linux/drivers/usb/dwc2/hcd.h
<<
>>
Prefs
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37#ifndef __DWC2_HCD_H__
  38#define __DWC2_HCD_H__
  39
  40/*
  41 * This file contains the structures, constants, and interfaces for the
  42 * Host Contoller Driver (HCD)
  43 *
  44 * The Host Controller Driver (HCD) is responsible for translating requests
  45 * from the USB Driver into the appropriate actions on the DWC_otg controller.
  46 * It isolates the USBD from the specifics of the controller by providing an
  47 * API to the USBD.
  48 */
  49
  50struct dwc2_qh;
  51
  52/**
  53 * struct dwc2_host_chan - Software host channel descriptor
  54 *
  55 * @hc_num:             Host channel number, used for register address lookup
  56 * @dev_addr:           Address of the device
  57 * @ep_num:             Endpoint of the device
  58 * @ep_is_in:           Endpoint direction
  59 * @speed:              Device speed. One of the following values:
  60 *                       - USB_SPEED_LOW
  61 *                       - USB_SPEED_FULL
  62 *                       - USB_SPEED_HIGH
  63 * @ep_type:            Endpoint type. One of the following values:
  64 *                       - USB_ENDPOINT_XFER_CONTROL: 0
  65 *                       - USB_ENDPOINT_XFER_ISOC:    1
  66 *                       - USB_ENDPOINT_XFER_BULK:    2
  67 *                       - USB_ENDPOINT_XFER_INTR:    3
  68 * @max_packet:         Max packet size in bytes
  69 * @data_pid_start:     PID for initial transaction.
  70 *                       0: DATA0
  71 *                       1: DATA2
  72 *                       2: DATA1
  73 *                       3: MDATA (non-Control EP),
  74 *                          SETUP (Control EP)
  75 * @multi_count:        Number of additional periodic transactions per
  76 *                      (micro)frame
  77 * @xfer_buf:           Pointer to current transfer buffer position
  78 * @xfer_dma:           DMA address of xfer_buf
  79 * @xfer_len:           Total number of bytes to transfer
  80 * @xfer_count:         Number of bytes transferred so far
  81 * @start_pkt_count:    Packet count at start of transfer
  82 * @xfer_started:       True if the transfer has been started
  83 * @ping:               True if a PING request should be issued on this channel
  84 * @error_state:        True if the error count for this transaction is non-zero
  85 * @halt_on_queue:      True if this channel should be halted the next time a
  86 *                      request is queued for the channel. This is necessary in
  87 *                      slave mode if no request queue space is available when
  88 *                      an attempt is made to halt the channel.
  89 * @halt_pending:       True if the host channel has been halted, but the core
  90 *                      is not finished flushing queued requests
  91 * @do_split:           Enable split for the channel
  92 * @complete_split:     Enable complete split
  93 * @hub_addr:           Address of high speed hub for the split
  94 * @hub_port:           Port of the low/full speed device for the split
  95 * @xact_pos:           Split transaction position. One of the following values:
  96 *                       - DWC2_HCSPLT_XACTPOS_MID
  97 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
  98 *                       - DWC2_HCSPLT_XACTPOS_END
  99 *                       - DWC2_HCSPLT_XACTPOS_ALL
 100 * @requests:           Number of requests issued for this channel since it was
 101 *                      assigned to the current transfer (not counting PINGs)
 102 * @schinfo:            Scheduling micro-frame bitmap
 103 * @ntd:                Number of transfer descriptors for the transfer
 104 * @halt_status:        Reason for halting the host channel
 105 * @hcint               Contents of the HCINT register when the interrupt came
 106 * @qh:                 QH for the transfer being processed by this channel
 107 * @hc_list_entry:      For linking to list of host channels
 108 * @desc_list_addr:     Current QH's descriptor list DMA address
 109 * @desc_list_sz:       Current QH's descriptor list size
 110 * @split_order_list_entry: List entry for keeping track of the order of splits
 111 *
 112 * This structure represents the state of a single host channel when acting in
 113 * host mode. It contains the data items needed to transfer packets to an
 114 * endpoint via a host channel.
