linux/drivers/pci/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *      PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 *      Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 *      David Mosberger-Tang
   7 *
   8 *      Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/of.h>
  17#include <linux/of_pci.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/pci-aspm.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <linux/pci-ats.h>
  33#include <asm/setup.h>
  34#include <asm/dma.h>
  35#include <linux/aer.h>
  36#include "pci.h"
  37
  38const char *pci_power_names[] = {
  39        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
  43int isa_dma_bridge_buggy;
  44EXPORT_SYMBOL(isa_dma_bridge_buggy);
  45
  46int pci_pci_problems;
  47EXPORT_SYMBOL(pci_pci_problems);
  48
  49unsigned int pci_pm_d3_delay;
  50
  51static void pci_pme_list_scan(struct work_struct *work);
  52
  53static LIST_HEAD(pci_pme_list);
  54static DEFINE_MUTEX(pci_pme_list_mutex);
  55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  56
  57struct pci_pme_device {
  58        struct list_head list;
  59        struct pci_dev *dev;
  60};
  61
  62#define PME_TIMEOUT 1000 /* How long between PME checks */
  63
  64static void pci_dev_d3_sleep(struct pci_dev *dev)
  65{
  66        unsigned int delay = dev->d3_delay;
  67
  68        if (delay < pci_pm_d3_delay)
  69                delay = pci_pm_d3_delay;
  70
  71        if (delay)
  72                msleep(delay);
  73}
  74
  75#ifdef CONFIG_PCI_DOMAINS
  76int pci_domains_supported = 1;
  77#endif
  78
  79#define DEFAULT_CARDBUS_IO_SIZE         (256)
  80#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  84
  85#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  86#define DEFAULT_HOTPLUG_MEM_SIZE        (2*1024*1024)
  87/* pci=hpmemsize=nnM,hpiosize=nn can override this */
  88unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  89unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
  90
  91#define DEFAULT_HOTPLUG_BUS_SIZE        1
  92unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
  93
  94enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
  95
  96/*
  97 * The default CLS is used if arch didn't set CLS explicitly and not
  98 * all pci devices agree on the same value.  Arch can override either
  99 * the dfl or actual value as it sees fit.  Don't forget this is
 100 * measured in 32-bit words, not bytes.
 101 */
 102u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 103u8 pci_cache_line_size;
 104
 105/*
 106 * If we set up a device for bus mastering, we need to check the latency
 107 * timer as certain BIOSes forget to set it properly.
 108 */
 109unsigned int pcibios_max_latency = 255;
 110
 111/* If set, the PCIe ARI capability will not be used. */
 112static bool pcie_ari_disabled;
 113
 114/* Disable bridge_d3 for all PCIe ports */
 115static bool pci_bridge_d3_disable;
 116/* Force bridge_d3 for all PCIe ports */
 117static bool pci_bridge_d3_force;
 118
 119static int __init pcie_port_pm_setup(char *str)
 120{
 121        if (!strcmp(str, "off"))
 122                pci_bridge_d3_disable = true;
 123        else if (!strcmp(str, "force"))
 124                pci_bridge_d3_force = true;
 125        return 1;
 126}
 127__setup("pcie_port_pm=", pcie_port_pm_setup);
 128
 129/**
 130 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 131 * @bus: pointer to PCI bus structure to search
 132 *
 133 * Given a PCI bus, returns the highest PCI bus number present in the set
 134 * including the given PCI bus and its list of child PCI buses.
 135 */
 136unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 137{
 138        struct pci_bus *tmp;
 139        unsigned char max, n;
 140
 141        max = bus->busn_res.end;
 142        list_for_each_entry(tmp, &bus->children, node) {
 143                n = pci_bus_max_busnr(tmp);
 144                if (n > max)
 145                        max = n;
 146        }
 147        return max;
 148}
 149EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 150
 151#ifdef CONFIG_HAS_IOMEM
 152void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 153{
 154        struct resource *res = &pdev->resource[bar];
 155
 156        /*
 157         * Make sure the BAR is actually a memory resource, not an IO resource
 158         */
 159        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 160                pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 161                return NULL;
 162        }
 163        return ioremap_nocache(res->start, resource_size(res));
 164}
 165EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 166
 167void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 168{
 169        /*
 170         * Make sure the BAR is actually a memory resource, not an IO resource
 171         */
 172        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 173                WARN_ON(1);
 174                return NULL;
 175        }
 176        return ioremap_wc(pci_resource_start(pdev, bar),
 177                          pci_resource_len(pdev, bar));
 178}
 179EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 180#endif
 181
 182
 183static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 184                                   u8 pos, int cap, int *ttl)
 185{
 186        u8 id;
 187        u16 ent;
 188
 189        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 190
 191        while ((*ttl)--) {
 192                if (pos < 0x40)
 193                        break;
 194                pos &= ~3;
 195                pci_bus_read_config_word(bus, devfn, pos, &ent);
 196
 197                id = ent & 0xff;
 198                if (id == 0xff)
 199                        break;
 200                if (id == cap)
 201                        return pos;
 202                pos = (ent >> 8);
 203        }
 204        return 0;
 205}
 206
 207static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 208                               u8 pos, int cap)
 209{
 210        int ttl = PCI_FIND_CAP_TTL;
 211
 212        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 213}
 214
 215int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 216{
 217        return __pci_find_next_cap(dev->bus, dev->devfn,
 218                                   pos + PCI_CAP_LIST_NEXT, cap);
 219}
 220EXPORT_SYMBOL_GPL(pci_find_next_capability);
 221
 222static int __pci_bus_find_cap_start(struct pci_bus *bus,
 223                                    unsigned int devfn, u8 hdr_type)
 224{
 225        u16 status;
 226
 227        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 228        if (!(status & PCI_STATUS_CAP_LIST))
 229                return 0;
 230
 231        switch (hdr_type) {
 232        case PCI_HEADER_TYPE_NORMAL:
 233        case PCI_HEADER_TYPE_BRIDGE:
 234                return PCI_CAPABILITY_LIST;
 235        case PCI_HEADER_TYPE_CARDBUS:
 236                return PCI_CB_CAPABILITY_LIST;
 237        }
 238
 239        return 0;
 240}
 241
 242/**
 243 * pci_find_capability - query for devices' capabilities
 244 * @dev: PCI device to query
 245 * @cap: capability code
 246 *
 247 * Tell if a device supports a given PCI capability.
 248 * Returns the address of the requested capability structure within the
 249 * device's PCI configuration space or 0 in case the device does not
 250 * support it.  Possible values for @cap:
 251 *
 252 *  %PCI_CAP_ID_PM           Power Management
 253 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 254 *  %PCI_CAP_ID_VPD          Vital Product Data
 255 *  %PCI_CAP_ID_SLOTID       Slot Identification
 256 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 257 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 258 *  %PCI_CAP_ID_PCIX         PCI-X
 259 *  %PCI_CAP_ID_EXP          PCI Express
 260 */
 261int pci_find_capability(struct pci_dev *dev, int cap)
 262{
 263        int pos;
 264
 265        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 266        if (pos)
 267                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 268
 269        return pos;
 270}
 271EXPORT_SYMBOL(pci_find_capability);
 272
 273/**
 274 * pci_bus_find_capability - query for devices' capabilities
 275 * @bus:   the PCI bus to query
 276 * @devfn: PCI device to query
 277 * @cap:   capability code
 278 *
 279 * Like pci_find_capability() but works for pci devices that do not have a
 280 * pci_dev structure set up yet.
 281 *
 282 * Returns the address of the requested capability structure within the
 283 * device's PCI configuration space or 0 in case the device does not
 284 * support it.
 285 */
 286int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 287{
 288        int pos;
 289        u8 hdr_type;
 290
 291        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 292
 293        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 294        if (pos)
 295                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 296
 297        return pos;
 298}
 299EXPORT_SYMBOL(pci_bus_find_capability);
 300
 301/**
 302 * pci_find_next_ext_capability - Find an extended capability
 303 * @dev: PCI device to query
 304 * @start: address at which to start looking (0 to start at beginning of list)
 305 * @cap: capability code
 306 *
 307 * Returns the address of the next matching extended capability structure
 308 * within the device's PCI configuration space or 0 if the device does
 309 * not support it.  Some capabilities can occur several times, e.g., the
 310 * vendor-specific capability, and this provides a way to find them all.
 311 */
 312int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 313{
 314        u32 header;
 315        int ttl;
 316        int pos = PCI_CFG_SPACE_SIZE;
 317
 318        /* minimum 8 bytes per capability */
 319        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 320
 321        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 322                return 0;
 323
 324        if (start)
 325                pos = start;
 326
 327        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 328                return 0;
 329
 330        /*
 331         * If we have no capabilities, this is indicated by cap ID,
 332         * cap version and next pointer all being 0.
 333         */
 334        if (header == 0)
 335                return 0;
 336
 337        while (ttl-- > 0) {
 338                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 339                        return pos;
 340
 341                pos = PCI_EXT_CAP_NEXT(header);
 342                if (pos < PCI_CFG_SPACE_SIZE)
 343                        break;
 344
 345                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 346                        break;
 347        }
 348
 349        return 0;
 350}
 351EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 352
 353/**
 354 * pci_find_ext_capability - Find an extended capability
 355 * @dev: PCI device to query
 356 * @cap: capability code
 357 *
 358 * Returns the address of the requested extended capability structure
 359 * within the device's PCI configuration space or 0 if the device does
 360 * not support it.  Possible values for @cap:
 361 *
 362 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 363 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 364 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 365 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 366 */
 367int pci_find_ext_capability(struct pci_dev *dev, int cap)
 368{
 369        return pci_find_next_ext_capability(dev, 0, cap);
 370}
 371EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 372
 373static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 374{
 375        int rc, ttl = PCI_FIND_CAP_TTL;
 376        u8 cap, mask;
 377
 378        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 379                mask = HT_3BIT_CAP_MASK;
 380        else
 381                mask = HT_5BIT_CAP_MASK;
 382
 383        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 384                                      PCI_CAP_ID_HT, &ttl);
 385        while (pos) {
 386                rc = pci_read_config_byte(dev, pos + 3, &cap);
 387                if (rc != PCIBIOS_SUCCESSFUL)
 388                        return 0;
 389
 390                if ((cap & mask) == ht_cap)
 391                        return pos;
 392
 393                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 394                                              pos + PCI_CAP_LIST_NEXT,
 395                                              PCI_CAP_ID_HT, &ttl);
 396        }
 397
 398        return 0;
 399}
 400/**
 401 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 402 * @dev: PCI device to query
 403 * @pos: Position from which to continue searching
 404 * @ht_cap: Hypertransport capability code
 405 *
 406 * To be used in conjunction with pci_find_ht_capability() to search for
 407 * all capabilities matching @ht_cap. @pos should always be a value returned
 408 * from pci_find_ht_capability().
 409 *
 410 * NB. To be 100% safe against broken PCI devices, the caller should take
 411 * steps to avoid an infinite loop.
 412 */
 413int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 414{
 415        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 416}
 417EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 418
 419/**
 420 * pci_find_ht_capability - query a device's Hypertransport capabilities
 421 * @dev: PCI device to query
 422 * @ht_cap: Hypertransport capability code
 423 *
 424 * Tell if a device supports a given Hypertransport capability.
 425 * Returns an address within the device's PCI configuration space
 426 * or 0 in case the device does not support the request capability.
 427 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 428 * which has a Hypertransport capability matching @ht_cap.
 429 */
 430int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 431{
 432        int pos;
 433
 434        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 435        if (pos)
 436                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 437
 438        return pos;
 439}
 440EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 441
 442/**
 443 * pci_find_parent_resource - return resource region of parent bus of given region
 444 * @dev: PCI device structure contains resources to be searched
 445 * @res: child resource record for which parent is sought
 446 *
 447 *  For given resource region of given device, return the resource
 448 *  region of parent bus the given region is contained in.
 449 */
 450struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 451                                          struct resource *res)
 452{
 453        const struct pci_bus *bus = dev->bus;
 454        struct resource *r;
 455        int i;
 456
 457        pci_bus_for_each_resource(bus, r, i) {
 458                if (!r)
 459                        continue;
 460                if (resource_contains(r, res)) {
 461
 462                        /*
 463                         * If the window is prefetchable but the BAR is
 464                         * not, the allocator made a mistake.
 465                         */
 466                        if (r->flags & IORESOURCE_PREFETCH &&
 467                            !(res->flags & IORESOURCE_PREFETCH))
 468                                return NULL;
 469
 470                        /*
 471                         * If we're below a transparent bridge, there may
 472                         * be both a positively-decoded aperture and a
 473                         * subtractively-decoded region that contain the BAR.
 474                         * We want the positively-decoded one, so this depends
 475                         * on pci_bus_for_each_resource() giving us those
 476                         * first.
 477                         */
 478                        return r;
 479                }
 480        }
 481        return NULL;
 482}
 483EXPORT_SYMBOL(pci_find_parent_resource);
 484
 485/**
 486 * pci_find_resource - Return matching PCI device resource
 487 * @dev: PCI device to query
 488 * @res: Resource to look for
 489 *
 490 * Goes over standard PCI resources (BARs) and checks if the given resource
 491 * is partially or fully contained in any of them. In that case the
 492 * matching resource is returned, %NULL otherwise.
 493 */
 494struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 495{
 496        int i;
 497
 498        for (i = 0; i < PCI_ROM_RESOURCE; i++) {
 499                struct resource *r = &dev->resource[i];
 500
 501                if (r->start && resource_contains(r, res))
 502                        return r;
 503        }
 504
 505        return NULL;
 506}
 507EXPORT_SYMBOL(pci_find_resource);
 508
 509/**
 510 * pci_find_pcie_root_port - return PCIe Root Port
 511 * @dev: PCI device to query
 512 *
 513 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 514 * for a given PCI Device.
 515 */
 516struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 517{
 518        struct pci_dev *bridge, *highest_pcie_bridge = dev;
 519
 520        bridge = pci_upstream_bridge(dev);
 521        while (bridge && pci_is_pcie(bridge)) {
 522                highest_pcie_bridge = bridge;
 523                bridge = pci_upstream_bridge(bridge);
 524        }
 525
 526        if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 527                return NULL;
 528
 529        return highest_pcie_bridge;
 530}
 531EXPORT_SYMBOL(pci_find_pcie_root_port);
 532
 533/**
 534 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 535 * @dev: the PCI device to operate on
 536 * @pos: config space offset of status word
 537 * @mask: mask of bit(s) to care about in status word
 538 *
 539 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 540 */
 541int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 542{
 543        int i;
 544
 545        /* Wait for Transaction Pending bit clean */
 546        for (i = 0; i < 4; i++) {
 547                u16 status;
 548                if (i)
 549                        msleep((1 << (i - 1)) * 100);
 550
 551                pci_read_config_word(dev, pos, &status);
 552                if (!(status & mask))
 553                        return 1;
 554        }
 555
 556        return 0;
 557}
 558
 559/**
 560 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 561 * @dev: PCI device to have its BARs restored
 562 *
 563 * Restore the BAR values for a given device, so as to make it
 564 * accessible by its driver.
 565 */
 566static void pci_restore_bars(struct pci_dev *dev)
 567{
 568        int i;
 569
 570        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 571                pci_update_resource(dev, i);
 572}
 573
 574static const struct pci_platform_pm_ops *pci_platform_pm;
 575
 576int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 577{
 578        if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 579            !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 580                return -EINVAL;
 581        pci_platform_pm = ops;
 582        return 0;
 583}
 584
 585static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 586{
 587        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 588}
 589
 590static inline int platform_pci_set_power_state(struct pci_dev *dev,
 591                                               pci_power_t t)
 592{
 593        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 594}
 595
 596static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 597{
 598        return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 599}
 600
 601static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 602{
 603        return pci_platform_pm ?
 604                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 605}
 606
 607static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 608{
 609        return pci_platform_pm ?
 610                        pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 611}
 612
 613static inline bool platform_pci_need_resume(struct pci_dev *dev)
 614{
 615        return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 616}
 617
 618/**
 619 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 620 *                           given PCI device
 621 * @dev: PCI device to handle.
 622 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 623 *
 624 * RETURN VALUE:
 625 * -EINVAL if the requested state is invalid.
 626 * -EIO if device does not support PCI PM or its PM capabilities register has a
 627 * wrong version, or device doesn't support the requested state.
 628 * 0 if device already is in the requested state.
 629 * 0 if device's power state has been successfully changed.
 630 */
 631static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 632{
 633        u16 pmcsr;
 634        bool need_restore = false;
 635
 636        /* Check if we're already there */
 637        if (dev->current_state == state)
 638                return 0;
 639
 640        if (!dev->pm_cap)
 641                return -EIO;
 642
 643        if (state < PCI_D0 || state > PCI_D3hot)
 644                return -EINVAL;
 645
 646        /* Validate current state:
 647         * Can enter D0 from any state, but if we can only go deeper
 648         * to sleep if we're already in a low power state
 649         */
 650        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 651            && dev->current_state > state) {
 652                pci_err(dev, "invalid power transition (from state %d to %d)\n",
 653                        dev->current_state, state);
 654                return -EINVAL;
 655        }
 656
 657        /* check if this device supports the desired state */
 658        if ((state == PCI_D1 && !dev->d1_support)
 659           || (state == PCI_D2 && !dev->d2_support))
 660                return -EIO;
 661
 662        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 663
 664        /* If we're (effectively) in D3, force entire word to 0.
 665         * This doesn't affect PME_Status, disables PME_En, and
 666         * sets PowerState to 0.
 667         */
 668        switch (dev->current_state) {
 669        case PCI_D0:
 670        case PCI_D1:
 671        case PCI_D2:
 672                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 673                pmcsr |= state;
 674                break;
 675        case PCI_D3hot:
 676        case PCI_D3cold:
 677        case PCI_UNKNOWN: /* Boot-up */
 678                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 679                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 680                        need_restore = true;
 681                /* Fall-through: force to D0 */
 682        default:
 683                pmcsr = 0;
 684                break;
 685        }
 686
 687        /* enter specified state */
 688        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 689
 690        /* Mandatory power management transition delays */
 691        /* see PCI PM 1.1 5.6.1 table 18 */
 692        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 693                pci_dev_d3_sleep(dev);
 694        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 695                udelay(PCI_PM_D2_DELAY);
 696
 697        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 698        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 699        if (dev->current_state != state && printk_ratelimit())
 700                pci_info(dev, "Refused to change power state, currently in D%d\n",
 701                         dev->current_state);
 702
 703        /*
 704         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 705         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 706         * from D3hot to D0 _may_ perform an internal reset, thereby
 707         * going to "D0 Uninitialized" rather than "D0 Initialized".
 708         * For example, at least some versions of the 3c905B and the
 709         * 3c556B exhibit this behaviour.
 710         *
 711         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 712         * devices in a D3hot state at boot.  Consequently, we need to
 713         * restore at least the BARs so that the device will be
 714         * accessible to its driver.
 715         */
 716        if (need_restore)
 717                pci_restore_bars(dev);
 718
 719        if (dev->bus->self)
 720                pcie_aspm_pm_state_change(dev->bus->self);
 721
 722        return 0;
 723}
 724
 725/**
 726 * pci_update_current_state - Read power state of given device and cache it
 727 * @dev: PCI device to handle.
 728 * @state: State to cache in case the device doesn't have the PM capability
 729 *
 730 * The power state is read from the PMCSR register, which however is
 731 * inaccessible in D3cold.  The platform firmware is therefore queried first
 732 * to detect accessibility of the register.  In case the platform firmware
 733 * reports an incorrect state or the device isn't power manageable by the
 734 * platform at all, we try to detect D3cold by testing accessibility of the
 735 * vendor ID in config space.
 736 */
 737void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
 738{
 739        if (platform_pci_get_power_state(dev) == PCI_D3cold ||
 740            !pci_device_is_present(dev)) {
 741                dev->current_state = PCI_D3cold;
 742        } else if (dev->pm_cap) {
 743                u16 pmcsr;
 744
 745                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 746                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 747        } else {
 748                dev->current_state = state;
 749        }
 750}
 751
 752/**
 753 * pci_power_up - Put the given device into D0 forcibly
 754 * @dev: PCI device to power up
 755 */
 756void pci_power_up(struct pci_dev *dev)
 757{
 758        if (platform_pci_power_manageable(dev))
 759                platform_pci_set_power_state(dev, PCI_D0);
 760
 761        pci_raw_set_power_state(dev, PCI_D0);
 762        pci_update_current_state(dev, PCI_D0);
 763}
 764
 765/**
 766 * pci_platform_power_transition - Use platform to change device power state
 767 * @dev: PCI device to handle.
