linux/drivers/usb/gadget/function/f_fs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/hid.h>
  21#include <linux/module.h>
  22#include <linux/sched/signal.h>
  23#include <linux/uio.h>
  24#include <asm/unaligned.h>
  25
  26#include <linux/usb/composite.h>
  27#include <linux/usb/functionfs.h>
  28
  29#include <linux/aio.h>
  30#include <linux/mmu_context.h>
  31#include <linux/poll.h>
  32#include <linux/eventfd.h>
  33
  34#include "u_fs.h"
  35#include "u_f.h"
  36#include "u_os_desc.h"
  37#include "configfs.h"
  38
  39#define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
  40
  41/* Reference counter handling */
  42static void ffs_data_get(struct ffs_data *ffs);
  43static void ffs_data_put(struct ffs_data *ffs);
  44/* Creates new ffs_data object. */
  45static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  46        __attribute__((malloc));
  47
  48/* Opened counter handling. */
  49static void ffs_data_opened(struct ffs_data *ffs);
  50static void ffs_data_closed(struct ffs_data *ffs);
  51
  52/* Called with ffs->mutex held; take over ownership of data. */
  53static int __must_check
  54__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  55static int __must_check
  56__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  57
  58
  59/* The function structure ***************************************************/
  60
  61struct ffs_ep;
  62
  63struct ffs_function {
  64        struct usb_configuration        *conf;
  65        struct usb_gadget               *gadget;
  66        struct ffs_data                 *ffs;
  67
  68        struct ffs_ep                   *eps;
  69        u8                              eps_revmap[16];
  70        short                           *interfaces_nums;
  71
  72        struct usb_function             function;
  73};
  74
  75
  76static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  77{
  78        return container_of(f, struct ffs_function, function);
  79}
  80
  81
  82static inline enum ffs_setup_state
  83ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  84{
  85        return (enum ffs_setup_state)
  86                cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  87}
  88
  89
  90static void ffs_func_eps_disable(struct ffs_function *func);
  91static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  92
  93static int ffs_func_bind(struct usb_configuration *,
  94                         struct usb_function *);
  95static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
  96static void ffs_func_disable(struct usb_function *);
  97static int ffs_func_setup(struct usb_function *,
  98                          const struct usb_ctrlrequest *);
  99static bool ffs_func_req_match(struct usb_function *,
 100                               const struct usb_ctrlrequest *,
 101                               bool config0);
 102static void ffs_func_suspend(struct usb_function *);
 103static void ffs_func_resume(struct usb_function *);
 104
 105
 106static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 107static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 108
 109
 110/* The endpoints structures *************************************************/
 111
 112struct ffs_ep {
 113        struct usb_ep                   *ep;    /* P: ffs->eps_lock */
 114        struct usb_request              *req;   /* P: epfile->mutex */
 115
 116        /* [0]: full speed, [1]: high speed, [2]: super speed */
 117        struct usb_endpoint_descriptor  *descs[3];
 118
 119        u8                              num;
 120
 121        int                             status; /* P: epfile->mutex */
 122};
 123
 124struct ffs_epfile {
 125        /* Protects ep->ep and ep->req. */
 126        struct mutex                    mutex;
 127
 128        struct ffs_data                 *ffs;
 129        struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
 130
 131        struct dentry                   *dentry;
 132
 133        /*
 134         * Buffer for holding data from partial reads which may happen since
 135         * we’re rounding user read requests to a multiple of a max packet size.
 136         *
 137         * The pointer is initialised with NULL value and may be set by
 138         * __ffs_epfile_read_data function to point to a temporary buffer.
 139         *
 140         * In normal operation, calls to __ffs_epfile_read_buffered will consume
 141         * data from said buffer and eventually free it.  Importantly, while the
 142         * function is using the buffer, it sets the pointer to NULL.  This is
 143         * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 144         * can never run concurrently (they are synchronised by epfile->mutex)
 145         * so the latter will not assign a new value to the pointer.
 146         *
 147         * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 148         * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 149         * value is crux of the synchronisation between ffs_func_eps_disable and
 150         * __ffs_epfile_read_data.
 151         *
 152         * Once __ffs_epfile_read_data is about to finish it will try to set the
 153         * pointer back to its old value (as described above), but seeing as the
 154         * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 155         * the buffer.
 156         *
 157         * == State transitions ==
 158         *
 159         * • ptr == NULL:  (initial state)
 160         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 161         *   ◦ __ffs_epfile_read_buffered:    nop
 162         *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 163         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 164         * • ptr == DROP:
 165         *   ◦ __ffs_epfile_read_buffer_free: nop
 166         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
 167         *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 168         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 169         * • ptr == buf:
 170         *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 171         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 172         *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 173         *                                    is always called first
 174         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 175         * • ptr == NULL and reading:
 176         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 177         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 178         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 179         *   ◦ reading finishes and …
 180         *     … all data read:               free buf, go to ptr == NULL
 181         *     … otherwise:                   go to ptr == buf and reading
 182         * • ptr == DROP and reading:
 183         *   ◦ __ffs_epfile_read_buffer_free: nop
 184         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 185         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 186         *   ◦ reading finishes:              free buf, go to ptr == DROP
 187         */
 188        struct ffs_buffer               *read_buffer;
 189#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 190
 191        char                            name[5];
 192
 193        unsigned char                   in;     /* P: ffs->eps_lock */
 194        unsigned char                   isoc;   /* P: ffs->eps_lock */
 195
 196        unsigned char                   _pad;
 197};
 198
 199struct ffs_buffer {
 200        size_t length;
 201        char *data;
 202        char storage[];
 203};
 204
 205/*  ffs_io_data structure ***************************************************/
 206
 207struct ffs_io_data {
 208        bool aio;
 209        bool read;
 210
 211        struct kiocb *kiocb;
 212        struct iov_iter data;
 213        const void *to_free;
 214        char *buf;
 215
 216        struct mm_struct *mm;
 217        struct work_struct work;
 218
 219        struct usb_ep *ep;
 220        struct usb_request *req;
 221
 222        struct ffs_data *ffs;
 223};
 224
 225struct ffs_desc_helper {
 226        struct ffs_data *ffs;
 227        unsigned interfaces_count;
 228        unsigned eps_count;
 229};
 230
 231static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 232static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 233
 234static struct dentry *
 235ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 236                   const struct file_operations *fops);
 237
 238/* Devices management *******************************************************/
 239
 240DEFINE_MUTEX(ffs_lock);
 241EXPORT_SYMBOL_GPL(ffs_lock);
 242
 243static struct ffs_dev *_ffs_find_dev(const char *name);
 244static struct ffs_dev *_ffs_alloc_dev(void);
 245static void _ffs_free_dev(struct ffs_dev *dev);
 246static void *ffs_acquire_dev(const char *dev_name);
 247static void ffs_release_dev(struct ffs_data *ffs_data);
 248static int ffs_ready(struct ffs_data *ffs);
 249static void ffs_closed(struct ffs_data *ffs);
 250
 251/* Misc helper functions ****************************************************/
 252
 253static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 254        __attribute__((warn_unused_result, nonnull));
 255static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 256        __attribute__((warn_unused_result, nonnull));
 257
 258
 259/* Control file aka ep0 *****************************************************/
 260
 261static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 262{
 263        struct ffs_data *ffs = req->context;
 264
 265        complete(&ffs->ep0req_completion);
 266}
 267
 268static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 269        __releases(&ffs->ev.waitq.lock)
 270{
 271        struct usb_request *req = ffs->ep0req;
 272        int ret;
 273
 274        req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 275
 276        spin_unlock_irq(&ffs->ev.waitq.lock);
 277
 278        req->buf      = data;
 279        req->length   = len;
 280
 281        /*
 282         * UDC layer requires to provide a buffer even for ZLP, but should
 283         * not use it at all. Let's provide some poisoned pointer to catch
 284         * possible bug in the driver.