 115 */
 116struct dwc2_host_chan {
 117        u8 hc_num;
 118
 119        unsigned dev_addr:7;
 120        unsigned ep_num:4;
 121        unsigned ep_is_in:1;
 122        unsigned speed:4;
 123        unsigned ep_type:2;
 124        unsigned max_packet:11;
 125        unsigned data_pid_start:2;
 126#define DWC2_HC_PID_DATA0       TSIZ_SC_MC_PID_DATA0
 127#define DWC2_HC_PID_DATA2       TSIZ_SC_MC_PID_DATA2
 128#define DWC2_HC_PID_DATA1       TSIZ_SC_MC_PID_DATA1
 129#define DWC2_HC_PID_MDATA       TSIZ_SC_MC_PID_MDATA
 130#define DWC2_HC_PID_SETUP       TSIZ_SC_MC_PID_SETUP
 131
 132        unsigned multi_count:2;
 133
 134        u8 *xfer_buf;
 135        dma_addr_t xfer_dma;
 136        u32 xfer_len;
 137        u32 xfer_count;
 138        u16 start_pkt_count;
 139        u8 xfer_started;
 140        u8 do_ping;
 141        u8 error_state;
 142        u8 halt_on_queue;
 143        u8 halt_pending;
 144        u8 do_split;
 145        u8 complete_split;
 146        u8 hub_addr;
 147        u8 hub_port;
 148        u8 xact_pos;
 149#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
 150#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
 151#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
 152#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
 153
 154        u8 requests;
 155        u8 schinfo;
 156        u16 ntd;
 157        enum dwc2_halt_status halt_status;
 158        u32 hcint;
 159        struct dwc2_qh *qh;
 160        struct list_head hc_list_entry;
 161        dma_addr_t desc_list_addr;
 162        u32 desc_list_sz;
 163        struct list_head split_order_list_entry;
 164};
 165
 166struct dwc2_hcd_pipe_info {
 167        u8 dev_addr;
 168        u8 ep_num;
 169        u8 pipe_type;
 170        u8 pipe_dir;
 171        u16 mps;
 172};
 173
 174struct dwc2_hcd_iso_packet_desc {
 175        u32 offset;
 176        u32 length;
 177        u32 actual_length;
 178        u32 status;
 179};
 180
 181struct dwc2_qtd;
 182
 183struct dwc2_hcd_urb {
 184        void *priv;
 185        struct dwc2_qtd *qtd;
 186        void *buf;
 187        dma_addr_t dma;
 188        void *setup_packet;
 189        dma_addr_t setup_dma;
 190        u32 length;
 191        u32 actual_length;
 192        u32 status;
 193        u32 error_count;
 194        u32 packet_count;
 195        u32 flags;
 196        u16 interval;
 197        struct dwc2_hcd_pipe_info pipe_info;
 198        struct dwc2_hcd_iso_packet_desc iso_descs[0];
 199};
 200
 201/* Phases for control transfers */
 202enum dwc2_control_phase {
 203        DWC2_CONTROL_SETUP,
 204        DWC2_CONTROL_DATA,
 205        DWC2_CONTROL_STATUS,
 206};
 207
 208/* Transaction types */
 209enum dwc2_transaction_type {
 210        DWC2_TRANSACTION_NONE,
 211        DWC2_TRANSACTION_PERIODIC,
 212        DWC2_TRANSACTION_NON_PERIODIC,
 213        DWC2_TRANSACTION_ALL,
 214};
 215
 216/* The number of elements per LS bitmap (per port on multi_tt) */
 217#define DWC2_ELEMENTS_PER_LS_BITMAP     DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
 218                                                     BITS_PER_LONG)
 219
 220/**
 221 * struct dwc2_tt - dwc2 data associated with a usb_tt
 222 *
 223 * @refcount:           Number of Queue Heads (QHs) holding a reference.
 224 * @usb_tt:             Pointer back to the official usb_tt.
 225 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
 226 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
 227 *                      elements (so sizeof(long) times that in bytes).
