linux/drivers/perf/arm_spe_pmu.c
<<
>>
Prefs
   1/*
   2 * Perf support for the Statistical Profiling Extension, introduced as
   3 * part of ARMv8.2.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * Copyright (C) 2016 ARM Limited
  18 *
  19 * Author: Will Deacon <will.deacon@arm.com>
  20 */
  21
  22#define PMUNAME                                 "arm_spe"
  23#define DRVNAME                                 PMUNAME "_pmu"
  24#define pr_fmt(fmt)                             DRVNAME ": " fmt
  25
  26#include <linux/cpuhotplug.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/module.h>
  30#include <linux/of_address.h>
  31#include <linux/of_device.h>
  32#include <linux/perf_event.h>
  33#include <linux/platform_device.h>
  34#include <linux/slab.h>
  35
  36#include <asm/sysreg.h>
  37
  38#define ARM_SPE_BUF_PAD_BYTE                    0
  39
  40struct arm_spe_pmu_buf {
  41        int                                     nr_pages;
  42        bool                                    snapshot;
  43        void                                    *base;
  44};
  45
  46struct arm_spe_pmu {
  47        struct pmu                              pmu;
  48        struct platform_device                  *pdev;
  49        cpumask_t                               supported_cpus;
  50        struct hlist_node                       hotplug_node;
  51
  52        int                                     irq; /* PPI */
  53
  54        u16                                     min_period;
  55        u16                                     counter_sz;
  56
  57#define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
  58#define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
  59#define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
  60#define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
  61#define SPE_PMU_FEAT_LDS                        (1UL << 4)
  62#define SPE_PMU_FEAT_ERND                       (1UL << 5)
  63#define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
  64        u64                                     features;
  65
  66        u16                                     max_record_sz;
  67        u16                                     align;
  68        struct perf_output_handle __percpu      *handle;
  69};
  70
  71#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
  72
  73/* Convert a free-running index from perf into an SPE buffer offset */
  74#define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
  75
  76/* Keep track of our dynamic hotplug state */
  77static enum cpuhp_state arm_spe_pmu_online;
  78
  79enum arm_spe_pmu_buf_fault_action {
  80        SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
  81        SPE_PMU_BUF_FAULT_ACT_FATAL,
  82        SPE_PMU_BUF_FAULT_ACT_OK,
  83};
  84
  85/* This sysfs gunk was really good fun to write. */
  86enum arm_spe_pmu_capabilities {
  87        SPE_PMU_CAP_ARCH_INST = 0,
  88        SPE_PMU_CAP_ERND,
  89        SPE_PMU_CAP_FEAT_MAX,
  90        SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
  91        SPE_PMU_CAP_MIN_IVAL,
  92};
  93
  94static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
  95        [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
  96        [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
  97};
  98
  99static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
 100{
 101        if (cap < SPE_PMU_CAP_FEAT_MAX)
 102                return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
 103
 104        switch (cap) {
 105        case SPE_PMU_CAP_CNT_SZ:
 106                return spe_pmu->counter_sz;
 107        case SPE_PMU_CAP_MIN_IVAL:
 108                return spe_pmu->min_period;
 109        default:
 110                WARN(1, "unknown cap %d\n", cap);
 111        }
 112
 113        return 0;
 114}
 115
 116static ssize_t arm_spe_pmu_cap_show(struct device *dev,
 117                                    struct device_attribute *attr,
 118                                    char *buf)
 119{
 120        struct platform_device *pdev = to_platform_device(dev);
 121        struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
 122        struct dev_ext_attribute *ea =
 123                container_of(attr, struct dev_ext_attribute, attr);
 124        int cap = (long)ea->var;
 125
 126        return snprintf(buf, PAGE_SIZE, "%u\n",
 127                arm_spe_pmu_cap_get(spe_pmu, cap));
 128}
 129
 130#define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
 131        &((struct dev_ext_attribute[]) {                                \
 132                { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
 133        })[0].attr.attr
 134
 135#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
 136        SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
 137
 138static struct attribute *arm_spe_pmu_cap_attr[] = {
 139        SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
 140        SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
 141        SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
 142        SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
 143        NULL,
 144};
 145
 146static struct attribute_group arm_spe_pmu_cap_group = {
 147        .name   = "caps",
 148        .attrs  = arm_spe_pmu_cap_attr,
 149};
 150
 151/* User ABI */
 152#define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
 153#define ATTR_CFG_FLD_ts_enable_LO               0
 154#define ATTR_CFG_FLD_ts_enable_HI               0
 155#define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
 156#define ATTR_CFG_FLD_pa_enable_LO               1
 157#define ATTR_CFG_FLD_pa_enable_HI               1
 158#define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
 159#define ATTR_CFG_FLD_pct_enable_LO              2
 160#define ATTR_CFG_FLD_pct_enable_HI              2
 161#define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
 162#define ATTR_CFG_FLD_jitter_LO                  16
 163#define ATTR_CFG_FLD_jitter_HI                  16