 285         */
 286        if (req->buf == NULL)
 287                req->buf = (void *)0xDEADBABE;
 288
 289        reinit_completion(&ffs->ep0req_completion);
 290
 291        ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 292        if (unlikely(ret < 0))
 293                return ret;
 294
 295        ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 296        if (unlikely(ret)) {
 297                usb_ep_dequeue(ffs->gadget->ep0, req);
 298                return -EINTR;
 299        }
 300
 301        ffs->setup_state = FFS_NO_SETUP;
 302        return req->status ? req->status : req->actual;
 303}
 304
 305static int __ffs_ep0_stall(struct ffs_data *ffs)
 306{
 307        if (ffs->ev.can_stall) {
 308                pr_vdebug("ep0 stall\n");
 309                usb_ep_set_halt(ffs->gadget->ep0);
 310                ffs->setup_state = FFS_NO_SETUP;
 311                return -EL2HLT;
 312        } else {
 313                pr_debug("bogus ep0 stall!\n");
 314                return -ESRCH;
 315        }
 316}
 317
 318static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 319                             size_t len, loff_t *ptr)
 320{
 321        struct ffs_data *ffs = file->private_data;
 322        ssize_t ret;
 323        char *data;
 324
 325        ENTER();
 326
 327        /* Fast check if setup was canceled */
 328        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 329                return -EIDRM;
 330
 331        /* Acquire mutex */
 332        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 333        if (unlikely(ret < 0))
 334                return ret;
 335
 336        /* Check state */
 337        switch (ffs->state) {
 338        case FFS_READ_DESCRIPTORS:
 339        case FFS_READ_STRINGS:
 340                /* Copy data */
 341                if (unlikely(len < 16)) {
 342                        ret = -EINVAL;
 343                        break;
 344                }
 345
 346                data = ffs_prepare_buffer(buf, len);
 347                if (IS_ERR(data)) {
 348                        ret = PTR_ERR(data);
 349                        break;
 350                }
 351
 352                /* Handle data */
 353                if (ffs->state == FFS_READ_DESCRIPTORS) {
 354                        pr_info("read descriptors\n");
 355                        ret = __ffs_data_got_descs(ffs, data, len);
 356                        if (unlikely(ret < 0))
 357                                break;
 358
 359                        ffs->state = FFS_READ_STRINGS;
 360                        ret = len;
 361                } else {
 362                        pr_info("read strings\n");
 363                        ret = __ffs_data_got_strings(ffs, data, len);
 364                        if (unlikely(ret < 0))
 365                                break;
 366
 367                        ret = ffs_epfiles_create(ffs);
 368                        if (unlikely(ret)) {
 369                                ffs->state = FFS_CLOSING;
 370                                break;
 371                        }
 372
 373                        ffs->state = FFS_ACTIVE;
 374                        mutex_unlock(&ffs->mutex);
 375
 376                        ret = ffs_ready(ffs);
 377                        if (unlikely(ret < 0)) {
 378                                ffs->state = FFS_CLOSING;
 379                                return ret;
 380                        }
 381
 382                        return len;
 383                }
 384                break;
 385
 386        case FFS_ACTIVE:
 387                data = NULL;
 388                /*
 389                 * We're called from user space, we can use _irq
 390                 * rather then _irqsave
 391                 */
 392                spin_lock_irq(&ffs->ev.waitq.lock);
 393                switch (ffs_setup_state_clear_cancelled(ffs)) {
 394                case FFS_SETUP_CANCELLED:
 395                        ret = -EIDRM;
 396                        goto done_spin;
 397
 398                case FFS_NO_SETUP:
 399                        ret = -ESRCH;
 400                        goto done_spin;
 401
 402                case FFS_SETUP_PENDING:
 403                        break;
 404                }
 405
 406                /* FFS_SETUP_PENDING */
 407                if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 408                        spin_unlock_irq(&ffs->ev.waitq.lock);
 409                        ret = __ffs_ep0_stall(ffs);
 410                        break;
 411                }
 412
 413                /* FFS_SETUP_PENDING and not stall */
 414                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 415
 416                spin_unlock_irq(&ffs->ev.waitq.lock);
 417
 418                data = ffs_prepare_buffer(buf, len);
 419                if (IS_ERR(data)) {
 420                        ret = PTR_ERR(data);
 421                        break;
 422                }
 423
 424                spin_lock_irq(&ffs->ev.waitq.lock);
 425
 426                /*
 427                 * We are guaranteed to be still in FFS_ACTIVE state
 428                 * but the state of setup could have changed from
 429                 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 430                 * to check for that.  If that happened we copied data
 431                 * from user space in vain but it's unlikely.
 432                 *
 433                 * For sure we are not in FFS_NO_SETUP since this is
 434                 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 435                 * transition can be performed and it's protected by
 436                 * mutex.
 437                 */
 438                if (ffs_setup_state_clear_cancelled(ffs) ==
 439                    FFS_SETUP_CANCELLED) {
 440                        ret = -EIDRM;
 441done_spin:
 442                        spin_unlock_irq(&ffs->ev.waitq.lock);
 443                } else {
 444                        /* unlocks spinlock */
 445                        ret = __ffs_ep0_queue_wait(ffs, data, len);
 446                }
 447                kfree(data);
 448                break;
 449
 450        default:
 451                ret = -EBADFD;
 452                break;
 453        }
 454
 455        mutex_unlock(&ffs->mutex);
 456        return ret;
 457}
 458
 459/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 460static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 461                                     size_t n)
 462        __releases(&ffs->ev.waitq.lock)
 463{
 464        /*
 465         * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 466         * size of ffs->ev.types array (which is four) so that's how much space
 467         * we reserve.
 468         */
 469        struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 470        const size_t size = n * sizeof *events;
 471        unsigned i = 0;
 472
 473        memset(events, 0, size);
 474
 475        do {
 476                events[i].type = ffs->ev.types[i];
 477                if (events[i].type == FUNCTIONFS_SETUP) {
 478                        events[i].u.setup = ffs->ev.setup;
 479                        ffs->setup_state = FFS_SETUP_PENDING;
 480                }
 481        } while (++i < n);
 482
 483        ffs->ev.count -= n;
 484        if (ffs->ev.count)
 485                memmove(ffs->ev.types, ffs->ev.types + n,
 486                        ffs->ev.count * sizeof *ffs->ev.types);
 487
 488        spin_unlock_irq(&ffs->ev.waitq.lock);
 489        mutex_unlock(&ffs->mutex);
 490
 491        return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 492}
 493
 494static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 495                            size_t len, loff_t *ptr)
 496{
 497        struct ffs_data *ffs = file->private_data;
 498        char *data = NULL;
 499        size_t n;
 500        int ret;
 501
 502        ENTER();
 503
 504        /* Fast check if setup was canceled */
 505        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 506                return -EIDRM;
 507
 508        /* Acquire mutex */
 509        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 510        if (unlikely(ret < 0))
 511                return ret;
 512
 513        /* Check state */
 514        if (ffs->state != FFS_ACTIVE) {
 515                ret = -EBADFD;
 516                goto done_mutex;
 517        }
 518
 519        /*
 520         * We're called from user space, we can use _irq rather then
 521         * _irqsave
 522         */
 523        spin_lock_irq(&ffs->ev.waitq.lock);
 524
 525        switch (ffs_setup_state_clear_cancelled(ffs)) {
 526        case FFS_SETUP_CANCELLED:
 527                ret = -EIDRM;
 528                break;
 529
 530        case FFS_NO_SETUP:
 531                n = len / sizeof(struct usb_functionfs_event);
 532                if (unlikely(!n)) {
 533                        ret = -EINVAL;
 534                        break;
 535                }
 536
 537                if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 538                        ret = -EAGAIN;
 539                        break;
 540                }
 541
 542                if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 543                                                        ffs->ev.count)) {
 544                        ret = -EINTR;
 545                        break;
 546                }
 547
 548                /* unlocks spinlock */
 549                return __ffs_ep0_read_events(ffs, buf,
 550                                             min(n, (size_t)ffs->ev.count));
 551
 552        case FFS_SETUP_PENDING:
 553                if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 554                        spin_unlock_irq(&ffs->ev.waitq.lock);
 555                        ret = __ffs_ep0_stall(ffs);
 556                        goto done_mutex;
 557                }
 558
 559                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 560
 561                spin_unlock_irq(&ffs->ev.waitq.lock);
 562
 563                if (likely(len)) {
 564                        data = kmalloc(len, GFP_KERNEL);
 565                        if (unlikely(!data)) {
 566                                ret = -ENOMEM;