 228 *
 229 * This structure is stored in the hcpriv of the official usb_tt.
 230 */
 231struct dwc2_tt {
 232        int refcount;
 233        struct usb_tt *usb_tt;
 234        unsigned long periodic_bitmaps[];
 235};
 236
 237/**
 238 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
 239 *
 240 * @start_schedule_usecs:  The start time on the main bus schedule.  Note that
 241 *                         the main bus schedule is tightly packed and this
 242 *                         time should be interpreted as tightly packed (so
 243 *                         uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
 244 *                         instead of 125 us).
 245 * @duration_us:           How long this transfer goes.
 246 */
 247
 248struct dwc2_hs_transfer_time {
 249        u32 start_schedule_us;
 250        u16 duration_us;
 251};
 252
 253/**
 254 * struct dwc2_qh - Software queue head structure
 255 *
 256 * @hsotg:              The HCD state structure for the DWC OTG controller
 257 * @ep_type:            Endpoint type. One of the following values:
 258 *                       - USB_ENDPOINT_XFER_CONTROL
 259 *                       - USB_ENDPOINT_XFER_BULK
 260 *                       - USB_ENDPOINT_XFER_INT
 261 *                       - USB_ENDPOINT_XFER_ISOC
 262 * @ep_is_in:           Endpoint direction
 263 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
 264 * @dev_speed:          Device speed. One of the following values:
 265 *                       - USB_SPEED_LOW
 266 *                       - USB_SPEED_FULL
 267 *                       - USB_SPEED_HIGH
 268 * @data_toggle:        Determines the PID of the next data packet for
 269 *                      non-controltransfers. Ignored for control transfers.
 270 *                      One of the following values:
 271 *                       - DWC2_HC_PID_DATA0
 272 *                       - DWC2_HC_PID_DATA1
 273 * @ping_state:         Ping state
 274 * @do_split:           Full/low speed endpoint on high-speed hub requires split
 275 * @td_first:           Index of first activated isochronous transfer descriptor
 276 * @td_last:            Index of last activated isochronous transfer descriptor
 277 * @host_us:            Bandwidth in microseconds per transfer as seen by host
 278 * @device_us:          Bandwidth in microseconds per transfer as seen by device
 279 * @host_interval:      Interval between transfers as seen by the host.  If
 280 *                      the host is high speed and the device is low speed this
 281 *                      will be 8 times device interval.
 282 * @device_interval:    Interval between transfers as seen by the device.
 283 *                      interval.
 284 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
 285 *                      the bus.  We'll move the qh to active here.  If the
 286 *                      host is in high speed mode this will be a uframe.  If
 287 *                      the host is in low speed mode this will be a full frame.
 288 * @start_active_frame: If we are partway through a split transfer, this will be
 289 *                      what next_active_frame was when we started.  Otherwise
 290 *                      it should always be the same as next_active_frame.
 291 * @num_hs_transfers:   Number of transfers in hs_transfers.
 292 *                      Normally this is 1 but can be more than one for splits.
 293 *                      Always >= 1 unless the host is in low/full speed mode.
 294 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
 295 *                      bus.  Not used if host is in low or full speed mode (but
 296 *                      note that it IS USED if the device is low or full speed
 297 *                      as long as the HOST is in high speed mode).
 298 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
 299 *                           schedule that's being used by this device.  This
 300 *                           will be on the periodic_bitmap in a
 301 *                           "struct dwc2_tt".  Not used if this device is high
 302 *                           speed.  Note that this is in "schedule slice" which
 303 *                           is tightly packed.
 304 * @ls_duration_us:     Duration on the low speed bus schedule.
 305 * @ntd:                Actual number of transfer descriptors in a list
 306 * @qtd_list:           List of QTDs for this QH
 307 * @channel:            Host channel currently processing transfers for this QH
 308 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
 309 *                      schedule
 310 * @desc_list:          List of transfer descriptors
 311 * @desc_list_dma:      Physical address of desc_list
 312 * @desc_list_sz:       Size of descriptors list
 313 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
 314 *                      descriptor and indicates original XferSize value for the
 315 *                      descriptor
 316 * @unreserve_timer:    Timer for releasing periodic reservation.
