); */
 281                                } else {
 282                                        /* set power fault status for this board */
 283                                        func->status = 0xFF;
 284                                        info("power fault bit %x set\n", hp_slot);
 285                                }
 286                        }
 287                }
 288        }
 289
 290        return rc;
 291}
 292
 293
 294/**
 295 * sort_by_size - sort nodes on the list by their length, smallest first.
 296 * @head: list to sort
 297 */
 298static int sort_by_size(struct pci_resource **head)
 299{
 300        struct pci_resource *current_res;
 301        struct pci_resource *next_res;
 302        int out_of_order = 1;
 303
 304        if (!(*head))
 305                return 1;
 306
 307        if (!((*head)->next))
 308                return 0;
 309
 310        while (out_of_order) {
 311                out_of_order = 0;
 312
 313                /* Special case for swapping list head */
 314                if (((*head)->next) &&
 315                    ((*head)->length > (*head)->next->length)) {
 316                        out_of_order++;
 317                        current_res = *head;
 318                        *head = (*head)->next;
 319                        current_res->next = (*head)->next;
 320                        (*head)->next = current_res;
 321                }
 322
 323                current_res = *head;
 324
 325                while (current_res->next && current_res->next->next) {
 326                        if (current_res->next->length > current_res->next->next->length) {
 327                                out_of_order++;
 328                                next_res = current_res->next;
 329                                current_res->next = current_res->next->next;
 330                                current_res = current_res->next;
 331                                next_res->next = current_res->next;
 332                                current_res->next = next_res;
 333                        } else
 334                                current_res = current_res->next;
 335                }
 336        }  /* End of out_of_order loop */
 337
 338        return 0;
 339}
 340
 341
 342/**
 343 * sort_by_max_size - sort nodes on the list by their length, largest first.
 344 * @head: list to sort
 345 */
 346static int sort_by_max_size(struct pci_resource **head)
 347{
 348        struct pci_resource *current_res;
 349        struct pci_resource *next_res;
 350        int out_of_order = 1;
 351
 352        if (!(*head))
 353                return 1;
 354
 355        if (!((*head)->next))
 356                return 0;
 357
 358        while (out_of_order) {
 359                out_of_order = 0;
 360
 361                /* Special case for swapping list head */
 362                if (((*head)->next) &&
 363                    ((*head)->length < (*head)->next->length)) {
 364                        out_of_order++;
 365                        current_res = *head;
 366                        *head = (*head)->next;
 367                        current_res->next = (*head)->next;
 368                        (*head)->next = current_res;
 369                }
 370
 371                current_res = *head;
 372
 373                while (current_res->next && current_res->next->next) {
 374                        if (current_res->next->length < current_res->next->next->length) {
 375                                out_of_order++;
 376                                next_res = current_res->next;
 377                                current_res->next = current_res->next->next;
 378                                current_res = current_res->next;
 379                                next_res->next = current_res->next;
 380                                current_res->next = next_res;
 381                        } else
 382                                current_res = current_res->next;
 383                }
 384        }  /* End of out_of_order loop */
 385
 386        return 0;
 387}
 388
 389
 390/**
 391 * do_pre_bridge_resource_split - find node of resources that are unused
 392 * @head: new list head
 393 * @orig_head: original list head
 394 * @alignment: max node size (?)
 395 */
 396static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
 397                                struct pci_resource **orig_head, u32 alignment)
 398{
 399        struct pci_resource *prevnode = NULL;
 400        struct pci_resource *node;
 401        struct pci_resource *split_node;
 402        u32 rc;
 403        u32 temp_dword;
 404        dbg("do_pre_bridge_resource_split\n");
 405
 406        if (!(*head) || !(*orig_head))
 407                return NULL;
 408
 409        rc = cpqhp_resource_sort_and_combine(head);
 410
 411        if (rc)
 412                return NULL;
 413
 414        if ((*head)->base != (*orig_head)->base)
 415                return NULL;
 416
 417        if ((*head)->length == (*orig_head)->length)
 418                return NULL;
 419
 420
 421        /* If we got here, there the bridge requires some of the resource, but
 422         * we may be able to split some off of the front
 423         */
 424
 425        node = *head;
 426
 427        if (node->length & (alignment - 1)) {
 428                /* this one isn't an aligned length, so we'll make a new entry
 429                 * and split it up.
 430                 */
 431                split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 432
 433                if (!split_node)
 434                        return NULL;
 435
 436                temp_dword = (node->length | (alignment-1)) + 1 - alignment;
 437
 438                split_node->base = node->base;
 439                split_node->length = temp_dword;
 440
 441                node->length -= temp_dword;
 442                node->base += split_node->length;
 443
 444                /* Put it in the list */
 445                *head = split_node;
 446                split_node->next = node;
 447        }
 448
 449        if (node->length < alignment)
 450                return NULL;
 451
 452        /* Now unlink it */
 453        if (*head == node) {
 454                *head = node->next;
 455        } else {
 456                prevnode = *head;
 457                while (prevnode->next != node)
 458                        prevnode = prevnode->next;
 459
 460                prevnode->next = node->next;
 461        }
 462        node->next = NULL;
 463
 464        return node;
 465}
 466
 467
 468/**
 469 * do_bridge_resource_split - find one node of resources that aren't in use
 470 * @head: list head
 471 * @alignment: max node size (?)
 472 */
 473static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
 474{
 475        struct pci_resource *prevnode = NULL;
 476        struct pci_resource *node;
 477        u32 rc;
 478        u32 temp_dword;
 479
 480        rc = cpqhp_resource_sort_and_combine(head);
 481
 482        if (rc)
 483                return NULL;
 484
 485        node = *head;
 486
 487        while (node->next) {
 488                prevnode = node;
 489                node = node->next;
 490                kfree(prevnode);
 491        }
 492
 493        if (node->length < alignment)
 494                goto error;
 495
 496        if (node->base & (alignment - 1)) {
 497                /* Short circuit if adjusted size is too small */
 498                temp_dword = (node->base | (alignment-1)) + 1;
 499                if ((node->length - (temp_dword - node->base)) < alignment)
 500                        goto error;
 501
 502                node->length -= (temp_dword - node->base);
 503                node->base = temp_dword;
 504        }
 505
 506        if (node->length & (alignment - 1))
 507                /* There's stuff in use after this node */
 508                goto error;
 509
 510        return node;
 511error:
 512        kfree(node);
 513        return NULL;
 514}
 515
 516
 517/**
 518 * get_io_resource - find first node of given size not in ISA aliasing window.
 519 * @head: list to search
 520 * @size: size of node to find, must be a power of two.
 521 *
 522 * Description: This function sorts the resource list by size and then returns
 523 * returns the first node of "size" length that is not in the ISA aliasing
 524 * window.  If it finds a node larger than "size" it will split it up.
 525 */
 526static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
 527{
 528        struct pci_resource *prevnode;
 529        struct pci_resource *node;
 530        struct pci_resource *split_node;
 531        u32 temp_dword;
 532
 533        if (!(*head))
 534                return NULL;
 535
 536        if (cpqhp_resource_sort_and_combine(head))
 537                return NULL;
 538
 539        if (sort_by_size(head))
 540                return NULL;
 541
 542        for (node = *head; node; node = node->next) {
 543                if (node->length < size)
 544                        continue;
 545
 546                if (node->base & (size - 1)) {
 547                        /* this one isn't base aligned properly
 548                         * so we'll make a new entry and split it up
 549                         */
 550                        temp_dword = (node->base | (size-1)) + 1;
 551
 552                        /* Short circuit if adjusted size is too small */
 553                        if ((node->length - (temp_dword - node->base)) < size)
 554                                continue;
 555
 556                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 557
 558                        if (!split_node)
 559                                return NULL;
 560
 561                        split_node->base = node->base;
 562                        split_node->length = temp_dword - node->base;
 563                        node->base = temp_dword;
 564                        node->length -= split_node->length;
 565
 566                        /* Put it in the list */
 567                        split_node->next = node->next;
 568                        node->next = split_node;
 569                } /* End of non-aligned base */
 570
 571                /* Don't need to check if too small since we already did */
 572                if (node->length > size) {
 573                        /* this one is longer than we need
 574                         * so we'll make a new entry and split it up
 575                         */
 576                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 577
 578                        if (!split_node)
 579                                return NULL;
 580
 581                        split_node->base = node->base + size;
 582                        split_node->length = node->length - size;
 583                        node->length = size;
 584
 585                        /* Put it in the list */
 586                        split_node->next = node->next;
 587                        node->next = split_node;
 588                }  /* End of too big on top end */
 589
 590                /* For IO make sure it's not in the ISA aliasing space */
 591                if (node->base & 0x300L)
 592                        continue;
 593
 594                /* If we got here, then it is the right size
 595                 * Now take it out of the list and break
 596                 */
 597                if (*head == node) {
 598                        *head = node->next;
 599                } else {
 600                        prevnode = *head;
 601                        while (prevnode->next != node)
 602                                prevnode = prevnode->next;
 603
 604                        prevnode->next = node->next;
 605                }
 606                node->next = NULL;
 607                break;
 608        }
 609
 610        return node;
 611}
 612
 613
 614/**
 615 * get_max_resource - get largest node which has at least the given size.
 616 * @head: the list to search the node in
 617 * @size: the minimum size of the node to find
 618 *
 619 * Description: Gets the largest node that is at least "size" big from the
 620 * list pointed to by head.  It aligns the node on top and bottom
 621 * to "size" alignment before returning it.
 622 */
 623static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
 624{
 625        struct pci_resource *max;
 626        struct pci_resource *temp;
 627        struct pci_resource *split_node;
 628        u32 temp_dword;
 629
 630        if (cpqhp_resource_sort_and_combine(head))
 631                return NULL;
 632
 633        if (sort_by_max_size(head))
 634                return NULL;
 635
 636        for (max = *head; max; max = max->next) {
 637                /* If not big enough we could probably just bail,
 638                 * instead we'll continue to the next.