 567                                goto done_mutex;
 568                        }
 569                }
 570
 571                spin_lock_irq(&ffs->ev.waitq.lock);
 572
 573                /* See ffs_ep0_write() */
 574                if (ffs_setup_state_clear_cancelled(ffs) ==
 575                    FFS_SETUP_CANCELLED) {
 576                        ret = -EIDRM;
 577                        break;
 578                }
 579
 580                /* unlocks spinlock */
 581                ret = __ffs_ep0_queue_wait(ffs, data, len);
 582                if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 583                        ret = -EFAULT;
 584                goto done_mutex;
 585
 586        default:
 587                ret = -EBADFD;
 588                break;
 589        }
 590
 591        spin_unlock_irq(&ffs->ev.waitq.lock);
 592done_mutex:
 593        mutex_unlock(&ffs->mutex);
 594        kfree(data);
 595        return ret;
 596}
 597
 598static int ffs_ep0_open(struct inode *inode, struct file *file)
 599{
 600        struct ffs_data *ffs = inode->i_private;
 601
 602        ENTER();
 603
 604        if (unlikely(ffs->state == FFS_CLOSING))
 605                return -EBUSY;
 606
 607        file->private_data = ffs;
 608        ffs_data_opened(ffs);
 609
 610        return 0;
 611}
 612
 613static int ffs_ep0_release(struct inode *inode, struct file *file)
 614{
 615        struct ffs_data *ffs = file->private_data;
 616
 617        ENTER();
 618
 619        ffs_data_closed(ffs);
 620
 621        return 0;
 622}
 623
 624static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 625{
 626        struct ffs_data *ffs = file->private_data;
 627        struct usb_gadget *gadget = ffs->gadget;
 628        long ret;
 629
 630        ENTER();
 631
 632        if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 633                struct ffs_function *func = ffs->func;
 634                ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 635        } else if (gadget && gadget->ops->ioctl) {
 636                ret = gadget->ops->ioctl(gadget, code, value);
 637        } else {
 638                ret = -ENOTTY;
 639        }
 640
 641        return ret;
 642}
 643
 644static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 645{
 646        struct ffs_data *ffs = file->private_data;
 647        __poll_t mask = EPOLLWRNORM;
 648        int ret;
 649
 650        poll_wait(file, &ffs->ev.waitq, wait);
 651
 652        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 653        if (unlikely(ret < 0))
 654                return mask;
 655
 656        switch (ffs->state) {
 657        case FFS_READ_DESCRIPTORS:
 658        case FFS_READ_STRINGS:
 659                mask |= EPOLLOUT;
 660                break;
 661
 662        case FFS_ACTIVE:
 663                switch (ffs->setup_state) {
 664                case FFS_NO_SETUP:
 665                        if (ffs->ev.count)
 666                                mask |= EPOLLIN;
 667                        break;
 668
 669                case FFS_SETUP_PENDING:
 670                case FFS_SETUP_CANCELLED:
 671                        mask |= (EPOLLIN | EPOLLOUT);
 672                        break;
 673                }
 674        case FFS_CLOSING:
 675                break;
 676        case FFS_DEACTIVATED:
 677                break;
 678        }
 679
 680        mutex_unlock(&ffs->mutex);
 681
 682        return mask;
 683}
 684
 685static const struct file_operations ffs_ep0_operations = {
 686        .llseek =       no_llseek,
 687
 688        .open =         ffs_ep0_open,
 689        .write =        ffs_ep0_write,
 690        .read =         ffs_ep0_read,
 691        .release =      ffs_ep0_release,
 692        .unlocked_ioctl =       ffs_ep0_ioctl,
 693        .poll =         ffs_ep0_poll,
 694};
 695
 696
 697/* "Normal" endpoints operations ********************************************/
 698
 699static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 700{
 701        ENTER();
 702        if (likely(req->context)) {
 703                struct ffs_ep *ep = _ep->driver_data;
 704                ep->status = req->status ? req->status : req->actual;
 705                complete(req->context);
 706        }
 707}
 708
 709static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 710{
 711        ssize_t ret = copy_to_iter(data, data_len, iter);
 712        if (likely(ret == data_len))
 713                return ret;
 714
 715        if (unlikely(iov_iter_count(iter)))
 716                return -EFAULT;
 717
 718        /*
 719         * Dear user space developer!
 720         *
 721         * TL;DR: To stop getting below error message in your kernel log, change
 722         * user space code using functionfs to align read buffers to a max
 723         * packet size.
 724         *
 725         * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 726         * packet size.  When unaligned buffer is passed to functionfs, it
 727         * internally uses a larger, aligned buffer so that such UDCs are happy.
 728         *
 729         * Unfortunately, this means that host may send more data than was
 730         * requested in read(2) system call.  f_fs doesn’t know what to do with
 731         * that excess data so it simply drops it.
 732         *
 733         * Was the buffer aligned in the first place, no such problem would
 734         * happen.
 735         *
 736         * Data may be dropped only in AIO reads.  Synchronous reads are handled
 737         * by splitting a request into multiple parts.  This splitting may still
 738         * be a problem though so it’s likely best to align the buffer
 739         * regardless of it being AIO or not..
 740         *
 741         * This only affects OUT endpoints, i.e. reading data with a read(2),
 742         * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 743         * affected.
 744         */
 745        pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 746               "Align read buffer size to max packet size to avoid the problem.\n",
 747               data_len, ret);
 748
 749        return ret;
 750}
 751
 752static void ffs_user_copy_worker(struct work_struct *work)
 753{
 754        struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 755                                                   work);
 756        int ret = io_data->req->status ? io_data->req->status :
 757                                         io_data->req->actual;
 758        bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 759
 760        if (io_data->read && ret > 0) {
 761                use_mm(io_data->mm);
 762                ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 763                unuse_mm(io_data->mm);
 764        }
 765
 766        io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 767
 768        if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 769                eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 770
 771        usb_ep_free_request(io_data->ep, io_data->req);
 772
 773        if (io_data->read)
 774                kfree(io_data->to_free);
 775        kfree(io_data->buf);
 776        kfree(io_data);
 777}
 778
 779static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 780                                         struct usb_request *req)
 781{
 782        struct ffs_io_data *io_data = req->context;
 783        struct ffs_data *ffs = io_data->ffs;
 784
 785        ENTER();
 786
 787        INIT_WORK(&io_data->work, ffs_user_copy_worker);
 788        queue_work(ffs->io_completion_wq, &io_data->work);
 789}
 790
 791static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 792{
 793        /*
 794         * See comment in struct ffs_epfile for full read_buffer pointer
 795         * synchronisation story.
 796         */
 797        struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 798        if (buf && buf != READ_BUFFER_DROP)
 799                kfree(buf);
 800}
 801
 802/* Assumes epfile->mutex is held. */
 803static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 804                                          struct iov_iter *iter)
 805{
 806        /*
 807         * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 808         * the buffer while we are using it.  See comment in struct ffs_epfile
 809         * for full read_buffer pointer synchronisation story.
 810         */
 811        struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 812        ssize_t ret;
 813        if (!buf || buf == READ_BUFFER_DROP)
 814                return 0;
 815
 816        ret = copy_to_iter(buf->data, buf->length, iter);
 817        if (buf->length == ret) {
 818                kfree(buf);
 819                return ret;
 820        }
 821
 822        if (unlikely(iov_iter_count(iter))) {
 823                ret = -EFAULT;
 824        } else {
 825                buf->length -= ret;
 826                buf->data += ret;
 827        }
 828
 829        if (cmpxchg(&epfile->read_buffer, NULL, buf))
 830                kfree(buf);
 831
 832        return ret;
 833}
 834
 835/* Assumes epfile->mutex is held. */
 836static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 837                                      void *data, int data_len,
 838                                      struct iov_iter *iter)
 839{
 840        struct ffs_buffer *buf;
 841
 842        ssize_t ret = copy_to_iter(data, data_len, iter);
 843        if (likely(data_len == ret))
 844                return ret;
 845
 846        if (unlikely(iov_iter_count(iter)))
 847                return -EFAULT;
 848
 849        /* See ffs_copy_to_iter for more context. */
 850        pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 851                data_len, ret);
 852
 853        data_len -= ret;
 854        buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 855        if (!buf)
 856                return -ENOMEM;
 857        buf->length = data_len;
 858        buf->data = buf->storage;
 859        memcpy(buf->storage, data + ret, data_len);
 860
 861        /*
 862         * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 863         * ffs_func_eps_disable has been called in the meanwhile).  See comment
 864         * in struct ffs_epfile for full read_buffer pointer synchronisation
 865         * story.