 317 * @wait_timer:         Timer used to wait before re-queuing.
 318 * @dwc2_tt:            Pointer to our tt info (or NULL if no tt).
 319 * @ttport:             Port number within our tt.
 320 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
 321 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
 322 * @schedule_low_speed: True if we have a low/full speed component (either the
 323 *                      host is in low/full speed mode or do_split).
 324 * @want_wait:          We should wait before re-queuing; only matters for non-
 325 *                      periodic transfers and is ignored for periodic ones.
 326 * @wait_timer_cancel:  Set to true to cancel the wait_timer.
 327 *
 328 * A Queue Head (QH) holds the static characteristics of an endpoint and
 329 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
 330 * be entered in either the non-periodic or periodic schedule.
 331 */
 332struct dwc2_qh {
 333        struct dwc2_hsotg *hsotg;
 334        u8 ep_type;
 335        u8 ep_is_in;
 336        u16 maxp;
 337        u8 dev_speed;
 338        u8 data_toggle;
 339        u8 ping_state;
 340        u8 do_split;
 341        u8 td_first;
 342        u8 td_last;
 343        u16 host_us;
 344        u16 device_us;
 345        u16 host_interval;
 346        u16 device_interval;
 347        u16 next_active_frame;
 348        u16 start_active_frame;
 349        s16 num_hs_transfers;
 350        struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
 351        u32 ls_start_schedule_slice;
 352        u16 ntd;
 353        struct list_head qtd_list;
 354        struct dwc2_host_chan *channel;
 355        struct list_head qh_list_entry;
 356        struct dwc2_dma_desc *desc_list;
 357        dma_addr_t desc_list_dma;
 358        u32 desc_list_sz;
 359        u32 *n_bytes;
 360        struct timer_list unreserve_timer;
 361        struct timer_list wait_timer;
 362        struct dwc2_tt *dwc_tt;
 363        int ttport;
 364        unsigned tt_buffer_dirty:1;
 365        unsigned unreserve_pending:1;
 366        unsigned schedule_low_speed:1;
 367        unsigned want_wait:1;
 368        unsigned wait_timer_cancel:1;
 369};
 370
 371/**
 372 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
 373 *
 374 * @control_phase:      Current phase for control transfers (Setup, Data, or
 375 *                      Status)
 376 * @in_process:         Indicates if this QTD is currently processed by HW
 377 * @data_toggle:        Determines the PID of the next data packet for the
 378 *                      data phase of control transfers. Ignored for other
 379 *                      transfer types. One of the following values:
 380 *                       - DWC2_HC_PID_DATA0
 381 *                       - DWC2_HC_PID_DATA1
 382 * @complete_split:     Keeps track of the current split type for FS/LS
 383 *                      endpoints on a HS Hub
 384 * @isoc_split_pos:     Position of the ISOC split in full/low speed
 385 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
 386 *                      transfer. A frame descriptor describes the buffer
 387 *                      position and length of the data to be transferred in the
 388 *                      next scheduled (micro)frame of an isochronous transfer.
 389 *                      It also holds status for that transaction. The frame
 390 *                      index starts at 0.
 391 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
 392 *                      current frame
 393 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
 394 * @error_count:        Holds the number of bus errors that have occurred for
 395 *                      a transaction within this transfer
 396 * @n_desc:             Number of DMA descriptors for this QTD
 397 * @isoc_frame_index_last: Last activated frame (packet) index, used in
 398 *                      descriptor DMA mode only
 399 * @num_naks:           Number of NAKs received on this QTD.
 400 * @urb:                URB for this transfer
 401 * @qh:                 Queue head for this QTD
 402 * @qtd_list_entry:     For linking to the QH's list of QTDs
 403 *
 404 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
 405 * interrupt, or isochronous transfer. A single QTD is created for each URB
 406 * (of one of these types) submitted to the HCD. The transfer associated with
 407 * a QTD may require one or multiple transactions.
