linux/drivers/phy/phy-xgene.c
<<
>>
Prefs
   1/*
   2 * AppliedMicro X-Gene Multi-purpose PHY driver
   3 *
   4 * Copyright (c) 2014, Applied Micro Circuits Corporation
   5 * Author: Loc Ho <lho@apm.com>
   6 *         Tuan Phan <tphan@apm.com>
   7 *         Suman Tripathi <stripathi@apm.com>
   8 *
   9 * This program is free software; you can redistribute  it and/or modify it
  10 * under  the terms of  the GNU General  Public License as published by the
  11 * Free Software Foundation;  either version 2 of the  License, or (at your
  12 * option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  21 *
  22 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
  23 * The first PLL clock macro is used for internal reference clock. The second
  24 * PLL clock macro is used to generate the clock for the PHY. This driver
  25 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
  26 * operate according to the mode of operation. The first PLL CMU is only
  27 * required if internal clock is enabled.
  28 *
  29 * Logical Layer Out Of HW module units:
  30 *
  31 * -----------------
  32 * | Internal      |    |------|
  33 * | Ref PLL CMU   |----|      |     -------------    ---------
  34 * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
  35 *                      |      |     |           |    ---------
  36 * External Clock ------|      |     -------------
  37 *                      |------|
  38 *
  39 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
  40 * indirectly from the SDS offset at 0x2000. It is only required for
  41 * internal reference clock.
  42 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
  43 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
  44 *
  45 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
  46 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
  47 * it is located outside the PHY IP. This is the case for the PHY located
  48 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
  49 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
  50 *
  51 * Currently, this driver only supports Gen3 SATA mode with external clock.
  52 */
  53#include <linux/module.h>
  54#include <linux/platform_device.h>
  55#include <linux/io.h>
  56#include <linux/delay.h>
  57#include <linux/phy/phy.h>
  58#include <linux/clk.h>
  59
  60/* Max 2 lanes per a PHY unit */
  61#define MAX_LANE                        2
  62
  63/* Register offset inside the PHY */
  64#define SERDES_PLL_INDIRECT_OFFSET      0x0000
  65#define SERDES_PLL_REF_INDIRECT_OFFSET  0x2000
  66#define SERDES_INDIRECT_OFFSET          0x0400
  67#define SERDES_LANE_STRIDE              0x0200
  68
  69/* Some default Serdes parameters */
  70#define DEFAULT_SATA_TXBOOST_GAIN       { 0x1e, 0x1e, 0x1e }
  71#define DEFAULT_SATA_TXEYEDIRECTION     { 0x0, 0x0, 0x0 }
  72#define DEFAULT_SATA_TXEYETUNING        { 0xa, 0xa, 0xa }
  73#define DEFAULT_SATA_SPD_SEL            { 0x1, 0x3, 0x7 }
  74#define DEFAULT_SATA_TXAMP              { 0x8, 0x8, 0x8 }
  75#define DEFAULT_SATA_TXCN1              { 0x2, 0x2, 0x2 }
  76#define DEFAULT_SATA_TXCN2              { 0x0, 0x0, 0x0 }
  77#define DEFAULT_SATA_TXCP1              { 0xa, 0xa, 0xa }
  78
  79#define SATA_SPD_SEL_GEN3               0x7
  80#define SATA_SPD_SEL_GEN2               0x3
  81#define SATA_SPD_SEL_GEN1               0x1
  82
  83#define SSC_DISABLE                     0
  84#define SSC_ENABLE                      1
  85
  86#define FBDIV_VAL_50M                   0x77
  87#define REFDIV_VAL_50M                  0x1
  88#define FBDIV_VAL_100M                  0x3B
  89#define REFDIV_VAL_100M                 0x0
  90
  91/* SATA Clock/Reset CSR */
  92#define SATACLKENREG                    0x00000000
  93#define  SATA0_CORE_CLKEN               0x00000002
  94#define  SATA1_CORE_CLKEN               0x00000004
  95#define SATASRESETREG                   0x00000004
  96#define  SATA_MEM_RESET_MASK            0x00000020
  97#define  SATA_MEM_RESET_RD(src)         (((src) & 0x00000020) >> 5)
  98#define  SATA_SDS_RESET_MASK            0x00000004
  99#define  SATA_CSR_RESET_MASK            0x00000001
 100#define  SATA_CORE_RESET_MASK           0x00000002
 101#define  SATA_PMCLK_RESET_MASK          0x00000010
 102#define  SATA_PCLK_RESET_MASK           0x00000008
 103
 104/* SDS CSR used for PHY Indirect access */
 105#define SATA_ENET_SDS_PCS_CTL0          0x00000000
 106#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
 107                (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
 108#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
 109                (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
 110#define SATA_ENET_SDS_CTL0              0x0000000c
 111#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
 112                (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
 113#define SATA_ENET_SDS_CTL1              0x00000010
 114#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
 115                (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
 116#define SATA_ENET_SDS_RST_CTL           0x00000024
 117#define SATA_ENET_SDS_IND_CMD_REG       0x0000003c
 118#define  CFG_IND_WR_CMD_MASK            0x00000001
 119#define  CFG_IND_RD_CMD_MASK            0x00000002
 120#define  CFG_IND_CMD_DONE_MASK          0x00000004
 121#define  CFG_IND_ADDR_SET(dst, src) \
 122                (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
 123#define SATA_ENET_SDS_IND_RDATA_REG     0x00000040
 124#define SATA_ENET_SDS_IND_WDATA_REG     0x00000044
 125#define SATA_ENET_CLK_MACRO_REG         0x0000004c
 126#define  I_RESET_B_SET(dst, src) \
 127                (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
 128#define  I_PLL_FBDIV_SET(dst, src) \
 129                (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
 130#define  I_CUSTOMEROV_SET(dst, src) \
 131                (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
 132#define  O_PLL_LOCK_RD(src)             (((src) & 0x40000000) >> 30)
 133#define  O_PLL_READY_RD(src)            (((src) & 0x80000000) >> 31)
 134
 135/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
 136#define CMU_REG0                        0x00000
 137#define  CMU_REG0_PLL_REF_SEL_MASK      0x00002000
 138#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)     \
 139                (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
 140#define  CMU_REG0_PDOWN_MASK            0x00004000
 141#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
 142                (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
 143#define CMU_REG1                        0x00002
 144#define  CMU_REG1_PLL_CP_SET(dst, src) \
 145                (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
 146#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
 147                (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 148#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
 149                (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
 150#define  CMU_REG1_REFCLK_CMOS_SEL_MASK  0x00000001
 151#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
 152                (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 153#define CMU_REG2                        0x00004
 154#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
 155                (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 156#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
 157                (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
 158#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
 159                (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
 160#define CMU_REG3                        0x00006
 161#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
 162                (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
 163#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
 164                (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 165#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
 166                (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 167#define CMU_REG4                        0x00008
 168#define CMU_REG5                        0x0000a
 169#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
 170                (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 171#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
 172                (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
 173#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
 174                (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
 175#define  CMU_REG5_PLL_RESETB_MASK       0x00000001
 176#define CMU_REG6                        0x0000c
 177#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
 178                (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
 179#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
 180                (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 181#define CMU_REG7                        0x0000e
 182#define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
 183#define  CMU_REG7_VCO_CAL_FAIL_RD(src)  ((0x00000c00 & (u32) (src)) >> 10)
 184#define CMU_REG8                        0x00010
 185#define CMU_REG9                        0x00012
 186#define  CMU_REG9_WORD_LEN_8BIT         0x000
 187#define  CMU_REG9_WORD_LEN_10BIT        0x001
 188#define  CMU_REG9_WORD_LEN_16BIT        0x002
 189#define  CMU_REG9_WORD_LEN_20BIT        0x003
 190#define  CMU_REG9_WORD_LEN_32BIT        0x004
 191#define  CMU_REG9_WORD_LEN_40BIT        0x005
 192#define  CMU_REG9_WORD_LEN_64BIT        0x006
 193#define  CMU_REG9_WORD_LEN_66BIT        0x007
 194#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
 195                (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
 196#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
 197                (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
 198#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
 199                (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 200#define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
 201                (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 202#define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
 203                (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 204#define CMU_REG10                       0x00014