 639                 */
 640                if (max->length < size)
 641                        continue;
 642
 643                if (max->base & (size - 1)) {
 644                        /* this one isn't base aligned properly
 645                         * so we'll make a new entry and split it up
 646                         */
 647                        temp_dword = (max->base | (size-1)) + 1;
 648
 649                        /* Short circuit if adjusted size is too small */
 650                        if ((max->length - (temp_dword - max->base)) < size)
 651                                continue;
 652
 653                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 654
 655                        if (!split_node)
 656                                return NULL;
 657
 658                        split_node->base = max->base;
 659                        split_node->length = temp_dword - max->base;
 660                        max->base = temp_dword;
 661                        max->length -= split_node->length;
 662
 663                        split_node->next = max->next;
 664                        max->next = split_node;
 665                }
 666
 667                if ((max->base + max->length) & (size - 1)) {
 668                        /* this one isn't end aligned properly at the top
 669                         * so we'll make a new entry and split it up
 670                         */
 671                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 672
 673                        if (!split_node)
 674                                return NULL;
 675                        temp_dword = ((max->base + max->length) & ~(size - 1));
 676                        split_node->base = temp_dword;
 677                        split_node->length = max->length + max->base
 678                                             - split_node->base;
 679                        max->length -= split_node->length;
 680
 681                        split_node->next = max->next;
 682                        max->next = split_node;
 683                }
 684
 685                /* Make sure it didn't shrink too much when we aligned it */
 686                if (max->length < size)
 687                        continue;
 688
 689                /* Now take it out of the list */
 690                temp = *head;
 691                if (temp == max) {
 692                        *head = max->next;
 693                } else {
 694                        while (temp && temp->next != max)
 695                                temp = temp->next;
 696
 697                        if (temp)
 698                                temp->next = max->next;
 699                }
 700
 701                max->next = NULL;
 702                break;
 703        }
 704
 705        return max;
 706}
 707
 708
 709/**
 710 * get_resource - find resource of given size and split up larger ones.
 711 * @head: the list to search for resources
 712 * @size: the size limit to use
 713 *
 714 * Description: This function sorts the resource list by size and then
 715 * returns the first node of "size" length.  If it finds a node
 716 * larger than "size" it will split it up.
 717 *
 718 * size must be a power of two.
 719 */
 720static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
 721{
 722        struct pci_resource *prevnode;
 723        struct pci_resource *node;
 724        struct pci_resource *split_node;
 725        u32 temp_dword;
 726
 727        if (cpqhp_resource_sort_and_combine(head))
 728                return NULL;
 729
 730        if (sort_by_size(head))
 731                return NULL;
 732
 733        for (node = *head; node; node = node->next) {
 734                dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
 735                    __func__, size, node, node->base, node->length);
 736                if (node->length < size)
 737                        continue;
 738
 739                if (node->base & (size - 1)) {
 740                        dbg("%s: not aligned\n", __func__);
 741                        /* this one isn't base aligned properly
 742                         * so we'll make a new entry and split it up
 743                         */
 744                        temp_dword = (node->base | (size-1)) + 1;
 745
 746                        /* Short circuit if adjusted size is too small */
 747                        if ((node->length - (temp_dword - node->base)) < size)
 748                                continue;
 749
 750                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 751
 752                        if (!split_node)
 753                                return NULL;
 754
 755                        split_node->base = node->base;
 756                        split_node->length = temp_dword - node->base;
 757                        node->base = temp_dword;
 758                        node->length -= split_node->length;
 759
 760                        split_node->next = node->next;
 761                        node->next = split_node;
 762                } /* End of non-aligned base */
 763
 764                /* Don't need to check if too small since we already did */
 765                if (node->length > size) {
 766                        dbg("%s: too big\n", __func__);
 767                        /* this one is longer than we need
 768                         * so we'll make a new entry and split it up
 769                         */
 770                        split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
 771
 772                        if (!split_node)
 773                                return NULL;
 774
 775                        split_node->base = node->base + size;
 776                        split_node->length = node->length - size;
 777                        node->length = size;
 778
 779                        /* Put it in the list */
 780                        split_node->next = node->next;
 781                        node->next = split_node;
 782                }  /* End of too big on top end */
 783
 784                dbg("%s: got one!!!\n", __func__);
 785                /* If we got here, then it is the right size
 786                 * Now take it out of the list */
 787                if (*head == node) {
 788                        *head = node->next;
 789                } else {
 790                        prevnode = *head;
 791                        while (prevnode->next != node)
 792                                prevnode = prevnode->next;
 793
 794                        prevnode->next = node->next;
 795                }
 796                node->next = NULL;
 797                break;
 798        }
 799        return node;
 800}
 801
 802
 803/**
 804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
 805 * @head: the list to sort and clean up
 806 *
 807 * Description: Sorts all of the nodes in the list in ascending order by
 808 * their base addresses.  Also does garbage collection by
 809 * combining adjacent nodes.
 810 *
 811 * Returns %0 if success.
 812 */
 813int cpqhp_resource_sort_and_combine(struct pci_resource **head)
 814{
 815        struct pci_resource *node1;
 816        struct pci_resource *node2;
 817        int out_of_order = 1;
 818
 819        dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
 820
 821        if (!(*head))
 822                return 1;
 823
 824        dbg("*head->next = %p\n", (*head)->next);
 825
 826        if (!(*head)->next)
 827                return 0;       /* only one item on the list, already sorted! */
 828
 829        dbg("*head->base = 0x%x\n", (*head)->base);
 830        dbg("*head->next->base = 0x%x\n", (*head)->next->base);
 831        while (out_of_order) {
 832                out_of_order = 0;
 833
 834                /* Special case for swapping list head */
 835                if (((*head)->next) &&
 836                    ((*head)->base > (*head)->next->base)) {
 837                        node1 = *head;
 838                        (*head) = (*head)->next;
 839                        node1->next = (*head)->next;
 840                        (*head)->next = node1;
 841                        out_of_order++;
 842                }
 843
 844                node1 = (*head);
 845
 846                while (node1->next && node1->next->next) {
 847                        if (node1->next->base > node1->next->next->base) {
 848                                out_of_order++;
 849                                node2 = node1->next;
 850                                node1->next = node1->next->next;
 851                                node1 = node1->next;
 852                                node2->next = node1->next;
 853                                node1->next = node2;
 854                        } else
 855                                node1 = node1->next;
 856                }
 857        }  /* End of out_of_order loop */
 858
 859        node1 = *head;
 860
 861        while (node1 && node1->next) {
 862                if ((node1->base + node1->length) == node1->next->base) {
 863                        /* Combine */
 864                        dbg("8..\n");
 865                        node1->length += node1->next->length;
 866                        node2 = node1->next;
 867                        node1->next = node1->next->next;
 868                        kfree(node2);
 869                } else
 870                        node1 = node1->next;
 871        }
 872
 873        return 0;
 874}
 875
 876
 877irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
 878{
 879        struct controller *ctrl = data;
 880        u8 schedule_flag = 0;
 881        u8 reset;
 882        u16 misc;
 883        u32 Diff;
 884        u32 temp_dword;
 885
 886
 887        misc = readw(ctrl->hpc_reg + MISC);
 888        /*
 889         * Check to see if it was our interrupt
 890         */
 891        if (!(misc & 0x000C))
 892                return IRQ_NONE;
 893
 894        if (misc & 0x0004) {
 895                /*
 896                 * Serial Output interrupt Pending
 897                 */
 898
 899                /* Clear the interrupt */
 900                misc |= 0x0004;
 901                writew(misc, ctrl->hpc_reg + MISC);
 902
 903                /* Read to clear posted writes */
 904                misc = readw(ctrl->hpc_reg + MISC);
 905
 906                dbg("%s - waking up\n", __func__);
 907                wake_up_interruptible(&ctrl->queue);
 908        }
 909
 910        if (misc & 0x0008) {
 911                /* General-interrupt-input interrupt Pending */
 912                Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
 913
 914                ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 915
 916                /* Clear the interrupt */
 917                writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
 918
 919                /* Read it back to clear any posted writes */
 920                temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
 921
 922                if (!Diff)
 923                        /* Clear all interrupts */
 924                        writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
 925
 926                schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
 927                schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
 928                schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
 929        }
 930
 931        reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 932        if (reset & 0x40) {
 933                /* Bus reset has completed */
 934                reset &= 0xCF;
 935                writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
 936                reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
 937                wake_up_interruptible(&ctrl->queue);
 938        }
 939
 940        if (schedule_flag) {
 941                wake_up_process(cpqhp_event_thread);
 942                dbg("Waking even thread");
 943        }
 944        return IRQ_HANDLED;
 945}
 946
 947
 948/**
 949 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
 950 * @busnumber: bus where new node is to be located
 951 *
 952 * Returns pointer to the new node or %NULL if unsuccessful.
 953 */
 954struct pci_func *cpqhp_slot_create(u8 busnumber)
 955{
 956        struct pci_func *new_slot;
 957        struct pci_func *next;
 958
 959        new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
 960        if (new_slot == NULL)
 961                return new_slot;
 962
 963        new_slot->next = NULL;
 964        new_slot->configured = 1;
 965
 966        if (cpqhp_slot_list[busnumber] == NULL) {
 967                cpqhp_slot_list[busnumber] = new_slot;
 968        } else {
 969                next = cpqhp_slot_list[busnumber];
 970                while (next->next != NULL)
 971                        next = next->next;
 972                next->next = new_slot;
 973        }
 974        return new_slot;
 975}
 976
 977
 978/**
 979 * slot_remove - Removes a node from the linked list of slots.
 980 * @old_slot: slot to remove
 981 *
 982 * Returns %0 if successful, !0 otherwise.
 983 */
 984static int slot_remove(struct pci_func *old_slot)
 985{
 986        struct pci_func *next;
 987
 988        if (old_slot == NULL)
 989                return 1;
 990
 991        next = cpqhp_slot_list[old_slot->bus];
 992        if (next == NULL)
 993                return 1;
 994
 995        if (next == old_slot) {
 996                cpqhp_slot_list[old_slot->bus] = old_slot->next;
 997                cpqhp_destroy_board_resources(old_slot);
 998                kfree(old_slot);
 999                return 0;
1000        }
1001
1002        while ((next->next != old_slot) && (next->next != NULL))
1003                next = next->next;
1004
1005        if (next->next == old_slot) {
1006                next->next = old_slot->next;
1007                cpqhp_destroy_board_resources(old_slot);
1008                kfree(old_slot);
1009                return 0;
1010        } else
1011                return 2;
1012}
1013
1014
1015/**
1016 * bridge_slot_remove - Removes a node from the linked list of slots.