 164#define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
 165#define ATTR_CFG_FLD_branch_filter_LO           32
 166#define ATTR_CFG_FLD_branch_filter_HI           32
 167#define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
 168#define ATTR_CFG_FLD_load_filter_LO             33
 169#define ATTR_CFG_FLD_load_filter_HI             33
 170#define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
 171#define ATTR_CFG_FLD_store_filter_LO            34
 172#define ATTR_CFG_FLD_store_filter_HI            34
 173
 174#define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
 175#define ATTR_CFG_FLD_event_filter_LO            0
 176#define ATTR_CFG_FLD_event_filter_HI            63
 177
 178#define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
 179#define ATTR_CFG_FLD_min_latency_LO             0
 180#define ATTR_CFG_FLD_min_latency_HI             11
 181
 182/* Why does everything I do descend into this? */
 183#define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
 184        (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
 185
 186#define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
 187        __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
 188
 189#define GEN_PMU_FORMAT_ATTR(name)                                       \
 190        PMU_FORMAT_ATTR(name,                                           \
 191        _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
 192                             ATTR_CFG_FLD_##name##_LO,                  \
 193                             ATTR_CFG_FLD_##name##_HI))
 194
 195#define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
 196        ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
 197
 198#define ATTR_CFG_GET_FLD(attr, name)                                    \
 199        _ATTR_CFG_GET_FLD(attr,                                         \
 200                          ATTR_CFG_FLD_##name##_CFG,                    \
 201                          ATTR_CFG_FLD_##name##_LO,                     \
 202                          ATTR_CFG_FLD_##name##_HI)
 203
 204GEN_PMU_FORMAT_ATTR(ts_enable);
 205GEN_PMU_FORMAT_ATTR(pa_enable);
 206GEN_PMU_FORMAT_ATTR(pct_enable);
 207GEN_PMU_FORMAT_ATTR(jitter);
 208GEN_PMU_FORMAT_ATTR(branch_filter);
 209GEN_PMU_FORMAT_ATTR(load_filter);
 210GEN_PMU_FORMAT_ATTR(store_filter);
 211GEN_PMU_FORMAT_ATTR(event_filter);
 212GEN_PMU_FORMAT_ATTR(min_latency);
 213
 214static struct attribute *arm_spe_pmu_formats_attr[] = {
 215        &format_attr_ts_enable.attr,
 216        &format_attr_pa_enable.attr,
 217        &format_attr_pct_enable.attr,
 218        &format_attr_jitter.attr,
 219        &format_attr_branch_filter.attr,
 220        &format_attr_load_filter.attr,
 221        &format_attr_store_filter.attr,
 222        &format_attr_event_filter.attr,
 223        &format_attr_min_latency.attr,
 224        NULL,
 225};
 226
 227static struct attribute_group arm_spe_pmu_format_group = {
 228        .name   = "format",
 229        .attrs  = arm_spe_pmu_formats_attr,
 230};
 231
 232static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
 233                                            struct device_attribute *attr,
 234                                            char *buf)
 235{
 236        struct platform_device *pdev = to_platform_device(dev);
 237        struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
 238
 239        return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
 240}
 241static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
 242
 243static struct attribute *arm_spe_pmu_attrs[] = {
 244        &dev_attr_cpumask.attr,
 245        NULL,
 246};
 247
 248static struct attribute_group arm_spe_pmu_group = {
 249        .attrs  = arm_spe_pmu_attrs,
 250};
 251
 252static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
 253        &arm_spe_pmu_group,
 254        &arm_spe_pmu_cap_group,
 255        &arm_spe_pmu_format_group,
 256        NULL,
 257};
 258
 259/* Convert between user ABI and register values */
 260static u64 arm_spe_event_to_pmscr(struct perf_event *event)
 261{
 262        struct perf_event_attr *attr = &event->attr;
 263        u64 reg = 0;
 264
 265        reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
 266        reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
 267        reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
 268
 269        if (!attr->exclude_user)
 270                reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
 271
 272        if (!attr->exclude_kernel)
 273                reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
 274
 275        if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
 276                reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
 277
 278        return reg;
 279}
 280
 281static void arm_spe_event_sanitise_period(struct perf_event *event)
 282{
 283        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 284        u64 period = event->hw.sample_period;
 285        u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
 286                         << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
 287
 288        if (period < spe_pmu->min_period)
 289                period = spe_pmu->min_period;
 290        else if (period > max_period)
 291                period = max_period;
 292        else
 293                period &= max_period;
 294
 295        event->hw.sample_period = period;
 296}
 297
 298static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
 299{
 300        struct perf_event_attr *attr = &event->attr;
 301        u64 reg = 0;
 302
 303        arm_spe_event_sanitise_period(event);
 304
 305        reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
 306        reg |= event->hw.sample_period;
 307
 308        return reg;
 309}
 310
 311static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
 312{
 313        struct perf_event_attr *attr = &event->attr;
 314        u64 reg = 0;
 315