 768 * @state: State to put the device into.
 769 */
 770static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
 771{
 772        int error;
 773
 774        if (platform_pci_power_manageable(dev)) {
 775                error = platform_pci_set_power_state(dev, state);
 776                if (!error)
 777                        pci_update_current_state(dev, state);
 778        } else
 779                error = -ENODEV;
 780
 781        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
 782                dev->current_state = PCI_D0;
 783
 784        return error;
 785}
 786
 787/**
 788 * pci_wakeup - Wake up a PCI device
 789 * @pci_dev: Device to handle.
 790 * @ign: ignored parameter
 791 */
 792static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
 793{
 794        pci_wakeup_event(pci_dev);
 795        pm_request_resume(&pci_dev->dev);
 796        return 0;
 797}
 798
 799/**
 800 * pci_wakeup_bus - Walk given bus and wake up devices on it
 801 * @bus: Top bus of the subtree to walk.
 802 */
 803static void pci_wakeup_bus(struct pci_bus *bus)
 804{
 805        if (bus)
 806                pci_walk_bus(bus, pci_wakeup, NULL);
 807}
 808
 809/**
 810 * __pci_start_power_transition - Start power transition of a PCI device
 811 * @dev: PCI device to handle.
 812 * @state: State to put the device into.
 813 */
 814static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
 815{
 816        if (state == PCI_D0) {
 817                pci_platform_power_transition(dev, PCI_D0);
 818                /*
 819                 * Mandatory power management transition delays, see
 820                 * PCI Express Base Specification Revision 2.0 Section
 821                 * 6.6.1: Conventional Reset.  Do not delay for
 822                 * devices powered on/off by corresponding bridge,
 823                 * because have already delayed for the bridge.
 824                 */
 825                if (dev->runtime_d3cold) {
 826                        if (dev->d3cold_delay)
 827                                msleep(dev->d3cold_delay);
 828                        /*
 829                         * When powering on a bridge from D3cold, the
 830                         * whole hierarchy may be powered on into
 831                         * D0uninitialized state, resume them to give
 832                         * them a chance to suspend again
 833                         */
 834                        pci_wakeup_bus(dev->subordinate);
 835                }
 836        }
 837}
 838
 839/**
 840 * __pci_dev_set_current_state - Set current state of a PCI device
 841 * @dev: Device to handle
 842 * @data: pointer to state to be set
 843 */
 844static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
 845{
 846        pci_power_t state = *(pci_power_t *)data;
 847
 848        dev->current_state = state;
 849        return 0;
 850}
 851
 852/**
 853 * __pci_bus_set_current_state - Walk given bus and set current state of devices
 854 * @bus: Top bus of the subtree to walk.
 855 * @state: state to be set
 856 */
 857static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
 858{
 859        if (bus)
 860                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
 861}
 862
 863/**
 864 * __pci_complete_power_transition - Complete power transition of a PCI device
 865 * @dev: PCI device to handle.
 866 * @state: State to put the device into.
 867 *
 868 * This function should not be called directly by device drivers.
 869 */
 870int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
 871{
 872        int ret;
 873
 874        if (state <= PCI_D0)
 875                return -EINVAL;
 876        ret = pci_platform_power_transition(dev, state);
 877        /* Power off the bridge may power off the whole hierarchy */
 878        if (!ret && state == PCI_D3cold)
 879                __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
 880        return ret;
 881}
 882EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
 883
 884/**
 885 * pci_set_power_state - Set the power state of a PCI device
 886 * @dev: PCI device to handle.
 887 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 888 *
 889 * Transition a device to a new power state, using the platform firmware and/or
 890 * the device's PCI PM registers.
 891 *
 892 * RETURN VALUE:
 893 * -EINVAL if the requested state is invalid.
 894 * -EIO if device does not support PCI PM or its PM capabilities register has a
 895 * wrong version, or device doesn't support the requested state.
 896 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
 897 * 0 if device already is in the requested state.
 898 * 0 if the transition is to D3 but D3 is not supported.
 899 * 0 if device's power state has been successfully changed.
 900 */
 901int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
 902{
 903        int error;
 904
 905        /* bound the state we're entering */
 906        if (state > PCI_D3cold)
 907                state = PCI_D3cold;
 908        else if (state < PCI_D0)
 909                state = PCI_D0;
 910        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
 911                /*
 912                 * If the device or the parent bridge do not support PCI PM,
 913                 * ignore the request if we're doing anything other than putting
 914                 * it into D0 (which would only happen on boot).
 915                 */
 916                return 0;
 917
 918        /* Check if we're already there */
 919        if (dev->current_state == state)
 920                return 0;
 921
 922        __pci_start_power_transition(dev, state);
 923
 924        /* This device is quirked not to be put into D3, so
 925           don't put it in D3 */
 926        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
 927                return 0;
 928
 929        /*
 930         * To put device in D3cold, we put device into D3hot in native
 931         * way, then put device into D3cold with platform ops
 932         */
 933        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
 934                                        PCI_D3hot : state);
 935
 936        if (!__pci_complete_power_transition(dev, state))
 937                error = 0;
 938
 939        return error;
 940}
 941EXPORT_SYMBOL(pci_set_power_state);
 942
 943/**
 944 * pci_choose_state - Choose the power state of a PCI device
 945 * @dev: PCI device to be suspended
 946 * @state: target sleep state for the whole system. This is the value
 947 *      that is passed to suspend() function.
 948 *
 949 * Returns PCI power state suitable for given device and given system
 950 * message.
 951 */
 952
 953pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
 954{
 955        pci_power_t ret;
 956
 957        if (!dev->pm_cap)
 958                return PCI_D0;
 959
 960        ret = platform_pci_choose_state(dev);
 961        if (ret != PCI_POWER_ERROR)
 962                return ret;
 963
 964        switch (state.event) {
 965        case PM_EVENT_ON:
 966                return PCI_D0;
 967        case PM_EVENT_FREEZE:
 968        case PM_EVENT_PRETHAW:
 969                /* REVISIT both freeze and pre-thaw "should" use D0 */
 970        case PM_EVENT_SUSPEND:
 971        case PM_EVENT_HIBERNATE:
 972                return PCI_D3hot;
 973        default:
 974                pci_info(dev, "unrecognized suspend event %d\n",
 975                         state.event);
 976                BUG();
 977        }
 978        return PCI_D0;
 979}
 980EXPORT_SYMBOL(pci_choose_state);
 981
 982#define PCI_EXP_SAVE_REGS       7
 983
 984static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
 985                                                       u16 cap, bool extended)
 986{
 987        struct pci_cap_saved_state *tmp;
 988
 989        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
 990                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
 991                        return tmp;
 992        }
 993        return NULL;
 994}
 995
 996struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
 997{
 998        return _pci_find_saved_cap(dev, cap, false);
 999}
1000
1001struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1002{
1003        return _pci_find_saved_cap(dev, cap, true);
1004}
1005
1006static int pci_save_pcie_state(struct pci_dev *dev)
1007{
1008        int i = 0;
1009        struct pci_cap_saved_state *save_state;
1010        u16 *cap;
1011
1012        if (!pci_is_pcie(dev))
1013                return 0;
1014
1015        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1016        if (!save_state) {
1017                pci_err(dev, "buffer not found in %s\n", __func__);
1018                return -ENOMEM;
1019        }
1020
1021        cap = (u16 *)&save_state->cap.data[0];
1022        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1023        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1024        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1025        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1026        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1027        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1028        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1029
1030        return 0;
1031}
1032
1033static void pci_restore_pcie_state(struct pci_dev *dev)
1034{
1035        int i = 0;
1036        struct pci_cap_saved_state *save_state;
1037        u16 *cap;
1038
1039        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1040        if (!save_state)
1041                return;
1042
1043        cap = (u16 *)&save_state->cap.data[0];
1044        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1045        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1046        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1047        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1048        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1049        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1050        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1051}
1052
1053
1054static int pci_save_pcix_state(struct pci_dev *dev)
1055{
1056        int pos;
1057        struct pci_cap_saved_state *save_state;
1058
1059        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1060        if (!pos)
1061                return 0;
1062
1063        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1064        if (!save_state) {
1065                pci_err(dev, "buffer not found in %s\n", __func__);
1066                return -ENOMEM;
1067        }
1068
1069        pci_read_config_word(dev, pos + PCI_X_CMD,
1070                             (u16 *)save_state->cap.data);
1071
1072        return 0;
1073}
1074
1075static void pci_restore_pcix_state(struct pci_dev *dev)
1076{
1077        int i = 0, pos;
1078        struct pci_cap_saved_state *save_state;
1079        u16 *cap;
1080
1081        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1082        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1083        if (!save_state || !pos)
1084                return;
1085        cap = (u16 *)&save_state->cap.data[0];
1086
1087        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1088}
1089
1090
1091/**
1092 * pci_save_state - save the PCI configuration space of a device before suspending
1093 * @dev: - PCI device that we're dealing with
1094 */
1095int pci_save_state(struct pci_dev *dev)
1096{
1097        int i;
1098        /* XXX: 100% dword access ok here? */
1099        for (i = 0; i < 16; i++)
1100                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1101        dev->state_saved = true;
1102
1103        i = pci_save_pcie_state(dev);
1104        if (i != 0)
1105                return i;
1106
1107        i = pci_save_pcix_state(dev);
1108        if (i != 0)
1109                return i;
1110
1111        return pci_save_vc_state(dev);
1112}
1113EXPORT_SYMBOL(pci_save_state);
1114
1115static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1116                                     u32 saved_val, int retry)
1117{
1118        u32 val;
1119
1120        pci_read_config_dword(pdev, offset, &val);
1121        if (val == saved_val)
1122                return;
1123
1124        for (;;) {
1125                pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1126                        offset, val, saved_val);
1127                pci_write_config_dword(pdev, offset, saved_val);
1128                if (retry-- <= 0)
1129                        return;
1130
1131                pci_read_config_dword(pdev, offset, &val);
1132                if (val == saved_val)
1133                        return;
1134
1135                mdelay(1);
1136        }
1137}
1138
1139static void pci_restore_config_space_range(struct pci_dev *pdev,
1140                                           int start, int end, int retry)
1141{
1142        int index;
1143
1144        for (index = end; index >= start; index--)
1145                pci_restore_config_dword(pdev, 4 * index,
1146                                         pdev->saved_config_space[index],
1147                                         retry);
1148}
1149
1150static void pci_restore_config_space(struct pci_dev *pdev)
1151{
1152        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1153                pci_restore_config_space_range(pdev, 10, 15, 0);
1154                /* Restore BARs before the command register. */
1155                pci_restore_config_space_range(pdev, 4, 9, 10);
1156                pci_restore_config_space_range(pdev, 0, 3, 0);
1157        } else {
1158                pci_restore_config_space_range(pdev, 0, 15, 0);
1159        }
1160}
1161
1162/**
1163 * pci_restore_state - Restore the saved state of a PCI device
1164 * @dev: - PCI device that we're dealing with
1165 */
1166void pci_restore_state(struct pci_dev *dev)
1167{
1168        if (!dev->state_saved)
1169                return;
1170
1171        /* PCI Express register must be restored first */
1172        pci_restore_pcie_state(dev);
1173        pci_restore_pasid_state(dev);
1174        pci_restore_pri_state(dev);
1175        pci_restore_ats_state(dev);
1176        pci_restore_vc_state(dev);
1177
1178        pci_cleanup_aer_error_status_regs(dev);
1179
1180        pci_restore_config_space(dev);
1181
1182        pci_restore_pcix_state(dev);
1183        pci_restore_msi_state(dev);
1184
1185        /* Restore ACS and IOV configuration state */
1186        pci_enable_acs(dev);
1187        pci_restore_iov_state(dev);
1188
1189        dev->state_saved = false;
1190}
1191EXPORT_SYMBOL(pci_restore_state);
1192
1193struct pci_saved_state {
1194        u32 config_space[16];
1195        struct pci_cap_saved_data cap[0];
1196};
1197
1198/**
1199 * pci_store_saved_state - Allocate and return an opaque struct containing
1200 *                         the device saved state.
1201 * @dev: PCI device that we're dealing with
1202 *
1203 * Return NULL if no state or error.
1204 */
1205struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1206{
1207        struct pci_saved_state *state;
1208        struct pci_cap_saved_state *tmp;
1209        struct pci_cap_saved_data *cap;
1210        size_t size;
1211
1212        if (!dev->state_saved)
1213                return NULL;
1214
1215        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1216
1217        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1218                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1219
1220        state = kzalloc(size, GFP_KERNEL);
1221        if (!state)
1222                return NULL;
1223
1224        memcpy(state->config_space, dev->saved_config_space,
1225               sizeof(state->config_space));
1226
1227        cap = state->cap;
1228        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1229                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1230                memcpy(cap, &tmp->cap, len);
1231                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1232        }
1233        /* Empty cap_save terminates list */
1234
1235        return state;
1236}
1237EXPORT_SYMBOL_GPL(pci_store_saved_state);
1238
1239/**
1240 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1241 * @dev: PCI device that we're dealing with
1242 * @state: Saved state returned from pci_store_saved_state()
1243 */
1244int pci_load_saved_state(struct pci_dev *dev,
1245                         struct pci_saved_state *state)
1246{
1247        struct pci_cap_saved_data *cap;
1248
1249        dev->state_saved = false;
1250
1251        if (!state)
1252                return 0;
1253
1254        memcpy(dev->saved_config_space, state->config_space,
1255               sizeof(state->config_space));
1256
1257        cap = state->cap;
1258        while (cap->size) {
1259                struct pci_cap_saved_state *tmp;
1260
1261                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1262                if (!tmp || tmp->cap.size != cap->size)
1263                        return -EINVAL;
1264
1265                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1266                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1267                       sizeof(struct pci_cap_saved_data) + cap->size);
1268        }
1269
1270        dev->state_saved = true;
1271        return 0;
1272}
1273EXPORT_SYMBOL_GPL(pci_load_saved_state);
1274
1275/**
1276 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1277 *                                 and free the memory allocated for it.
1278 * @dev: PCI device that we're dealing with
1279 * @state: Pointer to saved state returned from pci_store_saved_state()
1280 */
1281int pci_load_and_free_saved_state(struct pci_dev *dev,
1282                                  struct pci_saved_state **state)
1283{
1284        int ret = pci_load_saved_state(dev, *state);
1285        kfree(*state);
1286        *state = NULL;
1287        return ret;
1288}
1289EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1290
1291int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1292{
1293        return pci_enable_resources(dev, bars);
1294}
1295
1296static int do_pci_enable_device(struct pci_dev *dev, int bars)
1297{
1298        int err;
1299        struct pci_dev *bridge;
1300        u16 cmd;
1301        u8 pin;
1302
1303        err = pci_set_power_state(dev, PCI_D0);
1304        if (err < 0 && err != -EIO)
1305                return err;
1306
1307        bridge = pci_upstream_bridge(dev);
1308        if (bridge)
1309                pcie_aspm_powersave_config_link(bridge);
1310
1311        err = pcibios_enable_device(dev, bars);
1312        if (err < 0)
1313                return err;
1314        pci_fixup_device(pci_fixup_enable, dev);
1315
1316        if (dev->msi_enabled || dev->msix_enabled)
1317                return 0;
1318
1319        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1320        if (pin) {
1321                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1322                if (cmd & PCI_COMMAND_INTX_DISABLE)
1323                        pci_write_config_word(dev, PCI_COMMAND,
1324                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1325        }
1326
1327        return 0;
1328}
1329
1330/**
1331 * pci_reenable_device - Resume abandoned device
1332 * @dev: PCI device to be resumed
1333 *
1334 *  Note this function is a backend of pci_default_resume and is not supposed
1335 *  to be called by normal code, write proper resume handler and use it instead.
1336 */
1337int pci_reenable_device(struct pci_dev *dev)
1338{
1339        if (pci_is_enabled(dev))
1340                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1341        return 0;
1342}
1343EXPORT_SYMBOL(pci_reenable_device);
1344
1345static void pci_enable_bridge(struct pci_dev *dev)
1346{
1347        struct pci_dev *bridge;
1348        int retval;
1349
1350        bridge = pci_upstream_bridge(dev);
1351        if (bridge)
1352                pci_enable_bridge(bridge);
1353
1354        if (pci_is_enabled(dev)) {
1355                if (!dev->is_busmaster)
1356                        pci_set_master(dev);
1357                return;
1358        }
1359
1360        retval = pci_enable_device(dev);
1361        if (retval)
1362                pci_err(dev, "Error enabling bridge (%d), continuing\n",
1363                        retval);
1364        pci_set_master(dev);
1365}
1366
1367static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1368{
1369        struct pci_dev *bridge;
1370        int err;
1371        int i, bars = 0;
1372
1373        /*
1374         * Power state could be unknown at this point, either due to a fresh
1375         * boot or a device removal call.  So get the current power state
1376         * so that things like MSI message writing will behave as expected
1377         * (e.g. if the device really is in D0 at enable time).
1378         */
1379        if (dev->pm_cap) {
1380                u16 pmcsr;
1381                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1382                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1383        }
1384
1385        if (atomic_inc_return(&dev->enable_cnt) > 1)
1386                return 0;               /* already enabled */
1387
1388        bridge = pci_upstream_bridge(dev);
1389        if (bridge)
1390                pci_enable_bridge(bridge);
1391
1392        /* only skip sriov related */
1393        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1394                if (dev->resource[i].flags & flags)
1395                        bars |= (1 << i);
1396        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1397                if (dev->resource[i].flags & flags)
1398                        bars |= (1 << i);
1399
1400        err = do_pci_enable_device(dev, bars);
1401        if (err < 0)
1402                atomic_dec(&dev->enable_cnt);
1403        return err;
1404}
1405
1406/**
1407 * pci_enable_device_io - Initialize a device for use with IO space
1408 * @dev: PCI device to be initialized
1409 *
1410 *  Initialize device before it's used by a driver. Ask low-level code
1411 *  to enable I/O resources. Wake up the device if it was suspended.
1412 *  Beware, this function can fail.
1413 */
1414int pci_enable_device_io(struct pci_dev *dev)
1415{
1416        return pci_enable_device_flags(dev, IORESOURCE_IO);
1417}
1418EXPORT_SYMBOL(pci_enable_device_io);
1419
1420/**
1421 * pci_enable_device_mem - Initialize a device for use with Memory space
1422 * @dev: PCI device to be initialized
1423 *
1424 *  Initialize device before it's used by a driver. Ask low-level code
1425 *  to enable Memory resources. Wake up the device if it was suspended.
1426 *  Beware, this function can fail.
1427 */
1428int pci_enable_device_mem(struct pci_dev *dev)
1429{
1430        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1431}
1432EXPORT_SYMBOL(pci_enable_device_mem);
1433
1434/**
1435 * pci_enable_device - Initialize device before it's used by a driver.
1436 * @dev: PCI device to be initialized
1437 *
1438 *  Initialize device before it's used by a driver. Ask low-level code
1439 *  to enable I/O and memory. Wake up the device if it was suspended.
1440 *  Beware, this function can fail.
1441 *
1442 *  Note we don't actually enable the device many times if we call
1443 *  this function repeatedly (we just increment the count).
1444 */
1445int pci_enable_device(struct pci_dev *dev)
1446{
1447        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1448}
1449EXPORT_SYMBOL(pci_enable_device);
1450
1451/*
1452 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1453 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1454 * there's no need to track it separately.  pci_devres is initialized
1455 * when a device is enabled using managed PCI device enable interface.
1456 */
1457struct pci_devres {
1458        unsigned int enabled:1;
1459        unsigned int pinned:1;
1460        unsigned int orig_intx:1;
1461        unsigned int restore_intx:1;
1462        unsigned int mwi:1;
1463        u32 region_mask;
1464};
1465
1466static void pcim_release(struct device *gendev, void *res)
1467{
1468        struct pci_dev *dev = to_pci_dev(gendev);
1469        struct pci_devres *this = res;
1470        int i;
1471
1472        if (dev->msi_enabled)
1473                pci_disable_msi(dev);
1474        if (dev->msix_enabled)
1475                pci_disable_msix(dev);
1476
1477        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478                if (this->region_mask & (1 << i))
1479                        pci_release_region(dev, i);
1480
1481        if (this->mwi)
1482                pci_clear_mwi(dev);
1483
1484        if (this->restore_intx)
1485                pci_intx(dev, this->orig_intx);
1486
1487        if (this->enabled && !this->pinned)
1488                pci_disable_device(dev);
1489}
1490
1491static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1492{
1493        struct pci_devres *dr, *new_dr;
1494
1495        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1496        if (dr)
1497                return dr;
1498
1499        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1500        if (!new_dr)
1501                return NULL;
1502        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1503}
1504
1505static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1506{
1507        if (pci_is_managed(pdev))
1508                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1509        return NULL;
1510}
1511
1512/**
1513 * pcim_enable_device - Managed pci_enable_device()
1514 * @pdev: PCI device to be initialized
1515 *
1516 * Managed pci_enable_device().