 408 *
 409 * A QTD is linked to a Queue Head, which is entered in either the
 410 * non-periodic or periodic schedule for execution. When a QTD is chosen for
 411 * execution, some or all of its transactions may be executed. After
 412 * execution, the state of the QTD is updated. The QTD may be retired if all
 413 * its transactions are complete or if an error occurred. Otherwise, it
 414 * remains in the schedule so more transactions can be executed later.
 415 */
 416struct dwc2_qtd {
 417        enum dwc2_control_phase control_phase;
 418        u8 in_process;
 419        u8 data_toggle;
 420        u8 complete_split;
 421        u8 isoc_split_pos;
 422        u16 isoc_frame_index;
 423        u16 isoc_split_offset;
 424        u16 isoc_td_last;
 425        u16 isoc_td_first;
 426        u32 ssplit_out_xfer_count;
 427        u8 error_count;
 428        u8 n_desc;
 429        u16 isoc_frame_index_last;
 430        u16 num_naks;
 431        struct dwc2_hcd_urb *urb;
 432        struct dwc2_qh *qh;
 433        struct list_head qtd_list_entry;
 434};
 435
 436#ifdef DEBUG
 437struct hc_xfer_info {
 438        struct dwc2_hsotg *hsotg;
 439        struct dwc2_host_chan *chan;
 440};
 441#endif
 442
 443u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
 444
 445/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
 446static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
 447{
 448        return (struct usb_hcd *)hsotg->priv;
 449}
 450
 451/*
 452 * Inline used to disable one channel interrupt. Channel interrupts are
 453 * disabled when the channel is halted or released by the interrupt handler.
 454 * There is no need to handle further interrupts of that type until the
 455 * channel is re-assigned. In fact, subsequent handling may cause crashes
 456 * because the channel structures are cleaned up when the channel is released.
 457 */
 458static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
 459{
 460        u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
 461
 462        mask &= ~intr;
 463        dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
 464}
 465
 466void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
 467void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 468                  enum dwc2_halt_status halt_status);
 469void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
 470                                 struct dwc2_host_chan *chan);
 471
 472/*
 473 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
 474 * are read as 1, they won't clear when written back.
 475 */
 476static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
 477{
 478        u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
 479
 480        hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
 481        return hprt0;
 482}
 483
 484static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
 485{
 486        return pipe->ep_num;
 487}
 488
 489static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
 490{
 491        return pipe->pipe_type;
 492}
 493
 494static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
 495{
 496        return pipe->mps;
 497}
 498
 499static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
 500{
 501        return pipe->dev_addr;
 502}
 503
 504static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
 505{
 506        return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
 507}
 508
 509static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
 510{
 511        return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
 512}
 513
 514static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
 515{
 516        return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
 517}
 518
 519static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
 520{
 521        return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
 522}
 523
 524static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
 525{
 526        return pipe->pipe_dir == USB_DIR_IN;
 527}
 528
 529static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
 530{
 531        return !dwc2_hcd_is_pipe_in(pipe);
 532}
 533
 534int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
 535void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
 536
 537/* Transaction Execution Functions */
 538enum dwc2_transaction_type dwc2_hcd_select_transactions(
 539                                                struct dwc2_hsotg *hsotg);
 540void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
 541                                 enum dwc2_transaction_type tr_type);
 542
 543/* Schedule Queue Functions */
 544/* Implemented in hcd_queue.c */
 545struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
 546                                   struct dwc2_hcd_urb *urb,
 547                                          gfp_t mem_flags);
 548void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 549int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 550void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 551void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 552                            int sched_csplit);
 553
 554void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
 555int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 556                     struct dwc2_qh *qh);
 557
 558/* Unlinks and frees a QTD */
 559static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
 560                                                struct dwc2_qtd *qtd,
 561                                                struct dwc2_qh *qh)
 562{
 563        list_del(&qtd->qtd_list_entry);