 316        reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
 317        reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
 318        reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
 319
 320        if (reg)
 321                reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
 322
 323        if (ATTR_CFG_GET_FLD(attr, event_filter))
 324                reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
 325
 326        if (ATTR_CFG_GET_FLD(attr, min_latency))
 327                reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
 328
 329        return reg;
 330}
 331
 332static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
 333{
 334        struct perf_event_attr *attr = &event->attr;
 335        return ATTR_CFG_GET_FLD(attr, event_filter);
 336}
 337
 338static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
 339{
 340        struct perf_event_attr *attr = &event->attr;
 341        return ATTR_CFG_GET_FLD(attr, min_latency)
 342               << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
 343}
 344
 345static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
 346{
 347        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 348        u64 head = PERF_IDX2OFF(handle->head, buf);
 349
 350        memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
 351        if (!buf->snapshot)
 352                perf_aux_output_skip(handle, len);
 353}
 354
 355static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
 356{
 357        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 358        struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
 359        u64 head = PERF_IDX2OFF(handle->head, buf);
 360        u64 limit = buf->nr_pages * PAGE_SIZE;
 361
 362        /*
 363         * The trace format isn't parseable in reverse, so clamp
 364         * the limit to half of the buffer size in snapshot mode
 365         * so that the worst case is half a buffer of records, as
 366         * opposed to a single record.
 367         */
 368        if (head < limit >> 1)
 369                limit >>= 1;
 370
 371        /*
 372         * If we're within max_record_sz of the limit, we must
 373         * pad, move the head index and recompute the limit.
 374         */
 375        if (limit - head < spe_pmu->max_record_sz) {
 376                arm_spe_pmu_pad_buf(handle, limit - head);
 377                handle->head = PERF_IDX2OFF(limit, buf);
 378                limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
 379        }
 380
 381        return limit;
 382}
 383
 384static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
 385{
 386        struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
 387        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 388        const u64 bufsize = buf->nr_pages * PAGE_SIZE;
 389        u64 limit = bufsize;
 390        u64 head, tail, wakeup;
 391
 392        /*
 393         * The head can be misaligned for two reasons:
 394         *
 395         * 1. The hardware left PMBPTR pointing to the first byte after
 396         *    a record when generating a buffer management event.
 397         *
 398         * 2. We used perf_aux_output_skip to consume handle->size bytes
 399         *    and CIRC_SPACE was used to compute the size, which always
 400         *    leaves one entry free.
 401         *
 402         * Deal with this by padding to the next alignment boundary and
 403         * moving the head index. If we run out of buffer space, we'll
 404         * reduce handle->size to zero and end up reporting truncation.
 405         */
 406        head = PERF_IDX2OFF(handle->head, buf);
 407        if (!IS_ALIGNED(head, spe_pmu->align)) {
 408                unsigned long delta = roundup(head, spe_pmu->align) - head;
 409
 410                delta = min(delta, handle->size);
 411                arm_spe_pmu_pad_buf(handle, delta);
 412                head = PERF_IDX2OFF(handle->head, buf);
 413        }
 414
 415        /* If we've run out of free space, then nothing more to do */
 416        if (!handle->size)
 417                goto no_space;
 418
 419        /* Compute the tail and wakeup indices now that we've aligned head */
 420        tail = PERF_IDX2OFF(handle->head + handle->size, buf);
 421        wakeup = PERF_IDX2OFF(handle->wakeup, buf);
 422
 423        /*
 424         * Avoid clobbering unconsumed data. We know we have space, so
 425         * if we see head == tail we know that the buffer is empty. If
 426         * head > tail, then there's nothing to clobber prior to
 427         * wrapping.
 428         */
 429        if (head < tail)
 430                limit = round_down(tail, PAGE_SIZE);
 431
 432        /*
 433         * Wakeup may be arbitrarily far into the future. If it's not in
 434         * the current generation, either we'll wrap before hitting it,
 435         * or it's in the past and has been handled already.
 436         *
 437         * If there's a wakeup before we wrap, arrange to be woken up by
 438         * the page boundary following it. Keep the tail boundary if
 439         * that's lower.
 440         */
 441        if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
 442                limit = min(limit, round_up(wakeup, PAGE_SIZE));
 443
 444        if (limit > head)
 445                return limit;
 446
 447        arm_spe_pmu_pad_buf(handle, handle->size);
 448no_space:
 449        perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
 450        perf_aux_output_end(handle, 0);
 451        return 0;
 452}
 453
 454static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
 455{
 456        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 457        struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
 458        u64 limit = __arm_spe_pmu_next_off(handle);
 459        u64 head = PERF_IDX2OFF(handle->head, buf);
 460
 461        /*
 462         * If the head has come too close to the end of the buffer,
 463         * then pad to the end and recompute the limit.