 205#define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
 206                (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 207#define CMU_REG11                       0x00016
 208#define CMU_REG12                       0x00018
 209#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
 210                (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 211#define CMU_REG13                       0x0001a
 212#define CMU_REG14                       0x0001c
 213#define CMU_REG15                       0x0001e
 214#define CMU_REG16                       0x00020
 215#define  CMU_REG16_PVT_DN_MAN_ENA_MASK  0x00000001
 216#define  CMU_REG16_PVT_UP_MAN_ENA_MASK  0x00000002
 217#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
 218                (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
 219#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
 220                (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 221#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
 222                (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 223#define CMU_REG17                       0x00022
 224#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
 225                (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
 226#define  CMU_REG17_RESERVED_7_SET(dst, src) \
 227                (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
 228#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK        0x00008000
 229#define CMU_REG18                       0x00024
 230#define CMU_REG19                       0x00026
 231#define CMU_REG20                       0x00028
 232#define CMU_REG21                       0x0002a
 233#define CMU_REG22                       0x0002c
 234#define CMU_REG23                       0x0002e
 235#define CMU_REG24                       0x00030
 236#define CMU_REG25                       0x00032
 237#define CMU_REG26                       0x00034
 238#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
 239                (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 240#define CMU_REG27                       0x00036
 241#define CMU_REG28                       0x00038
 242#define CMU_REG29                       0x0003a
 243#define CMU_REG30                       0x0003c
 244#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
 245                (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
 246#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
 247                (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 248#define CMU_REG31                       0x0003e
 249#define CMU_REG32                       0x00040
 250#define  CMU_REG32_FORCE_VCOCAL_START_MASK      0x00004000
 251#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
 252                (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
 253#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
 254                (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
 255#define CMU_REG33                       0x00042
 256#define CMU_REG34                       0x00044
 257#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
 258                (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
 259#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
 260                (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
 261#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
 262                (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 263#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
 264                (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
 265#define CMU_REG35                       0x00046
 266#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
 267                (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
 268#define CMU_REG36                               0x00048
 269#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
 270                (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
 271#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
 272                (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
 273#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
 274                (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 275#define CMU_REG37                       0x0004a
 276#define CMU_REG38                       0x0004c
 277#define CMU_REG39                       0x0004e
 278
 279/* PHY lane CSR accessing from SDS indirectly */
 280#define RXTX_REG0                       0x000
 281#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
 282                (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 283#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
 284                (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 285#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
 286                (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 287#define RXTX_REG1                       0x002
 288#define  RXTX_REG1_RXACVCM_SET(dst, src) \
 289                (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
 290#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
 291                (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
 292#define  RXTX_REG1_RXVREG1_SET(dst, src) \
 293                (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
 294#define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
 295                (((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
 296#define RXTX_REG2                       0x004
 297#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
 298                (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 299#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
 300                (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
 301#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
 302                (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
 303#define RXTX_REG4                       0x008
 304#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK      0x00000040
 305#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
 306                (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 307#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
 308                (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 309#define RXTX_REG5                       0x00a
 310#define  RXTX_REG5_TX_CN1_SET(dst, src) \
 311                (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 312#define  RXTX_REG5_TX_CP1_SET(dst, src) \
 313                (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
 314#define  RXTX_REG5_TX_CN2_SET(dst, src) \
 315                (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
 316#define RXTX_REG6                       0x00c
 317#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
 318                (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
 319#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
 320                (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 321#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
 322                (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 323#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
 324                (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 325#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
 326                (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 327#define RXTX_REG7                       0x00e
 328#define  RXTX_REG7_RESETB_RXD_MASK      0x00000100
 329#define  RXTX_REG7_RESETB_RXA_MASK      0x00000080
 330#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
 331                (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 332#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
 333                (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 334#define RXTX_REG8                       0x010
 335#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
 336                (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
 337#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
 338                (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
 339#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
 340                (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
 341#define  RXTX_REG8_SD_VREF_SET(dst, src) \
 342                (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
 343#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
 344                (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 345#define RXTX_REG7                       0x00e
 346#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
 347                (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 348#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
 349                (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
 350#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK      0x00004000
 351#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
 352                (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
 353#define RXTX_REG11                      0x016
 354#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
 355                (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 356#define RXTX_REG12                      0x018
 357#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
 358                (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
 359#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
 360                (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 361#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK     0x00000002
 362#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
 363                (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 364#define RXTX_REG13                      0x01a
 365#define RXTX_REG14                      0x01c
 366#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
 367                (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
 368#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
 369                (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
 370#define RXTX_REG26                      0x034
 371#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