1517 */
1518int pcim_enable_device(struct pci_dev *pdev)
1519{
1520        struct pci_devres *dr;
1521        int rc;
1522
1523        dr = get_pci_dr(pdev);
1524        if (unlikely(!dr))
1525                return -ENOMEM;
1526        if (dr->enabled)
1527                return 0;
1528
1529        rc = pci_enable_device(pdev);
1530        if (!rc) {
1531                pdev->is_managed = 1;
1532                dr->enabled = 1;
1533        }
1534        return rc;
1535}
1536EXPORT_SYMBOL(pcim_enable_device);
1537
1538/**
1539 * pcim_pin_device - Pin managed PCI device
1540 * @pdev: PCI device to pin
1541 *
1542 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1543 * driver detach.  @pdev must have been enabled with
1544 * pcim_enable_device().
1545 */
1546void pcim_pin_device(struct pci_dev *pdev)
1547{
1548        struct pci_devres *dr;
1549
1550        dr = find_pci_dr(pdev);
1551        WARN_ON(!dr || !dr->enabled);
1552        if (dr)
1553                dr->pinned = 1;
1554}
1555EXPORT_SYMBOL(pcim_pin_device);
1556
1557/*
1558 * pcibios_add_device - provide arch specific hooks when adding device dev
1559 * @dev: the PCI device being added
1560 *
1561 * Permits the platform to provide architecture specific functionality when
1562 * devices are added. This is the default implementation. Architecture
1563 * implementations can override this.
1564 */
1565int __weak pcibios_add_device(struct pci_dev *dev)
1566{
1567        return 0;
1568}
1569
1570/**
1571 * pcibios_release_device - provide arch specific hooks when releasing device dev
1572 * @dev: the PCI device being released
1573 *
1574 * Permits the platform to provide architecture specific functionality when
1575 * devices are released. This is the default implementation. Architecture
1576 * implementations can override this.
1577 */
1578void __weak pcibios_release_device(struct pci_dev *dev) {}
1579
1580/**
1581 * pcibios_disable_device - disable arch specific PCI resources for device dev
1582 * @dev: the PCI device to disable
1583 *
1584 * Disables architecture specific PCI resources for the device. This
1585 * is the default implementation. Architecture implementations can
1586 * override this.
1587 */
1588void __weak pcibios_disable_device(struct pci_dev *dev) {}
1589
1590/**
1591 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1592 * @irq: ISA IRQ to penalize
1593 * @active: IRQ active or not
1594 *
1595 * Permits the platform to provide architecture-specific functionality when
1596 * penalizing ISA IRQs. This is the default implementation. Architecture
1597 * implementations can override this.
1598 */
1599void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1600
1601static void do_pci_disable_device(struct pci_dev *dev)
1602{
1603        u16 pci_command;
1604
1605        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1606        if (pci_command & PCI_COMMAND_MASTER) {
1607                pci_command &= ~PCI_COMMAND_MASTER;
1608                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1609        }
1610
1611        pcibios_disable_device(dev);
1612}
1613
1614/**
1615 * pci_disable_enabled_device - Disable device without updating enable_cnt
1616 * @dev: PCI device to disable
1617 *
1618 * NOTE: This function is a backend of PCI power management routines and is
1619 * not supposed to be called drivers.
1620 */
1621void pci_disable_enabled_device(struct pci_dev *dev)
1622{
1623        if (pci_is_enabled(dev))
1624                do_pci_disable_device(dev);
1625}
1626
1627/**
1628 * pci_disable_device - Disable PCI device after use
1629 * @dev: PCI device to be disabled
1630 *
1631 * Signal to the system that the PCI device is not in use by the system
1632 * anymore.  This only involves disabling PCI bus-mastering, if active.
1633 *
1634 * Note we don't actually disable the device until all callers of
1635 * pci_enable_device() have called pci_disable_device().
1636 */
1637void pci_disable_device(struct pci_dev *dev)
1638{
1639        struct pci_devres *dr;
1640
1641        dr = find_pci_dr(dev);
1642        if (dr)
1643                dr->enabled = 0;
1644
1645        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1646                      "disabling already-disabled device");
1647
1648        if (atomic_dec_return(&dev->enable_cnt) != 0)
1649                return;
1650
1651        do_pci_disable_device(dev);
1652
1653        dev->is_busmaster = 0;
1654}
1655EXPORT_SYMBOL(pci_disable_device);
1656
1657/**
1658 * pcibios_set_pcie_reset_state - set reset state for device dev
1659 * @dev: the PCIe device reset
1660 * @state: Reset state to enter into
1661 *
1662 *
1663 * Sets the PCIe reset state for the device. This is the default
1664 * implementation. Architecture implementations can override this.
1665 */
1666int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1667                                        enum pcie_reset_state state)
1668{
1669        return -EINVAL;
1670}
1671
1672/**
1673 * pci_set_pcie_reset_state - set reset state for device dev
1674 * @dev: the PCIe device reset
1675 * @state: Reset state to enter into
1676 *
1677 *
1678 * Sets the PCI reset state for the device.
1679 */
1680int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1681{
1682        return pcibios_set_pcie_reset_state(dev, state);
1683}
1684EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1685
1686/**
1687 * pci_check_pme_status - Check if given device has generated PME.
1688 * @dev: Device to check.
1689 *
1690 * Check the PME status of the device and if set, clear it and clear PME enable
1691 * (if set).  Return 'true' if PME status and PME enable were both set or
1692 * 'false' otherwise.
1693 */
1694bool pci_check_pme_status(struct pci_dev *dev)
1695{
1696        int pmcsr_pos;
1697        u16 pmcsr;
1698        bool ret = false;
1699
1700        if (!dev->pm_cap)
1701                return false;
1702
1703        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1704        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1705        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1706                return false;
1707
1708        /* Clear PME status. */
1709        pmcsr |= PCI_PM_CTRL_PME_STATUS;
1710        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1711                /* Disable PME to avoid interrupt flood. */
1712                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713                ret = true;
1714        }
1715
1716        pci_write_config_word(dev, pmcsr_pos, pmcsr);
1717
1718        return ret;
1719}
1720
1721/**
1722 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1723 * @dev: Device to handle.
1724 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1725 *
1726 * Check if @dev has generated PME and queue a resume request for it in that
1727 * case.
1728 */
1729static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1730{
1731        if (pme_poll_reset && dev->pme_poll)
1732                dev->pme_poll = false;
1733
1734        if (pci_check_pme_status(dev)) {
1735                pci_wakeup_event(dev);
1736                pm_request_resume(&dev->dev);
1737        }
1738        return 0;
1739}
1740
1741/**
1742 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1743 * @bus: Top bus of the subtree to walk.
1744 */
1745void pci_pme_wakeup_bus(struct pci_bus *bus)
1746{
1747        if (bus)
1748                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1749}
1750
1751
1752/**
1753 * pci_pme_capable - check the capability of PCI device to generate PME#
1754 * @dev: PCI device to handle.
1755 * @state: PCI state from which device will issue PME#.
1756 */
1757bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1758{
1759        if (!dev->pm_cap)
1760                return false;
1761
1762        return !!(dev->pme_support & (1 << state));
1763}
1764EXPORT_SYMBOL(pci_pme_capable);
1765
1766static void pci_pme_list_scan(struct work_struct *work)
1767{
1768        struct pci_pme_device *pme_dev, *n;
1769
1770        mutex_lock(&pci_pme_list_mutex);
1771        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1772                if (pme_dev->dev->pme_poll) {
1773                        struct pci_dev *bridge;
1774
1775                        bridge = pme_dev->dev->bus->self;
1776                        /*
1777                         * If bridge is in low power state, the
1778                         * configuration space of subordinate devices
1779                         * may be not accessible
1780                         */
1781                        if (bridge && bridge->current_state != PCI_D0)
1782                                continue;
1783                        pci_pme_wakeup(pme_dev->dev, NULL);
1784                } else {
1785                        list_del(&pme_dev->list);
1786                        kfree(pme_dev);
1787                }
1788        }
1789        if (!list_empty(&pci_pme_list))
1790                queue_delayed_work(system_freezable_wq, &pci_pme_work,
1791                                   msecs_to_jiffies(PME_TIMEOUT));
1792        mutex_unlock(&pci_pme_list_mutex);
1793}
1794
1795static void __pci_pme_active(struct pci_dev *dev, bool enable)
1796{
1797        u16 pmcsr;
1798
1799        if (!dev->pme_support)
1800                return;
1801
1802        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1803        /* Clear PME_Status by writing 1 to it and enable PME# */
1804        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1805        if (!enable)
1806                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1807
1808        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1809}
1810
1811/**
1812 * pci_pme_restore - Restore PME configuration after config space restore.
1813 * @dev: PCI device to update.
1814 */
1815void pci_pme_restore(struct pci_dev *dev)
1816{
1817        u16 pmcsr;
1818
1819        if (!dev->pme_support)
1820                return;
1821
1822        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1823        if (dev->wakeup_prepared) {
1824                pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1825                pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1826        } else {
1827                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1828                pmcsr |= PCI_PM_CTRL_PME_STATUS;
1829        }
1830        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1831}
1832
1833/**
1834 * pci_pme_active - enable or disable PCI device's PME# function
1835 * @dev: PCI device to handle.
1836 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1837 *
1838 * The caller must verify that the device is capable of generating PME# before
1839 * calling this function with @enable equal to 'true'.
1840 */
1841void pci_pme_active(struct pci_dev *dev, bool enable)
1842{
1843        __pci_pme_active(dev, enable);
1844
1845        /*
1846         * PCI (as opposed to PCIe) PME requires that the device have
1847         * its PME# line hooked up correctly. Not all hardware vendors
1848         * do this, so the PME never gets delivered and the device
1849         * remains asleep. The easiest way around this is to
1850         * periodically walk the list of suspended devices and check
1851         * whether any have their PME flag set. The assumption is that
1852         * we'll wake up often enough anyway that this won't be a huge
1853         * hit, and the power savings from the devices will still be a
1854         * win.
1855         *
1856         * Although PCIe uses in-band PME message instead of PME# line
1857         * to report PME, PME does not work for some PCIe devices in
1858         * reality.  For example, there are devices that set their PME
1859         * status bits, but don't really bother to send a PME message;
1860         * there are PCI Express Root Ports that don't bother to
1861         * trigger interrupts when they receive PME messages from the
1862         * devices below.  So PME poll is used for PCIe devices too.
1863         */
1864
1865        if (dev->pme_poll) {
1866                struct pci_pme_device *pme_dev;
1867                if (enable) {
1868                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
1869                                          GFP_KERNEL);
1870                        if (!pme_dev) {
1871                                pci_warn(dev, "can't enable PME#\n");
1872                                return;
1873                        }
1874                        pme_dev->dev = dev;
1875                        mutex_lock(&pci_pme_list_mutex);
1876                        list_add(&pme_dev->list, &pci_pme_list);
1877                        if (list_is_singular(&pci_pme_list))
1878                                queue_delayed_work(system_freezable_wq,
1879                                                   &pci_pme_work,
1880                                                   msecs_to_jiffies(PME_TIMEOUT));
1881                        mutex_unlock(&pci_pme_list_mutex);
1882                } else {
1883                        mutex_lock(&pci_pme_list_mutex);
1884                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
1885                                if (pme_dev->dev == dev) {
1886                                        list_del(&pme_dev->list);
1887                                        kfree(pme_dev);
1888                                        break;
1889                                }
1890                        }
1891                        mutex_unlock(&pci_pme_list_mutex);
1892                }
1893        }
1894
1895        pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1896}
1897EXPORT_SYMBOL(pci_pme_active);
1898
1899/**
1900 * pci_enable_wake - enable PCI device as wakeup event source
1901 * @dev: PCI device affected
1902 * @state: PCI state from which device will issue wakeup events
1903 * @enable: True to enable event generation; false to disable
1904 *
1905 * This enables the device as a wakeup event source, or disables it.
1906 * When such events involves platform-specific hooks, those hooks are
1907 * called automatically by this routine.
1908 *
1909 * Devices with legacy power management (no standard PCI PM capabilities)
1910 * always require such platform hooks.
1911 *
1912 * RETURN VALUE:
1913 * 0 is returned on success
1914 * -EINVAL is returned if device is not supposed to wake up the system
1915 * Error code depending on the platform is returned if both the platform and
1916 * the native mechanism fail to enable the generation of wake-up events
1917 */
1918int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1919{
1920        int ret = 0;
1921
1922        /*
1923         * Bridges can only signal wakeup on behalf of subordinate devices,
1924         * but that is set up elsewhere, so skip them.
1925         */
1926        if (pci_has_subordinate(dev))
1927                return 0;
1928
1929        /* Don't do the same thing twice in a row for one device. */
1930        if (!!enable == !!dev->wakeup_prepared)
1931                return 0;
1932
1933        /*
1934         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1935         * Anderson we should be doing PME# wake enable followed by ACPI wake
1936         * enable.  To disable wake-up we call the platform first, for symmetry.
1937         */
1938
1939        if (enable) {
1940                int error;
1941
1942                if (pci_pme_capable(dev, state))
1943                        pci_pme_active(dev, true);
1944                else
1945                        ret = 1;
1946                error = platform_pci_set_wakeup(dev, true);
1947                if (ret)
1948                        ret = error;
1949                if (!ret)
1950                        dev->wakeup_prepared = true;
1951        } else {
1952                platform_pci_set_wakeup(dev, false);
1953                pci_pme_active(dev, false);
1954                dev->wakeup_prepared = false;
1955        }
1956
1957        return ret;
1958}
1959EXPORT_SYMBOL(pci_enable_wake);
1960
1961/**
1962 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1963 * @dev: PCI device to prepare
1964 * @enable: True to enable wake-up event generation; false to disable
1965 *
1966 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1967 * and this function allows them to set that up cleanly - pci_enable_wake()
1968 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1969 * ordering constraints.
1970 *
1971 * This function only returns error code if the device is not capable of
1972 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1973 * enable wake-up power for it.
1974 */
1975int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1976{
1977        return pci_pme_capable(dev, PCI_D3cold) ?
1978                        pci_enable_wake(dev, PCI_D3cold, enable) :
1979                        pci_enable_wake(dev, PCI_D3hot, enable);
1980}
1981EXPORT_SYMBOL(pci_wake_from_d3);
1982
1983/**
1984 * pci_target_state - find an appropriate low power state for a given PCI dev
1985 * @dev: PCI device
1986 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1987 *
1988 * Use underlying platform code to find a supported low power state for @dev.
1989 * If the platform can't manage @dev, return the deepest state from which it
1990 * can generate wake events, based on any available PME info.
1991 */
1992static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1993{
1994        pci_power_t target_state = PCI_D3hot;
1995
1996        if (platform_pci_power_manageable(dev)) {
1997                /*
1998                 * Call the platform to choose the target state of the device
1999                 * and enable wake-up from this state if supported.
2000                 */
2001                pci_power_t state = platform_pci_choose_state(dev);
2002
2003                switch (state) {
2004                case PCI_POWER_ERROR:
2005                case PCI_UNKNOWN:
2006                        break;
2007                case PCI_D1:
2008                case PCI_D2:
2009                        if (pci_no_d1d2(dev))
2010                                break;
2011                default:
2012                        target_state = state;
2013                }
2014
2015                return target_state;
2016        }
2017
2018        if (!dev->pm_cap)
2019                target_state = PCI_D0;
2020
2021        /*
2022         * If the device is in D3cold even though it's not power-manageable by
2023         * the platform, it may have been powered down by non-standard means.
2024         * Best to let it slumber.
2025         */
2026        if (dev->current_state == PCI_D3cold)
2027                target_state = PCI_D3cold;
2028
2029        if (wakeup) {
2030                /*
2031                 * Find the deepest state from which the device can generate
2032                 * wake-up events, make it the target state and enable device
2033                 * to generate PME#.
2034                 */
2035                if (dev->pme_support) {
2036                        while (target_state
2037                              && !(dev->pme_support & (1 << target_state)))
2038                                target_state--;
2039                }
2040        }
2041
2042        return target_state;
2043}
2044
2045/**
2046 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2047 * @dev: Device to handle.
2048 *
2049 * Choose the power state appropriate for the device depending on whether
2050 * it can wake up the system and/or is power manageable by the platform
2051 * (PCI_D3hot is the default) and put the device into that state.
2052 */
2053int pci_prepare_to_sleep(struct pci_dev *dev)
2054{
2055        bool wakeup = device_may_wakeup(&dev->dev);
2056        pci_power_t target_state = pci_target_state(dev, wakeup);
2057        int error;
2058
2059        if (target_state == PCI_POWER_ERROR)
2060                return -EIO;
2061
2062        pci_enable_wake(dev, target_state, wakeup);
2063
2064        error = pci_set_power_state(dev, target_state);
2065
2066        if (error)
2067                pci_enable_wake(dev, target_state, false);
2068
2069        return error;
2070}
2071EXPORT_SYMBOL(pci_prepare_to_sleep);
2072
2073/**
2074 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2075 * @dev: Device to handle.
2076 *
2077 * Disable device's system wake-up capability and put it into D0.
2078 */
2079int pci_back_from_sleep(struct pci_dev *dev)
2080{
2081        pci_enable_wake(dev, PCI_D0, false);
2082        return pci_set_power_state(dev, PCI_D0);
2083}
2084EXPORT_SYMBOL(pci_back_from_sleep);
2085
2086/**
2087 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2088 * @dev: PCI device being suspended.
2089 *
2090 * Prepare @dev to generate wake-up events at run time and put it into a low
2091 * power state.
2092 */
2093int pci_finish_runtime_suspend(struct pci_dev *dev)
2094{
2095        pci_power_t target_state;
2096        int error;
2097
2098        target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2099        if (target_state == PCI_POWER_ERROR)
2100                return -EIO;
2101
2102        dev->runtime_d3cold = target_state == PCI_D3cold;
2103
2104        pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2105
2106        error = pci_set_power_state(dev, target_state);
2107
2108        if (error) {
2109                pci_enable_wake(dev, target_state, false);
2110                dev->runtime_d3cold = false;
2111        }
2112
2113        return error;
2114}
2115
2116/**
2117 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2118 * @dev: Device to check.
2119 *
2120 * Return true if the device itself is capable of generating wake-up events
2121 * (through the platform or using the native PCIe PME) or if the device supports
2122 * PME and one of its upstream bridges can generate wake-up events.
2123 */
2124bool pci_dev_run_wake(struct pci_dev *dev)
2125{
2126        struct pci_bus *bus = dev->bus;
2127
2128        if (device_can_wakeup(&dev->dev))
2129                return true;
2130
2131        if (!dev->pme_support)
2132                return false;
2133
2134        /* PME-capable in principle, but not from the target power state */
2135        if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2136                return false;
2137
2138        while (bus->parent) {
2139                struct pci_dev *bridge = bus->self;
2140
2141                if (device_can_wakeup(&bridge->dev))
2142                        return true;
2143
2144                bus = bus->parent;
2145        }
2146
2147        /* We have reached the root bus. */
2148        if (bus->bridge)
2149                return device_can_wakeup(bus->bridge);
2150
2151        return false;
2152}
2153EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2154
2155/**
2156 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2157 * @pci_dev: Device to check.
2158 *
2159 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2160 * reconfigured due to wakeup settings difference between system and runtime
2161 * suspend and the current power state of it is suitable for the upcoming
2162 * (system) transition.
2163 *
2164 * If the device is not configured for system wakeup, disable PME for it before
2165 * returning 'true' to prevent it from waking up the system unnecessarily.
2166 */
2167bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2168{
2169        struct device *dev = &pci_dev->dev;
2170        bool wakeup = device_may_wakeup(dev);
2171
2172        if (!pm_runtime_suspended(dev)
2173            || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2174            || platform_pci_need_resume(pci_dev))
2175                return false;
2176
2177        /*
2178         * At this point the device is good to go unless it's been configured
2179         * to generate PME at the runtime suspend time, but it is not supposed
2180         * to wake up the system.  In that case, simply disable PME for it
2181         * (it will have to be re-enabled on exit from system resume).
2182         *
2183         * If the device's power state is D3cold and the platform check above
2184         * hasn't triggered, the device's configuration is suitable and we don't
2185         * need to manipulate it at all.