 464         */
 465        if (limit && (limit - head < spe_pmu->max_record_sz)) {
 466                arm_spe_pmu_pad_buf(handle, limit - head);
 467                limit = __arm_spe_pmu_next_off(handle);
 468        }
 469
 470        return limit;
 471}
 472
 473static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
 474                                          struct perf_event *event)
 475{
 476        u64 base, limit;
 477        struct arm_spe_pmu_buf *buf;
 478
 479        /* Start a new aux session */
 480        buf = perf_aux_output_begin(handle, event);
 481        if (!buf) {
 482                event->hw.state |= PERF_HES_STOPPED;
 483                /*
 484                 * We still need to clear the limit pointer, since the
 485                 * profiler might only be disabled by virtue of a fault.
 486                 */
 487                limit = 0;
 488                goto out_write_limit;
 489        }
 490
 491        limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
 492                              : arm_spe_pmu_next_off(handle);
 493        if (limit)
 494                limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
 495
 496        limit += (u64)buf->base;
 497        base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
 498        write_sysreg_s(base, SYS_PMBPTR_EL1);
 499
 500out_write_limit:
 501        write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
 502}
 503
 504static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
 505{
 506        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 507        u64 offset, size;
 508
 509        offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
 510        size = offset - PERF_IDX2OFF(handle->head, buf);
 511
 512        if (buf->snapshot)
 513                handle->head = offset;
 514
 515        perf_aux_output_end(handle, size);
 516}
 517
 518static void arm_spe_pmu_disable_and_drain_local(void)
 519{
 520        /* Disable profiling at EL0 and EL1 */
 521        write_sysreg_s(0, SYS_PMSCR_EL1);
 522        isb();
 523
 524        /* Drain any buffered data */
 525        psb_csync();
 526        dsb(nsh);
 527
 528        /* Disable the profiling buffer */
 529        write_sysreg_s(0, SYS_PMBLIMITR_EL1);
 530        isb();
 531}
 532
 533/* IRQ handling */
 534static enum arm_spe_pmu_buf_fault_action
 535arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
 536{
 537        const char *err_str;
 538        u64 pmbsr;
 539        enum arm_spe_pmu_buf_fault_action ret;
 540
 541        /*
 542         * Ensure new profiling data is visible to the CPU and any external
 543         * aborts have been resolved.
 544         */
 545        psb_csync();
 546        dsb(nsh);
 547
 548        /* Ensure hardware updates to PMBPTR_EL1 are visible */
 549        isb();
 550
 551        /* Service required? */
 552        pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
 553        if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
 554                return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
 555
 556        /*
 557         * If we've lost data, disable profiling and also set the PARTIAL
 558         * flag to indicate that the last record is corrupted.
 559         */
 560        if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
 561                perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
 562                                             PERF_AUX_FLAG_PARTIAL);
 563
 564        /* Report collisions to userspace so that it can up the period */
 565        if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
 566                perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
 567
 568        /* We only expect buffer management events */
 569        switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
 570        case SYS_PMBSR_EL1_EC_BUF:
 571                /* Handled below */
 572                break;
 573        case SYS_PMBSR_EL1_EC_FAULT_S1:
 574        case SYS_PMBSR_EL1_EC_FAULT_S2:
 575                err_str = "Unexpected buffer fault";
 576                goto out_err;
 577        default:
 578                err_str = "Unknown error code";
 579                goto out_err;
 580        }
 581
 582        /* Buffer management event */
 583        switch (pmbsr &
 584                (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
 585        case SYS_PMBSR_EL1_BUF_BSC_FULL:
 586                ret = SPE_PMU_BUF_FAULT_ACT_OK;
 587                goto out_stop;
 588        default:
 589                err_str = "Unknown buffer status code";
 590        }
 591
 592out_err:
 593        pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
 594                           err_str, smp_processor_id(), pmbsr,
 595                           read_sysreg_s(SYS_PMBPTR_EL1),
 596                           read_sysreg_s(SYS_PMBLIMITR_EL1));
 597        ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
 598
 599out_stop:
 600        arm_spe_perf_aux_output_end(handle);
 601        return ret;
 602}
 603
 604static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
 605{
 606        struct perf_output_handle *handle = dev;
 607        struct perf_event *event = handle->event;
 608        enum arm_spe_pmu_buf_fault_action act;
 609
 610        if (!perf_get_aux(handle))
 611                return IRQ_NONE;
 612
 613        act = arm_spe_pmu_buf_get_fault_act(handle);
 614        if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
 615                return IRQ_NONE;
 616
 617        /*
 618         * Ensure perf callbacks have completed, which may disable the
 619         * profiling buffer in response to a TRUNCATION flag.