 372                (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 373#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
 374                (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 375#define RXTX_REG21                      0x02a
 376#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 377#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 378#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)  ((0x0000000f & (u32)(src)))
 379#define RXTX_REG22                      0x02c
 380#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 381#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 382#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
 383#define RXTX_REG23                      0x02e
 384#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 385#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 386#define RXTX_REG24                      0x030
 387#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
 388#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
 389#define RXTX_REG27                      0x036
 390#define RXTX_REG28                      0x038
 391#define RXTX_REG31                      0x03e
 392#define RXTX_REG38                      0x04c
 393#define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
 394                (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
 395#define RXTX_REG39                      0x04e
 396#define RXTX_REG40                      0x050
 397#define RXTX_REG41                      0x052
 398#define RXTX_REG42                      0x054
 399#define RXTX_REG43                      0x056
 400#define RXTX_REG44                      0x058
 401#define RXTX_REG45                      0x05a
 402#define RXTX_REG46                      0x05c
 403#define RXTX_REG47                      0x05e
 404#define RXTX_REG48                      0x060
 405#define RXTX_REG49                      0x062
 406#define RXTX_REG50                      0x064
 407#define RXTX_REG51                      0x066
 408#define RXTX_REG52                      0x068
 409#define RXTX_REG53                      0x06a
 410#define RXTX_REG54                      0x06c
 411#define RXTX_REG55                      0x06e
 412#define RXTX_REG61                      0x07a
 413#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
 414                (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
 415#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
 416                (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 417#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
 418                (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
 419#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
 420                (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
 421#define RXTX_REG62                      0x07c
 422#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
 423                (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
 424#define RXTX_REG81                      0x0a2
 425#define  RXTX_REG89_MU_TH7_SET(dst, src) \
 426                (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 427#define  RXTX_REG89_MU_TH8_SET(dst, src) \
 428                (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 429#define  RXTX_REG89_MU_TH9_SET(dst, src) \
 430                (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 431#define RXTX_REG96                      0x0c0
 432#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
 433                (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 434#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
 435                (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 436#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
 437                (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 438#define RXTX_REG99                      0x0c6
 439#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
 440                (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
 441#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
 442                (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
 443#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
 444                (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
 445#define RXTX_REG102                     0x0cc
 446#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
 447                (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
 448#define RXTX_REG114                     0x0e4
 449#define RXTX_REG121                     0x0f2
 450#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
 451#define RXTX_REG125                     0x0fa
 452#define  RXTX_REG125_PQ_REG_SET(dst, src) \
 453                (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
 454#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
 455                (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
 456#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
 457                (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
 458#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
 459                (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
 460#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
 461                (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 462#define RXTX_REG127                     0x0fe
 463#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK   0x00000002
 464#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK   0x00000004
 465#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
 466                (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 467#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
 468                (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 469#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
 470                (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
 471#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
 472                (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 473#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
 474                (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 475#define RXTX_REG128                     0x100
 476#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
 477                (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
 478#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
 479                (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 480#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
 481                (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 482#define RXTX_REG129                     0x102
 483#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
 484                (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 485#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
 486                (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 487#define RXTX_REG130                     0x104
 488#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
 489                (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
 490#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
 491                (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
 492#define RXTX_REG145                     0x122
 493#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
 494                (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
 495#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
 496                (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
 497#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
 498                (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
 499#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
 500                (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
 501#define RXTX_REG147                     0x126
 502#define RXTX_REG148                     0x128
 503
 504/* Clock macro type */
 505enum cmu_type_t {
 506        REF_CMU = 0,    /* Clock macro is the internal reference clock */
 507        PHY_CMU = 1,    /* Clock macro is the PLL for the Serdes */
 508};
 509
 510enum mux_type_t {
 511        MUX_SELECT_ATA = 0,     /* Switch the MUX to ATA */
 512        MUX_SELECT_SGMMII = 0,  /* Switch the MUX to SGMII */
 513};
 514
 515enum clk_type_t {
 516        CLK_EXT_DIFF = 0,       /* External differential */
 517        CLK_INT_DIFF = 1,       /* Internal differential */
 518        CLK_INT_SING = 2,       /* Internal single ended */
 519};
 520
 521enum xgene_phy_mode {
 522        MODE_SATA       = 0,    /* List them for simple reference */
 523        MODE_SGMII      = 1,
 524        MODE_PCIE       = 2,
 525        MODE_USB        = 3,
 526        MODE_XFI        = 4,
 527        MODE_MAX
 528};
 529
 530struct xgene_sata_override_param {
 531        u32 speed[MAX_LANE]; /* Index for override parameter per lane */
 532        u32 txspeed[3];                 /* Tx speed */
 533        u32 txboostgain[MAX_LANE*3];    /* Tx freq boost and gain control */
 534        u32 txeyetuning[MAX_LANE*3];    /* Tx eye tuning */
 535        u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
 536        u32 txamplitude[MAX_LANE*3];    /* Tx amplitude control */
 537        u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
 538        u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
 539        u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
 540};
 541
 542struct xgene_phy_ctx {
 543        struct device *dev;
 544        struct phy *phy;
 545        enum xgene_phy_mode mode;               /* Mode of operation */
 546        enum clk_type_t clk_type;       /* Input clock selection */
 547        void __iomem *sds_base;         /* PHY CSR base addr */
 548        struct clk *clk;                /* Optional clock */
 549
 550        /* Override Serdes parameters */
 551        struct xgene_sata_override_param sata_param;
 552};
 553
 554/*
 555 * For chip earlier than A3 version, enable this flag.
 556 * To enable, pass boot argument phy_xgene.preA3Chip=1
 557 */
 558static int preA3Chip;
 559MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
 560module_param_named(preA3Chip, preA3Chip, int, 0444);
 561
 562static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
 563                   u32 indirect_data_reg, u32 addr, u32 data)
 564{
 565        unsigned long deadline = jiffies + HZ;