 564        kfree(qtd);
 565        qtd = NULL;
 566}
 567
 568/* Descriptor DMA support functions */
 569void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
 570                              struct dwc2_qh *qh);
 571void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
 572                                 struct dwc2_host_chan *chan, int chnum,
 573                                        enum dwc2_halt_status halt_status);
 574
 575int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 576                          gfp_t mem_flags);
 577void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 578
 579/* Check if QH is non-periodic */
 580#define dwc2_qh_is_non_per(_qh_ptr_) \
 581        ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
 582         (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
 583
 584#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
 585static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
 586static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
 587static inline bool dbg_urb(struct urb *urb) { return true; }
 588static inline bool dbg_perio(void) { return true; }
 589#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
 590static inline bool dbg_hc(struct dwc2_host_chan *hc)
 591{
 592        return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
 593               hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
 594}
 595
 596static inline bool dbg_qh(struct dwc2_qh *qh)
 597{
 598        return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
 599               qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
 600}
 601
 602static inline bool dbg_urb(struct urb *urb)
 603{
 604        return usb_pipetype(urb->pipe) == PIPE_BULK ||
 605               usb_pipetype(urb->pipe) == PIPE_CONTROL;
 606}
 607
 608static inline bool dbg_perio(void) { return false; }
 609#endif
 610
 611/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
 612#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
 613
 614/* Packet size for any kind of endpoint descriptor */
 615#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
 616
 617/*
 618 * Returns true if frame1 index is greater than frame2 index. The comparison
 619 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
 620 * frame number when the max index frame number is reached.
 621 */
 622static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
 623{
 624        u16 diff = fr_idx1 - fr_idx2;
 625        u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
 626
 627        return diff && !sign;
 628}
 629
 630/*
 631 * Returns true if frame1 is less than or equal to frame2. The comparison is
 632 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
 633 * frame number when the max frame number is reached.
 634 */
 635static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
 636{
 637        return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
 638}
 639
 640/*
 641 * Returns true if frame1 is greater than frame2. The comparison is done
 642 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
 643 * number when the max frame number is reached.
 644 */
 645static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
 646{
 647        return (frame1 != frame2) &&
 648               ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
 649}
 650
 651/*
 652 * Increments frame by the amount specified by inc. The addition is done
 653 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
 654 */
 655static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
 656{
 657        return (frame + inc) & HFNUM_MAX_FRNUM;
 658}
 659
 660static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
 661{
 662        return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
 663}
 664
 665static inline u16 dwc2_full_frame_num(u16 frame)
 666{
 667        return (frame & HFNUM_MAX_FRNUM) >> 3;
 668}
 669
 670static inline u16 dwc2_micro_frame_num(u16 frame)
 671{
 672        return frame & 0x7;
 673}
 674
 675/*
 676 * Returns the Core Interrupt Status register contents, ANDed with the Core
 677 * Interrupt Mask register contents
 678 */
 679static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
 680{
 681        return dwc2_readl(hsotg->regs + GINTSTS) &
 682               dwc2_readl(hsotg->regs + GINTMSK);
 683}
 684
 685static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
 686{
 687        return dwc2_urb->status;
 688}
 689
 690static inline u32 dwc2_hcd_urb_get_actual_length(
 691                struct dwc2_hcd_urb *dwc2_urb)
 692{
 693        return dwc2_urb->actual_length;
 694}
 695
 696static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
 697{
 698        return dwc2_urb->error_count;
 699}
 700
 701static inline void dwc2_hcd_urb_set_iso_desc_params(
 702                struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
 703                u32 length)
 704{
 705        dwc2_urb->iso_descs[desc_num].offset = offset;
 706        dwc2_urb->iso_descs[desc_num].length = length;
 707}
 708
 709static inline u32 dwc2_hcd_urb_get_iso_desc_status(
 710                struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 711{
 712        return dwc2_urb->iso_descs[desc_num].status;
 713}
 714
 715static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
 716                struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 717{
 718        return dwc2_urb->iso_descs[desc_num].actual_length;
 719}
 720
 721static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
 722                                                  struct usb_host_endpoint *ep)
 723{