 866         */
 867        if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
 868                kfree(buf);
 869
 870        return ret;
 871}
 872
 873static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 874{
 875        struct ffs_epfile *epfile = file->private_data;
 876        struct usb_request *req;
 877        struct ffs_ep *ep;
 878        char *data = NULL;
 879        ssize_t ret, data_len = -EINVAL;
 880        int halt;
 881
 882        /* Are we still active? */
 883        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 884                return -ENODEV;
 885
 886        /* Wait for endpoint to be enabled */
 887        ep = epfile->ep;
 888        if (!ep) {
 889                if (file->f_flags & O_NONBLOCK)
 890                        return -EAGAIN;
 891
 892                ret = wait_event_interruptible(
 893                                epfile->ffs->wait, (ep = epfile->ep));
 894                if (ret)
 895                        return -EINTR;
 896        }
 897
 898        /* Do we halt? */
 899        halt = (!io_data->read == !epfile->in);
 900        if (halt && epfile->isoc)
 901                return -EINVAL;
 902
 903        /* We will be using request and read_buffer */
 904        ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 905        if (unlikely(ret))
 906                goto error;
 907
 908        /* Allocate & copy */
 909        if (!halt) {
 910                struct usb_gadget *gadget;
 911
 912                /*
 913                 * Do we have buffered data from previous partial read?  Check
 914                 * that for synchronous case only because we do not have
 915                 * facility to ‘wake up’ a pending asynchronous read and push
 916                 * buffered data to it which we would need to make things behave
 917                 * consistently.
 918                 */
 919                if (!io_data->aio && io_data->read) {
 920                        ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 921                        if (ret)
 922                                goto error_mutex;
 923                }
 924
 925                /*
 926                 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 927                 * before the waiting completes, so do not assign to 'gadget'
 928                 * earlier
 929                 */
 930                gadget = epfile->ffs->gadget;
 931
 932                spin_lock_irq(&epfile->ffs->eps_lock);
 933                /* In the meantime, endpoint got disabled or changed. */
 934                if (epfile->ep != ep) {
 935                        ret = -ESHUTDOWN;
 936                        goto error_lock;
 937                }
 938                data_len = iov_iter_count(&io_data->data);
 939                /*
 940                 * Controller may require buffer size to be aligned to
 941                 * maxpacketsize of an out endpoint.
 942                 */
 943                if (io_data->read)
 944                        data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
 945                spin_unlock_irq(&epfile->ffs->eps_lock);
 946
 947                data = kmalloc(data_len, GFP_KERNEL);
 948                if (unlikely(!data)) {
 949                        ret = -ENOMEM;
 950                        goto error_mutex;
 951                }
 952                if (!io_data->read &&
 953                    !copy_from_iter_full(data, data_len, &io_data->data)) {
 954                        ret = -EFAULT;
 955                        goto error_mutex;
 956                }
 957        }
 958
 959        spin_lock_irq(&epfile->ffs->eps_lock);
 960
 961        if (epfile->ep != ep) {
 962                /* In the meantime, endpoint got disabled or changed. */
 963                ret = -ESHUTDOWN;
 964        } else if (halt) {
 965                ret = usb_ep_set_halt(ep->ep);
 966                if (!ret)
 967                        ret = -EBADMSG;
 968        } else if (unlikely(data_len == -EINVAL)) {
 969                /*
 970                 * Sanity Check: even though data_len can't be used
 971                 * uninitialized at the time I write this comment, some
 972                 * compilers complain about this situation.
 973                 * In order to keep the code clean from warnings, data_len is
 974                 * being initialized to -EINVAL during its declaration, which
 975                 * means we can't rely on compiler anymore to warn no future
 976                 * changes won't result in data_len being used uninitialized.
 977                 * For such reason, we're adding this redundant sanity check
 978                 * here.
 979                 */
 980                WARN(1, "%s: data_len == -EINVAL\n", __func__);
 981                ret = -EINVAL;
 982        } else if (!io_data->aio) {
 983                DECLARE_COMPLETION_ONSTACK(done);
 984                bool interrupted = false;
 985
 986                req = ep->req;
 987                req->buf      = data;
 988                req->length   = data_len;
 989
 990                req->context  = &done;
 991                req->complete = ffs_epfile_io_complete;
 992
 993                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 994                if (unlikely(ret < 0))
 995                        goto error_lock;
 996
 997                spin_unlock_irq(&epfile->ffs->eps_lock);
 998
 999                if (unlikely(wait_for_completion_interruptible(&done))) {
1000                        /*
1001                         * To avoid race condition with ffs_epfile_io_complete,
1002                         * dequeue the request first then check
1003                         * status. usb_ep_dequeue API should guarantee no race
1004                         * condition with req->complete callback.
1005                         */
1006                        usb_ep_dequeue(ep->ep, req);
1007                        interrupted = ep->status < 0;
1008                }
1009
1010                if (interrupted)
1011                        ret = -EINTR;
1012                else if (io_data->read && ep->status > 0)
1013                        ret = __ffs_epfile_read_data(epfile, data, ep->status,
1014                                                     &io_data->data);
1015                else
1016                        ret = ep->status;
1017                goto error_mutex;
1018        } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1019                ret = -ENOMEM;
1020        } else {
1021                req->buf      = data;
1022                req->length   = data_len;
1023
1024                io_data->buf = data;
1025                io_data->ep = ep->ep;
1026                io_data->req = req;
1027                io_data->ffs = epfile->ffs;
1028
1029                req->context  = io_data;
1030                req->complete = ffs_epfile_async_io_complete;
1031
1032                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1033                if (unlikely(ret)) {
1034                        usb_ep_free_request(ep->ep, req);
1035                        goto error_lock;
1036                }
1037
1038                ret = -EIOCBQUEUED;
1039                /*
1040                 * Do not kfree the buffer in this function.  It will be freed
1041                 * by ffs_user_copy_worker.