 566        u32 val;
 567        u32 cmd;
 568
 569        cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
 570        cmd = CFG_IND_ADDR_SET(cmd, addr);
 571        writel(data, csr_base + indirect_data_reg);
 572        readl(csr_base + indirect_data_reg); /* Force a barrier */
 573        writel(cmd, csr_base + indirect_cmd_reg);
 574        readl(csr_base + indirect_cmd_reg); /* Force a barrier */
 575        do {
 576                val = readl(csr_base + indirect_cmd_reg);
 577        } while (!(val & CFG_IND_CMD_DONE_MASK) &&
 578                 time_before(jiffies, deadline));
 579        if (!(val & CFG_IND_CMD_DONE_MASK))
 580                pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
 581                       csr_base + indirect_cmd_reg, addr, data);
 582}
 583
 584static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
 585                   u32 indirect_data_reg, u32 addr, u32 *data)
 586{
 587        unsigned long deadline = jiffies + HZ;
 588        u32 val;
 589        u32 cmd;
 590
 591        cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
 592        cmd = CFG_IND_ADDR_SET(cmd, addr);
 593        writel(cmd, csr_base + indirect_cmd_reg);
 594        readl(csr_base + indirect_cmd_reg); /* Force a barrier */
 595        do {
 596                val = readl(csr_base + indirect_cmd_reg);
 597        } while (!(val & CFG_IND_CMD_DONE_MASK) &&
 598                 time_before(jiffies, deadline));
 599        *data = readl(csr_base + indirect_data_reg);
 600        if (!(val & CFG_IND_CMD_DONE_MASK))
 601                pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
 602                       csr_base + indirect_cmd_reg, addr, *data);
 603}
 604
 605static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 606                   u32 reg, u32 data)
 607{
 608        void __iomem *sds_base = ctx->sds_base;
 609        u32 val;
 610
 611        if (cmu_type == REF_CMU)
 612                reg += SERDES_PLL_REF_INDIRECT_OFFSET;
 613        else
 614                reg += SERDES_PLL_INDIRECT_OFFSET;
 615        sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 616                SATA_ENET_SDS_IND_WDATA_REG, reg, data);
 617        sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 618                SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
 619        pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
 620}
 621
 622static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 623                   u32 reg, u32 *data)
 624{
 625        void __iomem *sds_base = ctx->sds_base;
 626
 627        if (cmu_type == REF_CMU)
 628                reg += SERDES_PLL_REF_INDIRECT_OFFSET;
 629        else
 630                reg += SERDES_PLL_INDIRECT_OFFSET;
 631        sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 632                SATA_ENET_SDS_IND_RDATA_REG, reg, data);
 633        pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
 634}
 635
 636static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 637                           u32 reg, u32 bits)
 638{
 639        u32 val;
 640
 641        cmu_rd(ctx, cmu_type, reg, &val);
 642        val |= bits;
 643        cmu_wr(ctx, cmu_type, reg, val);
 644        cmu_rd(ctx, cmu_type, reg, &val);
 645        val &= ~bits;
 646        cmu_wr(ctx, cmu_type, reg, val);
 647}
 648
 649static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 650                        u32 reg, u32 bits)
 651{
 652        u32 val;
 653
 654        cmu_rd(ctx, cmu_type, reg, &val);
 655        val &= ~bits;
 656        cmu_wr(ctx, cmu_type, reg, val);
 657}
 658
 659static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
 660                        u32 reg, u32 bits)
 661{
 662        u32 val;
 663
 664        cmu_rd(ctx, cmu_type, reg, &val);
 665        val |= bits;
 666        cmu_wr(ctx, cmu_type, reg, val);
 667}
 668
 669static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
 670{
 671        void __iomem *sds_base = ctx->sds_base;
 672        u32 val;
 673
 674        reg += SERDES_INDIRECT_OFFSET;
 675        reg += lane * SERDES_LANE_STRIDE;
 676        sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 677               SATA_ENET_SDS_IND_WDATA_REG, reg, data);
 678        sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 679               SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
 680        pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
 681                 val);
 682}
 683
 684static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
 685{
 686        void __iomem *sds_base = ctx->sds_base;
 687
 688        reg += SERDES_INDIRECT_OFFSET;
 689        reg += lane * SERDES_LANE_STRIDE;
 690        sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
 691               SATA_ENET_SDS_IND_RDATA_REG, reg, data);
 692        pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
 693}
 694
 695static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
 696                           u32 bits)
 697{
 698        u32 val;
 699
 700        serdes_rd(ctx, lane, reg, &val);
 701        val &= ~bits;
 702        serdes_wr(ctx, lane, reg, val);
 703}
 704
 705static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
 706                           u32 bits)
 707{
 708        u32 val;
 709
 710        serdes_rd(ctx, lane, reg, &val);
 711        val |= bits;
 712        serdes_wr(ctx, lane, reg, val);
 713}
 714
 715static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
 716                                       enum cmu_type_t cmu_type,
 717                                       enum clk_type_t clk_type)
 718{
 719        u32 val;
 720
 721        /* Set the reset sequence delay for TX ready assertion */
 722        cmu_rd(ctx, cmu_type, CMU_REG12, &val);
 723        val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
 724        cmu_wr(ctx, cmu_type, CMU_REG12, val);
 725        /* Set the programmable stage delays between various enable stages */
 726        cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
 727        cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
 728
 729        /* Configure clock type */
 730        if (clk_type == CLK_EXT_DIFF) {
 731                /* Select external clock mux */
 732                cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 733                val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
 734                cmu_wr(ctx, cmu_type, CMU_REG0, val);
 735                /* Select CMOS as reference clock  */
 736                cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 737                val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
 738                cmu_wr(ctx, cmu_type, CMU_REG1, val);
 739                dev_dbg(ctx->dev, "Set external reference clock\n");
 740        } else if (clk_type == CLK_INT_DIFF) {
 741                /* Select internal clock mux */
 742                cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 743                val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
 744                cmu_wr(ctx, cmu_type, CMU_REG0, val);
 745                /* Select CMOS as reference clock  */
 746                cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 747                val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
 748                cmu_wr(ctx, cmu_type, CMU_REG1, val);
 749                dev_dbg(ctx->dev, "Set internal reference clock\n");
 750        } else if (clk_type == CLK_INT_SING) {
 751                /*
 752                 * NOTE: This clock type is NOT support for controller
 753                 *       whose internal clock shared in the PCIe controller
 754                 *
 755                 * Select internal clock mux
 756                 */
 757                cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 758                val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
 759                cmu_wr(ctx, cmu_type, CMU_REG1, val);
 760                /* Select CML as reference clock */
 761                cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 762                val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
 763                cmu_wr(ctx, cmu_type, CMU_REG1, val);
 764                dev_dbg(ctx->dev,
 765                        "Set internal single ended reference clock\n");
 766        }
 767}
 768
 769static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
 770                                        enum cmu_type_t cmu_type,
 771                                        enum clk_type_t clk_type)
 772{
 773        u32 val;
 774        int ref_100MHz;
 775
 776        if (cmu_type == REF_CMU) {
 777                /* Set VCO calibration voltage threshold */
 778                cmu_rd(ctx, cmu_type, CMU_REG34, &val);
 779                val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
 780                val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
 781                val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
 782                val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
 783                cmu_wr(ctx, cmu_type, CMU_REG34, val);
 784        }
 785
 786        /* Set the VCO calibration counter */
 787        cmu_rd(ctx, cmu_type, CMU_REG0, &val);
 788        if (cmu_type == REF_CMU || preA3Chip)
 789                val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
 790        else
 791                val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
 792        cmu_wr(ctx, cmu_type, CMU_REG0, val);
 793
 794        /* Configure PLL for calibration */
 795        cmu_rd(ctx, cmu_type, CMU_REG1, &val);
 796        val = CMU_REG1_PLL_CP_SET(val, 0x1);
 797        if (cmu_type == REF_CMU || preA3Chip)
 798                val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
 799        else
 800                val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
 801        if (cmu_type == REF_CMU)
 802                val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
 803        else
 804                val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
 805        cmu_wr(ctx, cmu_type, CMU_REG1, val);
 806
 807        if (cmu_type != REF_CMU)
 808                cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 809
 810        /* Configure the PLL for either 100MHz or 50MHz */