2186         */
2187        spin_lock_irq(&dev->power.lock);
2188
2189        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2190            !wakeup)
2191                __pci_pme_active(pci_dev, false);
2192
2193        spin_unlock_irq(&dev->power.lock);
2194        return true;
2195}
2196
2197/**
2198 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2199 * @pci_dev: Device to handle.
2200 *
2201 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2202 * it might have been disabled during the prepare phase of system suspend if
2203 * the device was not configured for system wakeup.
2204 */
2205void pci_dev_complete_resume(struct pci_dev *pci_dev)
2206{
2207        struct device *dev = &pci_dev->dev;
2208
2209        if (!pci_dev_run_wake(pci_dev))
2210                return;
2211
2212        spin_lock_irq(&dev->power.lock);
2213
2214        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2215                __pci_pme_active(pci_dev, true);
2216
2217        spin_unlock_irq(&dev->power.lock);
2218}
2219
2220void pci_config_pm_runtime_get(struct pci_dev *pdev)
2221{
2222        struct device *dev = &pdev->dev;
2223        struct device *parent = dev->parent;
2224
2225        if (parent)
2226                pm_runtime_get_sync(parent);
2227        pm_runtime_get_noresume(dev);
2228        /*
2229         * pdev->current_state is set to PCI_D3cold during suspending,
2230         * so wait until suspending completes
2231         */
2232        pm_runtime_barrier(dev);
2233        /*
2234         * Only need to resume devices in D3cold, because config
2235         * registers are still accessible for devices suspended but
2236         * not in D3cold.
2237         */
2238        if (pdev->current_state == PCI_D3cold)
2239                pm_runtime_resume(dev);
2240}
2241
2242void pci_config_pm_runtime_put(struct pci_dev *pdev)
2243{
2244        struct device *dev = &pdev->dev;
2245        struct device *parent = dev->parent;
2246
2247        pm_runtime_put(dev);
2248        if (parent)
2249                pm_runtime_put_sync(parent);
2250}
2251
2252/**
2253 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2254 * @bridge: Bridge to check
2255 *
2256 * This function checks if it is possible to move the bridge to D3.
2257 * Currently we only allow D3 for recent enough PCIe ports.
2258 */
2259bool pci_bridge_d3_possible(struct pci_dev *bridge)
2260{
2261        unsigned int year;
2262
2263        if (!pci_is_pcie(bridge))
2264                return false;
2265
2266        switch (pci_pcie_type(bridge)) {
2267        case PCI_EXP_TYPE_ROOT_PORT:
2268        case PCI_EXP_TYPE_UPSTREAM:
2269        case PCI_EXP_TYPE_DOWNSTREAM:
2270                if (pci_bridge_d3_disable)
2271                        return false;
2272
2273                /*
2274                 * Hotplug interrupts cannot be delivered if the link is down,
2275                 * so parents of a hotplug port must stay awake. In addition,
2276                 * hotplug ports handled by firmware in System Management Mode
2277                 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2278                 * For simplicity, disallow in general for now.
2279                 */
2280                if (bridge->is_hotplug_bridge)
2281                        return false;
2282
2283                if (pci_bridge_d3_force)
2284                        return true;
2285
2286                /*
2287                 * It should be safe to put PCIe ports from 2015 or newer
2288                 * to D3.
2289                 */
2290                if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2291                    year >= 2015) {
2292                        return true;
2293                }
2294                break;
2295        }
2296
2297        return false;
2298}
2299
2300static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2301{
2302        bool *d3cold_ok = data;
2303
2304        if (/* The device needs to be allowed to go D3cold ... */
2305            dev->no_d3cold || !dev->d3cold_allowed ||
2306
2307            /* ... and if it is wakeup capable to do so from D3cold. */
2308            (device_may_wakeup(&dev->dev) &&
2309             !pci_pme_capable(dev, PCI_D3cold)) ||
2310
2311            /* If it is a bridge it must be allowed to go to D3. */
2312            !pci_power_manageable(dev))
2313
2314                *d3cold_ok = false;
2315
2316        return !*d3cold_ok;
2317}
2318
2319/*
2320 * pci_bridge_d3_update - Update bridge D3 capabilities
2321 * @dev: PCI device which is changed
2322 *
2323 * Update upstream bridge PM capabilities accordingly depending on if the
2324 * device PM configuration was changed or the device is being removed.  The
2325 * change is also propagated upstream.
2326 */
2327void pci_bridge_d3_update(struct pci_dev *dev)
2328{
2329        bool remove = !device_is_registered(&dev->dev);
2330        struct pci_dev *bridge;
2331        bool d3cold_ok = true;
2332
2333        bridge = pci_upstream_bridge(dev);
2334        if (!bridge || !pci_bridge_d3_possible(bridge))
2335                return;
2336
2337        /*
2338         * If D3 is currently allowed for the bridge, removing one of its
2339         * children won't change that.
2340         */
2341        if (remove && bridge->bridge_d3)
2342                return;
2343
2344        /*
2345         * If D3 is currently allowed for the bridge and a child is added or
2346         * changed, disallowance of D3 can only be caused by that child, so
2347         * we only need to check that single device, not any of its siblings.
2348         *
2349         * If D3 is currently not allowed for the bridge, checking the device
2350         * first may allow us to skip checking its siblings.
2351         */
2352        if (!remove)
2353                pci_dev_check_d3cold(dev, &d3cold_ok);
2354
2355        /*
2356         * If D3 is currently not allowed for the bridge, this may be caused
2357         * either by the device being changed/removed or any of its siblings,
2358         * so we need to go through all children to find out if one of them
2359         * continues to block D3.
2360         */
2361        if (d3cold_ok && !bridge->bridge_d3)
2362                pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2363                             &d3cold_ok);
2364
2365        if (bridge->bridge_d3 != d3cold_ok) {
2366                bridge->bridge_d3 = d3cold_ok;
2367                /* Propagate change to upstream bridges */
2368                pci_bridge_d3_update(bridge);
2369        }
2370}
2371
2372/**
2373 * pci_d3cold_enable - Enable D3cold for device
2374 * @dev: PCI device to handle
2375 *
2376 * This function can be used in drivers to enable D3cold from the device
2377 * they handle.  It also updates upstream PCI bridge PM capabilities
2378 * accordingly.
2379 */
2380void pci_d3cold_enable(struct pci_dev *dev)
2381{
2382        if (dev->no_d3cold) {
2383                dev->no_d3cold = false;
2384                pci_bridge_d3_update(dev);
2385        }
2386}
2387EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2388
2389/**
2390 * pci_d3cold_disable - Disable D3cold for device
2391 * @dev: PCI device to handle
2392 *
2393 * This function can be used in drivers to disable D3cold from the device
2394 * they handle.  It also updates upstream PCI bridge PM capabilities
2395 * accordingly.
2396 */
2397void pci_d3cold_disable(struct pci_dev *dev)
2398{
2399        if (!dev->no_d3cold) {
2400                dev->no_d3cold = true;
2401                pci_bridge_d3_update(dev);
2402        }
2403}
2404EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2405
2406/**
2407 * pci_pm_init - Initialize PM functions of given PCI device
2408 * @dev: PCI device to handle.
2409 */
2410void pci_pm_init(struct pci_dev *dev)
2411{
2412        int pm;
2413        u16 pmc;
2414
2415        pm_runtime_forbid(&dev->dev);
2416        pm_runtime_set_active(&dev->dev);
2417        pm_runtime_enable(&dev->dev);
2418        device_enable_async_suspend(&dev->dev);
2419        dev->wakeup_prepared = false;
2420
2421        dev->pm_cap = 0;
2422        dev->pme_support = 0;
2423
2424        /* find PCI PM capability in list */
2425        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2426        if (!pm)
2427                return;
2428        /* Check device's ability to generate PME# */
2429        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2430
2431        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2432                pci_err(dev, "unsupported PM cap regs version (%u)\n",
2433                        pmc & PCI_PM_CAP_VER_MASK);
2434                return;
2435        }
2436
2437        dev->pm_cap = pm;
2438        dev->d3_delay = PCI_PM_D3_WAIT;
2439        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2440        dev->bridge_d3 = pci_bridge_d3_possible(dev);
2441        dev->d3cold_allowed = true;
2442
2443        dev->d1_support = false;
2444        dev->d2_support = false;
2445        if (!pci_no_d1d2(dev)) {
2446                if (pmc & PCI_PM_CAP_D1)
2447                        dev->d1_support = true;
2448                if (pmc & PCI_PM_CAP_D2)
2449                        dev->d2_support = true;
2450
2451                if (dev->d1_support || dev->d2_support)
2452                        pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2453                                   dev->d1_support ? " D1" : "",
2454                                   dev->d2_support ? " D2" : "");
2455        }
2456
2457        pmc &= PCI_PM_CAP_PME_MASK;
2458        if (pmc) {
2459                pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2460                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2461                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2462                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2463                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2464                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2465                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2466                dev->pme_poll = true;
2467                /*
2468                 * Make device's PM flags reflect the wake-up capability, but
2469                 * let the user space enable it to wake up the system as needed.
2470                 */
2471                device_set_wakeup_capable(&dev->dev, true);
2472                /* Disable the PME# generation functionality */
2473                pci_pme_active(dev, false);
2474        }
2475}
2476
2477static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2478{
2479        unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2480
2481        switch (prop) {
2482        case PCI_EA_P_MEM:
2483        case PCI_EA_P_VF_MEM:
2484                flags |= IORESOURCE_MEM;
2485                break;
2486        case PCI_EA_P_MEM_PREFETCH:
2487        case PCI_EA_P_VF_MEM_PREFETCH:
2488                flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2489                break;
2490        case PCI_EA_P_IO:
2491                flags |= IORESOURCE_IO;
2492                break;
2493        default:
2494                return 0;
2495        }
2496
2497        return flags;
2498}
2499
2500static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2501                                            u8 prop)
2502{
2503        if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2504                return &dev->resource[bei];
2505#ifdef CONFIG_PCI_IOV
2506        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2507                 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2508                return &dev->resource[PCI_IOV_RESOURCES +
2509                                      bei - PCI_EA_BEI_VF_BAR0];
2510#endif
2511        else if (bei == PCI_EA_BEI_ROM)
2512                return &dev->resource[PCI_ROM_RESOURCE];
2513        else
2514                return NULL;
2515}
2516
2517/* Read an Enhanced Allocation (EA) entry */
2518static int pci_ea_read(struct pci_dev *dev, int offset)
2519{
2520        struct resource *res;
2521        int ent_size, ent_offset = offset;
2522        resource_size_t start, end;
2523        unsigned long flags;
2524        u32 dw0, bei, base, max_offset;
2525        u8 prop;
2526        bool support_64 = (sizeof(resource_size_t) >= 8);
2527
2528        pci_read_config_dword(dev, ent_offset, &dw0);
2529        ent_offset += 4;
2530
2531        /* Entry size field indicates DWORDs after 1st */
2532        ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2533
2534        if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2535                goto out;
2536
2537        bei = (dw0 & PCI_EA_BEI) >> 4;
2538        prop = (dw0 & PCI_EA_PP) >> 8;
2539
2540        /*
2541         * If the Property is in the reserved range, try the Secondary
2542         * Property instead.
2543         */
2544        if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2545                prop = (dw0 & PCI_EA_SP) >> 16;
2546        if (prop > PCI_EA_P_BRIDGE_IO)
2547                goto out;
2548
2549        res = pci_ea_get_resource(dev, bei, prop);
2550        if (!res) {
2551                pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2552                goto out;
2553        }
2554
2555        flags = pci_ea_flags(dev, prop);
2556        if (!flags) {
2557                pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2558                goto out;
2559        }
2560
2561        /* Read Base */
2562        pci_read_config_dword(dev, ent_offset, &base);
2563        start = (base & PCI_EA_FIELD_MASK);
2564        ent_offset += 4;
2565
2566        /* Read MaxOffset */
2567        pci_read_config_dword(dev, ent_offset, &max_offset);
2568        ent_offset += 4;
2569
2570        /* Read Base MSBs (if 64-bit entry) */
2571        if (base & PCI_EA_IS_64) {
2572                u32 base_upper;
2573
2574                pci_read_config_dword(dev, ent_offset, &base_upper);
2575                ent_offset += 4;
2576
2577                flags |= IORESOURCE_MEM_64;
2578
2579                /* entry starts above 32-bit boundary, can't use */
2580                if (!support_64 && base_upper)
2581                        goto out;
2582
2583                if (support_64)
2584                        start |= ((u64)base_upper << 32);
2585        }
2586
2587        end = start + (max_offset | 0x03);
2588
2589        /* Read MaxOffset MSBs (if 64-bit entry) */
2590        if (max_offset & PCI_EA_IS_64) {
2591                u32 max_offset_upper;
2592
2593                pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2594                ent_offset += 4;
2595
2596                flags |= IORESOURCE_MEM_64;
2597
2598                /* entry too big, can't use */
2599                if (!support_64 && max_offset_upper)
2600                        goto out;
2601
2602                if (support_64)
2603                        end += ((u64)max_offset_upper << 32);
2604        }
2605
2606        if (end < start) {
2607                pci_err(dev, "EA Entry crosses address boundary\n");
2608                goto out;
2609        }
2610
2611        if (ent_size != ent_offset - offset) {
2612                pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2613                        ent_size, ent_offset - offset);
2614                goto out;
2615        }
2616
2617        res->name = pci_name(dev);
2618        res->start = start;
2619        res->end = end;
2620        res->flags = flags;
2621
2622        if (bei <= PCI_EA_BEI_BAR5)
2623                pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2624                           bei, res, prop);
2625        else if (bei == PCI_EA_BEI_ROM)
2626                pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2627                           res, prop);
2628        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2629                pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2630                           bei - PCI_EA_BEI_VF_BAR0, res, prop);
2631        else
2632                pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2633                           bei, res, prop);
2634
2635out:
2636        return offset + ent_size;
2637}
2638
2639/* Enhanced Allocation Initialization */
2640void pci_ea_init(struct pci_dev *dev)
2641{
2642        int ea;
2643        u8 num_ent;
2644        int offset;
2645        int i;
2646
2647        /* find PCI EA capability in list */
2648        ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2649        if (!ea)
2650                return;
2651
2652        /* determine the number of entries */
2653        pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2654                                        &num_ent);
2655        num_ent &= PCI_EA_NUM_ENT_MASK;
2656
2657        offset = ea + PCI_EA_FIRST_ENT;
2658
2659        /* Skip DWORD 2 for type 1 functions */
2660        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2661                offset += 4;
2662
2663        /* parse each EA entry */
2664        for (i = 0; i < num_ent; ++i)
2665                offset = pci_ea_read(dev, offset);
2666}
2667
2668static void pci_add_saved_cap(struct pci_dev *pci_dev,
2669        struct pci_cap_saved_state *new_cap)
2670{
2671        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2672}
2673
2674/**
2675 * _pci_add_cap_save_buffer - allocate buffer for saving given
2676 *                            capability registers
2677 * @dev: the PCI device
2678 * @cap: the capability to allocate the buffer for
2679 * @extended: Standard or Extended capability ID
2680 * @size: requested size of the buffer
2681 */
2682static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2683                                    bool extended, unsigned int size)
2684{
2685        int pos;
2686        struct pci_cap_saved_state *save_state;
2687
2688        if (extended)
2689                pos = pci_find_ext_capability(dev, cap);
2690        else
2691                pos = pci_find_capability(dev, cap);
2692
2693        if (!pos)
2694                return 0;
2695
2696        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2697        if (!save_state)
2698                return -ENOMEM;
2699
2700        save_state->cap.cap_nr = cap;
2701        save_state->cap.cap_extended = extended;
2702        save_state->cap.size = size;
2703        pci_add_saved_cap(dev, save_state);
2704
2705        return 0;
2706}
2707
2708int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2709{
2710        return _pci_add_cap_save_buffer(dev, cap, false, size);
2711}
2712
2713int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2714{
2715        return _pci_add_cap_save_buffer(dev, cap, true, size);
2716}
2717
2718/**
2719 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2720 * @dev: the PCI device
2721 */
2722void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2723{
2724        int error;
2725
2726        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2727                                        PCI_EXP_SAVE_REGS * sizeof(u16));
2728        if (error)
2729                pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2730
2731        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2732        if (error)
2733                pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2734
2735        pci_allocate_vc_save_buffers(dev);
2736}
2737
2738void pci_free_cap_save_buffers(struct pci_dev *dev)
2739{
2740        struct pci_cap_saved_state *tmp;
2741        struct hlist_node *n;
2742
2743        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2744                kfree(tmp);
2745}
2746
2747/**
2748 * pci_configure_ari - enable or disable ARI forwarding
2749 * @dev: the PCI device
2750 *
2751 * If @dev and its upstream bridge both support ARI, enable ARI in the
2752 * bridge.  Otherwise, disable ARI in the bridge.
2753 */
2754void pci_configure_ari(struct pci_dev *dev)
2755{
2756        u32 cap;
2757        struct pci_dev *bridge;
2758
2759        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2760                return;
2761
2762        bridge = dev->bus->self;
2763        if (!bridge)
2764                return;
2765
2766        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2767        if (!(cap & PCI_EXP_DEVCAP2_ARI))
2768                return;
2769
2770        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2771                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2772                                         PCI_EXP_DEVCTL2_ARI);
2773                bridge->ari_enabled = 1;
2774        } else {
2775                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2776                                           PCI_EXP_DEVCTL2_ARI);
2777                bridge->ari_enabled = 0;
2778        }
2779}
2780
2781static int pci_acs_enable;
2782
2783/**
2784 * pci_request_acs - ask for ACS to be enabled if supported
2785 */
2786void pci_request_acs(void)
2787{
2788        pci_acs_enable = 1;
2789}
2790
2791/**
2792 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2793 * @dev: the PCI device
2794 */
2795static void pci_std_enable_acs(struct pci_dev *dev)
2796{
2797        int pos;
2798        u16 cap;
2799        u16 ctrl;
2800
2801        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2802        if (!pos)
2803                return;
2804
2805        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2806        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2807
2808        /* Source Validation */
2809        ctrl |= (cap & PCI_ACS_SV);
2810
2811        /* P2P Request Redirect */
2812        ctrl |= (cap & PCI_ACS_RR);
2813
2814        /* P2P Completion Redirect */
2815        ctrl |= (cap & PCI_ACS_CR);
2816
2817        /* Upstream Forwarding */
2818        ctrl |= (cap & PCI_ACS_UF);
2819
2820        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2821}
2822
2823/**
2824 * pci_enable_acs - enable ACS if hardware support it
2825 * @dev: the PCI device
2826 */
2827void pci_enable_acs(struct pci_dev *dev)
2828{
2829        if (!pci_acs_enable)
2830                return;
2831
2832        if (!pci_dev_specific_enable_acs(dev))
2833                return;
2834
2835        pci_std_enable_acs(dev);
2836}
2837
2838static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2839{
2840        int pos;
2841        u16 cap, ctrl;
2842
2843        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2844        if (!pos)
2845                return false;
2846
2847        /*
2848         * Except for egress control, capabilities are either required
2849         * or only required if controllable.  Features missing from the
2850         * capability field can therefore be assumed as hard-wired enabled.
2851         */
2852        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2853        acs_flags &= (cap | PCI_ACS_EC);
2854
2855        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2856        return (ctrl & acs_flags) == acs_flags;
2857}
2858
2859/**
2860 * pci_acs_enabled - test ACS against required flags for a given device
2861 * @pdev: device to test
2862 * @acs_flags: required PCI ACS flags
2863 *
2864 * Return true if the device supports the provided flags.  Automatically
2865 * filters out flags that are not implemented on multifunction devices.
2866 *
2867 * Note that this interface checks the effective ACS capabilities of the
2868 * device rather than the actual capabilities.  For instance, most single
2869 * function endpoints are not required to support ACS because they have no
2870 * opportunity for peer-to-peer access.  We therefore return 'true'
2871 * regardless of whether the device exposes an ACS capability.  This makes
2872 * it much easier for callers of this function to ignore the actual type
2873 * or topology of the device when testing ACS support.
2874 */
2875bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2876{
2877        int ret;
2878
2879        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2880        if (ret >= 0)
2881                return ret > 0;
2882
2883        /*
2884         * Conventional PCI and PCI-X devices never support ACS, either
2885         * effectively or actually.  The shared bus topology implies that
2886         * any device on the bus can receive or snoop DMA.
2887         */
2888        if (!pci_is_pcie(pdev))
2889                return false;
2890
2891        switch (pci_pcie_type(pdev)) {
2892        /*
2893         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2894         * but since their primary interface is PCI/X, we conservatively
2895         * handle them as we would a non-PCIe device.