 620         */
 621        irq_work_run();
 622
 623        switch (act) {
 624        case SPE_PMU_BUF_FAULT_ACT_FATAL:
 625                /*
 626                 * If a fatal exception occurred then leaving the profiling
 627                 * buffer enabled is a recipe waiting to happen. Since
 628                 * fatal faults don't always imply truncation, make sure
 629                 * that the profiling buffer is disabled explicitly before
 630                 * clearing the syndrome register.
 631                 */
 632                arm_spe_pmu_disable_and_drain_local();
 633                break;
 634        case SPE_PMU_BUF_FAULT_ACT_OK:
 635                /*
 636                 * We handled the fault (the buffer was full), so resume
 637                 * profiling as long as we didn't detect truncation.
 638                 * PMBPTR might be misaligned, but we'll burn that bridge
 639                 * when we get to it.
 640                 */
 641                if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
 642                        arm_spe_perf_aux_output_begin(handle, event);
 643                        isb();
 644                }
 645                break;
 646        case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
 647                /* We've seen you before, but GCC has the memory of a sieve. */
 648                break;
 649        }
 650
 651        /* The buffer pointers are now sane, so resume profiling. */
 652        write_sysreg_s(0, SYS_PMBSR_EL1);
 653        return IRQ_HANDLED;
 654}
 655
 656/* Perf callbacks */
 657static int arm_spe_pmu_event_init(struct perf_event *event)
 658{
 659        u64 reg;
 660        struct perf_event_attr *attr = &event->attr;
 661        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 662
 663        /* This is, of course, deeply driver-specific */
 664        if (attr->type != event->pmu->type)
 665                return -ENOENT;
 666
 667        if (event->cpu >= 0 &&
 668            !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
 669                return -ENOENT;
 670
 671        if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
 672                return -EOPNOTSUPP;
 673
 674        if (attr->exclude_idle)
 675                return -EOPNOTSUPP;
 676
 677        /*
 678         * Feedback-directed frequency throttling doesn't work when we
 679         * have a buffer of samples. We'd need to manually count the
 680         * samples in the buffer when it fills up and adjust the event
 681         * count to reflect that. Instead, just force the user to specify
 682         * a sample period.
 683         */
 684        if (attr->freq)
 685                return -EINVAL;
 686
 687        reg = arm_spe_event_to_pmsfcr(event);
 688        if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
 689            !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
 690                return -EOPNOTSUPP;
 691
 692        if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
 693            !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
 694                return -EOPNOTSUPP;
 695
 696        if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
 697            !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
 698                return -EOPNOTSUPP;
 699
 700        reg = arm_spe_event_to_pmscr(event);
 701        if (!capable(CAP_SYS_ADMIN) &&
 702            (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
 703                    BIT(SYS_PMSCR_EL1_CX_SHIFT) |
 704                    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
 705                return -EACCES;
 706
 707        return 0;
 708}
 709
 710static void arm_spe_pmu_start(struct perf_event *event, int flags)
 711{
 712        u64 reg;
 713        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 714        struct hw_perf_event *hwc = &event->hw;
 715        struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
 716
 717        hwc->state = 0;
 718        arm_spe_perf_aux_output_begin(handle, event);
 719        if (hwc->state)
 720                return;
 721
 722        reg = arm_spe_event_to_pmsfcr(event);
 723        write_sysreg_s(reg, SYS_PMSFCR_EL1);
 724
 725        reg = arm_spe_event_to_pmsevfr(event);
 726        write_sysreg_s(reg, SYS_PMSEVFR_EL1);
 727
 728        reg = arm_spe_event_to_pmslatfr(event);
 729        write_sysreg_s(reg, SYS_PMSLATFR_EL1);
 730
 731        if (flags & PERF_EF_RELOAD) {
 732                reg = arm_spe_event_to_pmsirr(event);
 733                write_sysreg_s(reg, SYS_PMSIRR_EL1);
 734                isb();
 735                reg = local64_read(&hwc->period_left);
 736                write_sysreg_s(reg, SYS_PMSICR_EL1);
 737        }
 738
 739        reg = arm_spe_event_to_pmscr(event);
 740        isb();
 741        write_sysreg_s(reg, SYS_PMSCR_EL1);
 742}
 743
 744static void arm_spe_pmu_stop(struct perf_event *event, int flags)
 745{
 746        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 747        struct hw_perf_event *hwc = &event->hw;
 748        struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
 749
 750        /* If we're already stopped, then nothing to do */
 751        if (hwc->state & PERF_HES_STOPPED)
 752                return;
 753
 754        /* Stop all trace generation */
 755        arm_spe_pmu_disable_and_drain_local();
 756
 757        if (flags & PERF_EF_UPDATE) {
 758                /*
 759                 * If there's a fault pending then ensure we contain it
 760                 * to this buffer, since we might be on the context-switch
 761                 * path.