 724        struct dwc2_qh *qh = ep->hcpriv;
 725
 726        if (qh && !list_empty(&qh->qh_list_entry))
 727                return 1;
 728
 729        return 0;
 730}
 731
 732static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
 733                                            struct usb_host_endpoint *ep)
 734{
 735        struct dwc2_qh *qh = ep->hcpriv;
 736
 737        if (!qh) {
 738                WARN_ON(1);
 739                return 0;
 740        }
 741
 742        return qh->host_us;
 743}
 744
 745void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
 746                               struct dwc2_host_chan *chan, int chnum,
 747                                      struct dwc2_qtd *qtd);
 748
 749/* HCD Core API */
 750
 751/**
 752 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
 753 *
 754 * @hsotg: The DWC2 HCD
 755 *
 756 * Returns IRQ_HANDLED if interrupt is handled
 757 * Return IRQ_NONE if interrupt is not handled
 758 */
 759irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
 760
 761/**
 762 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
 763 *
 764 * @hsotg: The DWC2 HCD
 765 */
 766void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
 767
 768/**
 769 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
 770 * and 0 otherwise
 771 *
 772 * @hsotg: The DWC2 HCD
 773 */
 774int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
 775
 776/**
 777 * dwc2_hcd_dump_state() - Dumps hsotg state
 778 *
 779 * @hsotg: The DWC2 HCD
 780 *
 781 * NOTE: This function will be removed once the peripheral controller code
 782 * is integrated and the driver is stable
 783 */
 784void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
 785
 786/**
 787 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
 788 *
 789 * @hsotg: The DWC2 HCD
 790 *
 791 * This can be used to determine average interrupt latency. Frame remaining is
 792 * also shown for start transfer and two additional sample points.
 793 *
 794 * NOTE: This function will be removed once the peripheral controller code
 795 * is integrated and the driver is stable
 796 */
 797void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
 798
 799/* URB interface */
 800
 801/* Transfer flags */
 802#define URB_GIVEBACK_ASAP       0x1
 803#define URB_SEND_ZERO_PACKET    0x2
 804
 805/* Host driver callbacks */
 806struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
 807                                      void *context, gfp_t mem_flags,
 808                                      int *ttport);
 809
 810void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
 811                           struct dwc2_tt *dwc_tt);
 812int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
 813void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 814                        int status);
 815
 816#ifdef DEBUG
 817/*
 818 * Macro to sample the remaining PHY clocks left in the current frame. This
 819 * may be used during debugging to determine the average time it takes to
 820 * execute sections of code. There are two possible sample points, "a" and
 821 * "b", so the _letter_ argument must be one of these values.
 822 *
 823 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
 824 * example, "cat /sys/devices/lm0/hcd_frrem".
 825 */
 826#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)                        \
 827do {                                                                    \
 828        struct hfnum_data _hfnum_;                                      \
 829        struct dwc2_qtd *_qtd_;                                         \
 830                                                                        \
 831        _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,      \
 832                           qtd_list_entry);                             \
 833        if (usb_pipeint(_qtd_->urb->pipe) &&                            \
 834            (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
 835                _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);        \
 836                switch (_hfnum_.b.frnum & 0x7) {                        \
 837                case 7:                                                 \
 838                        (_hcd_)->hfnum_7_samples_##_letter_++;          \
 839                        (_hcd_)->hfnum_7_frrem_accum_##_letter_ +=      \
 840                                _hfnum_.b.frrem;                        \
 841                        break;                                          \
 842                case 0:                                                 \
 843                        (_hcd_)->hfnum_0_samples_##_letter_++;          \
 844                        (_hcd_)->hfnum_0_frrem_accum_##_letter_ +=      \
 845                                _hfnum_.b.frrem;                        \
 846                        break;                                          \
 847                default:                                                \
 848                        (_hcd_)->hfnum_other_samples_##_letter_++;      \
 849                        (_hcd_)->hfnum_other_frrem_accum_##_letter_ +=  \
 850                                _hfnum_.b.frrem;                        \
 851                        break;                                          \
 852                }                                                       \
 853        }                                                               \
 854} while (0)
 855#else
 856#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)        do {} while (0)
 857#endif
 858
 859#endif /* __DWC2_HCD_H__ */
 860