2896         */
2897        case PCI_EXP_TYPE_PCIE_BRIDGE:
2898        /*
2899         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2900         * applicable... must never implement an ACS Extended Capability...".
2901         * This seems arbitrary, but we take a conservative interpretation
2902         * of this statement.
2903         */
2904        case PCI_EXP_TYPE_PCI_BRIDGE:
2905        case PCI_EXP_TYPE_RC_EC:
2906                return false;
2907        /*
2908         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2909         * implement ACS in order to indicate their peer-to-peer capabilities,
2910         * regardless of whether they are single- or multi-function devices.
2911         */
2912        case PCI_EXP_TYPE_DOWNSTREAM:
2913        case PCI_EXP_TYPE_ROOT_PORT:
2914                return pci_acs_flags_enabled(pdev, acs_flags);
2915        /*
2916         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2917         * implemented by the remaining PCIe types to indicate peer-to-peer
2918         * capabilities, but only when they are part of a multifunction
2919         * device.  The footnote for section 6.12 indicates the specific
2920         * PCIe types included here.
2921         */
2922        case PCI_EXP_TYPE_ENDPOINT:
2923        case PCI_EXP_TYPE_UPSTREAM:
2924        case PCI_EXP_TYPE_LEG_END:
2925        case PCI_EXP_TYPE_RC_END:
2926                if (!pdev->multifunction)
2927                        break;
2928
2929                return pci_acs_flags_enabled(pdev, acs_flags);
2930        }
2931
2932        /*
2933         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2934         * to single function devices with the exception of downstream ports.
2935         */
2936        return true;
2937}
2938
2939/**
2940 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2941 * @start: starting downstream device
2942 * @end: ending upstream device or NULL to search to the root bus
2943 * @acs_flags: required flags
2944 *
2945 * Walk up a device tree from start to end testing PCI ACS support.  If
2946 * any step along the way does not support the required flags, return false.
2947 */
2948bool pci_acs_path_enabled(struct pci_dev *start,
2949                          struct pci_dev *end, u16 acs_flags)
2950{
2951        struct pci_dev *pdev, *parent = start;
2952
2953        do {
2954                pdev = parent;
2955
2956                if (!pci_acs_enabled(pdev, acs_flags))
2957                        return false;
2958
2959                if (pci_is_root_bus(pdev->bus))
2960                        return (end == NULL);
2961
2962                parent = pdev->bus->self;
2963        } while (pdev != end);
2964
2965        return true;
2966}
2967
2968/**
2969 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2970 * @pdev: PCI device
2971 * @bar: BAR to find
2972 *
2973 * Helper to find the position of the ctrl register for a BAR.
2974 * Returns -ENOTSUPP if resizable BARs are not supported at all.
2975 * Returns -ENOENT if no ctrl register for the BAR could be found.
2976 */
2977static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2978{
2979        unsigned int pos, nbars, i;
2980        u32 ctrl;
2981
2982        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
2983        if (!pos)
2984                return -ENOTSUPP;
2985
2986        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2987        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
2988                    PCI_REBAR_CTRL_NBAR_SHIFT;
2989
2990        for (i = 0; i < nbars; i++, pos += 8) {
2991                int bar_idx;
2992
2993                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2994                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
2995                if (bar_idx == bar)
2996                        return pos;
2997        }
2998
2999        return -ENOENT;
3000}
3001
3002/**
3003 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3004 * @pdev: PCI device
3005 * @bar: BAR to query
3006 *
3007 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3008 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3009 */
3010u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3011{
3012        int pos;
3013        u32 cap;
3014
3015        pos = pci_rebar_find_pos(pdev, bar);
3016        if (pos < 0)
3017                return 0;
3018
3019        pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3020        return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3021}
3022
3023/**
3024 * pci_rebar_get_current_size - get the current size of a BAR
3025 * @pdev: PCI device
3026 * @bar: BAR to set size to
3027 *
3028 * Read the size of a BAR from the resizable BAR config.
3029 * Returns size if found or negative error code.
3030 */
3031int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3032{
3033        int pos;
3034        u32 ctrl;
3035
3036        pos = pci_rebar_find_pos(pdev, bar);
3037        if (pos < 0)
3038                return pos;
3039
3040        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3041        return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3042}
3043
3044/**
3045 * pci_rebar_set_size - set a new size for a BAR
3046 * @pdev: PCI device
3047 * @bar: BAR to set size to
3048 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3049 *
3050 * Set the new size of a BAR as defined in the spec.
3051 * Returns zero if resizing was successful, error code otherwise.
3052 */
3053int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3054{
3055        int pos;
3056        u32 ctrl;
3057
3058        pos = pci_rebar_find_pos(pdev, bar);
3059        if (pos < 0)
3060                return pos;
3061
3062        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3063        ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3064        ctrl |= size << 8;
3065        pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3066        return 0;
3067}
3068
3069/**
3070 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3071 * @dev: the PCI device
3072 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3073 *      PCI_EXP_DEVCAP2_ATOMIC_COMP32
3074 *      PCI_EXP_DEVCAP2_ATOMIC_COMP64
3075 *      PCI_EXP_DEVCAP2_ATOMIC_COMP128
3076 *
3077 * Return 0 if all upstream bridges support AtomicOp routing, egress
3078 * blocking is disabled on all upstream ports, and the root port supports
3079 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3080 * AtomicOp completion), or negative otherwise.
3081 */
3082int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3083{
3084        struct pci_bus *bus = dev->bus;
3085        struct pci_dev *bridge;
3086        u32 cap, ctl2;
3087
3088        if (!pci_is_pcie(dev))
3089                return -EINVAL;
3090
3091        /*
3092         * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3093         * AtomicOp requesters.  For now, we only support endpoints as
3094         * requesters and root ports as completers.  No endpoints as
3095         * completers, and no peer-to-peer.
3096         */
3097
3098        switch (pci_pcie_type(dev)) {
3099        case PCI_EXP_TYPE_ENDPOINT:
3100        case PCI_EXP_TYPE_LEG_END:
3101        case PCI_EXP_TYPE_RC_END:
3102                break;
3103        default:
3104                return -EINVAL;
3105        }
3106
3107        while (bus->parent) {
3108                bridge = bus->self;
3109
3110                pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3111
3112                switch (pci_pcie_type(bridge)) {
3113                /* Ensure switch ports support AtomicOp routing */
3114                case PCI_EXP_TYPE_UPSTREAM:
3115                case PCI_EXP_TYPE_DOWNSTREAM:
3116                        if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3117                                return -EINVAL;
3118                        break;
3119
3120                /* Ensure root port supports all the sizes we care about */
3121                case PCI_EXP_TYPE_ROOT_PORT:
3122                        if ((cap & cap_mask) != cap_mask)
3123                                return -EINVAL;
3124                        break;
3125                }
3126
3127                /* Ensure upstream ports don't block AtomicOps on egress */
3128                if (!bridge->has_secondary_link) {
3129                        pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3130                                                   &ctl2);
3131                        if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3132                                return -EINVAL;
3133                }
3134
3135                bus = bus->parent;
3136        }
3137
3138        pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3139                                 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3140        return 0;
3141}
3142EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3143
3144/**
3145 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3146 * @dev: the PCI device
3147 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3148 *
3149 * Perform INTx swizzling for a device behind one level of bridge.  This is
3150 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3151 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3152 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3153 * the PCI Express Base Specification, Revision 2.1)
3154 */
3155u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3156{
3157        int slot;
3158
3159        if (pci_ari_enabled(dev->bus))
3160                slot = 0;
3161        else
3162                slot = PCI_SLOT(dev->devfn);
3163
3164        return (((pin - 1) + slot) % 4) + 1;
3165}
3166
3167int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3168{
3169        u8 pin;
3170
3171        pin = dev->pin;
3172        if (!pin)
3173                return -1;
3174
3175        while (!pci_is_root_bus(dev->bus)) {
3176                pin = pci_swizzle_interrupt_pin(dev, pin);
3177                dev = dev->bus->self;
3178        }
3179        *bridge = dev;
3180        return pin;
3181}
3182
3183/**
3184 * pci_common_swizzle - swizzle INTx all the way to root bridge
3185 * @dev: the PCI device
3186 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3187 *
3188 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3189 * bridges all the way up to a PCI root bus.
3190 */
3191u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3192{
3193        u8 pin = *pinp;
3194
3195        while (!pci_is_root_bus(dev->bus)) {
3196                pin = pci_swizzle_interrupt_pin(dev, pin);
3197                dev = dev->bus->self;
3198        }
3199        *pinp = pin;
3200        return PCI_SLOT(dev->devfn);
3201}
3202EXPORT_SYMBOL_GPL(pci_common_swizzle);
3203
3204/**
3205 *      pci_release_region - Release a PCI bar
3206 *      @pdev: PCI device whose resources were previously reserved by pci_request_region
3207 *      @bar: BAR to release
3208 *
3209 *      Releases the PCI I/O and memory resources previously reserved by a
3210 *      successful call to pci_request_region.  Call this function only
3211 *      after all use of the PCI regions has ceased.
3212 */
3213void pci_release_region(struct pci_dev *pdev, int bar)
3214{
3215        struct pci_devres *dr;
3216
3217        if (pci_resource_len(pdev, bar) == 0)
3218                return;
3219        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3220                release_region(pci_resource_start(pdev, bar),
3221                                pci_resource_len(pdev, bar));
3222        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3223                release_mem_region(pci_resource_start(pdev, bar),
3224                                pci_resource_len(pdev, bar));
3225
3226        dr = find_pci_dr(pdev);
3227        if (dr)
3228                dr->region_mask &= ~(1 << bar);
3229}
3230EXPORT_SYMBOL(pci_release_region);
3231
3232/**
3233 *      __pci_request_region - Reserved PCI I/O and memory resource
3234 *      @pdev: PCI device whose resources are to be reserved
3235 *      @bar: BAR to be reserved
3236 *      @res_name: Name to be associated with resource.
3237 *      @exclusive: whether the region access is exclusive or not
3238 *
3239 *      Mark the PCI region associated with PCI device @pdev BR @bar as
3240 *      being reserved by owner @res_name.  Do not access any
3241 *      address inside the PCI regions unless this call returns
3242 *      successfully.
3243 *
3244 *      If @exclusive is set, then the region is marked so that userspace
3245 *      is explicitly not allowed to map the resource via /dev/mem or
3246 *      sysfs MMIO access.
3247 *
3248 *      Returns 0 on success, or %EBUSY on error.  A warning
3249 *      message is also printed on failure.
3250 */
3251static int __pci_request_region(struct pci_dev *pdev, int bar,
3252                                const char *res_name, int exclusive)
3253{
3254        struct pci_devres *dr;
3255
3256        if (pci_resource_len(pdev, bar) == 0)
3257                return 0;
3258
3259        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3260                if (!request_region(pci_resource_start(pdev, bar),
3261                            pci_resource_len(pdev, bar), res_name))
3262                        goto err_out;
3263        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3264                if (!__request_mem_region(pci_resource_start(pdev, bar),
3265                                        pci_resource_len(pdev, bar), res_name,
3266                                        exclusive))
3267                        goto err_out;
3268        }
3269
3270        dr = find_pci_dr(pdev);
3271        if (dr)
3272                dr->region_mask |= 1 << bar;
3273
3274        return 0;
3275
3276err_out:
3277        pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3278                 &pdev->resource[bar]);
3279        return -EBUSY;
3280}
3281
3282/**
3283 *      pci_request_region - Reserve PCI I/O and memory resource
3284 *      @pdev: PCI device whose resources are to be reserved
3285 *      @bar: BAR to be reserved
3286 *      @res_name: Name to be associated with resource
3287 *
3288 *      Mark the PCI region associated with PCI device @pdev BAR @bar as
3289 *      being reserved by owner @res_name.  Do not access any
3290 *      address inside the PCI regions unless this call returns
3291 *      successfully.
3292 *
3293 *      Returns 0 on success, or %EBUSY on error.  A warning
3294 *      message is also printed on failure.
3295 */
3296int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3297{
3298        return __pci_request_region(pdev, bar, res_name, 0);
3299}
3300EXPORT_SYMBOL(pci_request_region);
3301
3302/**
3303 *      pci_request_region_exclusive - Reserved PCI I/O and memory resource
3304 *      @pdev: PCI device whose resources are to be reserved
3305 *      @bar: BAR to be reserved
3306 *      @res_name: Name to be associated with resource.
3307 *
3308 *      Mark the PCI region associated with PCI device @pdev BR @bar as
3309 *      being reserved by owner @res_name.  Do not access any
3310 *      address inside the PCI regions unless this call returns
3311 *      successfully.
3312 *
3313 *      Returns 0 on success, or %EBUSY on error.  A warning
3314 *      message is also printed on failure.
3315 *
3316 *      The key difference that _exclusive makes it that userspace is
3317 *      explicitly not allowed to map the resource via /dev/mem or
3318 *      sysfs.
3319 */
3320int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3321                                 const char *res_name)
3322{
3323        return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3324}
3325EXPORT_SYMBOL(pci_request_region_exclusive);
3326
3327/**
3328 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3329 * @pdev: PCI device whose resources were previously reserved
3330 * @bars: Bitmask of BARs to be released
3331 *
3332 * Release selected PCI I/O and memory resources previously reserved.
3333 * Call this function only after all use of the PCI regions has ceased.
3334 */
3335void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3336{
3337        int i;
3338
3339        for (i = 0; i < 6; i++)
3340                if (bars & (1 << i))
3341                        pci_release_region(pdev, i);
3342}
3343EXPORT_SYMBOL(pci_release_selected_regions);
3344
3345static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3346                                          const char *res_name, int excl)
3347{
3348        int i;
3349
3350        for (i = 0; i < 6; i++)
3351                if (bars & (1 << i))
3352                        if (__pci_request_region(pdev, i, res_name, excl))
3353                                goto err_out;
3354        return 0;
3355
3356err_out:
3357        while (--i >= 0)
3358                if (bars & (1 << i))
3359                        pci_release_region(pdev, i);
3360
3361        return -EBUSY;
3362}
3363
3364
3365/**
3366 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3367 * @pdev: PCI device whose resources are to be reserved
3368 * @bars: Bitmask of BARs to be requested
3369 * @res_name: Name to be associated with resource
3370 */
3371int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3372                                 const char *res_name)
3373{
3374        return __pci_request_selected_regions(pdev, bars, res_name, 0);
3375}
3376EXPORT_SYMBOL(pci_request_selected_regions);
3377
3378int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3379                                           const char *res_name)
3380{
3381        return __pci_request_selected_regions(pdev, bars, res_name,
3382                        IORESOURCE_EXCLUSIVE);
3383}
3384EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3385
3386/**
3387 *      pci_release_regions - Release reserved PCI I/O and memory resources
3388 *      @pdev: PCI device whose resources were previously reserved by pci_request_regions
3389 *
3390 *      Releases all PCI I/O and memory resources previously reserved by a
3391 *      successful call to pci_request_regions.  Call this function only
3392 *      after all use of the PCI regions has ceased.
3393 */
3394
3395void pci_release_regions(struct pci_dev *pdev)
3396{
3397        pci_release_selected_regions(pdev, (1 << 6) - 1);
3398}
3399EXPORT_SYMBOL(pci_release_regions);
3400
3401/**
3402 *      pci_request_regions - Reserved PCI I/O and memory resources
3403 *      @pdev: PCI device whose resources are to be reserved
3404 *      @res_name: Name to be associated with resource.
3405 *
3406 *      Mark all PCI regions associated with PCI device @pdev as
3407 *      being reserved by owner @res_name.  Do not access any
3408 *      address inside the PCI regions unless this call returns
3409 *      successfully.
3410 *
3411 *      Returns 0 on success, or %EBUSY on error.  A warning
3412 *      message is also printed on failure.
3413 */
3414int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3415{
3416        return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3417}
3418EXPORT_SYMBOL(pci_request_regions);
3419
3420/**
3421 *      pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3422 *      @pdev: PCI device whose resources are to be reserved
3423 *      @res_name: Name to be associated with resource.
3424 *
3425 *      Mark all PCI regions associated with PCI device @pdev as
3426 *      being reserved by owner @res_name.  Do not access any
3427 *      address inside the PCI regions unless this call returns
3428 *      successfully.
3429 *
3430 *      pci_request_regions_exclusive() will mark the region so that
3431 *      /dev/mem and the sysfs MMIO access will not be allowed.
3432 *
3433 *      Returns 0 on success, or %EBUSY on error.  A warning
3434 *      message is also printed on failure.
3435 */
3436int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3437{
3438        return pci_request_selected_regions_exclusive(pdev,
3439                                        ((1 << 6) - 1), res_name);
3440}
3441EXPORT_SYMBOL(pci_request_regions_exclusive);
3442
3443#ifdef PCI_IOBASE
3444struct io_range {
3445        struct list_head list;
3446        phys_addr_t start;
3447        resource_size_t size;
3448};
3449
3450static LIST_HEAD(io_range_list);
3451static DEFINE_SPINLOCK(io_range_lock);
3452#endif
3453
3454/*
3455 * Record the PCI IO range (expressed as CPU physical address + size).
3456 * Return a negative value if an error has occured, zero otherwise
3457 */
3458int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3459{
3460        int err = 0;
3461
3462#ifdef PCI_IOBASE
3463        struct io_range *range;
3464        resource_size_t allocated_size = 0;
3465
3466        /* check if the range hasn't been previously recorded */
3467        spin_lock(&io_range_lock);
3468        list_for_each_entry(range, &io_range_list, list) {
3469                if (addr >= range->start && addr + size <= range->start + size) {
3470                        /* range already registered, bail out */
3471                        goto end_register;
3472                }
3473                allocated_size += range->size;
3474        }
3475
3476        /* range not registed yet, check for available space */
3477        if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3478                /* if it's too big check if 64K space can be reserved */
3479                if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3480                        err = -E2BIG;
3481                        goto end_register;
3482                }
3483
3484                size = SZ_64K;
3485                pr_warn("Requested IO range too big, new size set to 64K\n");
3486        }
3487
3488        /* add the range to the list */
3489        range = kzalloc(sizeof(*range), GFP_ATOMIC);
3490        if (!range) {
3491                err = -ENOMEM;
3492                goto end_register;
3493        }
3494
3495        range->start = addr;
3496        range->size = size;
3497
3498        list_add_tail(&range->list, &io_range_list);
3499
3500end_register:
3501        spin_unlock(&io_range_lock);
3502#endif
3503
3504        return err;
3505}
3506
3507phys_addr_t pci_pio_to_address(unsigned long pio)
3508{
3509        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3510
3511#ifdef PCI_IOBASE
3512        struct io_range *range;
3513        resource_size_t allocated_size = 0;
3514
3515        if (pio > IO_SPACE_LIMIT)
3516                return address;
3517
3518        spin_lock(&io_range_lock);
3519        list_for_each_entry(range, &io_range_list, list) {
3520                if (pio >= allocated_size && pio < allocated_size + range->size) {
3521                        address = range->start + pio - allocated_size;
3522                        break;
3523                }
3524                allocated_size += range->size;
3525        }
3526        spin_unlock(&io_range_lock);
3527#endif
3528
3529        return address;
3530}
3531
3532unsigned long __weak pci_address_to_pio(phys_addr_t address)
3533{
3534#ifdef PCI_IOBASE
3535        struct io_range *res;
3536        resource_size_t offset = 0;
3537        unsigned long addr = -1;
3538
3539        spin_lock(&io_range_lock);
3540        list_for_each_entry(res, &io_range_list, list) {
3541                if (address >= res->start && address < res->start + res->size) {
3542                        addr = address - res->start + offset;
3543                        break;
3544                }
3545                offset += res->size;
3546        }
3547        spin_unlock(&io_range_lock);
3548
3549        return addr;
3550#else
3551        if (address > IO_SPACE_LIMIT)
3552                return (unsigned long)-1;
3553
3554        return (unsigned long) address;
3555#endif
3556}
3557
3558/**
3559 *      pci_remap_iospace - Remap the memory mapped I/O space
3560 *      @res: Resource describing the I/O space
3561 *      @phys_addr: physical address of range to be mapped
3562 *
3563 *      Remap the memory mapped I/O space described by the @res
3564 *      and the CPU physical address @phys_addr into virtual address space.
3565 *      Only architectures that have memory mapped IO functions defined
3566 *      (and the PCI_IOBASE value defined) should call this function.