 811        cmu_rd(ctx, cmu_type, CMU_REG2, &val);
 812        if (cmu_type == REF_CMU) {
 813                val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
 814                ref_100MHz = 1;
 815        } else {
 816                val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
 817                if (clk_type == CLK_EXT_DIFF)
 818                        ref_100MHz = 0;
 819                else
 820                        ref_100MHz = 1;
 821        }
 822        if (ref_100MHz) {
 823                val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
 824                val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
 825        } else {
 826                val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
 827                val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
 828        }
 829        cmu_wr(ctx, cmu_type, CMU_REG2, val);
 830
 831        /* Configure the VCO */
 832        cmu_rd(ctx, cmu_type, CMU_REG3, &val);
 833        if (cmu_type == REF_CMU) {
 834                val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
 835                val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
 836        } else {
 837                val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
 838                if (preA3Chip)
 839                        val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
 840                else
 841                        val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
 842                val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
 843        }
 844        cmu_wr(ctx, cmu_type, CMU_REG3, val);
 845
 846        /* Disable force PLL lock */
 847        cmu_rd(ctx, cmu_type, CMU_REG26, &val);
 848        val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
 849        cmu_wr(ctx, cmu_type, CMU_REG26, val);
 850
 851        /* Setup PLL loop filter */
 852        cmu_rd(ctx, cmu_type, CMU_REG5, &val);
 853        val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
 854        val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
 855        if (cmu_type == REF_CMU || !preA3Chip)
 856                val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
 857        else
 858                val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
 859        cmu_wr(ctx, cmu_type, CMU_REG5, val);
 860
 861        /* Enable or disable manual calibration */
 862        cmu_rd(ctx, cmu_type, CMU_REG6, &val);
 863        val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
 864        val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
 865        cmu_wr(ctx, cmu_type, CMU_REG6, val);
 866
 867        /* Configure lane for 20-bits */
 868        if (cmu_type == PHY_CMU) {
 869                cmu_rd(ctx, cmu_type, CMU_REG9, &val);
 870                val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
 871                                                    CMU_REG9_WORD_LEN_20BIT);
 872                val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
 873                                                    CMU_REG9_WORD_LEN_20BIT);
 874                val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
 875                if (!preA3Chip) {
 876                        val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
 877                        val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
 878                }
 879                cmu_wr(ctx, cmu_type, CMU_REG9, val);
 880
 881                if (!preA3Chip) {
 882                        cmu_rd(ctx, cmu_type, CMU_REG10, &val);
 883                        val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
 884                        cmu_wr(ctx, cmu_type, CMU_REG10, val);
 885                }
 886        }
 887
 888        cmu_rd(ctx, cmu_type, CMU_REG16, &val);
 889        val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
 890        val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
 891        if (cmu_type == REF_CMU || preA3Chip)
 892                val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
 893        else
 894                val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
 895        cmu_wr(ctx, cmu_type, CMU_REG16, val);
 896
 897        /* Configure for SATA */
 898        cmu_rd(ctx, cmu_type, CMU_REG30, &val);
 899        val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
 900        val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
 901        cmu_wr(ctx, cmu_type, CMU_REG30, val);
 902
 903        /* Disable state machine bypass */
 904        cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
 905
 906        cmu_rd(ctx, cmu_type, CMU_REG32, &val);
 907        val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
 908        if (cmu_type == REF_CMU || preA3Chip)
 909                val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
 910        else
 911                val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
 912        cmu_wr(ctx, cmu_type, CMU_REG32, val);
 913
 914        /* Set VCO calibration threshold */
 915        if (cmu_type != REF_CMU && preA3Chip)
 916                cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
 917        else
 918                cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
 919
 920        /* Set CTLE Override and override waiting from state machine */
 921        cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
 922}
 923
 924static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
 925                                 enum cmu_type_t cmu_type)
 926{
 927        u32 val;
 928
 929        /* Set SSC modulation value */
 930        cmu_rd(ctx, cmu_type, CMU_REG35, &val);
 931        val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
 932        cmu_wr(ctx, cmu_type, CMU_REG35, val);
 933
 934        /* Enable SSC, set vertical step and DSM value */
 935        cmu_rd(ctx, cmu_type, CMU_REG36, &val);
 936        val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
 937        val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
 938        val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
 939        cmu_wr(ctx, cmu_type, CMU_REG36, val);
 940
 941        /* Reset the PLL */
 942        cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 943        cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
 944
 945        /* Force VCO calibration to restart */
 946        cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
 947                       CMU_REG32_FORCE_VCOCAL_START_MASK);
 948}
 949
 950static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
 951{
 952        u32 val;
 953        u32 reg;
 954        int i;
 955        int lane;
 956
 957        for (lane = 0; lane < MAX_LANE; lane++) {
 958                serdes_wr(ctx, lane, RXTX_REG147, 0x6);
 959
 960                /* Set boost control for quarter, half, and full rate */
 961                serdes_rd(ctx, lane, RXTX_REG0, &val);
 962                val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
 963                val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
 964                val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
 965                serdes_wr(ctx, lane, RXTX_REG0, val);
 966
 967                /* Set boost control value */
 968                serdes_rd(ctx, lane, RXTX_REG1, &val);
 969                val = RXTX_REG1_RXACVCM_SET(val, 0x7);
 970                val = RXTX_REG1_CTLE_EQ_SET(val,
 971                        ctx->sata_param.txboostgain[lane * 3 +
 972                        ctx->sata_param.speed[lane]]);
 973                serdes_wr(ctx, lane, RXTX_REG1, val);
 974
 975                /* Latch VTT value based on the termination to ground and
 976                   enable TX FIFO */
 977                serdes_rd(ctx, lane, RXTX_REG2, &val);
 978                val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
 979                val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
 980                val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
 981                serdes_wr(ctx, lane, RXTX_REG2, val);
 982
 983                /* Configure Tx for 20-bits */
 984                serdes_rd(ctx, lane, RXTX_REG4, &val);
 985                val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
 986                serdes_wr(ctx, lane, RXTX_REG4, val);
 987
 988                if (!preA3Chip) {
 989                        serdes_rd(ctx, lane, RXTX_REG1, &val);
 990                        val = RXTX_REG1_RXVREG1_SET(val, 0x2);
 991                        val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
 992                        serdes_wr(ctx, lane, RXTX_REG1, val);
 993                }
 994
 995                /* Set pre-emphasis first 1 and 2, and post-emphasis values */
 996                serdes_rd(ctx, lane, RXTX_REG5, &val);
 997                val = RXTX_REG5_TX_CN1_SET(val,
 998                        ctx->sata_param.txprecursor_cn1[lane * 3 +
 999                        ctx->sata_param.speed[lane]]);
1000                val = RXTX_REG5_TX_CP1_SET(val,
1001                        ctx->sata_param.txpostcursor_cp1[lane * 3 +
1002                        ctx->sata_param.speed[lane]]);
1003                val = RXTX_REG5_TX_CN2_SET(val,
1004                        ctx->sata_param.txprecursor_cn2[lane * 3 +
1005                        ctx->sata_param.speed[lane]]);
1006                serdes_wr(ctx, lane, RXTX_REG5, val);
1007
1008                /* Set TX amplitude value */
1009                serdes_rd(ctx, lane, RXTX_REG6, &val);
1010                val = RXTX_REG6_TXAMP_CNTL_SET(val,
1011                        ctx->sata_param.txamplitude[lane * 3 +
1012                        ctx->sata_param.speed[lane]]);
1013                val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1014                val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1015                val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1016                val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1017                serdes_wr(ctx, lane, RXTX_REG6, val);
1018
1019                /* Configure Rx for 20-bits */
1020                serdes_rd(ctx, lane, RXTX_REG7, &val);