1042                 */
1043                data = NULL;
1044        }
1045
1046error_lock:
1047        spin_unlock_irq(&epfile->ffs->eps_lock);
1048error_mutex:
1049        mutex_unlock(&epfile->mutex);
1050error:
1051        kfree(data);
1052        return ret;
1053}
1054
1055static int
1056ffs_epfile_open(struct inode *inode, struct file *file)
1057{
1058        struct ffs_epfile *epfile = inode->i_private;
1059
1060        ENTER();
1061
1062        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1063                return -ENODEV;
1064
1065        file->private_data = epfile;
1066        ffs_data_opened(epfile->ffs);
1067
1068        return 0;
1069}
1070
1071static int ffs_aio_cancel(struct kiocb *kiocb)
1072{
1073        struct ffs_io_data *io_data = kiocb->private;
1074        struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1075        int value;
1076
1077        ENTER();
1078
1079        spin_lock_irq(&epfile->ffs->eps_lock);
1080
1081        if (likely(io_data && io_data->ep && io_data->req))
1082                value = usb_ep_dequeue(io_data->ep, io_data->req);
1083        else
1084                value = -EINVAL;
1085
1086        spin_unlock_irq(&epfile->ffs->eps_lock);
1087
1088        return value;
1089}
1090
1091static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1092{
1093        struct ffs_io_data io_data, *p = &io_data;
1094        ssize_t res;
1095
1096        ENTER();
1097
1098        if (!is_sync_kiocb(kiocb)) {
1099                p = kmalloc(sizeof(io_data), GFP_KERNEL);
1100                if (unlikely(!p))
1101                        return -ENOMEM;
1102                p->aio = true;
1103        } else {
1104                p->aio = false;
1105        }
1106
1107        p->read = false;
1108        p->kiocb = kiocb;
1109        p->data = *from;
1110        p->mm = current->mm;
1111
1112        kiocb->private = p;
1113
1114        if (p->aio)
1115                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1116
1117        res = ffs_epfile_io(kiocb->ki_filp, p);
1118        if (res == -EIOCBQUEUED)
1119                return res;
1120        if (p->aio)
1121                kfree(p);
1122        else
1123                *from = p->data;
1124        return res;
1125}
1126
1127static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1128{
1129        struct ffs_io_data io_data, *p = &io_data;
1130        ssize_t res;
1131
1132        ENTER();
1133
1134        if (!is_sync_kiocb(kiocb)) {
1135                p = kmalloc(sizeof(io_data), GFP_KERNEL);
1136                if (unlikely(!p))
1137                        return -ENOMEM;
1138                p->aio = true;
1139        } else {
1140                p->aio = false;
1141        }
1142
1143        p->read = true;
1144        p->kiocb = kiocb;
1145        if (p->aio) {
1146                p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1147                if (!p->to_free) {
1148                        kfree(p);
1149                        return -ENOMEM;
1150                }
1151        } else {
1152                p->data = *to;
1153                p->to_free = NULL;
1154        }
1155        p->mm = current->mm;
1156
1157        kiocb->private = p;
1158
1159        if (p->aio)
1160                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1161
1162        res = ffs_epfile_io(kiocb->ki_filp, p);
1163        if (res == -EIOCBQUEUED)
1164                return res;
1165
1166        if (p->aio) {
1167                kfree(p->to_free);
1168                kfree(p);
1169        } else {
1170                *to = p->data;
1171        }
1172        return res;
1173}
1174
1175static int
1176ffs_epfile_release(struct inode *inode, struct file *file)
1177{
1178        struct ffs_epfile *epfile = inode->i_private;
1179
1180        ENTER();
1181
1182        __ffs_epfile_read_buffer_free(epfile);
1183        ffs_data_closed(epfile->ffs);
1184
1185        return 0;
1186}
1187
1188static long ffs_epfile_ioctl(struct file *file, unsigned code,
1189                             unsigned long value)
1190{
1191        struct ffs_epfile *epfile = file->private_data;
1192        struct ffs_ep *ep;
1193        int ret;
1194
1195        ENTER();
1196
1197        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1198                return -ENODEV;
1199
1200        /* Wait for endpoint to be enabled */
1201        ep = epfile->ep;
1202        if (!ep) {
1203                if (file->f_flags & O_NONBLOCK)
1204                        return -EAGAIN;
1205
1206                ret = wait_event_interruptible(
1207                                epfile->ffs->wait, (ep = epfile->ep));
1208                if (ret)
1209                        return -EINTR;
1210        }
1211
1212        spin_lock_irq(&epfile->ffs->eps_lock);
1213
1214        /* In the meantime, endpoint got disabled or changed. */
1215        if (epfile->ep != ep) {
1216                spin_unlock_irq(&epfile->ffs->eps_lock);
1217                return -ESHUTDOWN;
1218        }
1219
1220        switch (code) {
1221        case FUNCTIONFS_FIFO_STATUS:
1222                ret = usb_ep_fifo_status(epfile->ep->ep);
1223                break;
1224        case FUNCTIONFS_FIFO_FLUSH:
1225                usb_ep_fifo_flush(epfile->ep->ep);
1226                ret = 0;
1227                break;
1228        case FUNCTIONFS_CLEAR_HALT:
1229                ret = usb_ep_clear_halt(epfile->ep->ep);
1230                break;
1231        case FUNCTIONFS_ENDPOINT_REVMAP:
1232                ret = epfile->ep->num;
1233                break;
1234        case FUNCTIONFS_ENDPOINT_DESC:
1235        {
1236                int desc_idx;
1237                struct usb_endpoint_descriptor *desc;
1238
1239                switch (epfile->ffs->gadget->speed) {
1240                case USB_SPEED_SUPER:
1241                        desc_idx = 2;
1242                        break;
1243                case USB_SPEED_HIGH:
1244                        desc_idx = 1;
1245                        break;
1246                default:
1247                        desc_idx = 0;
1248                }
1249                desc = epfile->ep->descs[desc_idx];
1250
1251                spin_unlock_irq(&epfile->ffs->eps_lock);
1252                ret = copy_to_user((void __user *)value, desc, desc->bLength);
1253                if (ret)
1254                        ret = -EFAULT;
1255                return ret;
1256        }
1257        default:
1258                ret = -ENOTTY;
1259        }
1260        spin_unlock_irq(&epfile->ffs->eps_lock);
1261
1262        return ret;
1263}
1264
1265static const struct file_operations ffs_epfile_operations = {
1266        .llseek =       no_llseek,
1267
1268        .open =         ffs_epfile_open,
1269        .write_iter =   ffs_epfile_write_iter,
1270        .read_iter =    ffs_epfile_read_iter,
1271        .release =      ffs_epfile_release,
1272        .unlocked_ioctl =       ffs_epfile_ioctl,
1273};
1274
1275
1276/* File system and super block operations ***********************************/
1277
1278/*
1279 * Mounting the file system creates a controller file, used first for
1280 * function configuration then later for event monitoring.
1281 */
1282
1283static struct inode *__must_check
1284ffs_sb_make_inode(struct super_block *sb, void *data,
1285                  const struct file_operations *fops,
1286                  const struct inode_operations *iops,
1287                  struct ffs_file_perms *perms)
1288{
1289        struct inode *inode;
1290
1291        ENTER();
1292
1293        inode = new_inode(sb);
1294
1295        if (likely(inode)) {
1296                struct timespec ts = current_time(inode);
1297
1298                inode->i_ino     = get_next_ino();
1299                inode->i_mode    = perms->mode;
1300                inode->i_uid     = perms->uid;
1301                inode->i_gid     = perms->gid;
1302                inode->i_atime   = ts;
1303                inode->i_mtime   = ts;
1304                inode->i_ctime   = ts;
1305                inode->i_private = data;
1306                if (fops)
1307                        inode->i_fop = fops;
1308                if (iops)
1309                        inode->i_op  = iops;
1310        }
1311
1312        return inode;
1313}
1314
1315/* Create "regular" file */
1316static struct dentry *ffs_sb_create_file(struct super_block *sb,
1317                                        const char *name, void *data,
1318                                        const struct file_operations *fops)
1319{
1320        struct ffs_data *ffs = sb->s_fs_info;
1321        struct dentry   *dentry;
1322        struct inode    *inode;
1323
1324        ENTER();
1325
1326        dentry = d_alloc_name(sb->s_root, name);
1327        if (unlikely(!dentry))
1328                return NULL;
1329
1330        inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1331        if (unlikely(!inode)) {
1332                dput(dentry);
1333                return NULL;
1334        }
1335
1336        d_add(dentry, inode);
1337        return dentry;
1338}
1339
1340/* Super block */
1341static const struct super_operations ffs_sb_operations = {
1342        .statfs =       simple_statfs,
1343        .drop_inode =   generic_delete_inode,