1017 * @bridge: bridge to remove
1018 *
1019 * Returns %0 if successful, !0 otherwise.
1020 */
1021static int bridge_slot_remove(struct pci_func *bridge)
1022{
1023        u8 subordinateBus, secondaryBus;
1024        u8 tempBus;
1025        struct pci_func *next;
1026
1027        secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028        subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029
1030        for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031                next = cpqhp_slot_list[tempBus];
1032
1033                while (!slot_remove(next))
1034                        next = cpqhp_slot_list[tempBus];
1035        }
1036
1037        next = cpqhp_slot_list[bridge->bus];
1038
1039        if (next == NULL)
1040                return 1;
1041
1042        if (next == bridge) {
1043                cpqhp_slot_list[bridge->bus] = bridge->next;
1044                goto out;
1045        }
1046
1047        while ((next->next != bridge) && (next->next != NULL))
1048                next = next->next;
1049
1050        if (next->next != bridge)
1051                return 2;
1052        next->next = bridge->next;
1053out:
1054        kfree(bridge);
1055        return 0;
1056}
1057
1058
1059/**
1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061 * @bus: bus to find
1062 * @device: device to find
1063 * @index: is %0 for first function found, %1 for the second...
1064 *
1065 * Returns pointer to the node if successful, %NULL otherwise.
1066 */
1067struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068{
1069        int found = -1;
1070        struct pci_func *func;
1071
1072        func = cpqhp_slot_list[bus];
1073
1074        if ((func == NULL) || ((func->device == device) && (index == 0)))
1075                return func;
1076
1077        if (func->device == device)
1078                found++;
1079
1080        while (func->next != NULL) {
1081                func = func->next;
1082
1083                if (func->device == device)
1084                        found++;
1085
1086                if (found == index)
1087                        return func;
1088        }
1089
1090        return NULL;
1091}
1092
1093
1094/* DJZ: I don't think is_bridge will work as is.
1095 * FIXME */
1096static int is_bridge(struct pci_func *func)
1097{
1098        /* Check the header type */
1099        if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100                return 1;
1101        else
1102                return 0;
1103}
1104
1105
1106/**
1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108 * @ctrl: controller to change frequency/mode for.
1109 * @adapter_speed: the speed of the adapter we want to match.
1110 * @hp_slot: the slot number where the adapter is installed.
1111 *
1112 * Returns %0 if we successfully change frequency and/or mode to match the
1113 * adapter speed.
1114 */
1115static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116{
1117        struct slot *slot;
1118        struct pci_bus *bus = ctrl->pci_bus;
1119        u8 reg;
1120        u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121        u16 reg16;
1122        u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123
1124        if (bus->cur_bus_speed == adapter_speed)
1125                return 0;
1126
1127        /* We don't allow freq/mode changes if we find another adapter running
1128         * in another slot on this controller
1129         */
1130        for (slot = ctrl->slot; slot; slot = slot->next) {
1131                if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132                        continue;
1133                if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1134                        continue;
1135                if (slot->hotplug_slot->info->adapter_status == 0)
1136                        continue;
1137                /* If another adapter is running on the same segment but at a
1138                 * lower speed/mode, we allow the new adapter to function at
1139                 * this rate if supported
1140                 */
1141                if (bus->cur_bus_speed < adapter_speed)
1142                        return 0;
1143
1144                return 1;
1145        }
1146
1147        /* If the controller doesn't support freq/mode changes and the
1148         * controller is running at a higher mode, we bail
1149         */
1150        if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1151                return 1;
1152
1153        /* But we allow the adapter to run at a lower rate if possible */
1154        if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1155                return 0;
1156
1157        /* We try to set the max speed supported by both the adapter and
1158         * controller
1159         */
1160        if (bus->max_bus_speed < adapter_speed) {
1161                if (bus->cur_bus_speed == bus->max_bus_speed)
1162                        return 0;
1163                adapter_speed = bus->max_bus_speed;
1164        }
1165
1166        writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1167        writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1168
1169        set_SOGO(ctrl);
1170        wait_for_ctrl_irq(ctrl);
1171
1172        if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1173                reg = 0xF5;
1174        else
1175                reg = 0xF4;
1176        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1177
1178        reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1179        reg16 &= ~0x000F;
1180        switch (adapter_speed) {
1181                case(PCI_SPEED_133MHz_PCIX):
1182                        reg = 0x75;
1183                        reg16 |= 0xB;
1184                        break;
1185                case(PCI_SPEED_100MHz_PCIX):
1186                        reg = 0x74;
1187                        reg16 |= 0xA;
1188                        break;
1189                case(PCI_SPEED_66MHz_PCIX):
1190                        reg = 0x73;
1191                        reg16 |= 0x9;
1192                        break;
1193                case(PCI_SPEED_66MHz):
1194                        reg = 0x73;
1195                        reg16 |= 0x1;
1196                        break;
1197                default: /* 33MHz PCI 2.2 */
1198                        reg = 0x71;
1199                        break;
1200
1201        }
1202        reg16 |= 0xB << 12;
1203        writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1204
1205        mdelay(5);
1206
1207        /* Reenable interrupts */
1208        writel(0, ctrl->hpc_reg + INT_MASK);
1209
1210        pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1211
1212        /* Restart state machine */
1213        reg = ~0xF;
1214        pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1215        pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1216
1217        /* Only if mode change...*/
1218        if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1219                ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1220                        set_SOGO(ctrl);
1221
1222        wait_for_ctrl_irq(ctrl);
1223        mdelay(1100);
1224
1225        /* Restore LED/Slot state */
1226        writel(leds, ctrl->hpc_reg + LED_CONTROL);
1227        writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1228
1229        set_SOGO(ctrl);
1230        wait_for_ctrl_irq(ctrl);
1231
1232        bus->cur_bus_speed = adapter_speed;
1233        slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1234
1235        info("Successfully changed frequency/mode for adapter in slot %d\n",
1236                        slot->number);
1237        return 0;
1238}
1239
1240/* the following routines constitute the bulk of the
1241 * hotplug controller logic
1242 */
1243
1244
1245/**
1246 * board_replaced - Called after a board has been replaced in the system.
1247 * @func: PCI device/function information
1248 * @ctrl: hotplug controller
1249 *
1250 * This is only used if we don't have resources for hot add.
1251 * Turns power on for the board.
1252 * Checks to see if board is the same.
1253 * If board is same, reconfigures it.
1254 * If board isn't same, turns it back off.
1255 */
1256static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1257{
1258        struct pci_bus *bus = ctrl->pci_bus;
1259        u8 hp_slot;
1260        u8 temp_byte;
1261        u8 adapter_speed;
1262        u32 rc = 0;
1263
1264        hp_slot = func->device - ctrl->slot_device_offset;
1265
1266        /*
1267         * The switch is open.
1268         */
1269        if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1270                rc = INTERLOCK_OPEN;
1271        /*
1272         * The board is already on
1273         */
1274        else if (is_slot_enabled(ctrl, hp_slot))
1275                rc = CARD_FUNCTIONING;
1276        else {
1277                mutex_lock(&ctrl->crit_sect);
1278
1279                /* turn on board without attaching to the bus */
1280                enable_slot_power(ctrl, hp_slot);
1281
1282                set_SOGO(ctrl);
1283
1284                /* Wait for SOBS to be unset */
1285                wait_for_ctrl_irq(ctrl);
1286
1287                /* Change bits in slot power register to force another shift out
1288                 * NOTE: this is to work around the timer bug */
1289                temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1290                writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1291                writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1292
1293                set_SOGO(ctrl);
1294
1295                /* Wait for SOBS to be unset */
1296                wait_for_ctrl_irq(ctrl);
1297
1298                adapter_speed = get_adapter_speed(ctrl, hp_slot);
1299                if (bus->cur_bus_speed != adapter_speed)
1300                        if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1301                                rc = WRONG_BUS_FREQUENCY;
1302
1303                /* turn off board without attaching to the bus */
1304                disable_slot_power(ctrl, hp_slot);
1305
1306                set_SOGO(ctrl);
1307
1308                /* Wait for SOBS to be unset */
1309                wait_for_ctrl_irq(ctrl);
1310
1311                mutex_unlock(&ctrl->crit_sect);
1312
1313                if (rc)
1314                        return rc;
1315
1316                mutex_lock(&ctrl->crit_sect);
1317
1318                slot_enable(ctrl, hp_slot);
1319                green_LED_blink(ctrl, hp_slot);
1320
1321                amber_LED_off(ctrl, hp_slot);
1322
1323                set_SOGO(ctrl);
1324
1325                /* Wait for SOBS to be unset */
1326                wait_for_ctrl_irq(ctrl);
1327
1328                mutex_unlock(&ctrl->crit_sect);
1329
1330                /* Wait for ~1 second because of hot plug spec */
1331                long_delay(1*HZ);
1332
1333                /* Check for a power fault */
1334                if (func->status == 0xFF) {
1335                        /* power fault occurred, but it was benign */
1336                        rc = POWER_FAILURE;
1337                        func->status = 0;
1338                } else
1339                        rc = cpqhp_valid_replace(ctrl, func);
1340
1341                if (!rc) {
1342                        /* It must be the same board */
1343
1344                        rc = cpqhp_configure_board(ctrl, func);
1345
1346                        /* If configuration fails, turn it off
1347                         * Get slot won't work for devices behind
1348                         * bridges, but in this case it will always be
1349                         * called for the "base" bus/dev/func of an
1350                         * adapter.
1351                         */
1352
1353                        mutex_lock(&ctrl->crit_sect);
1354
1355                        amber_LED_on(ctrl, hp_slot);
1356                        green_LED_off(ctrl, hp_slot);
1357                        slot_disable(ctrl, hp_slot);
1358
1359                        set_SOGO(ctrl);
1360
1361                        /* Wait for SOBS to be unset */
1362                        wait_for_ctrl_irq(ctrl);
1363
1364                        mutex_unlock(&ctrl->crit_sect);
1365
1366                        if (rc)
1367                                return rc;
1368                        else
1369                                return 1;
1370
1371                } else {
1372                        /* Something is wrong
1373
1374                         * Get slot won't work for devices behind bridges, but
1375                         * in this case it will always be called for the "base"
1376                         * bus/dev/func of an adapter.