1021                val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1022                val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1023                serdes_wr(ctx, lane, RXTX_REG7, val);
1024
1025                /* Set CDR and LOS values and enable Rx SSC */
1026                serdes_rd(ctx, lane, RXTX_REG8, &val);
1027                val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1028                val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1029                val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1030                val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1031                val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1032                serdes_wr(ctx, lane, RXTX_REG8, val);
1033
1034                /* Set phase adjust upper/lower limits */
1035                serdes_rd(ctx, lane, RXTX_REG11, &val);
1036                val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1037                serdes_wr(ctx, lane, RXTX_REG11, val);
1038
1039                /* Enable Latch Off; disable SUMOS and Tx termination */
1040                serdes_rd(ctx, lane, RXTX_REG12, &val);
1041                val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1042                val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1043                val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1044                serdes_wr(ctx, lane, RXTX_REG12, val);
1045
1046                /* Set period error latch to 512T and enable BWL */
1047                serdes_rd(ctx, lane, RXTX_REG26, &val);
1048                val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1049                val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1050                serdes_wr(ctx, lane, RXTX_REG26, val);
1051
1052                serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1053
1054                /* Set DFE loop preset value */
1055                serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1056
1057                /* Set Eye Monitor counter width to 12-bit */
1058                serdes_rd(ctx, lane, RXTX_REG61, &val);
1059                val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1060                val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1061                val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1062                serdes_wr(ctx, lane, RXTX_REG61, val);
1063
1064                serdes_rd(ctx, lane, RXTX_REG62, &val);
1065                val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1066                serdes_wr(ctx, lane, RXTX_REG62, val);
1067
1068                /* Set BW select tap X for DFE loop */
1069                for (i = 0; i < 9; i++) {
1070                        reg = RXTX_REG81 + i * 2;
1071                        serdes_rd(ctx, lane, reg, &val);
1072                        val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1073                        val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1074                        val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1075                        serdes_wr(ctx, lane, reg, val);
1076                }
1077
1078                /* Set BW select tap X for frequency adjust loop */
1079                for (i = 0; i < 3; i++) {
1080                        reg = RXTX_REG96 + i * 2;
1081                        serdes_rd(ctx, lane, reg, &val);
1082                        val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1083                        val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1084                        val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1085                        serdes_wr(ctx, lane, reg, val);
1086                }
1087
1088                /* Set BW select tap X for phase adjust loop */
1089                for (i = 0; i < 3; i++) {
1090                        reg = RXTX_REG99 + i * 2;
1091                        serdes_rd(ctx, lane, reg, &val);
1092                        val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1093                        val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1094                        val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1095                        serdes_wr(ctx, lane, reg, val);
1096                }
1097
1098                serdes_rd(ctx, lane, RXTX_REG102, &val);
1099                val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1100                serdes_wr(ctx, lane, RXTX_REG102, val);
1101
1102                serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1103
1104                serdes_rd(ctx, lane, RXTX_REG125, &val);
1105                val = RXTX_REG125_SIGN_PQ_SET(val,
1106                        ctx->sata_param.txeyedirection[lane * 3 +
1107                        ctx->sata_param.speed[lane]]);
1108                val = RXTX_REG125_PQ_REG_SET(val,
1109                        ctx->sata_param.txeyetuning[lane * 3 +
1110                        ctx->sata_param.speed[lane]]);
1111                val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1112                serdes_wr(ctx, lane, RXTX_REG125, val);
1113
1114                serdes_rd(ctx, lane, RXTX_REG127, &val);
1115                val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1116                serdes_wr(ctx, lane, RXTX_REG127, val);
1117
1118                serdes_rd(ctx, lane, RXTX_REG128, &val);
1119                val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1120                serdes_wr(ctx, lane, RXTX_REG128, val);
1121
1122                serdes_rd(ctx, lane, RXTX_REG145, &val);
1123                val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1124                val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1125                if (preA3Chip) {
1126                        val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1127                        val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1128                } else {
1129                        val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1130                        val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1131                }
1132                serdes_wr(ctx, lane, RXTX_REG145, val);
1133
1134                /*
1135                 * Set Rx LOS filter clock rate, sample rate, and threshold
1136                 * windows
1137                 */
1138                for (i = 0; i < 4; i++) {
1139                        reg = RXTX_REG148 + i * 2;
1140                        serdes_wr(ctx, lane, reg, 0xFFFF);
1141                }
1142        }
1143}
1144
1145static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1146                                 enum cmu_type_t cmu_type,
1147                                 enum clk_type_t clk_type)
1148{
1149        void __iomem *csr_serdes = ctx->sds_base;
1150        int loop;
1151        u32 val;
1152
1153        /* Release PHY main reset */
1154        writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1155        readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1156
1157        if (cmu_type != REF_CMU) {
1158                cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1159                /*
1160                 * As per PHY design spec, the PLL reset requires a minimum
1161                 * of 800us.
1162                 */
1163                usleep_range(800, 1000);
1164
1165                cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1166                val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1167                cmu_wr(ctx, cmu_type, CMU_REG1, val);
1168                /*
1169                 * As per PHY design spec, the PLL auto calibration requires
1170                 * a minimum of 800us.
1171                 */
1172                usleep_range(800, 1000);
1173
1174                cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1175                               CMU_REG32_FORCE_VCOCAL_START_MASK);
1176                /*
1177                 * As per PHY design spec, the PLL requires a minimum of
1178                 * 800us to settle.
1179                 */
1180                usleep_range(800, 1000);
1181        }
1182
1183        if (!preA3Chip)
1184                goto skip_manual_cal;
1185
1186        /*
1187         * Configure the termination resister calibration
1188         * The serial receive pins, RXP/RXN, have TERMination resistor
1189         * that is required to be calibrated.
1190         */
1191        cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1192        val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1193        val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1194        cmu_wr(ctx, cmu_type, CMU_REG17, val);
1195        cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1196                       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1197        /*
1198         * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1199         * resistors that are required to the calibrated.
1200         * Configure the pull DOWN calibration
1201         */
1202        cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1203        val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1204        val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1205        cmu_wr(ctx, cmu_type, CMU_REG17, val);
1206        cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1207                       CMU_REG16_PVT_DN_MAN_ENA_MASK);
1208        /* Configure the pull UP calibration */
1209        cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1210        val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1211        val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1212        cmu_wr(ctx, cmu_type, CMU_REG17, val);
1213        cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1214                       CMU_REG16_PVT_UP_MAN_ENA_MASK);
1215
1216skip_manual_cal:
1217        /* Poll the PLL calibration completion status for at least 1 ms */
1218        loop = 100;
1219        do {
1220                cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1221                if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1222                        break;
1223                /*
1224                 * As per PHY design spec, PLL calibration status requires
1225                 * a minimum of 10us to be updated.