3567 */
3568int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3569{
3570#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3571        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3572
3573        if (!(res->flags & IORESOURCE_IO))
3574                return -EINVAL;
3575
3576        if (res->end > IO_SPACE_LIMIT)
3577                return -EINVAL;
3578
3579        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3580                                  pgprot_device(PAGE_KERNEL));
3581#else
3582        /* this architecture does not have memory mapped I/O space,
3583           so this function should never be called */
3584        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3585        return -ENODEV;
3586#endif
3587}
3588EXPORT_SYMBOL(pci_remap_iospace);
3589
3590/**
3591 *      pci_unmap_iospace - Unmap the memory mapped I/O space
3592 *      @res: resource to be unmapped
3593 *
3594 *      Unmap the CPU virtual address @res from virtual address space.
3595 *      Only architectures that have memory mapped IO functions defined
3596 *      (and the PCI_IOBASE value defined) should call this function.
3597 */
3598void pci_unmap_iospace(struct resource *res)
3599{
3600#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3601        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3602
3603        unmap_kernel_range(vaddr, resource_size(res));
3604#endif
3605}
3606EXPORT_SYMBOL(pci_unmap_iospace);
3607
3608/**
3609 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3610 * @dev: Generic device to remap IO address for
3611 * @offset: Resource address to map
3612 * @size: Size of map
3613 *
3614 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3615 * detach.
3616 */
3617void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3618                                      resource_size_t offset,
3619                                      resource_size_t size)
3620{
3621        void __iomem **ptr, *addr;
3622
3623        ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3624        if (!ptr)
3625                return NULL;
3626
3627        addr = pci_remap_cfgspace(offset, size);
3628        if (addr) {
3629                *ptr = addr;
3630                devres_add(dev, ptr);
3631        } else
3632                devres_free(ptr);
3633
3634        return addr;
3635}
3636EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3637
3638/**
3639 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3640 * @dev: generic device to handle the resource for
3641 * @res: configuration space resource to be handled
3642 *
3643 * Checks that a resource is a valid memory region, requests the memory
3644 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3645 * proper PCI configuration space memory attributes are guaranteed.
3646 *
3647 * All operations are managed and will be undone on driver detach.
3648 *
3649 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3650 * on failure. Usage example::
3651 *
3652 *      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3653 *      base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3654 *      if (IS_ERR(base))
3655 *              return PTR_ERR(base);
3656 */
3657void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3658                                          struct resource *res)
3659{
3660        resource_size_t size;
3661        const char *name;
3662        void __iomem *dest_ptr;
3663
3664        BUG_ON(!dev);
3665
3666        if (!res || resource_type(res) != IORESOURCE_MEM) {
3667                dev_err(dev, "invalid resource\n");
3668                return IOMEM_ERR_PTR(-EINVAL);
3669        }
3670
3671        size = resource_size(res);
3672        name = res->name ?: dev_name(dev);
3673
3674        if (!devm_request_mem_region(dev, res->start, size, name)) {
3675                dev_err(dev, "can't request region for resource %pR\n", res);
3676                return IOMEM_ERR_PTR(-EBUSY);
3677        }
3678
3679        dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3680        if (!dest_ptr) {
3681                dev_err(dev, "ioremap failed for resource %pR\n", res);
3682                devm_release_mem_region(dev, res->start, size);
3683                dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3684        }
3685
3686        return dest_ptr;
3687}
3688EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3689
3690static void __pci_set_master(struct pci_dev *dev, bool enable)
3691{
3692        u16 old_cmd, cmd;
3693
3694        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3695        if (enable)
3696                cmd = old_cmd | PCI_COMMAND_MASTER;
3697        else
3698                cmd = old_cmd & ~PCI_COMMAND_MASTER;
3699        if (cmd != old_cmd) {
3700                pci_dbg(dev, "%s bus mastering\n",
3701                        enable ? "enabling" : "disabling");
3702                pci_write_config_word(dev, PCI_COMMAND, cmd);
3703        }
3704        dev->is_busmaster = enable;
3705}
3706
3707/**
3708 * pcibios_setup - process "pci=" kernel boot arguments
3709 * @str: string used to pass in "pci=" kernel boot arguments
3710 *
3711 * Process kernel boot arguments.  This is the default implementation.
3712 * Architecture specific implementations can override this as necessary.
3713 */
3714char * __weak __init pcibios_setup(char *str)
3715{
3716        return str;
3717}
3718
3719/**
3720 * pcibios_set_master - enable PCI bus-mastering for device dev
3721 * @dev: the PCI device to enable
3722 *
3723 * Enables PCI bus-mastering for the device.  This is the default
3724 * implementation.  Architecture specific implementations can override
3725 * this if necessary.
3726 */
3727void __weak pcibios_set_master(struct pci_dev *dev)
3728{
3729        u8 lat;
3730
3731        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3732        if (pci_is_pcie(dev))
3733                return;
3734
3735        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3736        if (lat < 16)
3737                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3738        else if (lat > pcibios_max_latency)
3739                lat = pcibios_max_latency;
3740        else
3741                return;
3742
3743        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3744}
3745
3746/**
3747 * pci_set_master - enables bus-mastering for device dev
3748 * @dev: the PCI device to enable
3749 *
3750 * Enables bus-mastering on the device and calls pcibios_set_master()
3751 * to do the needed arch specific settings.
3752 */
3753void pci_set_master(struct pci_dev *dev)
3754{
3755        __pci_set_master(dev, true);
3756        pcibios_set_master(dev);
3757}
3758EXPORT_SYMBOL(pci_set_master);
3759
3760/**
3761 * pci_clear_master - disables bus-mastering for device dev
3762 * @dev: the PCI device to disable
3763 */
3764void pci_clear_master(struct pci_dev *dev)
3765{
3766        __pci_set_master(dev, false);
3767}
3768EXPORT_SYMBOL(pci_clear_master);
3769
3770/**
3771 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3772 * @dev: the PCI device for which MWI is to be enabled
3773 *
3774 * Helper function for pci_set_mwi.
3775 * Originally copied from drivers/net/acenic.c.
3776 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3777 *
3778 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3779 */
3780int pci_set_cacheline_size(struct pci_dev *dev)
3781{
3782        u8 cacheline_size;
3783
3784        if (!pci_cache_line_size)
3785                return -EINVAL;
3786
3787        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3788           equal to or multiple of the right value. */
3789        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3790        if (cacheline_size >= pci_cache_line_size &&
3791            (cacheline_size % pci_cache_line_size) == 0)
3792                return 0;
3793
3794        /* Write the correct value. */
3795        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3796        /* Read it back. */
3797        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3798        if (cacheline_size == pci_cache_line_size)
3799                return 0;
3800
3801        pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3802                   pci_cache_line_size << 2);
3803
3804        return -EINVAL;
3805}
3806EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3807
3808/**
3809 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3810 * @dev: the PCI device for which MWI is enabled
3811 *
3812 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3813 *
3814 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3815 */
3816int pci_set_mwi(struct pci_dev *dev)
3817{
3818#ifdef PCI_DISABLE_MWI
3819        return 0;
3820#else
3821        int rc;
3822        u16 cmd;
3823
3824        rc = pci_set_cacheline_size(dev);
3825        if (rc)
3826                return rc;
3827
3828        pci_read_config_word(dev, PCI_COMMAND, &cmd);
3829        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3830                pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3831                cmd |= PCI_COMMAND_INVALIDATE;
3832                pci_write_config_word(dev, PCI_COMMAND, cmd);
3833        }
3834        return 0;
3835#endif
3836}
3837EXPORT_SYMBOL(pci_set_mwi);
3838
3839/**
3840 * pcim_set_mwi - a device-managed pci_set_mwi()
3841 * @dev: the PCI device for which MWI is enabled
3842 *
3843 * Managed pci_set_mwi().
3844 *
3845 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3846 */
3847int pcim_set_mwi(struct pci_dev *dev)
3848{
3849        struct pci_devres *dr;
3850
3851        dr = find_pci_dr(dev);
3852        if (!dr)
3853                return -ENOMEM;
3854
3855        dr->mwi = 1;
3856        return pci_set_mwi(dev);
3857}
3858EXPORT_SYMBOL(pcim_set_mwi);
3859
3860/**
3861 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3862 * @dev: the PCI device for which MWI is enabled
3863 *
3864 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3865 * Callers are not required to check the return value.
3866 *
3867 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3868 */
3869int pci_try_set_mwi(struct pci_dev *dev)
3870{
3871#ifdef PCI_DISABLE_MWI
3872        return 0;
3873#else
3874        return pci_set_mwi(dev);
3875#endif
3876}
3877EXPORT_SYMBOL(pci_try_set_mwi);
3878
3879/**
3880 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3881 * @dev: the PCI device to disable
3882 *
3883 * Disables PCI Memory-Write-Invalidate transaction on the device
3884 */
3885void pci_clear_mwi(struct pci_dev *dev)
3886{
3887#ifndef PCI_DISABLE_MWI
3888        u16 cmd;
3889
3890        pci_read_config_word(dev, PCI_COMMAND, &cmd);
3891        if (cmd & PCI_COMMAND_INVALIDATE) {
3892                cmd &= ~PCI_COMMAND_INVALIDATE;
3893                pci_write_config_word(dev, PCI_COMMAND, cmd);
3894        }
3895#endif
3896}
3897EXPORT_SYMBOL(pci_clear_mwi);
3898
3899/**
3900 * pci_intx - enables/disables PCI INTx for device dev
3901 * @pdev: the PCI device to operate on
3902 * @enable: boolean: whether to enable or disable PCI INTx
3903 *
3904 * Enables/disables PCI INTx for device dev
3905 */
3906void pci_intx(struct pci_dev *pdev, int enable)
3907{
3908        u16 pci_command, new;
3909
3910        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3911
3912        if (enable)
3913                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3914        else
3915                new = pci_command | PCI_COMMAND_INTX_DISABLE;
3916
3917        if (new != pci_command) {
3918                struct pci_devres *dr;
3919
3920                pci_write_config_word(pdev, PCI_COMMAND, new);
3921
3922                dr = find_pci_dr(pdev);
3923                if (dr && !dr->restore_intx) {
3924                        dr->restore_intx = 1;
3925                        dr->orig_intx = !enable;
3926                }
3927        }
3928}
3929EXPORT_SYMBOL_GPL(pci_intx);
3930
3931static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3932{
3933        struct pci_bus *bus = dev->bus;
3934        bool mask_updated = true;
3935        u32 cmd_status_dword;
3936        u16 origcmd, newcmd;
3937        unsigned long flags;
3938        bool irq_pending;
3939
3940        /*
3941         * We do a single dword read to retrieve both command and status.
3942         * Document assumptions that make this possible.
3943         */
3944        BUILD_BUG_ON(PCI_COMMAND % 4);
3945        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3946
3947        raw_spin_lock_irqsave(&pci_lock, flags);
3948
3949        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3950
3951        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3952
3953        /*
3954         * Check interrupt status register to see whether our device
3955         * triggered the interrupt (when masking) or the next IRQ is
3956         * already pending (when unmasking).
3957         */
3958        if (mask != irq_pending) {
3959                mask_updated = false;
3960                goto done;
3961        }
3962
3963        origcmd = cmd_status_dword;
3964        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3965        if (mask)
3966                newcmd |= PCI_COMMAND_INTX_DISABLE;
3967        if (newcmd != origcmd)
3968                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3969
3970done:
3971        raw_spin_unlock_irqrestore(&pci_lock, flags);
3972
3973        return mask_updated;
3974}
3975
3976/**
3977 * pci_check_and_mask_intx - mask INTx on pending interrupt
3978 * @dev: the PCI device to operate on
3979 *
3980 * Check if the device dev has its INTx line asserted, mask it and
3981 * return true in that case. False is returned if no interrupt was
3982 * pending.
3983 */
3984bool pci_check_and_mask_intx(struct pci_dev *dev)
3985{
3986        return pci_check_and_set_intx_mask(dev, true);
3987}
3988EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3989
3990/**
3991 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3992 * @dev: the PCI device to operate on
3993 *
3994 * Check if the device dev has its INTx line asserted, unmask it if not
3995 * and return true. False is returned and the mask remains active if
3996 * there was still an interrupt pending.
3997 */
3998bool pci_check_and_unmask_intx(struct pci_dev *dev)
3999{
4000        return pci_check_and_set_intx_mask(dev, false);
4001}
4002EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4003
4004/**
4005 * pci_wait_for_pending_transaction - waits for pending transaction
4006 * @dev: the PCI device to operate on
4007 *
4008 * Return 0 if transaction is pending 1 otherwise.
4009 */
4010int pci_wait_for_pending_transaction(struct pci_dev *dev)
4011{
4012        if (!pci_is_pcie(dev))
4013                return 1;
4014
4015        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4016                                    PCI_EXP_DEVSTA_TRPND);
4017}
4018EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4019
4020static void pci_flr_wait(struct pci_dev *dev)
4021{
4022        int delay = 1, timeout = 60000;
4023        u32 id;
4024
4025        /*
4026         * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
4027         * 100ms, but may silently discard requests while the FLR is in
4028         * progress.  Wait 100ms before trying to access the device.
4029         */
4030        msleep(100);
4031
4032        /*
4033         * After 100ms, the device should not silently discard config
4034         * requests, but it may still indicate that it needs more time by
4035         * responding to them with CRS completions.  The Root Port will
4036         * generally synthesize ~0 data to complete the read (except when
4037         * CRS SV is enabled and the read was for the Vendor ID; in that
4038         * case it synthesizes 0x0001 data).
4039         *
4040         * Wait for the device to return a non-CRS completion.  Read the
4041         * Command register instead of Vendor ID so we don't have to
4042         * contend with the CRS SV value.
4043         */
4044        pci_read_config_dword(dev, PCI_COMMAND, &id);
4045        while (id == ~0) {
4046                if (delay > timeout) {
4047                        pci_warn(dev, "not ready %dms after FLR; giving up\n",
4048                                 100 + delay - 1);
4049                        return;
4050                }
4051
4052                if (delay > 1000)
4053                        pci_info(dev, "not ready %dms after FLR; waiting\n",
4054                                 100 + delay - 1);
4055
4056                msleep(delay);
4057                delay *= 2;
4058                pci_read_config_dword(dev, PCI_COMMAND, &id);
4059        }
4060
4061        if (delay > 1000)
4062                pci_info(dev, "ready %dms after FLR\n", 100 + delay - 1);
4063}
4064
4065/**
4066 * pcie_has_flr - check if a device supports function level resets
4067 * @dev:        device to check
4068 *
4069 * Returns true if the device advertises support for PCIe function level
4070 * resets.
4071 */
4072static bool pcie_has_flr(struct pci_dev *dev)
4073{
4074        u32 cap;
4075
4076        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4077                return false;
4078
4079        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4080        return cap & PCI_EXP_DEVCAP_FLR;
4081}
4082
4083/**
4084 * pcie_flr - initiate a PCIe function level reset
4085 * @dev:        device to reset
4086 *
4087 * Initiate a function level reset on @dev.  The caller should ensure the
4088 * device supports FLR before calling this function, e.g. by using the
4089 * pcie_has_flr() helper.
4090 */
4091void pcie_flr(struct pci_dev *dev)
4092{
4093        if (!pci_wait_for_pending_transaction(dev))
4094                pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4095
4096        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4097        pci_flr_wait(dev);
4098}
4099EXPORT_SYMBOL_GPL(pcie_flr);
4100
4101static int pci_af_flr(struct pci_dev *dev, int probe)
4102{
4103        int pos;
4104        u8 cap;
4105
4106        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4107        if (!pos)
4108                return -ENOTTY;
4109
4110        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4111                return -ENOTTY;
4112
4113        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4114        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4115                return -ENOTTY;
4116
4117        if (probe)
4118                return 0;
4119
4120        /*
4121         * Wait for Transaction Pending bit to clear.  A word-aligned test
4122         * is used, so we use the conrol offset rather than status and shift
4123         * the test bit to match.
4124         */
4125        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4126                                 PCI_AF_STATUS_TP << 8))
4127                pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4128
4129        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4130        pci_flr_wait(dev);
4131        return 0;
4132}
4133
4134/**
4135 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4136 * @dev: Device to reset.
4137 * @probe: If set, only check if the device can be reset this way.
4138 *
4139 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4140 * unset, it will be reinitialized internally when going from PCI_D3hot to
4141 * PCI_D0.  If that's the case and the device is not in a low-power state
4142 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4143 *
4144 * NOTE: This causes the caller to sleep for twice the device power transition
4145 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4146 * by default (i.e. unless the @dev's d3_delay field has a different value).
4147 * Moreover, only devices in D0 can be reset by this function.
4148 */
4149static int pci_pm_reset(struct pci_dev *dev, int probe)
4150{
4151        u16 csr;
4152
4153        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4154                return -ENOTTY;
4155
4156        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4157        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4158                return -ENOTTY;
4159
4160        if (probe)
4161                return 0;
4162
4163        if (dev->current_state != PCI_D0)
4164                return -EINVAL;
4165
4166        csr &= ~PCI_PM_CTRL_STATE_MASK;
4167        csr |= PCI_D3hot;
4168        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4169        pci_dev_d3_sleep(dev);
4170
4171        csr &= ~PCI_PM_CTRL_STATE_MASK;
4172        csr |= PCI_D0;
4173        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4174        pci_dev_d3_sleep(dev);
4175
4176        return 0;
4177}
4178
4179void pci_reset_secondary_bus(struct pci_dev *dev)
4180{
4181        u16 ctrl;
4182
4183        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4184        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4185        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4186        /*
4187         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4188         * this to 2ms to ensure that we meet the minimum requirement.
4189         */
4190        msleep(2);
4191
4192        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4193        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4194
4195        /*
4196         * Trhfa for conventional PCI is 2^25 clock cycles.
4197         * Assuming a minimum 33MHz clock this results in a 1s
4198         * delay before we can consider subordinate devices to
4199         * be re-initialized.  PCIe has some ways to shorten this,
4200         * but we don't make use of them yet.
4201         */
4202        ssleep(1);
4203}
4204
4205void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4206{
4207        pci_reset_secondary_bus(dev);
4208}
4209
4210/**
4211 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4212 * @dev: Bridge device
4213 *
4214 * Use the bridge control register to assert reset on the secondary bus.
4215 * Devices on the secondary bus are left in power-on state.
4216 */
4217void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4218{
4219        pcibios_reset_secondary_bus(dev);
4220}
4221EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4222
4223static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4224{
4225        struct pci_dev *pdev;
4226
4227        if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4228            !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4229                return -ENOTTY;
4230
4231        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4232                if (pdev != dev)
4233                        return -ENOTTY;
4234
4235        if (probe)
4236                return 0;
4237
4238        pci_reset_bridge_secondary_bus(dev->bus->self);
4239
4240        return 0;
4241}
4242
4243static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4244{
4245        int rc = -ENOTTY;
4246
4247        if (!hotplug || !try_module_get(hotplug->ops->owner))
4248                return rc;
4249
4250        if (hotplug->ops->reset_slot)
4251                rc = hotplug->ops->reset_slot(hotplug, probe);
4252
4253        module_put(hotplug->ops->owner);
4254
4255        return rc;
4256}
4257
4258static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4259{
4260        struct pci_dev *pdev;
4261
4262        if (dev->subordinate || !dev->slot ||
4263            dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4264                return -ENOTTY;
4265
4266        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4267                if (pdev != dev && pdev->slot == dev->slot)
4268                        return -ENOTTY;
4269
4270        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4271}
4272
4273static void pci_dev_lock(struct pci_dev *dev)
4274{
4275        pci_cfg_access_lock(dev);
4276        /* block PM suspend, driver probe, etc. */
4277        device_lock(&dev->dev);
4278}
4279
4280/* Return 1 on successful lock, 0 on contention */
4281static int pci_dev_trylock(struct pci_dev *dev)
4282{
4283        if (pci_cfg_access_trylock(dev)) {
4284                if (device_trylock(&dev->dev))
4285                        return 1;
4286                pci_cfg_access_unlock(dev);
4287        }
4288
4289        return 0;
4290}
4291
4292static void pci_dev_unlock(struct pci_dev *dev)
4293{
4294        device_unlock(&dev->dev);
4295        pci_cfg_access_unlock(dev);
4296}
4297
4298static void pci_dev_save_and_disable(struct pci_dev *dev)
4299{
4300        const struct pci_error_handlers *err_handler =
4301                        dev->driver ? dev->driver->err_handler : NULL;
4302
4303        /*
4304         * dev->driver->err_handler->reset_prepare() is protected against
4305         * races with ->remove() by the device lock, which must be held by
4306         * the caller.
4307         */
4308        if (err_handler && err_handler->reset_prepare)
4309                err_handler->reset_prepare(dev);
4310
4311        /*
4312         * Wake-up device prior to save.  PM registers default to D0 after
4313         * reset and a simple register restore doesn't reliably return
4314         * to a non-D0 state anyway.