1344};
1345
1346struct ffs_sb_fill_data {
1347        struct ffs_file_perms perms;
1348        umode_t root_mode;
1349        const char *dev_name;
1350        bool no_disconnect;
1351        struct ffs_data *ffs_data;
1352};
1353
1354static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1355{
1356        struct ffs_sb_fill_data *data = _data;
1357        struct inode    *inode;
1358        struct ffs_data *ffs = data->ffs_data;
1359
1360        ENTER();
1361
1362        ffs->sb              = sb;
1363        data->ffs_data       = NULL;
1364        sb->s_fs_info        = ffs;
1365        sb->s_blocksize      = PAGE_SIZE;
1366        sb->s_blocksize_bits = PAGE_SHIFT;
1367        sb->s_magic          = FUNCTIONFS_MAGIC;
1368        sb->s_op             = &ffs_sb_operations;
1369        sb->s_time_gran      = 1;
1370
1371        /* Root inode */
1372        data->perms.mode = data->root_mode;
1373        inode = ffs_sb_make_inode(sb, NULL,
1374                                  &simple_dir_operations,
1375                                  &simple_dir_inode_operations,
1376                                  &data->perms);
1377        sb->s_root = d_make_root(inode);
1378        if (unlikely(!sb->s_root))
1379                return -ENOMEM;
1380
1381        /* EP0 file */
1382        if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1383                                         &ffs_ep0_operations)))
1384                return -ENOMEM;
1385
1386        return 0;
1387}
1388
1389static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1390{
1391        ENTER();
1392
1393        if (!opts || !*opts)
1394                return 0;
1395
1396        for (;;) {
1397                unsigned long value;
1398                char *eq, *comma;
1399
1400                /* Option limit */
1401                comma = strchr(opts, ',');
1402                if (comma)
1403                        *comma = 0;
1404
1405                /* Value limit */
1406                eq = strchr(opts, '=');
1407                if (unlikely(!eq)) {
1408                        pr_err("'=' missing in %s\n", opts);
1409                        return -EINVAL;
1410                }
1411                *eq = 0;
1412
1413                /* Parse value */
1414                if (kstrtoul(eq + 1, 0, &value)) {
1415                        pr_err("%s: invalid value: %s\n", opts, eq + 1);
1416                        return -EINVAL;
1417                }
1418
1419                /* Interpret option */
1420                switch (eq - opts) {
1421                case 13:
1422                        if (!memcmp(opts, "no_disconnect", 13))
1423                                data->no_disconnect = !!value;
1424                        else
1425                                goto invalid;
1426                        break;
1427                case 5:
1428                        if (!memcmp(opts, "rmode", 5))
1429                                data->root_mode  = (value & 0555) | S_IFDIR;
1430                        else if (!memcmp(opts, "fmode", 5))
1431                                data->perms.mode = (value & 0666) | S_IFREG;
1432                        else
1433                                goto invalid;
1434                        break;
1435
1436                case 4:
1437                        if (!memcmp(opts, "mode", 4)) {
1438                                data->root_mode  = (value & 0555) | S_IFDIR;
1439                                data->perms.mode = (value & 0666) | S_IFREG;
1440                        } else {
1441                                goto invalid;
1442                        }
1443                        break;
1444
1445                case 3:
1446                        if (!memcmp(opts, "uid", 3)) {
1447                                data->perms.uid = make_kuid(current_user_ns(), value);
1448                                if (!uid_valid(data->perms.uid)) {
1449                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1450                                        return -EINVAL;
1451                                }
1452                        } else if (!memcmp(opts, "gid", 3)) {
1453                                data->perms.gid = make_kgid(current_user_ns(), value);
1454                                if (!gid_valid(data->perms.gid)) {
1455                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1456                                        return -EINVAL;
1457                                }
1458                        } else {
1459                                goto invalid;
1460                        }
1461                        break;
1462
1463                default:
1464invalid:
1465                        pr_err("%s: invalid option\n", opts);
1466                        return -EINVAL;
1467                }
1468
1469                /* Next iteration */
1470                if (!comma)
1471                        break;
1472                opts = comma + 1;
1473        }
1474
1475        return 0;
1476}
1477
1478/* "mount -t functionfs dev_name /dev/function" ends up here */
1479
1480static struct dentry *
1481ffs_fs_mount(struct file_system_type *t, int flags,
1482              const char *dev_name, void *opts)
1483{
1484        struct ffs_sb_fill_data data = {
1485                .perms = {
1486                        .mode = S_IFREG | 0600,
1487                        .uid = GLOBAL_ROOT_UID,
1488                        .gid = GLOBAL_ROOT_GID,
1489                },
1490                .root_mode = S_IFDIR | 0500,
1491                .no_disconnect = false,
1492        };
1493        struct dentry *rv;
1494        int ret;
1495        void *ffs_dev;
1496        struct ffs_data *ffs;
1497
1498        ENTER();
1499
1500        ret = ffs_fs_parse_opts(&data, opts);
1501        if (unlikely(ret < 0))
1502                return ERR_PTR(ret);
1503
1504        ffs = ffs_data_new(dev_name);
1505        if (unlikely(!ffs))
1506                return ERR_PTR(-ENOMEM);
1507        ffs->file_perms = data.perms;
1508        ffs->no_disconnect = data.no_disconnect;
1509
1510        ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1511        if (unlikely(!ffs->dev_name)) {
1512                ffs_data_put(ffs);
1513                return ERR_PTR(-ENOMEM);
1514        }
1515
1516        ffs_dev = ffs_acquire_dev(dev_name);
1517        if (IS_ERR(ffs_dev)) {
1518                ffs_data_put(ffs);
1519                return ERR_CAST(ffs_dev);
1520        }
1521        ffs->private_data = ffs_dev;
1522        data.ffs_data = ffs;
1523
1524        rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1525        if (IS_ERR(rv) && data.ffs_data) {
1526                ffs_release_dev(data.ffs_data);
1527                ffs_data_put(data.ffs_data);
1528        }
1529        return rv;
1530}
1531
1532static void
1533ffs_fs_kill_sb(struct super_block *sb)
1534{
1535        ENTER();
1536
1537        kill_litter_super(sb);
1538        if (sb->s_fs_info) {
1539                ffs_release_dev(sb->s_fs_info);
1540                ffs_data_closed(sb->s_fs_info);
1541        }
1542}
1543
1544static struct file_system_type ffs_fs_type = {
1545        .owner          = THIS_MODULE,
1546        .name           = "functionfs",
1547        .mount          = ffs_fs_mount,
1548        .kill_sb        = ffs_fs_kill_sb,
1549};
1550MODULE_ALIAS_FS("functionfs");
1551
1552
1553/* Driver's main init/cleanup functions *************************************/
1554
1555static int functionfs_init(void)
1556{
1557        int ret;
1558
1559        ENTER();
1560
1561        ret = register_filesystem(&ffs_fs_type);
1562        if (likely(!ret))
1563                pr_info("file system registered\n");
1564        else
1565                pr_err("failed registering file system (%d)\n", ret);
1566
1567        return ret;
1568}
1569
1570static void functionfs_cleanup(void)
1571{
1572        ENTER();
1573
1574        pr_info("unloading\n");
1575        unregister_filesystem(&ffs_fs_type);
1576}
1577
1578
1579/* ffs_data and ffs_function construction and destruction code **************/
1580
1581static void ffs_data_clear(struct ffs_data *ffs);
1582static void ffs_data_reset(struct ffs_data *ffs);
1583
1584static void ffs_data_get(struct ffs_data *ffs)
1585{
1586        ENTER();
1587
1588        refcount_inc(&ffs->ref);
1589}
1590
1591static void ffs_data_opened(struct ffs_data *ffs)
1592{
1593        ENTER();
1594
1595        refcount_inc(&ffs->ref);
1596        if (atomic_add_return(1, &ffs->opened) == 1 &&
1597                        ffs->state == FFS_DEACTIVATED) {
1598                ffs->state = FFS_CLOSING;
1599                ffs_data_reset(ffs);
1600        }
1601}
1602
1603static void ffs_data_put(struct ffs_data *ffs)
1604{
1605        ENTER();
1606
1607        if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1608                pr_info("%s(): freeing\n", __func__);
1609                ffs_data_clear(ffs);
1610                BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1611                       waitqueue_active(&ffs->ep0req_completion.wait) ||
1612                       waitqueue_active(&ffs->wait));
1613                destroy_workqueue(ffs->io_completion_wq);
1614                kfree(ffs->dev_name);