1226                 */
1227                usleep_range(10, 100);
1228        } while (--loop > 0);
1229
1230        cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1231        dev_dbg(ctx->dev, "PLL calibration %s\n",
1232                CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1233        if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1234                dev_err(ctx->dev,
1235                        "PLL calibration failed due to VCO failure\n");
1236                return -1;
1237        }
1238        dev_dbg(ctx->dev, "PLL calibration successful\n");
1239
1240        cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1241        dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1242        return 0;
1243}
1244
1245static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1246                                     enum cmu_type_t cmu_type,
1247                                     enum clk_type_t clk_type)
1248{
1249        u32 val;
1250
1251        dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1252        if (cmu_type == PHY_CMU) {
1253                cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1254                val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1255                cmu_wr(ctx, cmu_type, CMU_REG16, val);
1256        }
1257
1258        cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1259        cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1260                       CMU_REG32_FORCE_VCOCAL_START_MASK);
1261}
1262
1263static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1264                                  enum clk_type_t clk_type, int ssc_enable)
1265{
1266        void __iomem *sds_base = ctx->sds_base;
1267        u32 val;
1268        int i;
1269
1270        /* Configure the PHY for operation */
1271        dev_dbg(ctx->dev, "Reset PHY\n");
1272        /* Place PHY into reset */
1273        writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1274        val = readl(sds_base + SATA_ENET_SDS_RST_CTL);  /* Force a barrier */
1275        /* Release PHY lane from reset (active high) */
1276        writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1277        readl(sds_base + SATA_ENET_SDS_RST_CTL);        /* Force a barrier */
1278        /* Release all PHY module out of reset except PHY main reset */
1279        writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1280        readl(sds_base + SATA_ENET_SDS_RST_CTL);        /* Force a barrier */
1281
1282        /* Set the operation speed */
1283        val = readl(sds_base + SATA_ENET_SDS_CTL1);
1284        val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1285                ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1286        writel(val, sds_base + SATA_ENET_SDS_CTL1);
1287
1288        dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1289        val = readl(sds_base + SATA_ENET_SDS_CTL0);
1290        val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1291        writel(val, sds_base + SATA_ENET_SDS_CTL0);
1292
1293        /* Configure the clock macro unit (CMU) clock type */
1294        xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1295
1296        /* Configure the clock macro */
1297        xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1298
1299        /* Enable SSC if enabled */
1300        if (ssc_enable)
1301                xgene_phy_ssc_enable(ctx, PHY_CMU);
1302
1303        /* Configure PHY lanes */
1304        xgene_phy_sata_cfg_lanes(ctx);
1305
1306        /* Set Rx/Tx 20-bit */
1307        val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1308        val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1309        val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1310        writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1311
1312        /* Start PLL calibration and try for three times */
1313        i = 10;
1314        do {
1315                if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1316                        break;
1317                /* If failed, toggle the VCO power signal and start again */
1318                xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1319        } while (--i > 0);
1320        /* Even on failure, allow to continue any way */
1321        if (i <= 0)
1322                dev_err(ctx->dev, "PLL calibration failed\n");
1323
1324        return 0;
1325}
1326
1327static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1328                                   enum clk_type_t clk_type,
1329                                   int ssc_enable)
1330{
1331        int rc;
1332
1333        dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1334
1335        if (ctx->mode == MODE_SATA) {
1336                rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1337                if (rc)
1338                        return rc;
1339        } else {
1340                dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1341                        ctx->mode);
1342                return -ENODEV;
1343        }
1344
1345        return 0;
1346}
1347
1348/*
1349 * Receiver Offset Calibration:
1350 *
1351 * Calibrate the receiver signal path offset in two steps - summar and
1352 * latch calibrations
1353 */
1354static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1355{
1356        int i;
1357        struct {
1358                u32 reg;
1359                u32 val;
1360        } serdes_reg[] = {
1361                {RXTX_REG38, 0x0},
1362                {RXTX_REG39, 0xff00},
1363                {RXTX_REG40, 0xffff},
1364                {RXTX_REG41, 0xffff},
1365                {RXTX_REG42, 0xffff},
1366                {RXTX_REG43, 0xffff},
1367                {RXTX_REG44, 0xffff},
1368                {RXTX_REG45, 0xffff},
1369                {RXTX_REG46, 0xffff},
1370                {RXTX_REG47, 0xfffc},
1371                {RXTX_REG48, 0x0},
1372                {RXTX_REG49, 0x0},
1373                {RXTX_REG50, 0x0},
1374                {RXTX_REG51, 0x0},
1375                {RXTX_REG52, 0x0},
1376                {RXTX_REG53, 0x0},
1377                {RXTX_REG54, 0x0},
1378                {RXTX_REG55, 0x0},
1379        };
1380
1381        /* Start SUMMER calibration */
1382        serdes_setbits(ctx, lane, RXTX_REG127,
1383                       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1384        /*
1385         * As per PHY design spec, the Summer calibration requires a minimum
1386         * of 100us to complete.
1387         */
1388        usleep_range(100, 500);
1389        serdes_clrbits(ctx, lane, RXTX_REG127,
1390                        RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1391        /*
1392         * As per PHY design spec, the auto calibration requires a minimum
1393         * of 100us to complete.
1394         */
1395        usleep_range(100, 500);
1396
1397        /* Start latch calibration */
1398        serdes_setbits(ctx, lane, RXTX_REG127,
1399                       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1400        /*
1401         * As per PHY design spec, the latch calibration requires a minimum
1402         * of 100us to complete.
1403         */
1404        usleep_range(100, 500);
1405        serdes_clrbits(ctx, lane, RXTX_REG127,
1406                       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1407
1408        /* Configure the PHY lane for calibration */
1409        serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1410        serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1411        serdes_clrbits(ctx, lane, RXTX_REG4,
1412                       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1413        serdes_clrbits(ctx, lane, RXTX_REG7,
1414                       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1415        for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1416                serdes_wr(ctx, lane, serdes_reg[i].reg,
1417                          serdes_reg[i].val);
1418}
1419
1420static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1421{
1422        /* Reset digital Rx */
1423        serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1424        /* As per PHY design spec, the reset requires a minimum of 100us. */
1425        usleep_range(100, 150);
1426        serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1427}
1428
1429static int xgene_phy_get_avg(int accum, int samples)
1430{
1431        return (accum + (samples / 2)) / samples;
1432}
1433
1434static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1435{
1436        int max_loop = 10;
1437        int avg_loop = 0;
1438        int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1439        int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1440        int sum_cal = 0;
1441        int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1442        int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1443        int sum_cal_itr;
1444        int fail_even;
1445        int fail_odd;
1446        u32 val;
1447
1448        dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1449                lane);
1450
1451        /* Enable RX Hi-Z termination */
1452        serdes_setbits(ctx, lane, RXTX_REG12,
1453                        RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1454        /* Turn off DFE */
1455        serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1456        /* DFE Presets to zero */
1457        serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1458
1459        /*
1460         * Receiver Offset Calibration:
1461         * Calibrate the receiver signal path offset in two steps - summar
1462         * and latch calibration.
1463         * Runs the "Receiver Offset Calibration multiple times to determine
1464         * the average value to use.