 762                 */
 763                if (perf_get_aux(handle)) {
 764                        enum arm_spe_pmu_buf_fault_action act;
 765
 766                        act = arm_spe_pmu_buf_get_fault_act(handle);
 767                        if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
 768                                arm_spe_perf_aux_output_end(handle);
 769                        else
 770                                write_sysreg_s(0, SYS_PMBSR_EL1);
 771                }
 772
 773                /*
 774                 * This may also contain ECOUNT, but nobody else should
 775                 * be looking at period_left, since we forbid frequency
 776                 * based sampling.
 777                 */
 778                local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
 779                hwc->state |= PERF_HES_UPTODATE;
 780        }
 781
 782        hwc->state |= PERF_HES_STOPPED;
 783}
 784
 785static int arm_spe_pmu_add(struct perf_event *event, int flags)
 786{
 787        int ret = 0;
 788        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 789        struct hw_perf_event *hwc = &event->hw;
 790        int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
 791
 792        if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
 793                return -ENOENT;
 794
 795        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
 796
 797        if (flags & PERF_EF_START) {
 798                arm_spe_pmu_start(event, PERF_EF_RELOAD);
 799                if (hwc->state & PERF_HES_STOPPED)
 800                        ret = -EINVAL;
 801        }
 802
 803        return ret;
 804}
 805
 806static void arm_spe_pmu_del(struct perf_event *event, int flags)
 807{
 808        arm_spe_pmu_stop(event, PERF_EF_UPDATE);
 809}
 810
 811static void arm_spe_pmu_read(struct perf_event *event)
 812{
 813}
 814
 815static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages,
 816                                   bool snapshot)
 817{
 818        int i;
 819        struct page **pglist;
 820        struct arm_spe_pmu_buf *buf;
 821
 822        /* We need at least two pages for this to work. */
 823        if (nr_pages < 2)
 824                return NULL;
 825
 826        /*
 827         * We require an even number of pages for snapshot mode, so that
 828         * we can effectively treat the buffer as consisting of two equal
 829         * parts and give userspace a fighting chance of getting some
 830         * useful data out of it.
 831         */
 832        if (!nr_pages || (snapshot && (nr_pages & 1)))
 833                return NULL;
 834
 835        if (cpu == -1)
 836                cpu = raw_smp_processor_id();
 837
 838        buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
 839        if (!buf)
 840                return NULL;
 841
 842        pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
 843        if (!pglist)
 844                goto out_free_buf;
 845
 846        for (i = 0; i < nr_pages; ++i) {
 847                struct page *page = virt_to_page(pages[i]);
 848
 849                if (PagePrivate(page)) {
 850                        pr_warn("unexpected high-order page for auxbuf!");
 851                        goto out_free_pglist;
 852                }
 853
 854                pglist[i] = virt_to_page(pages[i]);
 855        }
 856
 857        buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
 858        if (!buf->base)
 859                goto out_free_pglist;
 860
 861        buf->nr_pages   = nr_pages;
 862        buf->snapshot   = snapshot;
 863
 864        kfree(pglist);
 865        return buf;
 866
 867out_free_pglist:
 868        kfree(pglist);
 869out_free_buf:
 870        kfree(buf);
 871        return NULL;
 872}
 873
 874static void arm_spe_pmu_free_aux(void *aux)
 875{
 876        struct arm_spe_pmu_buf *buf = aux;
 877
 878        vunmap(buf->base);
 879        kfree(buf);
 880}
 881
 882/* Initialisation and teardown functions */
 883static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
 884{
 885        static atomic_t pmu_idx = ATOMIC_INIT(-1);
 886
 887        int idx;
 888        char *name;
 889        struct device *dev = &spe_pmu->pdev->dev;
 890
 891        spe_pmu->pmu = (struct pmu) {
 892                .module = THIS_MODULE,
 893                .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
 894                .attr_groups    = arm_spe_pmu_attr_groups,
 895                /*
 896                 * We hitch a ride on the software context here, so that
 897                 * we can support per-task profiling (which is not possible
 898                 * with the invalid context as it doesn't get sched callbacks).
 899                 * This requires that userspace either uses a dummy event for
 900                 * perf_event_open, since the aux buffer is not setup until
 901                 * a subsequent mmap, or creates the profiling event in a
 902                 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
 903                 * once the buffer has been created.