1615                kfree(ffs);
1616        }
1617}
1618
1619static void ffs_data_closed(struct ffs_data *ffs)
1620{
1621        ENTER();
1622
1623        if (atomic_dec_and_test(&ffs->opened)) {
1624                if (ffs->no_disconnect) {
1625                        ffs->state = FFS_DEACTIVATED;
1626                        if (ffs->epfiles) {
1627                                ffs_epfiles_destroy(ffs->epfiles,
1628                                                   ffs->eps_count);
1629                                ffs->epfiles = NULL;
1630                        }
1631                        if (ffs->setup_state == FFS_SETUP_PENDING)
1632                                __ffs_ep0_stall(ffs);
1633                } else {
1634                        ffs->state = FFS_CLOSING;
1635                        ffs_data_reset(ffs);
1636                }
1637        }
1638        if (atomic_read(&ffs->opened) < 0) {
1639                ffs->state = FFS_CLOSING;
1640                ffs_data_reset(ffs);
1641        }
1642
1643        ffs_data_put(ffs);
1644}
1645
1646static struct ffs_data *ffs_data_new(const char *dev_name)
1647{
1648        struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1649        if (unlikely(!ffs))
1650                return NULL;
1651
1652        ENTER();
1653
1654        ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1655        if (!ffs->io_completion_wq) {
1656                kfree(ffs);
1657                return NULL;
1658        }
1659
1660        refcount_set(&ffs->ref, 1);
1661        atomic_set(&ffs->opened, 0);
1662        ffs->state = FFS_READ_DESCRIPTORS;
1663        mutex_init(&ffs->mutex);
1664        spin_lock_init(&ffs->eps_lock);
1665        init_waitqueue_head(&ffs->ev.waitq);
1666        init_waitqueue_head(&ffs->wait);
1667        init_completion(&ffs->ep0req_completion);
1668
1669        /* XXX REVISIT need to update it in some places, or do we? */
1670        ffs->ev.can_stall = 1;
1671
1672        return ffs;
1673}
1674
1675static void ffs_data_clear(struct ffs_data *ffs)
1676{
1677        ENTER();
1678
1679        ffs_closed(ffs);
1680
1681        BUG_ON(ffs->gadget);
1682
1683        if (ffs->epfiles)
1684                ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1685
1686        if (ffs->ffs_eventfd)
1687                eventfd_ctx_put(ffs->ffs_eventfd);
1688
1689        kfree(ffs->raw_descs_data);
1690        kfree(ffs->raw_strings);
1691        kfree(ffs->stringtabs);
1692}
1693
1694static void ffs_data_reset(struct ffs_data *ffs)
1695{
1696        ENTER();
1697
1698        ffs_data_clear(ffs);
1699
1700        ffs->epfiles = NULL;
1701        ffs->raw_descs_data = NULL;
1702        ffs->raw_descs = NULL;
1703        ffs->raw_strings = NULL;
1704        ffs->stringtabs = NULL;
1705
1706        ffs->raw_descs_length = 0;
1707        ffs->fs_descs_count = 0;
1708        ffs->hs_descs_count = 0;
1709        ffs->ss_descs_count = 0;
1710
1711        ffs->strings_count = 0;
1712        ffs->interfaces_count = 0;
1713        ffs->eps_count = 0;
1714
1715        ffs->ev.count = 0;
1716
1717        ffs->state = FFS_READ_DESCRIPTORS;
1718        ffs->setup_state = FFS_NO_SETUP;
1719        ffs->flags = 0;
1720}
1721
1722
1723static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1724{
1725        struct usb_gadget_strings **lang;
1726        int first_id;
1727
1728        ENTER();
1729
1730        if (WARN_ON(ffs->state != FFS_ACTIVE
1731                 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1732                return -EBADFD;
1733
1734        first_id = usb_string_ids_n(cdev, ffs->strings_count);
1735        if (unlikely(first_id < 0))
1736                return first_id;
1737
1738        ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1739        if (unlikely(!ffs->ep0req))
1740                return -ENOMEM;
1741        ffs->ep0req->complete = ffs_ep0_complete;
1742        ffs->ep0req->context = ffs;
1743
1744        lang = ffs->stringtabs;
1745        if (lang) {
1746                for (; *lang; ++lang) {
1747                        struct usb_string *str = (*lang)->strings;
1748                        int id = first_id;
1749                        for (; str->s; ++id, ++str)
1750                                str->id = id;
1751                }
1752        }
1753
1754        ffs->gadget = cdev->gadget;
1755        ffs_data_get(ffs);
1756        return 0;
1757}
1758
1759static void functionfs_unbind(struct ffs_data *ffs)
1760{
1761        ENTER();
1762
1763        if (!WARN_ON(!ffs->gadget)) {
1764                usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1765                ffs->ep0req = NULL;
1766                ffs->gadget = NULL;
1767                clear_bit(FFS_FL_BOUND, &ffs->flags);
1768                ffs_data_put(ffs);
1769        }
1770}
1771
1772static int ffs_epfiles_create(struct ffs_data *ffs)
1773{
1774        struct ffs_epfile *epfile, *epfiles;
1775        unsigned i, count;
1776
1777        ENTER();
1778
1779        count = ffs->eps_count;
1780        epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1781        if (!epfiles)
1782                return -ENOMEM;
1783
1784        epfile = epfiles;
1785        for (i = 1; i <= count; ++i, ++epfile) {
1786                epfile->ffs = ffs;
1787                mutex_init(&epfile->mutex);
1788                if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1789                        sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1790                else
1791                        sprintf(epfile->name, "ep%u", i);
1792                epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1793                                                 epfile,
1794                                                 &ffs_epfile_operations);
1795                if (unlikely(!epfile->dentry)) {
1796                        ffs_epfiles_destroy(epfiles, i - 1);
1797                        return -ENOMEM;
1798                }
1799        }
1800
1801        ffs->epfiles = epfiles;
1802        return 0;
1803}
1804
1805static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1806{
1807        struct ffs_epfile *epfile = epfiles;
1808
1809        ENTER();
1810
1811        for (; count; --count, ++epfile) {
1812                BUG_ON(mutex_is_locked(&epfile->mutex));
1813                if (epfile->dentry) {
1814                        d_delete(epfile->dentry);
1815                        dput(epfile->dentry);
1816                        epfile->dentry = NULL;
1817                }
1818        }
1819
1820        kfree(epfiles);
1821}
1822
1823static void ffs_func_eps_disable(struct ffs_function *func)
1824{
1825        struct ffs_ep *ep         = func->eps;
1826        struct ffs_epfile *epfile = func->ffs->epfiles;
1827        unsigned count            = func->ffs->eps_count;
1828        unsigned long flags;
1829
1830        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1831        while (count--) {
1832                /* pending requests get nuked */
1833                if (likely(ep->ep))
1834                        usb_ep_disable(ep->ep);
1835                ++ep;
1836
1837                if (epfile) {
1838                        epfile->ep = NULL;
1839                        __ffs_epfile_read_buffer_free(epfile);
1840                        ++epfile;
1841                }
1842        }
1843        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1844}
1845
1846static int ffs_func_eps_enable(struct ffs_function *func)
1847{
1848        struct ffs_data *ffs      = func->ffs;
1849        struct ffs_ep *ep         = func->eps;
1850        struct ffs_epfile *epfile = ffs->epfiles;
1851        unsigned count            = ffs->eps_count;
1852        unsigned long flags;
1853        int ret = 0;
1854
1855        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1856        while(count--) {
1857                ep->ep->driver_data = ep;
1858
1859                ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1860                if (ret) {
1861                        pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1862                                        __func__, ep->ep->name, ret);
1863                        break;
1864                }
1865
1866                ret = usb_ep_enable(ep->ep);
1867                if (likely(!ret)) {
1868                        epfile->ep = ep;
1869                        epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1870                        epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1871                } else {
1872                        break;
1873                }
1874
1875                ++ep;
1876                ++epfile;
1877        }
1878
1879        wake_up_interruptible(&ffs->wait);
1880        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1881
1882        return ret;
1883}
1884
1885
1886/* Parsing and building descriptors and strings *****************************/
1887
1888/*
1889 * This validates if data pointed by data is a valid USB descriptor as
1890 * well as record how many interfaces, endpoints and strings are
1891 * required by given configuration.  Returns address after the
1892 * descriptor or NULL if data is invalid.