1377                         */
1378
1379                        mutex_lock(&ctrl->crit_sect);
1380
1381                        amber_LED_on(ctrl, hp_slot);
1382                        green_LED_off(ctrl, hp_slot);
1383                        slot_disable(ctrl, hp_slot);
1384
1385                        set_SOGO(ctrl);
1386
1387                        /* Wait for SOBS to be unset */
1388                        wait_for_ctrl_irq(ctrl);
1389
1390                        mutex_unlock(&ctrl->crit_sect);
1391                }
1392
1393        }
1394        return rc;
1395
1396}
1397
1398
1399/**
1400 * board_added - Called after a board has been added to the system.
1401 * @func: PCI device/function info
1402 * @ctrl: hotplug controller
1403 *
1404 * Turns power on for the board.
1405 * Configures board.
1406 */
1407static u32 board_added(struct pci_func *func, struct controller *ctrl)
1408{
1409        u8 hp_slot;
1410        u8 temp_byte;
1411        u8 adapter_speed;
1412        int index;
1413        u32 temp_register = 0xFFFFFFFF;
1414        u32 rc = 0;
1415        struct pci_func *new_slot = NULL;
1416        struct pci_bus *bus = ctrl->pci_bus;
1417        struct slot *p_slot;
1418        struct resource_lists res_lists;
1419
1420        hp_slot = func->device - ctrl->slot_device_offset;
1421        dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1422            __func__, func->device, ctrl->slot_device_offset, hp_slot);
1423
1424        mutex_lock(&ctrl->crit_sect);
1425
1426        /* turn on board without attaching to the bus */
1427        enable_slot_power(ctrl, hp_slot);
1428
1429        set_SOGO(ctrl);
1430
1431        /* Wait for SOBS to be unset */
1432        wait_for_ctrl_irq(ctrl);
1433
1434        /* Change bits in slot power register to force another shift out
1435         * NOTE: this is to work around the timer bug
1436         */
1437        temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1438        writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1439        writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1440
1441        set_SOGO(ctrl);
1442
1443        /* Wait for SOBS to be unset */
1444        wait_for_ctrl_irq(ctrl);
1445
1446        adapter_speed = get_adapter_speed(ctrl, hp_slot);
1447        if (bus->cur_bus_speed != adapter_speed)
1448                if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1449                        rc = WRONG_BUS_FREQUENCY;
1450
1451        /* turn off board without attaching to the bus */
1452        disable_slot_power(ctrl, hp_slot);
1453
1454        set_SOGO(ctrl);
1455
1456        /* Wait for SOBS to be unset */
1457        wait_for_ctrl_irq(ctrl);
1458
1459        mutex_unlock(&ctrl->crit_sect);
1460
1461        if (rc)
1462                return rc;
1463
1464        p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1465
1466        /* turn on board and blink green LED */
1467
1468        dbg("%s: before down\n", __func__);
1469        mutex_lock(&ctrl->crit_sect);
1470        dbg("%s: after down\n", __func__);
1471
1472        dbg("%s: before slot_enable\n", __func__);
1473        slot_enable(ctrl, hp_slot);
1474
1475        dbg("%s: before green_LED_blink\n", __func__);
1476        green_LED_blink(ctrl, hp_slot);
1477
1478        dbg("%s: before amber_LED_blink\n", __func__);
1479        amber_LED_off(ctrl, hp_slot);
1480
1481        dbg("%s: before set_SOGO\n", __func__);
1482        set_SOGO(ctrl);
1483
1484        /* Wait for SOBS to be unset */
1485        dbg("%s: before wait_for_ctrl_irq\n", __func__);
1486        wait_for_ctrl_irq(ctrl);
1487        dbg("%s: after wait_for_ctrl_irq\n", __func__);
1488
1489        dbg("%s: before up\n", __func__);
1490        mutex_unlock(&ctrl->crit_sect);
1491        dbg("%s: after up\n", __func__);
1492
1493        /* Wait for ~1 second because of hot plug spec */
1494        dbg("%s: before long_delay\n", __func__);
1495        long_delay(1*HZ);
1496        dbg("%s: after long_delay\n", __func__);
1497
1498        dbg("%s: func status = %x\n", __func__, func->status);
1499        /* Check for a power fault */
1500        if (func->status == 0xFF) {
1501                /* power fault occurred, but it was benign */
1502                temp_register = 0xFFFFFFFF;
1503                dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1504                rc = POWER_FAILURE;
1505                func->status = 0;
1506        } else {
1507                /* Get vendor/device ID u32 */
1508                ctrl->pci_bus->number = func->bus;
1509                rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1510                dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1511                dbg("%s: temp_register is %x\n", __func__, temp_register);
1512
1513                if (rc != 0) {
1514                        /* Something's wrong here */
1515                        temp_register = 0xFFFFFFFF;
1516                        dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1517                }
1518                /* Preset return code.  It will be changed later if things go okay. */
1519                rc = NO_ADAPTER_PRESENT;
1520        }
1521
1522        /* All F's is an empty slot or an invalid board */
1523        if (temp_register != 0xFFFFFFFF) {
1524                res_lists.io_head = ctrl->io_head;
1525                res_lists.mem_head = ctrl->mem_head;
1526                res_lists.p_mem_head = ctrl->p_mem_head;
1527                res_lists.bus_head = ctrl->bus_head;
1528                res_lists.irqs = NULL;
1529
1530                rc = configure_new_device(ctrl, func, 0, &res_lists);
1531
1532                dbg("%s: back from configure_new_device\n", __func__);
1533                ctrl->io_head = res_lists.io_head;
1534                ctrl->mem_head = res_lists.mem_head;
1535                ctrl->p_mem_head = res_lists.p_mem_head;
1536                ctrl->bus_head = res_lists.bus_head;
1537
1538                cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1539                cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1540                cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1541                cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1542
1543                if (rc) {
1544                        mutex_lock(&ctrl->crit_sect);
1545
1546                        amber_LED_on(ctrl, hp_slot);
1547                        green_LED_off(ctrl, hp_slot);
1548                        slot_disable(ctrl, hp_slot);
1549
1550                        set_SOGO(ctrl);
1551
1552                        /* Wait for SOBS to be unset */
1553                        wait_for_ctrl_irq(ctrl);
1554
1555                        mutex_unlock(&ctrl->crit_sect);
1556                        return rc;
1557                } else {
1558                        cpqhp_save_slot_config(ctrl, func);
1559                }
1560
1561
1562                func->status = 0;
1563                func->switch_save = 0x10;
1564                func->is_a_board = 0x01;
1565
1566                /* next, we will instantiate the linux pci_dev structures (with
1567                 * appropriate driver notification, if already present) */
1568                dbg("%s: configure linux pci_dev structure\n", __func__);
1569                index = 0;
1570                do {
1571                        new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1572                        if (new_slot && !new_slot->pci_dev)
1573                                cpqhp_configure_device(ctrl, new_slot);
1574                } while (new_slot);
1575
1576                mutex_lock(&ctrl->crit_sect);
1577
1578                green_LED_on(ctrl, hp_slot);
1579
1580                set_SOGO(ctrl);
1581
1582                /* Wait for SOBS to be unset */
1583                wait_for_ctrl_irq(ctrl);
1584
1585                mutex_unlock(&ctrl->crit_sect);
1586        } else {
1587                mutex_lock(&ctrl->crit_sect);
1588
1589                amber_LED_on(ctrl, hp_slot);
1590                green_LED_off(ctrl, hp_slot);
1591                slot_disable(ctrl, hp_slot);
1592
1593                set_SOGO(ctrl);
1594
1595                /* Wait for SOBS to be unset */
1596                wait_for_ctrl_irq(ctrl);
1597
1598                mutex_unlock(&ctrl->crit_sect);
1599
1600                return rc;
1601        }
1602        return 0;
1603}
1604
1605
1606/**
1607 * remove_board - Turns off slot and LEDs
1608 * @func: PCI device/function info
1609 * @replace_flag: whether replacing or adding a new device
1610 * @ctrl: target controller
1611 */
1612static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1613{
1614        int index;
1615        u8 skip = 0;
1616        u8 device;
1617        u8 hp_slot;
1618        u8 temp_byte;
1619        u32 rc;
1620        struct resource_lists res_lists;
1621        struct pci_func *temp_func;
1622
1623        if (cpqhp_unconfigure_device(func))
1624                return 1;
1625
1626        device = func->device;
1627
1628        hp_slot = func->device - ctrl->slot_device_offset;
1629        dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1630
1631        /* When we get here, it is safe to change base address registers.