 904                 */
 905                .task_ctx_nr    = perf_sw_context,
 906                .event_init     = arm_spe_pmu_event_init,
 907                .add            = arm_spe_pmu_add,
 908                .del            = arm_spe_pmu_del,
 909                .start          = arm_spe_pmu_start,
 910                .stop           = arm_spe_pmu_stop,
 911                .read           = arm_spe_pmu_read,
 912                .setup_aux      = arm_spe_pmu_setup_aux,
 913                .free_aux       = arm_spe_pmu_free_aux,
 914        };
 915
 916        idx = atomic_inc_return(&pmu_idx);
 917        name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
 918        return perf_pmu_register(&spe_pmu->pmu, name, -1);
 919}
 920
 921static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
 922{
 923        perf_pmu_unregister(&spe_pmu->pmu);
 924}
 925
 926static void __arm_spe_pmu_dev_probe(void *info)
 927{
 928        int fld;
 929        u64 reg;
 930        struct arm_spe_pmu *spe_pmu = info;
 931        struct device *dev = &spe_pmu->pdev->dev;
 932
 933        fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
 934                                                   ID_AA64DFR0_PMSVER_SHIFT);
 935        if (!fld) {
 936                dev_err(dev,
 937                        "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
 938                        fld, smp_processor_id());
 939                return;
 940        }
 941
 942        /* Read PMBIDR first to determine whether or not we have access */
 943        reg = read_sysreg_s(SYS_PMBIDR_EL1);
 944        if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
 945                dev_err(dev,
 946                        "profiling buffer owned by higher exception level\n");
 947                return;
 948        }
 949
 950        /* Minimum alignment. If it's out-of-range, then fail the probe */
 951        fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
 952        spe_pmu->align = 1 << fld;
 953        if (spe_pmu->align > SZ_2K) {
 954                dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
 955                        fld, smp_processor_id());
 956                return;
 957        }
 958
 959        /* It's now safe to read PMSIDR and figure out what we've got */
 960        reg = read_sysreg_s(SYS_PMSIDR_EL1);
 961        if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
 962                spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
 963
 964        if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
 965                spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
 966
 967        if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
 968                spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
 969
 970        if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
 971                spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
 972
 973        if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
 974                spe_pmu->features |= SPE_PMU_FEAT_LDS;
 975
 976        if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
 977                spe_pmu->features |= SPE_PMU_FEAT_ERND;
 978
 979        /* This field has a spaced out encoding, so just use a look-up */
 980        fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
 981        switch (fld) {
 982        case 0:
 983                spe_pmu->min_period = 256;
 984                break;
 985        case 2:
 986                spe_pmu->min_period = 512;
 987                break;
 988        case 3:
 989                spe_pmu->min_period = 768;
 990                break;
 991        case 4:
 992                spe_pmu->min_period = 1024;
 993                break;
 994        case 5:
 995                spe_pmu->min_period = 1536;
 996                break;
 997        case 6:
 998                spe_pmu->min_period = 2048;
 999                break;
1000        case 7:
1001                spe_pmu->min_period = 3072;
1002                break;
1003        default:
1004                dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1005                         fld);
1006                /* Fallthrough */
1007        case 8:
1008                spe_pmu->min_period = 4096;
1009        }
1010
1011        /* Maximum record size. If it's out-of-range, then fail the probe */
1012        fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1013        spe_pmu->max_record_sz = 1 << fld;
1014        if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1015                dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1016                        fld, smp_processor_id());
1017                return;
1018        }
1019
1020        fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1021        switch (fld) {
1022        default:
1023                dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1024                         fld);
1025                /* Fallthrough */
1026        case 2:
1027                spe_pmu->counter_sz = 12;
1028        }
1029
1030        dev_info(dev,
1031                 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1032                 cpumask_pr_args(&spe_pmu->supported_cpus),
1033                 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1034
1035        spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1036        return;
1037}
1038
1039static void __arm_spe_pmu_reset_local(void)
1040{
1041        /*
1042         * This is probably overkill, as we have no idea where we're
1043         * draining any buffered data to...
1044         */
1045        arm_spe_pmu_disable_and_drain_local();
1046
1047        /* Reset the buffer base pointer */
1048        write_sysreg_s(0, SYS_PMBPTR_EL1);
1049        isb();
1050
1051        /* Clear any pending management interrupts */
1052        write_sysreg_s(0, SYS_PMBSR_EL1);
1053        isb();
1054}
1055
1056static void __arm_spe_pmu_setup_one(void *info)
1057{
1058        struct arm_spe_pmu *spe_pmu = info;
1059
1060        __arm_spe_pmu_reset_local();
1061        enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1062}
1063
1064static void __arm_spe_pmu_stop_one(void *info)
1065{
1066        struct arm_spe_pmu *spe_pmu = info;
1067
1068        disable_percpu_irq(spe_pmu->irq);
1069        __arm_spe_pmu_reset_local();
1070}
1071
1072static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1073{
1074        struct arm_spe_pmu *spe_pmu;
1075
1076        spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1077        if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1078                return 0;
1079
1080        __arm_spe_pmu_setup_one(spe_pmu);
1081        return 0;
1082}
1083
1084static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1085{
1086        struct arm_spe_pmu *spe_pmu;
1087
1088        spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1089        if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1090                return 0;
1091
1092        __arm_spe_pmu_stop_one(spe_pmu);
1093        return 0;
1094}
1095
1096static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1097{
1098        int ret;
1099        cpumask_t *mask = &spe_pmu->supported_cpus;
1100
1101        /* Make sure we probe the hardware on a relevant CPU */
1102        ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1103        if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1104                return -ENXIO;
1105
1106        /* Request our PPIs (note that the IRQ is still disabled) */
1107        ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1108                                 spe_pmu->handle);
1109        if (ret)
1110                return ret;
1111
1112        /*
1113         * Register our hotplug notifier now so we don't miss any events.