1465         */
1466        while (avg_loop < max_loop) {
1467                /* Start the calibration */
1468                xgene_phy_force_lat_summer_cal(ctx, lane);
1469
1470                serdes_rd(ctx, lane, RXTX_REG21, &val);
1471                lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1472                lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1473                fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1474
1475                serdes_rd(ctx, lane, RXTX_REG22, &val);
1476                lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1477                lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1478                fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1479
1480                serdes_rd(ctx, lane, RXTX_REG23, &val);
1481                lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1482                lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1483
1484                serdes_rd(ctx, lane, RXTX_REG24, &val);
1485                lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1486                lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1487
1488                serdes_rd(ctx, lane, RXTX_REG121, &val);
1489                sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1490
1491                /* Check for failure. If passed, sum them for averaging */
1492                if ((fail_even == 0 || fail_even == 1) &&
1493                    (fail_odd == 0 || fail_odd == 1)) {
1494                        lat_do += lat_do_itr;
1495                        lat_xo += lat_xo_itr;
1496                        lat_eo += lat_eo_itr;
1497                        lat_so += lat_so_itr;
1498                        lat_de += lat_de_itr;
1499                        lat_xe += lat_xe_itr;
1500                        lat_ee += lat_ee_itr;
1501                        lat_se += lat_se_itr;
1502                        sum_cal += sum_cal_itr;
1503
1504                        dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1505                        dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1506                                lat_do_itr, lat_xo_itr, lat_eo_itr,
1507                                lat_so_itr);
1508                        dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1509                                lat_de_itr, lat_xe_itr, lat_ee_itr,
1510                                lat_se_itr);
1511                        dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1512                        ++avg_loop;
1513                } else {
1514                        dev_err(ctx->dev,
1515                                "Receiver calibration failed at %d loop\n",
1516                                avg_loop);
1517                }
1518                xgene_phy_reset_rxd(ctx, lane);
1519        }
1520
1521        /* Update latch manual calibration with average value */
1522        serdes_rd(ctx, lane, RXTX_REG127, &val);
1523        val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1524                xgene_phy_get_avg(lat_do, max_loop));
1525        val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1526                xgene_phy_get_avg(lat_xo, max_loop));
1527        serdes_wr(ctx, lane, RXTX_REG127, val);
1528
1529        serdes_rd(ctx, lane, RXTX_REG128, &val);
1530        val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1531                xgene_phy_get_avg(lat_eo, max_loop));
1532        val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1533                xgene_phy_get_avg(lat_so, max_loop));
1534        serdes_wr(ctx, lane, RXTX_REG128, val);
1535
1536        serdes_rd(ctx, lane, RXTX_REG129, &val);
1537        val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1538                xgene_phy_get_avg(lat_de, max_loop));
1539        val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1540                xgene_phy_get_avg(lat_xe, max_loop));
1541        serdes_wr(ctx, lane, RXTX_REG129, val);
1542
1543        serdes_rd(ctx, lane, RXTX_REG130, &val);
1544        val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1545                xgene_phy_get_avg(lat_ee, max_loop));
1546        val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1547                xgene_phy_get_avg(lat_se, max_loop));
1548        serdes_wr(ctx, lane, RXTX_REG130, val);
1549
1550        /* Update SUMMER calibration with average value */
1551        serdes_rd(ctx, lane, RXTX_REG14, &val);
1552        val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1553                xgene_phy_get_avg(sum_cal, max_loop));
1554        serdes_wr(ctx, lane, RXTX_REG14, val);
1555
1556        dev_dbg(ctx->dev, "Average Value:\n");
1557        dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1558                 xgene_phy_get_avg(lat_do, max_loop),
1559                 xgene_phy_get_avg(lat_xo, max_loop),
1560                 xgene_phy_get_avg(lat_eo, max_loop),
1561                 xgene_phy_get_avg(lat_so, max_loop));
1562        dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1563                 xgene_phy_get_avg(lat_de, max_loop),
1564                 xgene_phy_get_avg(lat_xe, max_loop),
1565                 xgene_phy_get_avg(lat_ee, max_loop),
1566                 xgene_phy_get_avg(lat_se, max_loop));
1567        dev_dbg(ctx->dev, "SUM 0x%x\n",
1568                xgene_phy_get_avg(sum_cal, max_loop));
1569
1570        serdes_rd(ctx, lane, RXTX_REG14, &val);
1571        val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1572        serdes_wr(ctx, lane, RXTX_REG14, val);
1573        dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1574
1575        serdes_rd(ctx, lane, RXTX_REG127, &val);
1576        val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1577        dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1578        serdes_wr(ctx, lane, RXTX_REG127, val);
1579
1580        /* Disable RX Hi-Z termination */
1581        serdes_rd(ctx, lane, RXTX_REG12, &val);
1582        val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1583        serdes_wr(ctx, lane, RXTX_REG12, val);
1584        /* Turn on DFE */
1585        serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1586        /* Set DFE preset */
1587        serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1588}
1589
1590static int xgene_phy_hw_init(struct phy *phy)
1591{
1592        struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1593        int rc;
1594        int i;
1595
1596        rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1597        if (rc) {
1598                dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1599                return rc;
1600        }
1601
1602        /* Setup clock properly after PHY configuration */
1603        if (!IS_ERR(ctx->clk)) {
1604                /* HW requires an toggle of the clock */
1605                clk_prepare_enable(ctx->clk);
1606                clk_disable_unprepare(ctx->clk);
1607                clk_prepare_enable(ctx->clk);
1608        }
1609
1610        /* Compute average value */
1611        for (i = 0; i < MAX_LANE; i++)
1612                xgene_phy_gen_avg_val(ctx, i);
1613
1614        dev_dbg(ctx->dev, "PHY initialized\n");
1615        return 0;
1616}
1617
1618static const struct phy_ops xgene_phy_ops = {
1619        .init           = xgene_phy_hw_init,
1620        .owner          = THIS_MODULE,
1621};
1622
1623static struct phy *xgene_phy_xlate(struct device *dev,
1624                                   struct of_phandle_args *args)
1625{
1626        struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1627
1628        if (args->args_count <= 0)
1629                return ERR_PTR(-EINVAL);
1630        if (args->args[0] < MODE_SATA || args->args[0] >= MODE_MAX)
1631                return ERR_PTR(-EINVAL);
1632
1633        ctx->mode = args->args[0];
1634        return ctx->phy;
1635}
1636
1637static void xgene_phy_get_param(struct platform_device *pdev,
1638                                const char *name, u32 *buffer,
1639                                int count, u32 *default_val,
1640                                u32 conv_factor)
1641{
1642        int i;
1643
1644        if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1645                                        count)) {
1646                for (i = 0; i < count; i++)
1647                        buffer[i] /= conv_factor;
1648                return;
1649        }
1650        /* Does not exist, load default */
1651        for (i = 0; i < count; i++)
1652                buffer[i] = default_val[i % 3];
1653}
1654
1655static int xgene_phy_probe(struct platform_device *pdev)
1656{
1657        struct phy_provider *phy_provider;
1658        struct xgene_phy_ctx *ctx;
1659        struct resource *res;
1660        u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1661        u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1662        u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1663        u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1664        u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1665        u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1666        u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1667        u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1668        int i;
1669
1670        ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1671        if (!ctx)
1672                return -ENOMEM;
1673
1674        ctx->dev = &pdev->dev;
1675
1676        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1677        ctx->sds_base = devm_ioremap_resource(&pdev->dev, res);
1678        if (IS_ERR(ctx->sds_base))
1679                return PTR_ERR(ctx->sds_base);
1680
1681        /* Retrieve optional clock */
1682        ctx->clk = clk_get(&pdev->dev, NULL);
1683
1684        /* Load override paramaters */
1685        xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1686                ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1687        xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1688                ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1689        xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1690                ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1691        xgene_phy_get_param(pdev, "apm,tx-amplitude",
1692                ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1693        xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1694                ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1695        xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1696                ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1697        xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1698                ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1699        xgene_phy_get_param(pdev, "apm,tx-speed",
1700                ctx->sata_param.txspeed, 3, default_spd, 1);
1701        for (i = 0; i < MAX_LANE; i++)
1702                ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1703
1704        platform_set_drvdata(pdev, ctx);
1705
1706        ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1707        if (IS_ERR(ctx->phy)) {
1708                dev_dbg(&pdev->dev, "Failed to create PHY\n");
1709                return PTR_ERR(ctx->phy);
1710        }
1711        phy_set_drvdata(ctx->phy, ctx);
1712
1713        phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1714        return PTR_ERR_OR_ZERO(phy_provider);
1715}
1716
1717static const struct of_device_id xgene_phy_of_match[] = {
1718        {.compatible = "apm,xgene-phy",},
1719        {},
1720};
1721MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1722
1723static struct platform_driver xgene_phy_driver = {
1724        .probe = xgene_phy_probe,
1725        .driver = {
1726                   .name = "xgene-phy",
1727                   .of_match_table = xgene_phy_of_match,
1728        },
1729};
1730module_platform_driver(xgene_phy_driver);
1731
1732MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1733MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1734MODULE_LICENSE("GPL v2");
1735MODULE_VERSION("0.1");
1736