1632         * We will attempt to save the base address register lengths */
1633        if (replace_flag || !ctrl->add_support)
1634                rc = cpqhp_save_base_addr_length(ctrl, func);
1635        else if (!func->bus_head && !func->mem_head &&
1636                 !func->p_mem_head && !func->io_head) {
1637                /* Here we check to see if we've saved any of the board's
1638                 * resources already.  If so, we'll skip the attempt to
1639                 * determine what's being used. */
1640                index = 0;
1641                temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1642                while (temp_func) {
1643                        if (temp_func->bus_head || temp_func->mem_head
1644                            || temp_func->p_mem_head || temp_func->io_head) {
1645                                skip = 1;
1646                                break;
1647                        }
1648                        temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1649                }
1650
1651                if (!skip)
1652                        rc = cpqhp_save_used_resources(ctrl, func);
1653        }
1654        /* Change status to shutdown */
1655        if (func->is_a_board)
1656                func->status = 0x01;
1657        func->configured = 0;
1658
1659        mutex_lock(&ctrl->crit_sect);
1660
1661        green_LED_off(ctrl, hp_slot);
1662        slot_disable(ctrl, hp_slot);
1663
1664        set_SOGO(ctrl);
1665
1666        /* turn off SERR for slot */
1667        temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1668        temp_byte &= ~(0x01 << hp_slot);
1669        writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1670
1671        /* Wait for SOBS to be unset */
1672        wait_for_ctrl_irq(ctrl);
1673
1674        mutex_unlock(&ctrl->crit_sect);
1675
1676        if (!replace_flag && ctrl->add_support) {
1677                while (func) {
1678                        res_lists.io_head = ctrl->io_head;
1679                        res_lists.mem_head = ctrl->mem_head;
1680                        res_lists.p_mem_head = ctrl->p_mem_head;
1681                        res_lists.bus_head = ctrl->bus_head;
1682
1683                        cpqhp_return_board_resources(func, &res_lists);
1684
1685                        ctrl->io_head = res_lists.io_head;
1686                        ctrl->mem_head = res_lists.mem_head;
1687                        ctrl->p_mem_head = res_lists.p_mem_head;
1688                        ctrl->bus_head = res_lists.bus_head;
1689
1690                        cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1691                        cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1692                        cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1693                        cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1694
1695                        if (is_bridge(func)) {
1696                                bridge_slot_remove(func);
1697                        } else
1698                                slot_remove(func);
1699
1700                        func = cpqhp_slot_find(ctrl->bus, device, 0);
1701                }
1702
1703                /* Setup slot structure with entry for empty slot */
1704                func = cpqhp_slot_create(ctrl->bus);
1705
1706                if (func == NULL)
1707                        return 1;
1708
1709                func->bus = ctrl->bus;
1710                func->device = device;
1711                func->function = 0;
1712                func->configured = 0;
1713                func->switch_save = 0x10;
1714                func->is_a_board = 0;
1715                func->p_task_event = NULL;
1716        }
1717
1718        return 0;
1719}
1720
1721static void pushbutton_helper_thread(struct timer_list *t)
1722{
1723        pushbutton_pending = t;
1724
1725        wake_up_process(cpqhp_event_thread);
1726}
1727
1728
1729/* this is the main worker thread */
1730static int event_thread(void *data)
1731{
1732        struct controller *ctrl;
1733
1734        while (1) {
1735                dbg("!!!!event_thread sleeping\n");
1736                set_current_state(TASK_INTERRUPTIBLE);
1737                schedule();
1738
1739                if (kthread_should_stop())
1740                        break;
1741                /* Do stuff here */
1742                if (pushbutton_pending)
1743                        cpqhp_pushbutton_thread(pushbutton_pending);
1744                else
1745                        for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1746                                interrupt_event_handler(ctrl);
1747        }
1748        dbg("event_thread signals exit\n");
1749        return 0;
1750}
1751
1752int cpqhp_event_start_thread(void)
1753{
1754        cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1755        if (IS_ERR(cpqhp_event_thread)) {
1756                err("Can't start up our event thread\n");
1757                return PTR_ERR(cpqhp_event_thread);
1758        }
1759
1760        return 0;
1761}
1762
1763
1764void cpqhp_event_stop_thread(void)
1765{
1766        kthread_stop(cpqhp_event_thread);
1767}
1768
1769
1770static int update_slot_info(struct controller *ctrl, struct slot *slot)
1771{
1772        struct hotplug_slot_info *info;
1773        int result;
1774
1775        info = kmalloc(sizeof(*info), GFP_KERNEL);
1776        if (!info)
1777                return -ENOMEM;
1778
1779        info->power_status = get_slot_enabled(ctrl, slot);
1780        info->attention_status = cpq_get_attention_status(ctrl, slot);
1781        info->latch_status = cpq_get_latch_status(ctrl, slot);
1782        info->adapter_status = get_presence_status(ctrl, slot);
1783        result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1784        kfree(info);
1785        return result;
1786}
1787
1788static void interrupt_event_handler(struct controller *ctrl)
1789{
1790        int loop = 0;
1791        int change = 1;
1792        struct pci_func *func;
1793        u8 hp_slot;
1794        struct slot *p_slot;
1795
1796        while (change) {
1797                change = 0;
1798
1799                for (loop = 0; loop < 10; loop++) {
1800                        /* dbg("loop %d\n", loop); */
1801                        if (ctrl->event_queue[loop].event_type != 0) {
1802                                hp_slot = ctrl->event_queue[loop].hp_slot;
1803
1804                                func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1805                                if (!func)
1806                                        return;
1807
1808                                p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1809                                if (!p_slot)
1810                                        return;
1811
1812                                dbg("hp_slot %d, func %p, p_slot %p\n",
1813                                    hp_slot, func, p_slot);
1814
1815                                if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1816                                        dbg("button pressed\n");
1817                                } else if (ctrl->event_queue[loop].event_type ==
1818                                           INT_BUTTON_CANCEL) {
1819                                        dbg("button cancel\n");
1820                                        del_timer(&p_slot->task_event);
1821
1822                                        mutex_lock(&ctrl->crit_sect);
1823
1824                                        if (p_slot->state == BLINKINGOFF_STATE) {
1825                                                /* slot is on */
1826                                                dbg("turn on green LED\n");
1827                                                green_LED_on(ctrl, hp_slot);
1828                                        } else if (p_slot->state == BLINKINGON_STATE) {
1829                                                /* slot is off */
1830                                                dbg("turn off green LED\n");
1831                                                green_LED_off(ctrl, hp_slot);
1832                                        }
1833
1834                                        info(msg_button_cancel, p_slot->number);
1835
1836                                        p_slot->state = STATIC_STATE;
1837
1838                                        amber_LED_off(ctrl, hp_slot);
1839
1840                                        set_SOGO(ctrl);
1841
1842                                        /* Wait for SOBS to be unset */
1843                                        wait_for_ctrl_irq(ctrl);
1844
1845                                        mutex_unlock(&ctrl->crit_sect);
1846                                }
1847                                /*** button Released (No action on press...) */
1848                                else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1849                                        dbg("button release\n");
1850
1851                                        if (is_slot_enabled(ctrl, hp_slot)) {
1852                                                dbg("slot is on\n");
1853                                                p_slot->state = BLINKINGOFF_STATE;
1854                                                info(msg_button_off, p_slot->number);
1855                                        } else {
1856                                                dbg("slot is off\n");
1857                                                p_slot->state = BLINKINGON_STATE;
1858                                                info(msg_button_on, p_slot->number);
1859                                        }
1860                                        mutex_lock(&ctrl->crit_sect);
1861
1862                                        dbg("blink green LED and turn off amber\n");
1863
1864                                        amber_LED_off(ctrl, hp_slot);
1865                                        green_LED_blink(ctrl, hp_slot);
1866
1867                                        set_SOGO(ctrl);
1868
1869                                        /* Wait for SOBS to be unset */
1870                                        wait_for_ctrl_irq(ctrl);
1871
1872                                        mutex_unlock(&ctrl->crit_sect);
1873                                        timer_setup(&p_slot->task_event,
1874                                                    pushbutton_helper_thread,
1875                                                    0);
1876                                        p_slot->hp_slot = hp_slot;
1877                                        p_slot->ctrl = ctrl;
1878/*                                      p_slot->physical_slot = physical_slot; */
1879                                        p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1880
1881                                        dbg("add_timer p_slot = %p\n", p_slot);
1882                                        add_timer(&p_slot->task_event);
1883                                }
1884                                /***********POWER FAULT */
1885                                else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1886                                        dbg("power fault\n");
1887                                } else {
1888                                        /* refresh notification */
1889                                        update_slot_info(ctrl, p_slot);
1890                                }
1891
1892                                ctrl->event_queue[loop].event_type = 0;
1893
1894                                change = 1;
1895                        }
1896                }               /* End of FOR loop */
1897        }
1898
1899        return;
1900}
1901
1902
1903/**
1904 * cpqhp_pushbutton_thread - handle pushbutton events
1905 * @slot: target slot (struct)
1906 *
1907 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1908 * Handles all pending events and exits.
1909 */
1910void cpqhp_pushbutton_thread(struct timer_list *t)
1911{
1912        u8 hp_slot;
1913        u8 device;
1914        struct pci_func *func;
1915        struct slot *p_slot = from_timer(p_slot, t, task_event);
1916        struct controller *ctrl = (struct controller *) p_slot->ctrl;
1917
1918        pushbutton_pending = NULL;
1919        hp_slot = p_slot->hp_slot;
1920
1921        device = p_slot->device;
1922
1923        if (is_slot_enabled(ctrl, hp_slot)) {
1924                p_slot->state = POWEROFF_STATE;
1925                /* power Down board */
1926                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1927                dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1928                if (!func) {
1929                        dbg("Error! func NULL in %s\n", __func__);
1930                        return;
1931                }
1932
1933                if (cpqhp_process_SS(ctrl, func) != 0) {
1934                        amber_LED_on(ctrl, hp_slot);
1935                        green_LED_on(ctrl, hp_slot);
1936
1937                        set_SOGO(ctrl);
1938
1939                        /* Wait for SOBS to be unset */
1940                        wait_for_ctrl_irq(ctrl);
1941                }
1942
1943                p_slot->state = STATIC_STATE;
1944        } else {
1945                p_slot->state = POWERON_STATE;
1946                /* slot is off */
1947
1948                func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1949                dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1950                if (!func) {
1951                        dbg("Error! func NULL in %s\n", __func__);
1952                        return;
1953                }
1954
1955                if (ctrl != NULL) {
1956                        if (cpqhp_process_SI(ctrl, func) != 0) {
1957                                amber_LED_on(ctrl, hp_slot);
1958                                green_LED_off(ctrl, hp_slot);
1959
1960                                set_SOGO(ctrl);
1961
1962                                /* Wait for SOBS to be unset */
1963                                wait_for_ctrl_irq(ctrl);
1964                        }
1965                }
1966