1114         * This will enable the IRQ for any supported CPUs that are already
1115         * up.
1116         */
1117        ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1118                                       &spe_pmu->hotplug_node);
1119        if (ret)
1120                free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1121
1122        return ret;
1123}
1124
1125static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1126{
1127        cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1128        free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1129}
1130
1131/* Driver and device probing */
1132static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1133{
1134        struct platform_device *pdev = spe_pmu->pdev;
1135        int irq = platform_get_irq(pdev, 0);
1136
1137        if (irq < 0) {
1138                dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1139                return -ENXIO;
1140        }
1141
1142        if (!irq_is_percpu(irq)) {
1143                dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1144                return -EINVAL;
1145        }
1146
1147        if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1148                dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1149                return -EINVAL;
1150        }
1151
1152        spe_pmu->irq = irq;
1153        return 0;
1154}
1155
1156static const struct of_device_id arm_spe_pmu_of_match[] = {
1157        { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1158        { /* Sentinel */ },
1159};
1160
1161static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1162{
1163        int ret;
1164        struct arm_spe_pmu *spe_pmu;
1165        struct device *dev = &pdev->dev;
1166
1167        /*
1168         * If kernelspace is unmapped when running at EL0, then the SPE
1169         * buffer will fault and prematurely terminate the AUX session.
1170         */
1171        if (arm64_kernel_unmapped_at_el0()) {
1172                dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1173                return -EPERM;
1174        }
1175
1176        spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1177        if (!spe_pmu) {
1178                dev_err(dev, "failed to allocate spe_pmu\n");
1179                return -ENOMEM;
1180        }
1181
1182        spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1183        if (!spe_pmu->handle)
1184                return -ENOMEM;
1185
1186        spe_pmu->pdev = pdev;
1187        platform_set_drvdata(pdev, spe_pmu);
1188
1189        ret = arm_spe_pmu_irq_probe(spe_pmu);
1190        if (ret)
1191                goto out_free_handle;
1192
1193        ret = arm_spe_pmu_dev_init(spe_pmu);
1194        if (ret)
1195                goto out_free_handle;
1196
1197        ret = arm_spe_pmu_perf_init(spe_pmu);
1198        if (ret)
1199                goto out_teardown_dev;
1200
1201        return 0;
1202
1203out_teardown_dev:
1204        arm_spe_pmu_dev_teardown(spe_pmu);
1205out_free_handle:
1206        free_percpu(spe_pmu->handle);
1207        return ret;
1208}
1209
1210static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1211{
1212        struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1213
1214        arm_spe_pmu_perf_destroy(spe_pmu);
1215        arm_spe_pmu_dev_teardown(spe_pmu);
1216        free_percpu(spe_pmu->handle);
1217        return 0;
1218}
1219
1220static struct platform_driver arm_spe_pmu_driver = {
1221        .driver = {
1222                .name           = DRVNAME,
1223                .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1224        },
1225        .probe  = arm_spe_pmu_device_dt_probe,
1226        .remove = arm_spe_pmu_device_remove,
1227};
1228
1229static int __init arm_spe_pmu_init(void)
1230{
1231        int ret;
1232
1233        ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1234                                      arm_spe_pmu_cpu_startup,
1235                                      arm_spe_pmu_cpu_teardown);
1236        if (ret < 0)
1237                return ret;
1238        arm_spe_pmu_online = ret;
1239
1240        ret = platform_driver_register(&arm_spe_pmu_driver);
1241        if (ret)
1242                cpuhp_remove_multi_state(arm_spe_pmu_online);
1243
1244        return ret;
1245}
1246
1247static void __exit arm_spe_pmu_exit(void)
1248{
1249        platform_driver_unregister(&arm_spe_pmu_driver);
1250        cpuhp_remove_multi_state(arm_spe_pmu_online);
1251}
1252
1253module_init(arm_spe_pmu_init);
1254module_exit(arm_spe_pmu_exit);
1255
1256MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1257MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1258MODULE_LICENSE("GPL v2");
1259