4315         */
4316        pci_set_power_state(dev, PCI_D0);
4317
4318        pci_save_state(dev);
4319        /*
4320         * Disable the device by clearing the Command register, except for
4321         * INTx-disable which is set.  This not only disables MMIO and I/O port
4322         * BARs, but also prevents the device from being Bus Master, preventing
4323         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4324         * compliant devices, INTx-disable prevents legacy interrupts.
4325         */
4326        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4327}
4328
4329static void pci_dev_restore(struct pci_dev *dev)
4330{
4331        const struct pci_error_handlers *err_handler =
4332                        dev->driver ? dev->driver->err_handler : NULL;
4333
4334        pci_restore_state(dev);
4335
4336        /*
4337         * dev->driver->err_handler->reset_done() is protected against
4338         * races with ->remove() by the device lock, which must be held by
4339         * the caller.
4340         */
4341        if (err_handler && err_handler->reset_done)
4342                err_handler->reset_done(dev);
4343}
4344
4345/**
4346 * __pci_reset_function_locked - reset a PCI device function while holding
4347 * the @dev mutex lock.
4348 * @dev: PCI device to reset
4349 *
4350 * Some devices allow an individual function to be reset without affecting
4351 * other functions in the same device.  The PCI device must be responsive
4352 * to PCI config space in order to use this function.
4353 *
4354 * The device function is presumed to be unused and the caller is holding
4355 * the device mutex lock when this function is called.
4356 * Resetting the device will make the contents of PCI configuration space
4357 * random, so any caller of this must be prepared to reinitialise the
4358 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4359 * etc.
4360 *
4361 * Returns 0 if the device function was successfully reset or negative if the
4362 * device doesn't support resetting a single function.
4363 */
4364int __pci_reset_function_locked(struct pci_dev *dev)
4365{
4366        int rc;
4367
4368        might_sleep();
4369
4370        /*
4371         * A reset method returns -ENOTTY if it doesn't support this device
4372         * and we should try the next method.
4373         *
4374         * If it returns 0 (success), we're finished.  If it returns any
4375         * other error, we're also finished: this indicates that further
4376         * reset mechanisms might be broken on the device.
4377         */
4378        rc = pci_dev_specific_reset(dev, 0);
4379        if (rc != -ENOTTY)
4380                return rc;
4381        if (pcie_has_flr(dev)) {
4382                pcie_flr(dev);
4383                return 0;
4384        }
4385        rc = pci_af_flr(dev, 0);
4386        if (rc != -ENOTTY)
4387                return rc;
4388        rc = pci_pm_reset(dev, 0);
4389        if (rc != -ENOTTY)
4390                return rc;
4391        rc = pci_dev_reset_slot_function(dev, 0);
4392        if (rc != -ENOTTY)
4393                return rc;
4394        return pci_parent_bus_reset(dev, 0);
4395}
4396EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4397
4398/**
4399 * pci_probe_reset_function - check whether the device can be safely reset
4400 * @dev: PCI device to reset
4401 *
4402 * Some devices allow an individual function to be reset without affecting
4403 * other functions in the same device.  The PCI device must be responsive
4404 * to PCI config space in order to use this function.
4405 *
4406 * Returns 0 if the device function can be reset or negative if the
4407 * device doesn't support resetting a single function.
4408 */
4409int pci_probe_reset_function(struct pci_dev *dev)
4410{
4411        int rc;
4412
4413        might_sleep();
4414
4415        rc = pci_dev_specific_reset(dev, 1);
4416        if (rc != -ENOTTY)
4417                return rc;
4418        if (pcie_has_flr(dev))
4419                return 0;
4420        rc = pci_af_flr(dev, 1);
4421        if (rc != -ENOTTY)
4422                return rc;
4423        rc = pci_pm_reset(dev, 1);
4424        if (rc != -ENOTTY)
4425                return rc;
4426        rc = pci_dev_reset_slot_function(dev, 1);
4427        if (rc != -ENOTTY)
4428                return rc;
4429
4430        return pci_parent_bus_reset(dev, 1);
4431}
4432
4433/**
4434 * pci_reset_function - quiesce and reset a PCI device function
4435 * @dev: PCI device to reset
4436 *
4437 * Some devices allow an individual function to be reset without affecting
4438 * other functions in the same device.  The PCI device must be responsive
4439 * to PCI config space in order to use this function.
4440 *
4441 * This function does not just reset the PCI portion of a device, but
4442 * clears all the state associated with the device.  This function differs
4443 * from __pci_reset_function_locked() in that it saves and restores device state
4444 * over the reset and takes the PCI device lock.
4445 *
4446 * Returns 0 if the device function was successfully reset or negative if the
4447 * device doesn't support resetting a single function.
4448 */
4449int pci_reset_function(struct pci_dev *dev)
4450{
4451        int rc;
4452
4453        rc = pci_probe_reset_function(dev);
4454        if (rc)
4455                return rc;
4456
4457        pci_dev_lock(dev);
4458        pci_dev_save_and_disable(dev);
4459
4460        rc = __pci_reset_function_locked(dev);
4461
4462        pci_dev_restore(dev);
4463        pci_dev_unlock(dev);
4464
4465        return rc;
4466}
4467EXPORT_SYMBOL_GPL(pci_reset_function);
4468
4469/**
4470 * pci_reset_function_locked - quiesce and reset a PCI device function
4471 * @dev: PCI device to reset
4472 *
4473 * Some devices allow an individual function to be reset without affecting
4474 * other functions in the same device.  The PCI device must be responsive
4475 * to PCI config space in order to use this function.
4476 *
4477 * This function does not just reset the PCI portion of a device, but
4478 * clears all the state associated with the device.  This function differs
4479 * from __pci_reset_function_locked() in that it saves and restores device state
4480 * over the reset.  It also differs from pci_reset_function() in that it
4481 * requires the PCI device lock to be held.
4482 *
4483 * Returns 0 if the device function was successfully reset or negative if the
4484 * device doesn't support resetting a single function.
4485 */
4486int pci_reset_function_locked(struct pci_dev *dev)
4487{
4488        int rc;
4489
4490        rc = pci_probe_reset_function(dev);
4491        if (rc)
4492                return rc;
4493
4494        pci_dev_save_and_disable(dev);
4495
4496        rc = __pci_reset_function_locked(dev);
4497
4498        pci_dev_restore(dev);
4499
4500        return rc;
4501}
4502EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4503
4504/**
4505 * pci_try_reset_function - quiesce and reset a PCI device function
4506 * @dev: PCI device to reset
4507 *
4508 * Same as above, except return -EAGAIN if unable to lock device.
4509 */
4510int pci_try_reset_function(struct pci_dev *dev)
4511{
4512        int rc;
4513
4514        rc = pci_probe_reset_function(dev);
4515        if (rc)
4516                return rc;
4517
4518        if (!pci_dev_trylock(dev))
4519                return -EAGAIN;
4520
4521        pci_dev_save_and_disable(dev);
4522        rc = __pci_reset_function_locked(dev);
4523        pci_dev_unlock(dev);
4524
4525        pci_dev_restore(dev);
4526        return rc;
4527}
4528EXPORT_SYMBOL_GPL(pci_try_reset_function);
4529
4530/* Do any devices on or below this bus prevent a bus reset? */
4531static bool pci_bus_resetable(struct pci_bus *bus)
4532{
4533        struct pci_dev *dev;
4534
4535
4536        if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4537                return false;
4538
4539        list_for_each_entry(dev, &bus->devices, bus_list) {
4540                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4541                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4542                        return false;
4543        }
4544
4545        return true;
4546}
4547
4548/* Lock devices from the top of the tree down */
4549static void pci_bus_lock(struct pci_bus *bus)
4550{
4551        struct pci_dev *dev;
4552
4553        list_for_each_entry(dev, &bus->devices, bus_list) {
4554                pci_dev_lock(dev);
4555                if (dev->subordinate)
4556                        pci_bus_lock(dev->subordinate);
4557        }
4558}
4559
4560/* Unlock devices from the bottom of the tree up */
4561static void pci_bus_unlock(struct pci_bus *bus)
4562{
4563        struct pci_dev *dev;
4564
4565        list_for_each_entry(dev, &bus->devices, bus_list) {
4566                if (dev->subordinate)
4567                        pci_bus_unlock(dev->subordinate);
4568                pci_dev_unlock(dev);
4569        }
4570}
4571
4572/* Return 1 on successful lock, 0 on contention */
4573static int pci_bus_trylock(struct pci_bus *bus)
4574{
4575        struct pci_dev *dev;
4576
4577        list_for_each_entry(dev, &bus->devices, bus_list) {
4578                if (!pci_dev_trylock(dev))
4579                        goto unlock;
4580                if (dev->subordinate) {
4581                        if (!pci_bus_trylock(dev->subordinate)) {
4582                                pci_dev_unlock(dev);
4583                                goto unlock;
4584                        }
4585                }
4586        }
4587        return 1;
4588
4589unlock:
4590        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4591                if (dev->subordinate)
4592                        pci_bus_unlock(dev->subordinate);
4593                pci_dev_unlock(dev);
4594        }
4595        return 0;
4596}
4597
4598/* Do any devices on or below this slot prevent a bus reset? */
4599static bool pci_slot_resetable(struct pci_slot *slot)
4600{
4601        struct pci_dev *dev;
4602
4603        if (slot->bus->self &&
4604            (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4605                return false;
4606
4607        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4608                if (!dev->slot || dev->slot != slot)
4609                        continue;
4610                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4611                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4612                        return false;
4613        }
4614
4615        return true;
4616}
4617
4618/* Lock devices from the top of the tree down */
4619static void pci_slot_lock(struct pci_slot *slot)
4620{
4621        struct pci_dev *dev;
4622
4623        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4624                if (!dev->slot || dev->slot != slot)
4625                        continue;
4626                pci_dev_lock(dev);
4627                if (dev->subordinate)
4628                        pci_bus_lock(dev->subordinate);
4629        }
4630}
4631
4632/* Unlock devices from the bottom of the tree up */
4633static void pci_slot_unlock(struct pci_slot *slot)
4634{
4635        struct pci_dev *dev;
4636
4637        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4638                if (!dev->slot || dev->slot != slot)
4639                        continue;
4640                if (dev->subordinate)
4641                        pci_bus_unlock(dev->subordinate);
4642                pci_dev_unlock(dev);
4643        }
4644}
4645
4646/* Return 1 on successful lock, 0 on contention */
4647static int pci_slot_trylock(struct pci_slot *slot)
4648{
4649        struct pci_dev *dev;
4650
4651        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4652                if (!dev->slot || dev->slot != slot)
4653                        continue;
4654                if (!pci_dev_trylock(dev))
4655                        goto unlock;
4656                if (dev->subordinate) {
4657                        if (!pci_bus_trylock(dev->subordinate)) {
4658                                pci_dev_unlock(dev);
4659                                goto unlock;
4660                        }
4661                }
4662        }
4663        return 1;
4664
4665unlock:
4666        list_for_each_entry_continue_reverse(dev,
4667                                             &slot->bus->devices, bus_list) {
4668                if (!dev->slot || dev->slot != slot)
4669                        continue;
4670                if (dev->subordinate)
4671                        pci_bus_unlock(dev->subordinate);
4672                pci_dev_unlock(dev);
4673        }
4674        return 0;
4675}
4676
4677/* Save and disable devices from the top of the tree down */
4678static void pci_bus_save_and_disable(struct pci_bus *bus)
4679{
4680        struct pci_dev *dev;
4681
4682        list_for_each_entry(dev, &bus->devices, bus_list) {
4683                pci_dev_lock(dev);
4684                pci_dev_save_and_disable(dev);
4685                pci_dev_unlock(dev);
4686                if (dev->subordinate)
4687                        pci_bus_save_and_disable(dev->subordinate);
4688        }
4689}
4690
4691/*
4692 * Restore devices from top of the tree down - parent bridges need to be
4693 * restored before we can get to subordinate devices.
4694 */
4695static void pci_bus_restore(struct pci_bus *bus)
4696{
4697        struct pci_dev *dev;
4698
4699        list_for_each_entry(dev, &bus->devices, bus_list) {
4700                pci_dev_lock(dev);
4701                pci_dev_restore(dev);
4702                pci_dev_unlock(dev);
4703                if (dev->subordinate)
4704                        pci_bus_restore(dev->subordinate);
4705        }
4706}
4707
4708/* Save and disable devices from the top of the tree down */
4709static void pci_slot_save_and_disable(struct pci_slot *slot)
4710{
4711        struct pci_dev *dev;
4712
4713        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4714                if (!dev->slot || dev->slot != slot)
4715                        continue;
4716                pci_dev_save_and_disable(dev);
4717                if (dev->subordinate)
4718                        pci_bus_save_and_disable(dev->subordinate);
4719        }
4720}
4721
4722/*
4723 * Restore devices from top of the tree down - parent bridges need to be
4724 * restored before we can get to subordinate devices.
4725 */
4726static void pci_slot_restore(struct pci_slot *slot)
4727{
4728        struct pci_dev *dev;
4729
4730        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4731                if (!dev->slot || dev->slot != slot)
4732                        continue;
4733                pci_dev_restore(dev);
4734                if (dev->subordinate)
4735                        pci_bus_restore(dev->subordinate);
4736        }
4737}
4738
4739static int pci_slot_reset(struct pci_slot *slot, int probe)
4740{
4741        int rc;
4742
4743        if (!slot || !pci_slot_resetable(slot))
4744                return -ENOTTY;
4745
4746        if (!probe)
4747                pci_slot_lock(slot);
4748
4749        might_sleep();
4750
4751        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4752
4753        if (!probe)
4754                pci_slot_unlock(slot);
4755
4756        return rc;
4757}
4758
4759/**
4760 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4761 * @slot: PCI slot to probe
4762 *
4763 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4764 */
4765int pci_probe_reset_slot(struct pci_slot *slot)
4766{
4767        return pci_slot_reset(slot, 1);
4768}
4769EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4770
4771/**
4772 * pci_reset_slot - reset a PCI slot
4773 * @slot: PCI slot to reset
4774 *
4775 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4776 * independent of other slots.  For instance, some slots may support slot power
4777 * control.  In the case of a 1:1 bus to slot architecture, this function may
4778 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4779 * Generally a slot reset should be attempted before a bus reset.  All of the
4780 * function of the slot and any subordinate buses behind the slot are reset
4781 * through this function.  PCI config space of all devices in the slot and
4782 * behind the slot is saved before and restored after reset.
4783 *
4784 * Return 0 on success, non-zero on error.
4785 */
4786int pci_reset_slot(struct pci_slot *slot)
4787{
4788        int rc;
4789
4790        rc = pci_slot_reset(slot, 1);
4791        if (rc)
4792                return rc;
4793
4794        pci_slot_save_and_disable(slot);
4795
4796        rc = pci_slot_reset(slot, 0);
4797
4798        pci_slot_restore(slot);
4799
4800        return rc;
4801}
4802EXPORT_SYMBOL_GPL(pci_reset_slot);
4803
4804/**
4805 * pci_try_reset_slot - Try to reset a PCI slot
4806 * @slot: PCI slot to reset
4807 *
4808 * Same as above except return -EAGAIN if the slot cannot be locked
4809 */
4810int pci_try_reset_slot(struct pci_slot *slot)
4811{
4812        int rc;
4813
4814        rc = pci_slot_reset(slot, 1);
4815        if (rc)
4816                return rc;
4817
4818        pci_slot_save_and_disable(slot);
4819
4820        if (pci_slot_trylock(slot)) {
4821                might_sleep();
4822                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4823                pci_slot_unlock(slot);
4824        } else
4825                rc = -EAGAIN;
4826
4827        pci_slot_restore(slot);
4828
4829        return rc;
4830}
4831EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4832
4833static int pci_bus_reset(struct pci_bus *bus, int probe)
4834{
4835        if (!bus->self || !pci_bus_resetable(bus))
4836                return -ENOTTY;
4837
4838        if (probe)
4839                return 0;
4840
4841        pci_bus_lock(bus);
4842
4843        might_sleep();
4844
4845        pci_reset_bridge_secondary_bus(bus->self);
4846
4847        pci_bus_unlock(bus);
4848
4849        return 0;
4850}
4851
4852/**
4853 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4854 * @bus: PCI bus to probe
4855 *
4856 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4857 */
4858int pci_probe_reset_bus(struct pci_bus *bus)
4859{
4860        return pci_bus_reset(bus, 1);
4861}
4862EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4863
4864/**
4865 * pci_reset_bus - reset a PCI bus
4866 * @bus: top level PCI bus to reset
4867 *
4868 * Do a bus reset on the given bus and any subordinate buses, saving
4869 * and restoring state of all devices.
4870 *
4871 * Return 0 on success, non-zero on error.
4872 */
4873int pci_reset_bus(struct pci_bus *bus)
4874{
4875        int rc;
4876
4877        rc = pci_bus_reset(bus, 1);
4878        if (rc)
4879                return rc;
4880
4881        pci_bus_save_and_disable(bus);
4882
4883        rc = pci_bus_reset(bus, 0);
4884
4885        pci_bus_restore(bus);
4886
4887        return rc;
4888}
4889EXPORT_SYMBOL_GPL(pci_reset_bus);
4890
4891/**
4892 * pci_try_reset_bus - Try to reset a PCI bus
4893 * @bus: top level PCI bus to reset
4894 *
4895 * Same as above except return -EAGAIN if the bus cannot be locked
4896 */
4897int pci_try_reset_bus(struct pci_bus *bus)
4898{
4899        int rc;
4900
4901        rc = pci_bus_reset(bus, 1);
4902        if (rc)
4903                return rc;
4904
4905        pci_bus_save_and_disable(bus);
4906
4907        if (pci_bus_trylock(bus)) {
4908                might_sleep();
4909                pci_reset_bridge_secondary_bus(bus->self);
4910                pci_bus_unlock(bus);
4911        } else
4912                rc = -EAGAIN;
4913
4914        pci_bus_restore(bus);
4915
4916        return rc;
4917}
4918EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4919
4920/**
4921 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4922 * @dev: PCI device to query
4923 *
4924 * Returns mmrbc: maximum designed memory read count in bytes
4925 *    or appropriate error value.
4926 */
4927int pcix_get_max_mmrbc(struct pci_dev *dev)
4928{
4929        int cap;
4930        u32 stat;
4931
4932        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4933        if (!cap)
4934                return -EINVAL;
4935
4936        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4937                return -EINVAL;
4938
4939        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4940}
4941EXPORT_SYMBOL(pcix_get_max_mmrbc);
4942
4943/**
4944 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4945 * @dev: PCI device to query
4946 *
4947 * Returns mmrbc: maximum memory read count in bytes
4948 *    or appropriate error value.
4949 */
4950int pcix_get_mmrbc(struct pci_dev *dev)
4951{
4952        int cap;
4953        u16 cmd;
4954
4955        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4956        if (!cap)
4957                return -EINVAL;
4958
4959        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4960                return -EINVAL;
4961
4962        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4963}
4964EXPORT_SYMBOL(pcix_get_mmrbc);
4965
4966/**
4967 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4968 * @dev: PCI device to query
4969 * @mmrbc: maximum memory read count in bytes
4970 *    valid values are 512, 1024, 2048, 4096
4971 *
4972 * If possible sets maximum memory read byte count, some bridges have erratas
4973 * that prevent this.
4974 */
4975int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4976{
4977        int cap;
4978        u32 stat, v, o;
4979        u16 cmd;
4980
4981        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4982                return -EINVAL;
4983
4984        v = ffs(mmrbc) - 10;
4985
4986        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4987        if (!cap)
4988                return -EINVAL;
4989
4990        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4991                return -EINVAL;
4992
4993        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4994                return -E2BIG;
4995
4996        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4997                return -EINVAL;
4998
4999        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5000        if (o != v) {
5001                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5002                        return -EIO;
5003
5004                cmd &= ~PCI_X_CMD_MAX_READ;
5005                cmd |= v << 2;
5006                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5007                        return -EIO;
5008        }
5009        return 0;
5010}
5011EXPORT_SYMBOL(pcix_set_mmrbc);
5012
5013/**
5014 * pcie_get_readrq - get PCI Express read request size
5015 * @dev: PCI device to query
5016 *
5017 * Returns maximum memory read request in bytes
5018 *    or appropriate error value.