1967                p_slot->state = STATIC_STATE;
1968        }
1969
1970        return;
1971}
1972
1973
1974int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1975{
1976        u8 device, hp_slot;
1977        u16 temp_word;
1978        u32 tempdword;
1979        int rc;
1980        struct slot *p_slot;
1981        int physical_slot = 0;
1982
1983        tempdword = 0;
1984
1985        device = func->device;
1986        hp_slot = device - ctrl->slot_device_offset;
1987        p_slot = cpqhp_find_slot(ctrl, device);
1988        if (p_slot)
1989                physical_slot = p_slot->number;
1990
1991        /* Check to see if the interlock is closed */
1992        tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1993
1994        if (tempdword & (0x01 << hp_slot))
1995                return 1;
1996
1997        if (func->is_a_board) {
1998                rc = board_replaced(func, ctrl);
1999        } else {
2000                /* add board */
2001                slot_remove(func);
2002
2003                func = cpqhp_slot_create(ctrl->bus);
2004                if (func == NULL)
2005                        return 1;
2006
2007                func->bus = ctrl->bus;
2008                func->device = device;
2009                func->function = 0;
2010                func->configured = 0;
2011                func->is_a_board = 1;
2012
2013                /* We have to save the presence info for these slots */
2014                temp_word = ctrl->ctrl_int_comp >> 16;
2015                func->presence_save = (temp_word >> hp_slot) & 0x01;
2016                func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2017
2018                if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2019                        func->switch_save = 0;
2020                } else {
2021                        func->switch_save = 0x10;
2022                }
2023
2024                rc = board_added(func, ctrl);
2025                if (rc) {
2026                        if (is_bridge(func)) {
2027                                bridge_slot_remove(func);
2028                        } else
2029                                slot_remove(func);
2030
2031                        /* Setup slot structure with entry for empty slot */
2032                        func = cpqhp_slot_create(ctrl->bus);
2033
2034                        if (func == NULL)
2035                                return 1;
2036
2037                        func->bus = ctrl->bus;
2038                        func->device = device;
2039                        func->function = 0;
2040                        func->configured = 0;
2041                        func->is_a_board = 0;
2042
2043                        /* We have to save the presence info for these slots */
2044                        temp_word = ctrl->ctrl_int_comp >> 16;
2045                        func->presence_save = (temp_word >> hp_slot) & 0x01;
2046                        func->presence_save |=
2047                        (temp_word >> (hp_slot + 7)) & 0x02;
2048
2049                        if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2050                                func->switch_save = 0;
2051                        } else {
2052                                func->switch_save = 0x10;
2053                        }
2054                }
2055        }
2056
2057        if (rc)
2058                dbg("%s: rc = %d\n", __func__, rc);
2059
2060        if (p_slot)
2061                update_slot_info(ctrl, p_slot);
2062
2063        return rc;
2064}
2065
2066
2067int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2068{
2069        u8 device, class_code, header_type, BCR;
2070        u8 index = 0;
2071        u8 replace_flag;
2072        u32 rc = 0;
2073        unsigned int devfn;
2074        struct slot *p_slot;
2075        struct pci_bus *pci_bus = ctrl->pci_bus;
2076        int physical_slot = 0;
2077
2078        device = func->device;
2079        func = cpqhp_slot_find(ctrl->bus, device, index++);
2080        p_slot = cpqhp_find_slot(ctrl, device);
2081        if (p_slot)
2082                physical_slot = p_slot->number;
2083
2084        /* Make sure there are no video controllers here */
2085        while (func && !rc) {
2086                pci_bus->number = func->bus;
2087                devfn = PCI_DEVFN(func->device, func->function);
2088
2089                /* Check the Class Code */
2090                rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2091                if (rc)
2092                        return rc;
2093
2094                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2095                        /* Display/Video adapter (not supported) */
2096                        rc = REMOVE_NOT_SUPPORTED;
2097                } else {
2098                        /* See if it's a bridge */
2099                        rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2100                        if (rc)
2101                                return rc;
2102
2103                        /* If it's a bridge, check the VGA Enable bit */
2104                        if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2105                                rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2106                                if (rc)
2107                                        return rc;
2108
2109                                /* If the VGA Enable bit is set, remove isn't
2110                                 * supported */
2111                                if (BCR & PCI_BRIDGE_CTL_VGA)
2112                                        rc = REMOVE_NOT_SUPPORTED;
2113                        }
2114                }
2115
2116                func = cpqhp_slot_find(ctrl->bus, device, index++);
2117        }
2118
2119        func = cpqhp_slot_find(ctrl->bus, device, 0);
2120        if ((func != NULL) && !rc) {
2121                /* FIXME: Replace flag should be passed into process_SS */
2122                replace_flag = !(ctrl->add_support);
2123                rc = remove_board(func, replace_flag, ctrl);
2124        } else if (!rc) {
2125                rc = 1;
2126        }
2127
2128        if (p_slot)
2129                update_slot_info(ctrl, p_slot);
2130
2131        return rc;
2132}
2133
2134/**
2135 * switch_leds - switch the leds, go from one site to the other.
2136 * @ctrl: controller to use
2137 * @num_of_slots: number of slots to use
2138 * @work_LED: LED control value
2139 * @direction: 1 to start from the left side, 0 to start right.
2140 */
2141static void switch_leds(struct controller *ctrl, const int num_of_slots,
2142                        u32 *work_LED, const int direction)
2143{
2144        int loop;
2145
2146        for (loop = 0; loop < num_of_slots; loop++) {
2147                if (direction)
2148                        *work_LED = *work_LED >> 1;
2149                else
2150                        *work_LED = *work_LED << 1;
2151                writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2152
2153                set_SOGO(ctrl);
2154
2155                /* Wait for SOGO interrupt */
2156                wait_for_ctrl_irq(ctrl);
2157
2158                /* Get ready for next iteration */
2159                long_delay((2*HZ)/10);
2160        }
2161}
2162
2163/**
2164 * cpqhp_hardware_test - runs hardware tests
2165 * @ctrl: target controller
2166 * @test_num: the number written to the "test" file in sysfs.
2167 *
2168 * For hot plug ctrl folks to play with.
2169 */
2170int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2171{
2172        u32 save_LED;
2173        u32 work_LED;
2174        int loop;
2175        int num_of_slots;
2176
2177        num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2178
2179        switch (test_num) {
2180        case 1:
2181                /* Do stuff here! */
2182
2183                /* Do that funky LED thing */
2184                /* so we can restore them later */
2185                save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2186                work_LED = 0x01010101;
2187                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2188                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2189                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2190                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2191
2192                work_LED = 0x01010000;
2193                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2194                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2195                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2196                work_LED = 0x00000101;
2197                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2198                switch_leds(ctrl, num_of_slots, &work_LED, 0);
2199                switch_leds(ctrl, num_of_slots, &work_LED, 1);
2200
2201                work_LED = 0x01010000;
2202                writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2203                for (loop = 0; loop < num_of_slots; loop++) {
2204                        set_SOGO(ctrl);
2205
2206                        /* Wait for SOGO interrupt */
2207                        wait_for_ctrl_irq(ctrl);
2208
2209                        /* Get ready for next iteration */
2210                        long_delay((3*HZ)/10);
2211                        work_LED = work_LED >> 16;
2212                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2213
2214                        set_SOGO(ctrl);
2215
2216                        /* Wait for SOGO interrupt */
2217                        wait_for_ctrl_irq(ctrl);
2218
2219                        /* Get ready for next iteration */
2220                        long_delay((3*HZ)/10);
2221                        work_LED = work_LED << 16;
2222                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2223                        work_LED = work_LED << 1;
2224                        writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2225                }
2226
2227                /* put it back the way it was */
2228                writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2229
2230                set_SOGO(ctrl);
2231
2232                /* Wait for SOBS to be unset */
2233                wait_for_ctrl_irq(ctrl);
2234                break;
2235        case 2:
2236                /* Do other stuff here! */
2237                break;
2238        case 3:
2239                /* and more... */
2240                break;
2241        }
2242        return 0;
2243}
2244
2245
2246/**
2247 * configure_new_device - Configures the PCI header information of one board.
2248 * @ctrl: pointer to controller structure
2249 * @func: pointer to function structure
2250 * @behind_bridge: 1 if this is a recursive call, 0 if not
2251 * @resources: pointer to set of resource lists
2252 *
2253 * Returns 0 if success.
2254 */
2255static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2256                                 u8 behind_bridge, struct resource_lists  *resources)
2257{
2258        u8 temp_byte, function, max_functions, stop_it;
2259        int rc;
2260        u32 ID;
2261        struct pci_func *new_slot;
2262        int index;
2263
2264        new_slot = func;
2265
2266        dbg("%s\n", __func__);
2267        /* Check for Multi-function device */
2268        ctrl->pci_bus->number = func->bus;
2269        rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2270        if (rc) {
2271                dbg("%s: rc = %d\n", __func__, rc);
2272                return rc;
2273        }
2274
2275        if (temp_byte & 0x80)   /* Multi-function device */
2276                max_functions = 8;
2277        else
2278                max_functions = 1;
2279
2280        function = 0;
2281
2282        do {
2283                rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2284
2285                if (rc) {
2286                        dbg("configure_new_function failed %d\n", rc);
2287                        index = 0;
2288
2289                        while (new_slot) {
2290                                new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2291
2292                                if (new_slot)
2293                                        cpqhp_return_board_resources(new_slot, resources);
2294                        }
2295
2296                        return rc;
2297                }
2298
2299                function++;
2300
2301                stop_it = 0;
2302
2303                /* The following loop skips to the next present function
2304                 * and creates a board structure */
2305
2306                while ((function < max_functions) && (!stop_it)) {
2307                        pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2308
2309                        if (ID == 0xFFFFFFFF) {
2310                                function++;
2311                        } else {
2312                                /* Setup slot structure. */
2313                                new_slot = cpqhp_slot_create(func->bus);
2314
2315                                if (new_slot == NULL)
2316                                        return 1;
2317
2318                                new_slot->bus = func->bus;
2319                                new_slot->device = func->device;
2320                                new_slot->function = function;
2321                                new_slot->is_a_board = 1;
2322                                new_slot->status = 0;
2323
2324                                stop_it++;
2325                        }
2326                }
2327
2328        } while (function < max_functions);
2329        dbg("returning from configure_new_device\n");
2330
2331        return 0;
2332}
2333
2334
2335/*
2336 * Configuration logic that involves the hotplug data structures and
2337 * their bookkeeping
2338 */
2339
2340
2341/**
2342 * configure_new_function - Configures the PCI header information of one device
2343 * @ctrl: pointer to controller structure
2344 * @func: pointer to function structure
2345 * @behind_bridge: 1 if this is a recursive call, 0 if not
2346 * @resources: pointer to set of resource lists
2347 *
2348 * Calls itself recursively for bridged devices.
2349 * Returns 0 if success.
2350 */
2351static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2352                                   u8 behind_bridge,
2353                                   struct resource_lists *resources)
2354{
2355        int cloop;
2356        u8 IRQ = 0;
2357        u8 temp_byte;
2358        u8 device;
2359        u8 class_code;
2360        u16 command;
2361        u16 temp_word;
2362        u32 temp_dword;
2363        u32 rc;
2364        u32 temp_register;
2365        u32 base;
2366        u32 ID;
2367        unsigned int devfn;
2368        struct pci_resource *mem_node;
2369        struct pci_resource *p_mem_node;
2370        struct pci_resource *io_node;
2371        struct pci_resource *bus_node;
2372        struct pci_resource *hold_mem_node;
2373        struct pci_resource *hold_p_mem_node;
2374        struct pci_resource *hold_IO_node;
2375        struct pci_resource *hold_bus_node;
2376        struct irq_mapping irqs;
2377        struct pci_func *new_slot;
2378        struct pci_bus *pci_bus;
2379        struct resource_lists temp_resources;
2380
2381        pci_bus = ctrl->pci_bus;
2382        pci_bus->number = func->bus;
2383        devfn = PCI_DEVFN(func->device, func->function);
2384
2385        /* Check for Bridge */
2386        rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2387        if (rc)
2388                return rc;
2389
2390        if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2391                /* set Primary bus */
2392                dbg("set Primary bus = %d\n", func->bus);
2393                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2394                if (rc)
2395                        return rc;
2396
2397                /* find range of buses to use */
2398                dbg("find ranges of buses to use\n");
2399                bus_node = get_max_resource(&(resources->bus_head), 1);
2400
2401                /* If we don't have any buses to allocate, we can't continue */
2402                if (!bus_node)
2403                        return -ENOMEM;
2404
2405                /* set Secondary bus */
2406                temp_byte = bus_node->base;
2407                dbg("set Secondary bus = %d\n", bus_node->base);
2408                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2409                if (rc)
2410                        return rc;
2411
2412                /* set subordinate bus */
2413                temp_byte = bus_node->base + bus_node->length - 1;
2414                dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2415                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2416                if (rc)
2417                        return rc;
2418
2419                /* set subordinate Latency Timer and base Latency Timer */
2420                temp_byte = 0x40;
2421                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2422                if (rc)
2423                        return rc;
2424                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2425                if (rc)
2426                        return rc;
2427
2428                /* set Cache Line size */
2429                temp_byte = 0x08;
2430                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2431                if (rc)
2432                        return rc;
2433
2434                /* Setup the IO, memory, and prefetchable windows */
2435                io_node = get_max_resource(&(resources->io_head), 0x1000);
2436                if (!io_node)
2437                        return -ENOMEM;
2438                mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2439                if (!mem_node)
2440                        return -ENOMEM;
2441                p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2442                if (!p_mem_node)
2443                        return -ENOMEM;
2444                dbg("Setup the IO, memory, and prefetchable windows\n");
2445                dbg("io_node\n");
2446                dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2447                                        io_node->length, io_node->next);
2448                dbg("mem_node\n");
2449                dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2450                                        mem_node->length, mem_node->next);
2451                dbg("p_mem_node\n");
2452                dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2453                                        p_mem_node->length, p_mem_node->next);
2454
2455                /* set up the IRQ info */
2456                if (!resources->irqs) {
2457                        irqs.barber_pole = 0;
2458                        irqs.interrupt[0] = 0;
2459                        irqs.interrupt[1] = 0;
2460                        irqs.interrupt[2] = 0;
2461                        irqs.interrupt[3] = 0;
2462                        irqs.valid_INT = 0;
2463                } else {
2464                        irqs.barber_pole = resources->irqs->barber_pole;
2465                        irqs.interrupt[0] = resources->irqs->interrupt[0];
2466                        irqs.interrupt[1] = resources->irqs->interrupt[1];
2467                        irqs.interrupt[2] = resources->irqs->interrupt[2];
2468                        irqs.interrupt[3] = resources->irqs->interrupt[3];
2469                        irqs.valid_INT = resources->irqs->valid_INT;
2470                }
2471
2472                /* set up resource lists that are now aligned on top and bottom
2473                 * for anything behind the bridge. */
2474                temp_resources.bus_head = bus_node;
2475                temp_resources.io_head = io_node;
2476                temp_resources.mem_head = mem_node;
2477                temp_resources.p_mem_head = p_mem_node;
2478                temp_resources.irqs = &irqs;
2479
2480                /* Make copies of the nodes we are going to pass down so that
2481                 * if there is a problem,we can just use these to free resources
2482                 */
2483                hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2484                hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2485                hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2486                hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2487
2488                if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2489                        kfree(hold_bus_node);
2490                        kfree(hold_IO_node);
2491                        kfree(hold_mem_node);
2492                        kfree(hold_p_mem_node);
2493
2494                        return 1;
2495                }
2496
2497                memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2498
2499                bus_node->base += 1;
2500                bus_node->length -= 1;
2501                bus_node->next = NULL;
2502
2503                /* If we have IO resources copy them and fill in the bridge's
2504                 * IO range registers */
2505                memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2506                io_node->next = NULL;
2507
2508                /* set IO base and Limit registers */
2509                temp_byte = io_node->base >> 8;
2510                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2511
2512                temp_byte = (io_node->base + io_node->length - 1) >> 8;
2513                rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2514
2515                /* Copy the memory resources and fill in the bridge's memory
2516                 * range registers.
2517                 */
2518                memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2519                mem_node->next = NULL;
2520
2521                /* set Mem base and Limit registers */
2522                temp_word = mem_node->base >> 16;
2523                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2524
2525                temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2526                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2527
2528                memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2529                p_mem_node->next = NULL;
2530
2531                /* set Pre Mem base and Limit registers */
2532                temp_word = p_mem_node->base >> 16;
2533                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2534
2535                temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2536                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2537
2538                /* Adjust this to compensate for extra adjustment in first loop
2539                 */
2540                irqs.barber_pole--;
2541
2542                rc = 0;
2543
2544                /* Here we actually find the devices and configure them */
2545                for (device = 0; (device <= 0x1F) && !rc; device++) {
2546                        irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2547
2548                        ID = 0xFFFFFFFF;
2549                        pci_bus->number = hold_bus_node->base;
2550                        pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2551                        pci_bus->number = func->bus;
2552
2553                        if (ID != 0xFFFFFFFF) {   /*  device present */
2554                                /* Setup slot structure. */
2555                                new_slot = cpqhp_slot_create(hold_bus_node->base);
2556
2557                                if (new_slot == NULL) {
2558                                        rc = -ENOMEM;
2559                                        continue;
2560                                }
2561
2562                                new_slot->bus = hold_bus_node->base;
2563                                new_slot->device = device;
2564                                new_slot->function = 0;
2565                                new_slot->is_a_board = 1;
2566                                new_slot->status = 0;
2567
2568                                rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2569                                dbg("configure_new_device rc=0x%x\n", rc);
2570                        }       /* End of IF (device in slot?) */
2571                }               /* End of FOR loop */
2572
2573                if (rc)
2574                        goto free_and_out;
2575                /* save the interrupt routing information */
2576                if (resources->irqs) {
2577                        resources->irqs->interrupt[0] = irqs.interrupt[0];
2578                        resources->irqs->interrupt[1] = irqs.interrupt[1];
2579                        resources->irqs->interrupt[2] = irqs.interrupt[2];
2580                        resources->irqs->interrupt[3] = irqs.interrupt[3];
2581                        resources->irqs->valid_INT = irqs.valid_INT;
2582                } else if (!behind_bridge) {
2583                        /* We need to hook up the interrupts here */
2584                        for (cloop = 0; cloop < 4; cloop++) {
2585                                if (irqs.valid_INT & (0x01 << cloop)) {
2586                                        rc = cpqhp_set_irq(func->bus, func->device,
2587                                                           cloop + 1, irqs.interrupt[cloop]);
2588                                        if (rc)
2589                                                goto free_and_out;
2590                                }
2591                        }       /* end of for loop */
2592                }
2593                /* Return unused bus resources
2594                 * First use the temporary node to store information for
2595                 * the board */
2596                if (bus_node && temp_resources.bus_head) {
2597                        hold_bus_node->length = bus_node->base - hold_bus_node->base;
2598
2599                        hold_bus_node->next = func->bus_head;
2600                        func->bus_head = hold_bus_node;
2601
2602                        temp_byte = temp_resources.bus_head->base - 1;
2603
2604                        /* set subordinate bus */
2605                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2606
2607                        if (temp_resources.bus_head->length == 0) {
2608                                kfree(temp_resources.bus_head);
2609                                temp_resources.bus_head = NULL;
2610                        } else {
2611                                return_resource(&(resources->bus_head), temp_resources.bus_head);
2612                        }
2613                }
2614
2615                /* If we have IO space available and there is some left,
2616                 * return the unused portion */
2617                if (hold_IO_node && temp_resources.io_head) {
2618                        io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2619                                                               &hold_IO_node, 0x1000);
2620
2621                        /* Check if we were able to split something off */
2622                        if (io_node) {
2623                                hold_IO_node->base = io_node->base + io_node->length;
2624
2625                                temp_byte = (hold_IO_node->base) >> 8;
2626                                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2627
2628                                return_resource(&(resources->io_head), io_node);
2629                        }
2630
2631                        io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2632
2633                        /* Check if we were able to split something off */
2634                        if (io_node) {
2635                                /* First use the temporary node to store
2636                                 * information for the board */
2637                                hold_IO_node->length = io_node->base - hold_IO_node->base;
2638
2639                                /* If we used any, add it to the board's list */
2640                                if (hold_IO_node->length) {
2641                                        hold_IO_node->next = func->io_head;
2642                                        func->io_head = hold_IO_node;
2643
2644                                        temp_byte = (io_node->base - 1) >> 8;
2645                                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2646
2647                                        return_resource(&(resources->io_head), io_node);
2648                                } else {
2649                                        /* it doesn't need any IO */
2650                                        temp_word = 0x0000;
2651                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2652
2653                                        return_resource(&(resources->io_head), io_node);
2654                                        kfree(hold_IO_node);
2655                                }
2656                        } else {
2657                                /* it used most of the range */
2658                                hold_IO_node->next = func->io_head;
2659                                func->io_head = hold_IO_node;
2660                        }
2661                } else if (hold_IO_node) {
2662                        /* it used the whole range */
2663                        hold_IO_node->next = func->io_head;
2664                        func->io_head = hold_IO_node;
2665                }
2666                /* If we have memory space available and there is some left,
2667                 * return the unused portion */
2668                if (hold_mem_node && temp_resources.mem_head) {
2669                        mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2670                                                                &hold_mem_node, 0x100000);
2671
2672                        /* Check if we were able to split something off */
2673                        if (mem_node) {
2674                                hold_mem_node->base = mem_node->base + mem_node->length;