5019 */
5020int pcie_get_readrq(struct pci_dev *dev)
5021{
5022        u16 ctl;
5023
5024        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5025
5026        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5027}
5028EXPORT_SYMBOL(pcie_get_readrq);
5029
5030/**
5031 * pcie_set_readrq - set PCI Express maximum memory read request
5032 * @dev: PCI device to query
5033 * @rq: maximum memory read count in bytes
5034 *    valid values are 128, 256, 512, 1024, 2048, 4096
5035 *
5036 * If possible sets maximum memory read request in bytes
5037 */
5038int pcie_set_readrq(struct pci_dev *dev, int rq)
5039{
5040        u16 v;
5041
5042        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5043                return -EINVAL;
5044
5045        /*
5046         * If using the "performance" PCIe config, we clamp the
5047         * read rq size to the max packet size to prevent the
5048         * host bridge generating requests larger than we can
5049         * cope with
5050         */
5051        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5052                int mps = pcie_get_mps(dev);
5053
5054                if (mps < rq)
5055                        rq = mps;
5056        }
5057
5058        v = (ffs(rq) - 8) << 12;
5059
5060        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5061                                                  PCI_EXP_DEVCTL_READRQ, v);
5062}
5063EXPORT_SYMBOL(pcie_set_readrq);
5064
5065/**
5066 * pcie_get_mps - get PCI Express maximum payload size
5067 * @dev: PCI device to query
5068 *
5069 * Returns maximum payload size in bytes
5070 */
5071int pcie_get_mps(struct pci_dev *dev)
5072{
5073        u16 ctl;
5074
5075        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5076
5077        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5078}
5079EXPORT_SYMBOL(pcie_get_mps);
5080
5081/**
5082 * pcie_set_mps - set PCI Express maximum payload size
5083 * @dev: PCI device to query
5084 * @mps: maximum payload size in bytes
5085 *    valid values are 128, 256, 512, 1024, 2048, 4096
5086 *
5087 * If possible sets maximum payload size
5088 */
5089int pcie_set_mps(struct pci_dev *dev, int mps)
5090{
5091        u16 v;
5092
5093        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5094                return -EINVAL;
5095
5096        v = ffs(mps) - 8;
5097        if (v > dev->pcie_mpss)
5098                return -EINVAL;
5099        v <<= 5;
5100
5101        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5102                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
5103}
5104EXPORT_SYMBOL(pcie_set_mps);
5105
5106/**
5107 * pcie_get_minimum_link - determine minimum link settings of a PCI device
5108 * @dev: PCI device to query
5109 * @speed: storage for minimum speed
5110 * @width: storage for minimum width
5111 *
5112 * This function will walk up the PCI device chain and determine the minimum
5113 * link width and speed of the device.
5114 */
5115int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5116                          enum pcie_link_width *width)
5117{
5118        int ret;
5119
5120        *speed = PCI_SPEED_UNKNOWN;
5121        *width = PCIE_LNK_WIDTH_UNKNOWN;
5122
5123        while (dev) {
5124                u16 lnksta;
5125                enum pci_bus_speed next_speed;
5126                enum pcie_link_width next_width;
5127
5128                ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5129                if (ret)
5130                        return ret;
5131
5132                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5133                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5134                        PCI_EXP_LNKSTA_NLW_SHIFT;
5135
5136                if (next_speed < *speed)
5137                        *speed = next_speed;
5138
5139                if (next_width < *width)
5140                        *width = next_width;
5141
5142                dev = dev->bus->self;
5143        }
5144
5145        return 0;
5146}
5147EXPORT_SYMBOL(pcie_get_minimum_link);
5148
5149/**
5150 * pci_select_bars - Make BAR mask from the type of resource
5151 * @dev: the PCI device for which BAR mask is made
5152 * @flags: resource type mask to be selected
5153 *
5154 * This helper routine makes bar mask from the type of resource.
5155 */
5156int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5157{
5158        int i, bars = 0;
5159        for (i = 0; i < PCI_NUM_RESOURCES; i++)
5160                if (pci_resource_flags(dev, i) & flags)
5161                        bars |= (1 << i);
5162        return bars;
5163}
5164EXPORT_SYMBOL(pci_select_bars);
5165
5166/* Some architectures require additional programming to enable VGA */
5167static arch_set_vga_state_t arch_set_vga_state;
5168
5169void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5170{
5171        arch_set_vga_state = func;      /* NULL disables */
5172}
5173
5174static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5175                                  unsigned int command_bits, u32 flags)
5176{
5177        if (arch_set_vga_state)
5178                return arch_set_vga_state(dev, decode, command_bits,
5179                                                flags);
5180        return 0;
5181}
5182
5183/**
5184 * pci_set_vga_state - set VGA decode state on device and parents if requested
5185 * @dev: the PCI device
5186 * @decode: true = enable decoding, false = disable decoding
5187 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5188 * @flags: traverse ancestors and change bridges
5189 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5190 */
5191int pci_set_vga_state(struct pci_dev *dev, bool decode,
5192                      unsigned int command_bits, u32 flags)
5193{
5194        struct pci_bus *bus;
5195        struct pci_dev *bridge;
5196        u16 cmd;
5197        int rc;
5198
5199        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5200
5201        /* ARCH specific VGA enables */
5202        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5203        if (rc)
5204                return rc;
5205
5206        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5207                pci_read_config_word(dev, PCI_COMMAND, &cmd);
5208                if (decode == true)
5209                        cmd |= command_bits;
5210                else
5211                        cmd &= ~command_bits;
5212                pci_write_config_word(dev, PCI_COMMAND, cmd);
5213        }
5214
5215        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5216                return 0;
5217
5218        bus = dev->bus;
5219        while (bus) {
5220                bridge = bus->self;
5221                if (bridge) {
5222                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5223                                             &cmd);
5224                        if (decode == true)
5225                                cmd |= PCI_BRIDGE_CTL_VGA;
5226                        else
5227                                cmd &= ~PCI_BRIDGE_CTL_VGA;
5228                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5229                                              cmd);
5230                }
5231                bus = bus->parent;
5232        }
5233        return 0;
5234}
5235
5236/**
5237 * pci_add_dma_alias - Add a DMA devfn alias for a device
5238 * @dev: the PCI device for which alias is added
5239 * @devfn: alias slot and function
5240 *
5241 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5242 * It should be called early, preferably as PCI fixup header quirk.
5243 */
5244void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5245{
5246        if (!dev->dma_alias_mask)
5247                dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5248                                              sizeof(long), GFP_KERNEL);
5249        if (!dev->dma_alias_mask) {
5250                pci_warn(dev, "Unable to allocate DMA alias mask\n");
5251                return;
5252        }
5253
5254        set_bit(devfn, dev->dma_alias_mask);
5255        pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5256                 PCI_SLOT(devfn), PCI_FUNC(devfn));
5257}
5258
5259bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5260{
5261        return (dev1->dma_alias_mask &&
5262                test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5263               (dev2->dma_alias_mask &&
5264                test_bit(dev1->devfn, dev2->dma_alias_mask));
5265}
5266
5267bool pci_device_is_present(struct pci_dev *pdev)
5268{
5269        u32 v;
5270
5271        if (pci_dev_is_disconnected(pdev))
5272                return false;
5273        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5274}
5275EXPORT_SYMBOL_GPL(pci_device_is_present);
5276
5277void pci_ignore_hotplug(struct pci_dev *dev)
5278{
5279        struct pci_dev *bridge = dev->bus->self;
5280
5281        dev->ignore_hotplug = 1;
5282        /* Propagate the "ignore hotplug" setting to the parent bridge. */
5283        if (bridge)
5284                bridge->ignore_hotplug = 1;
5285}
5286EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5287
5288resource_size_t __weak pcibios_default_alignment(void)
5289{
5290        return 0;
5291}
5292
5293#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5294static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5295static DEFINE_SPINLOCK(resource_alignment_lock);
5296
5297/**
5298 * pci_specified_resource_alignment - get resource alignment specified by user.
5299 * @dev: the PCI device to get
5300 * @resize: whether or not to change resources' size when reassigning alignment
5301 *
5302 * RETURNS: Resource alignment if it is specified.
5303 *          Zero if it is not specified.
5304 */
5305static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5306                                                        bool *resize)
5307{
5308        int seg, bus, slot, func, align_order, count;
5309        unsigned short vendor, device, subsystem_vendor, subsystem_device;
5310        resource_size_t align = pcibios_default_alignment();
5311        char *p;
5312
5313        spin_lock(&resource_alignment_lock);
5314        p = resource_alignment_param;
5315        if (!*p && !align)
5316                goto out;
5317        if (pci_has_flag(PCI_PROBE_ONLY)) {
5318                align = 0;
5319                pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5320                goto out;
5321        }
5322
5323        while (*p) {
5324                count = 0;
5325                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5326                                                        p[count] == '@') {
5327                        p += count + 1;
5328                } else {
5329                        align_order = -1;
5330                }
5331                if (strncmp(p, "pci:", 4) == 0) {
5332                        /* PCI vendor/device (subvendor/subdevice) ids are specified */
5333                        p += 4;
5334                        if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5335                                &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5336                                if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5337                                        printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5338                                                p);
5339                                        break;
5340                                }
5341                                subsystem_vendor = subsystem_device = 0;
5342                        }
5343                        p += count;
5344                        if ((!vendor || (vendor == dev->vendor)) &&
5345                                (!device || (device == dev->device)) &&
5346                                (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5347                                (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5348                                *resize = true;
5349                                if (align_order == -1)
5350                                        align = PAGE_SIZE;
5351                                else
5352                                        align = 1 << align_order;
5353                                /* Found */
5354                                break;
5355                        }
5356                }
5357                else {
5358                        if (sscanf(p, "%x:%x:%x.%x%n",
5359                                &seg, &bus, &slot, &func, &count) != 4) {
5360                                seg = 0;
5361                                if (sscanf(p, "%x:%x.%x%n",
5362                                                &bus, &slot, &func, &count) != 3) {
5363                                        /* Invalid format */
5364                                        printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5365                                                p);
5366                                        break;
5367                                }
5368                        }
5369                        p += count;
5370                        if (seg == pci_domain_nr(dev->bus) &&
5371                                bus == dev->bus->number &&
5372                                slot == PCI_SLOT(dev->devfn) &&
5373                                func == PCI_FUNC(dev->devfn)) {
5374                                *resize = true;
5375                                if (align_order == -1)
5376                                        align = PAGE_SIZE;
5377                                else
5378                                        align = 1 << align_order;
5379                                /* Found */
5380                                break;
5381                        }
5382                }
5383                if (*p != ';' && *p != ',') {
5384                        /* End of param or invalid format */
5385                        break;
5386                }
5387                p++;
5388        }
5389out:
5390        spin_unlock(&resource_alignment_lock);
5391        return align;
5392}
5393
5394static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5395                                           resource_size_t align, bool resize)
5396{
5397        struct resource *r = &dev->resource[bar];
5398        resource_size_t size;
5399
5400        if (!(r->flags & IORESOURCE_MEM))
5401                return;
5402
5403        if (r->flags & IORESOURCE_PCI_FIXED) {
5404                pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5405                         bar, r, (unsigned long long)align);
5406                return;
5407        }
5408
5409        size = resource_size(r);
5410        if (size >= align)
5411                return;
5412
5413        /*
5414         * Increase the alignment of the resource.  There are two ways we
5415         * can do this:
5416         *
5417         * 1) Increase the size of the resource.  BARs are aligned on their
5418         *    size, so when we reallocate space for this resource, we'll
5419         *    allocate it with the larger alignment.  This also prevents
5420         *    assignment of any other BARs inside the alignment region, so
5421         *    if we're requesting page alignment, this means no other BARs
5422         *    will share the page.
5423         *
5424         *    The disadvantage is that this makes the resource larger than
5425         *    the hardware BAR, which may break drivers that compute things
5426         *    based on the resource size, e.g., to find registers at a
5427         *    fixed offset before the end of the BAR.
5428         *
5429         * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5430         *    set r->start to the desired alignment.  By itself this
5431         *    doesn't prevent other BARs being put inside the alignment
5432         *    region, but if we realign *every* resource of every device in
5433         *    the system, none of them will share an alignment region.
5434         *
5435         * When the user has requested alignment for only some devices via
5436         * the "pci=resource_alignment" argument, "resize" is true and we
5437         * use the first method.  Otherwise we assume we're aligning all
5438         * devices and we use the second.
5439         */
5440
5441        pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5442                 bar, r, (unsigned long long)align);
5443
5444        if (resize) {
5445                r->start = 0;
5446                r->end = align - 1;
5447        } else {
5448                r->flags &= ~IORESOURCE_SIZEALIGN;
5449                r->flags |= IORESOURCE_STARTALIGN;
5450                r->start = align;
5451                r->end = r->start + size - 1;
5452        }
5453        r->flags |= IORESOURCE_UNSET;
5454}
5455
5456/*
5457 * This function disables memory decoding and releases memory resources
5458 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5459 * It also rounds up size to specified alignment.
5460 * Later on, the kernel will assign page-aligned memory resource back
5461 * to the device.
5462 */
5463void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5464{
5465        int i;
5466        struct resource *r;
5467        resource_size_t align;
5468        u16 command;
5469        bool resize = false;
5470
5471        /*
5472         * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5473         * 3.4.1.11.  Their resources are allocated from the space
5474         * described by the VF BARx register in the PF's SR-IOV capability.
5475         * We can't influence their alignment here.
5476         */
5477        if (dev->is_virtfn)
5478                return;
5479
5480        /* check if specified PCI is target device to reassign */
5481        align = pci_specified_resource_alignment(dev, &resize);
5482        if (!align)
5483                return;
5484
5485        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5486            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5487                pci_warn(dev, "Can't reassign resources to host bridge\n");
5488                return;
5489        }
5490
5491        pci_info(dev, "Disabling memory decoding and releasing memory resources\n");
5492        pci_read_config_word(dev, PCI_COMMAND, &command);
5493        command &= ~PCI_COMMAND_MEMORY;
5494        pci_write_config_word(dev, PCI_COMMAND, command);
5495
5496        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5497                pci_request_resource_alignment(dev, i, align, resize);
5498
5499        /*
5500         * Need to disable bridge's resource window,
5501         * to enable the kernel to reassign new resource
5502         * window later on.
5503         */
5504        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5505            (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5506                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5507                        r = &dev->resource[i];
5508                        if (!(r->flags & IORESOURCE_MEM))
5509                                continue;
5510                        r->flags |= IORESOURCE_UNSET;
5511                        r->end = resource_size(r) - 1;
5512                        r->start = 0;
5513                }
5514                pci_disable_bridge_window(dev);
5515        }
5516}
5517
5518static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5519{
5520        if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5521                count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5522        spin_lock(&resource_alignment_lock);
5523        strncpy(resource_alignment_param, buf, count);
5524        resource_alignment_param[count] = '\0';
5525        spin_unlock(&resource_alignment_lock);
5526        return count;
5527}
5528
5529static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5530{
5531        size_t count;
5532        spin_lock(&resource_alignment_lock);
5533        count = snprintf(buf, size, "%s", resource_alignment_param);
5534        spin_unlock(&resource_alignment_lock);
5535        return count;
5536}
5537
5538static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5539{
5540        return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5541}
5542
5543static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5544                                        const char *buf, size_t count)
5545{
5546        return pci_set_resource_alignment_param(buf, count);
5547}
5548
5549static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5550                                        pci_resource_alignment_store);
5551
5552static int __init pci_resource_alignment_sysfs_init(void)
5553{
5554        return bus_create_file(&pci_bus_type,
5555                                        &bus_attr_resource_alignment);
5556}
5557late_initcall(pci_resource_alignment_sysfs_init);
5558
5559static void pci_no_domains(void)
5560{
5561#ifdef CONFIG_PCI_DOMAINS
5562        pci_domains_supported = 0;
5563#endif
5564}
5565
5566#ifdef CONFIG_PCI_DOMAINS
5567static atomic_t __domain_nr = ATOMIC_INIT(-1);
5568
5569int pci_get_new_domain_nr(void)
5570{
5571        return atomic_inc_return(&__domain_nr);
5572}
5573
5574#ifdef CONFIG_PCI_DOMAINS_GENERIC
5575static int of_pci_bus_find_domain_nr(struct device *parent)
5576{
5577        static int use_dt_domains = -1;
5578        int domain = -1;
5579
5580        if (parent)
5581                domain = of_get_pci_domain_nr(parent->of_node);
5582        /*
5583         * Check DT domain and use_dt_domains values.
5584         *
5585         * If DT domain property is valid (domain >= 0) and
5586         * use_dt_domains != 0, the DT assignment is valid since this means
5587         * we have not previously allocated a domain number by using
5588         * pci_get_new_domain_nr(); we should also update use_dt_domains to
5589         * 1, to indicate that we have just assigned a domain number from
5590         * DT.
5591         *
5592         * If DT domain property value is not valid (ie domain < 0), and we
5593         * have not previously assigned a domain number from DT
5594         * (use_dt_domains != 1) we should assign a domain number by
5595         * using the:
5596         *
5597         * pci_get_new_domain_nr()
5598         *
5599         * API and update the use_dt_domains value to keep track of method we
5600         * are using to assign domain numbers (use_dt_domains = 0).
5601         *
5602         * All other combinations imply we have a platform that is trying
5603         * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5604         * which is a recipe for domain mishandling and it is prevented by
5605         * invalidating the domain value (domain = -1) and printing a
5606         * corresponding error.
5607         */
5608        if (domain >= 0 && use_dt_domains) {
5609                use_dt_domains = 1;
5610        } else if (domain < 0 && use_dt_domains != 1) {
5611                use_dt_domains = 0;
5612                domain = pci_get_new_domain_nr();
5613        } else {
5614                dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5615                        parent->of_node);
5616                domain = -1;
5617        }
5618
5619        return domain;
5620}
5621
5622int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5623{
5624        return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5625                               acpi_pci_bus_find_domain_nr(bus);
5626}
5627#endif
5628#endif
5629
5630/**
5631 * pci_ext_cfg_avail - can we access extended PCI config space?
5632 *
5633 * Returns 1 if we can access PCI extended config space (offsets
5634 * greater than 0xff). This is the default implementation. Architecture
5635 * implementations can override this.
5636 */
5637int __weak pci_ext_cfg_avail(void)
5638{
5639        return 1;
5640}
5641
5642void __weak pci_fixup_cardbus(struct pci_bus *bus)
5643{
5644}
5645EXPORT_SYMBOL(pci_fixup_cardbus);
5646
5647static int __init pci_setup(char *str)
5648{
5649        while (str) {
5650                char *k = strchr(str, ',');
5651                if (k)
5652                        *k++ = 0;
5653                if (*str && (str = pcibios_setup(str)) && *str) {
5654                        if (!strcmp(str, "nomsi")) {
5655                                pci_no_msi();
5656                        } else if (!strcmp(str, "noaer")) {
5657                                pci_no_aer();
5658                        } else if (!strncmp(str, "realloc=", 8)) {
5659                                pci_realloc_get_opt(str + 8);
5660                        } else if (!strncmp(str, "realloc", 7)) {
5661                                pci_realloc_get_opt("on");
5662                        } else if (!strcmp(str, "nodomains")) {
5663                                pci_no_domains();
5664                        } else if (!strncmp(str, "noari", 5)) {
5665                                pcie_ari_disabled = true;
5666                        } else if (!strncmp(str, "cbiosize=", 9)) {
5667                                pci_cardbus_io_size = memparse(str + 9, &str);
5668                        } else if (!strncmp(str, "cbmemsize=", 10)) {
5669                                pci_cardbus_mem_size = memparse(str + 10, &str);
5670                        } else if (!strncmp(str, "resource_alignment=", 19)) {
5671                                pci_set_resource_alignment_param(str + 19,
5672                                                        strlen(str + 19));
5673                        } else if (!strncmp(str, "ecrc=", 5)) {
5674                                pcie_ecrc_get_policy(str + 5);
5675                        } else if (!strncmp(str, "hpiosize=", 9)) {
5676                                pci_hotplug_io_size = memparse(str + 9, &str);
5677                        } else if (!strncmp(str, "hpmemsize=", 10)) {
5678                                pci_hotplug_mem_size = memparse(str + 10, &str);
5679                        } else if (!strncmp(str, "hpbussize=", 10)) {
5680                                pci_hotplug_bus_size =
5681                                        simple_strtoul(str + 10, &str, 0);
5682                                if (pci_hotplug_bus_size > 0xff)
5683                                        pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5684                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5685                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
5686                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5687                                pcie_bus_config = PCIE_BUS_SAFE;
5688                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5689                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
5690                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5691                                pcie_bus_config = PCIE_BUS_PEER2PEER;
5692                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
5693                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5694                        } else {
5695                                printk(KERN_ERR "PCI: Unknown option `%s'\n",
5696                                                str);
5697                        }
5698                }
5699                str = k;
5700        }
5701        return 0;
5702}
5703early_param("pci", pci_setup);
5704