2675
2676                                temp_word = (hold_mem_node->base) >> 16;
2677                                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2678
2679                                return_resource(&(resources->mem_head), mem_node);
2680                        }
2681
2682                        mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2683
2684                        /* Check if we were able to split something off */
2685                        if (mem_node) {
2686                                /* First use the temporary node to store
2687                                 * information for the board */
2688                                hold_mem_node->length = mem_node->base - hold_mem_node->base;
2689
2690                                if (hold_mem_node->length) {
2691                                        hold_mem_node->next = func->mem_head;
2692                                        func->mem_head = hold_mem_node;
2693
2694                                        /* configure end address */
2695                                        temp_word = (mem_node->base - 1) >> 16;
2696                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2697
2698                                        /* Return unused resources to the pool */
2699                                        return_resource(&(resources->mem_head), mem_node);
2700                                } else {
2701                                        /* it doesn't need any Mem */
2702                                        temp_word = 0x0000;
2703                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2704
2705                                        return_resource(&(resources->mem_head), mem_node);
2706                                        kfree(hold_mem_node);
2707                                }
2708                        } else {
2709                                /* it used most of the range */
2710                                hold_mem_node->next = func->mem_head;
2711                                func->mem_head = hold_mem_node;
2712                        }
2713                } else if (hold_mem_node) {
2714                        /* it used the whole range */
2715                        hold_mem_node->next = func->mem_head;
2716                        func->mem_head = hold_mem_node;
2717                }
2718                /* If we have prefetchable memory space available and there
2719                 * is some left at the end, return the unused portion */
2720                if (temp_resources.p_mem_head) {
2721                        p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2722                                                                  &hold_p_mem_node, 0x100000);
2723
2724                        /* Check if we were able to split something off */
2725                        if (p_mem_node) {
2726                                hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2727
2728                                temp_word = (hold_p_mem_node->base) >> 16;
2729                                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2730
2731                                return_resource(&(resources->p_mem_head), p_mem_node);
2732                        }
2733
2734                        p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2735
2736                        /* Check if we were able to split something off */
2737                        if (p_mem_node) {
2738                                /* First use the temporary node to store
2739                                 * information for the board */
2740                                hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2741
2742                                /* If we used any, add it to the board's list */
2743                                if (hold_p_mem_node->length) {
2744                                        hold_p_mem_node->next = func->p_mem_head;
2745                                        func->p_mem_head = hold_p_mem_node;
2746
2747                                        temp_word = (p_mem_node->base - 1) >> 16;
2748                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2749
2750                                        return_resource(&(resources->p_mem_head), p_mem_node);
2751                                } else {
2752                                        /* it doesn't need any PMem */
2753                                        temp_word = 0x0000;
2754                                        rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2755
2756                                        return_resource(&(resources->p_mem_head), p_mem_node);
2757                                        kfree(hold_p_mem_node);
2758                                }
2759                        } else {
2760                                /* it used the most of the range */
2761                                hold_p_mem_node->next = func->p_mem_head;
2762                                func->p_mem_head = hold_p_mem_node;
2763                        }
2764                } else if (hold_p_mem_node) {
2765                        /* it used the whole range */
2766                        hold_p_mem_node->next = func->p_mem_head;
2767                        func->p_mem_head = hold_p_mem_node;
2768                }
2769                /* We should be configuring an IRQ and the bridge's base address
2770                 * registers if it needs them.  Although we have never seen such
2771                 * a device */
2772
2773                /* enable card */
2774                command = 0x0157;       /* = PCI_COMMAND_IO |
2775                                         *   PCI_COMMAND_MEMORY |
2776                                         *   PCI_COMMAND_MASTER |
2777                                         *   PCI_COMMAND_INVALIDATE |
2778                                         *   PCI_COMMAND_PARITY |
2779                                         *   PCI_COMMAND_SERR */
2780                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2781
2782                /* set Bridge Control Register */
2783                command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2784                                         *   PCI_BRIDGE_CTL_SERR |
2785                                         *   PCI_BRIDGE_CTL_NO_ISA */
2786                rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2787        } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2788                /* Standard device */
2789                rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2790
2791                if (class_code == PCI_BASE_CLASS_DISPLAY) {
2792                        /* Display (video) adapter (not supported) */
2793                        return DEVICE_TYPE_NOT_SUPPORTED;
2794                }
2795                /* Figure out IO and memory needs */
2796                for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2797                        temp_register = 0xFFFFFFFF;
2798
2799                        dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2800                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2801
2802                        rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2803                        dbg("CND: base = 0x%x\n", temp_register);
2804
2805                        if (temp_register) {      /* If this register is implemented */
2806                                if ((temp_register & 0x03L) == 0x01) {
2807                                        /* Map IO */
2808
2809                                        /* set base = amount of IO space */
2810                                        base = temp_register & 0xFFFFFFFC;
2811                                        base = ~base + 1;
2812
2813                                        dbg("CND:      length = 0x%x\n", base);
2814                                        io_node = get_io_resource(&(resources->io_head), base);
2815                                        dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2816                                            io_node->base, io_node->length, io_node->next);
2817                                        dbg("func (%p) io_head (%p)\n", func, func->io_head);
2818
2819                                        /* allocate the resource to the board */
2820                                        if (io_node) {
2821                                                base = io_node->base;
2822
2823                                                io_node->next = func->io_head;
2824                                                func->io_head = io_node;
2825                                        } else
2826                                                return -ENOMEM;
2827                                } else if ((temp_register & 0x0BL) == 0x08) {
2828                                        /* Map prefetchable memory */
2829                                        base = temp_register & 0xFFFFFFF0;
2830                                        base = ~base + 1;
2831
2832                                        dbg("CND:      length = 0x%x\n", base);
2833                                        p_mem_node = get_resource(&(resources->p_mem_head), base);
2834
2835                                        /* allocate the resource to the board */
2836                                        if (p_mem_node) {
2837                                                base = p_mem_node->base;
2838
2839                                                p_mem_node->next = func->p_mem_head;
2840                                                func->p_mem_head = p_mem_node;
2841                                        } else
2842                                                return -ENOMEM;
2843                                } else if ((temp_register & 0x0BL) == 0x00) {
2844                                        /* Map memory */
2845                                        base = temp_register & 0xFFFFFFF0;
2846                                        base = ~base + 1;
2847
2848                                        dbg("CND:      length = 0x%x\n", base);
2849                                        mem_node = get_resource(&(resources->mem_head), base);
2850
2851                                        /* allocate the resource to the board */
2852                                        if (mem_node) {
2853                                                base = mem_node->base;
2854
2855                                                mem_node->next = func->mem_head;
2856                                                func->mem_head = mem_node;
2857                                        } else
2858                                                return -ENOMEM;
2859                                } else {
2860                                        /* Reserved bits or requesting space below 1M */
2861                                        return NOT_ENOUGH_RESOURCES;
2862                                }
2863
2864                                rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2865
2866                                /* Check for 64-bit base */
2867                                if ((temp_register & 0x07L) == 0x04) {
2868                                        cloop += 4;
2869
2870                                        /* Upper 32 bits of address always zero
2871                                         * on today's systems */
2872                                        /* FIXME this is probably not true on
2873                                         * Alpha and ia64??? */
2874                                        base = 0;
2875                                        rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2876                                }
2877                        }
2878                }               /* End of base register loop */
2879                if (cpqhp_legacy_mode) {
2880                        /* Figure out which interrupt pin this function uses */
2881                        rc = pci_bus_read_config_byte(pci_bus, devfn,
2882                                PCI_INTERRUPT_PIN, &temp_byte);
2883
2884                        /* If this function needs an interrupt and we are behind
2885                         * a bridge and the pin is tied to something that's
2886                         * already mapped, set this one the same */
2887                        if (temp_byte && resources->irqs &&
2888                            (resources->irqs->valid_INT &
2889                             (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2890                                /* We have to share with something already set up */
2891                                IRQ = resources->irqs->interrupt[(temp_byte +
2892                                        resources->irqs->barber_pole - 1) & 0x03];
2893                        } else {
2894                                /* Program IRQ based on card type */
2895                                rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2896
2897                                if (class_code == PCI_BASE_CLASS_STORAGE)
2898                                        IRQ = cpqhp_disk_irq;
2899                                else
2900                                        IRQ = cpqhp_nic_irq;
2901                        }
2902
2903                        /* IRQ Line */
2904                        rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2905                }
2906
2907                if (!behind_bridge) {
2908                        rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2909                        if (rc)
2910                                return 1;
2911                } else {
2912                        /* TBD - this code may also belong in the other clause
2913                         * of this If statement */
2914                        resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2915                        resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2916                }
2917
2918                /* Latency Timer */
2919                temp_byte = 0x40;
2920                rc = pci_bus_write_config_byte(pci_bus, devfn,
2921                                        PCI_LATENCY_TIMER, temp_byte);
2922
2923                /* Cache Line size */
2924                temp_byte = 0x08;
2925                rc = pci_bus_write_config_byte(pci_bus, devfn,
2926                                        PCI_CACHE_LINE_SIZE, temp_byte);
2927
2928                /* disable ROM base Address */
2929                temp_dword = 0x00L;
2930                rc = pci_bus_write_config_word(pci_bus, devfn,
2931                                        PCI_ROM_ADDRESS, temp_dword);
2932
2933                /* enable card */
2934                temp_word = 0x0157;     /* = PCI_COMMAND_IO |
2935                                         *   PCI_COMMAND_MEMORY |
2936                                         *   PCI_COMMAND_MASTER |
2937                                         *   PCI_COMMAND_INVALIDATE |
2938                                         *   PCI_COMMAND_PARITY |
2939                                         *   PCI_COMMAND_SERR */
2940                rc = pci_bus_write_config_word(pci_bus, devfn,
2941                                        PCI_COMMAND, temp_word);
2942        } else {                /* End of Not-A-Bridge else */
2943                /* It's some strange type of PCI adapter (Cardbus?) */
2944                return DEVICE_TYPE_NOT_SUPPORTED;
2945        }
2946
2947        func->configured = 1;
2948
2949        return 0;
2950free_and_out:
2951        cpqhp_destroy_resource_list(&temp_resources);
2952
2953        return_resource(&(resources->bus_head), hold_bus_node);
2954        return_resource(&(resources->io_head), hold_IO_node);
2955        return_resource(&(resources->mem_head), hold_mem_node);
2956        return_resource(&(resources->p_mem_head), hold_p_mem_node);
2957        return rc;
2958}
2959