1893 */
1894
1895enum ffs_entity_type {
1896        FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1897};
1898
1899enum ffs_os_desc_type {
1900        FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1901};
1902
1903typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1904                                   u8 *valuep,
1905                                   struct usb_descriptor_header *desc,
1906                                   void *priv);
1907
1908typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1909                                    struct usb_os_desc_header *h, void *data,
1910                                    unsigned len, void *priv);
1911
1912static int __must_check ffs_do_single_desc(char *data, unsigned len,
1913                                           ffs_entity_callback entity,
1914                                           void *priv)
1915{
1916        struct usb_descriptor_header *_ds = (void *)data;
1917        u8 length;
1918        int ret;
1919
1920        ENTER();
1921
1922        /* At least two bytes are required: length and type */
1923        if (len < 2) {
1924                pr_vdebug("descriptor too short\n");
1925                return -EINVAL;
1926        }
1927
1928        /* If we have at least as many bytes as the descriptor takes? */
1929        length = _ds->bLength;
1930        if (len < length) {
1931                pr_vdebug("descriptor longer then available data\n");
1932                return -EINVAL;
1933        }
1934
1935#define __entity_check_INTERFACE(val)  1
1936#define __entity_check_STRING(val)     (val)
1937#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1938#define __entity(type, val) do {                                        \
1939                pr_vdebug("entity " #type "(%02x)\n", (val));           \
1940                if (unlikely(!__entity_check_ ##type(val))) {           \
1941                        pr_vdebug("invalid entity's value\n");          \
1942                        return -EINVAL;                                 \
1943                }                                                       \
1944                ret = entity(FFS_ ##type, &val, _ds, priv);             \
1945                if (unlikely(ret < 0)) {                                \
1946                        pr_debug("entity " #type "(%02x); ret = %d\n",  \
1947                                 (val), ret);                           \
1948                        return ret;                                     \
1949                }                                                       \
1950        } while (0)
1951
1952        /* Parse descriptor depending on type. */
1953        switch (_ds->bDescriptorType) {
1954        case USB_DT_DEVICE:
1955        case USB_DT_CONFIG:
1956        case USB_DT_STRING:
1957        case USB_DT_DEVICE_QUALIFIER:
1958                /* function can't have any of those */
1959                pr_vdebug("descriptor reserved for gadget: %d\n",
1960                      _ds->bDescriptorType);
1961                return -EINVAL;
1962
1963        case USB_DT_INTERFACE: {
1964                struct usb_interface_descriptor *ds = (void *)_ds;
1965                pr_vdebug("interface descriptor\n");
1966                if (length != sizeof *ds)
1967                        goto inv_length;
1968
1969                __entity(INTERFACE, ds->bInterfaceNumber);
1970                if (ds->iInterface)
1971                        __entity(STRING, ds->iInterface);
1972        }
1973                break;
1974
1975        case USB_DT_ENDPOINT: {
1976                struct usb_endpoint_descriptor *ds = (void *)_ds;
1977                pr_vdebug("endpoint descriptor\n");
1978                if (length != USB_DT_ENDPOINT_SIZE &&
1979                    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1980                        goto inv_length;
1981                __entity(ENDPOINT, ds->bEndpointAddress);
1982        }
1983                break;
1984
1985        case HID_DT_HID:
1986                pr_vdebug("hid descriptor\n");
1987                if (length != sizeof(struct hid_descriptor))
1988                        goto inv_length;
1989                break;
1990
1991        case USB_DT_OTG:
1992                if (length != sizeof(struct usb_otg_descriptor))
1993                        goto inv_length;
1994                break;
1995
1996        case USB_DT_INTERFACE_ASSOCIATION: {
1997                struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1998                pr_vdebug("interface association descriptor\n");
1999                if (length != sizeof *ds)
2000                        goto inv_length;
2001                if (ds->iFunction)
2002                        __entity(STRING, ds->iFunction);
2003        }
2004                break;
2005
2006        case USB_DT_SS_ENDPOINT_COMP:
2007                pr_vdebug("EP SS companion descriptor\n");
2008                if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2009                        goto inv_length;
2010                break;
2011
2012        case USB_DT_OTHER_SPEED_CONFIG:
2013        case USB_DT_INTERFACE_POWER:
2014        case USB_DT_DEBUG:
2015        case USB_DT_SECURITY:
2016        case USB_DT_CS_RADIO_CONTROL:
2017                /* TODO */
2018                pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2019                return -EINVAL;
2020
2021        default:
2022                /* We should never be here */
2023                pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2024                return -EINVAL;
2025
2026inv_length:
2027                pr_vdebug("invalid length: %d (descriptor %d)\n",
2028                          _ds->bLength, _ds->bDescriptorType);
2029                return -EINVAL;
2030        }
2031
2032#undef __entity
2033#undef __entity_check_DESCRIPTOR
2034#undef __entity_check_INTERFACE
2035#undef __entity_check_STRING
2036#undef __entity_check_ENDPOINT
2037
2038        return length;
2039}
2040
2041static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2042                                     ffs_entity_callback entity, void *priv)
2043{
2044        const unsigned _len = len;
2045        unsigned long num = 0;
2046
2047        ENTER();
2048
2049        for (;;) {
2050                int ret;
2051
2052                if (num == count)
2053                        data = NULL;
2054
2055                /* Record "descriptor" entity */
2056                ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2057                if (unlikely(ret < 0)) {
2058                        pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2059                                 num, ret);
2060                        return ret;
2061                }
2062
2063                if (!data)
2064                        return _len - len;
2065
2066                ret = ffs_do_single_desc(data, len, entity, priv);
2067                if (unlikely(ret < 0)) {
2068                        pr_debug("%s returns %d\n", __func__, ret);
2069                        return ret;
2070                }
2071
2072                len -= ret;
2073                data += ret;
2074                ++num;
2075        }
2076}
2077
2078static int __ffs_data_do_entity(enum ffs_entity_type type,
2079                                u8 *valuep, struct usb_descriptor_header *desc,
2080                                void *priv)
2081{
2082        struct ffs_desc_helper *helper = priv;
2083        struct usb_endpoint_descriptor *d;
2084
2085        ENTER();
2086
2087        switch (type) {
2088        case FFS_DESCRIPTOR:
2089                break;
2090
2091        case FFS_INTERFACE:
2092                /*
2093                 * Interfaces are indexed from zero so if we
2094                 * encountered interface "n" then there are at least
2095                 * "n+1" interfaces.
2096                 */
2097                if (*valuep >= helper->interfaces_count)
2098                        helper->interfaces_count = *valuep + 1;
2099                break;
2100
2101        case FFS_STRING:
2102                /*
2103                 * Strings are indexed from 1 (0 is reserved
2104                 * for languages list)
2105                 */
2106                if (*valuep > helper->ffs->strings_count)
2107                        helper->ffs->strings_count = *valuep;
2108                break;
2109
2110        case FFS_ENDPOINT:
2111                d = (void *)desc;
2112                helper->eps_count++;
2113                if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2114                        return -EINVAL;
2115                /* Check if descriptors for any speed were already parsed */
2116                if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2117                        helper->ffs->eps_addrmap[helper->eps_count] =
2118                                d->bEndpointAddress;
2119                else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2120                                d->bEndpointAddress)
2121                        return -EINVAL;
2122                break;
2123        }
2124
2125        return 0;
2126}
2127
2128static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2129                                   struct usb_os_desc_header *desc)
2130{
2131        u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2132        u16 w_index = le16_to_cpu(desc->wIndex);
2133
2134        if (bcd_version != 1) {
2135                pr_vdebug("unsupported os descriptors version: %d",
2136                          bcd_version);
2137                return -EINVAL;
2138        }
2139        switch (w_index) {
2140        case 0x4:
2141                *next_type = FFS_OS_DESC_EXT_COMPAT;
2142                break;
2143        case 0x5:
2144                *next_type = FFS_OS_DESC_EXT_PROP;
2145                break;
2146        default:
2147                pr_vdebug("unsupported os descriptor type: %d", w_index);
2148                return -EINVAL;
2149        }
2150
2151        return sizeof(*desc);
2152}
2153
2154/*
2155 * Process all extended compatibility/extended property descriptors
2156 * of a feature descriptor
2157 */
2158static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2159                                              enum ffs_os_desc_type type,
2160                                              u16 feature_count,
2161                                              ffs_os_desc_callback entity,
2162                                              void *priv,
2163                                              struct usb_os_desc_header *h)
2164{
2165        int ret;
2166        const unsigned _len = len;
2167
2168        ENTER();
2169
2170        /* loop over all ext compat/ext prop descriptors */
2171        while (feature_count--) {
2172                ret = entity(type, h, data, len, priv);
2173                if (unlikely(ret < 0)) {
2174                        pr_debug("bad OS descriptor, type: %d\n", type);
2175                        return ret;
2176                }
2177                data += ret;
2178                len -= ret;
2179        }
2180        return _len - len;
2181}
2182
2183/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2184static int __must_check ffs_do_os_descs(unsigned count,
2185                                        char *data, unsigned len,
2186                                        ffs_os_desc_callback entity, void *priv)
2187{
2188        const unsigned _len = len;
2189        unsigned long num = 0;
2190
2191        ENTER();
2192
2193        for (num = 0; num < count; ++num) {
2194                int ret;
2195                enum ffs_os_desc_type type;
2196                u16 feature_count;
2197                struct usb_os_desc_header *desc = (void *)data;
2198
2199                if (len < sizeof(*desc))
2200                        return -EINVAL;
2201
2202                /*
2203                 * Record "descriptor" entity.
2204                 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2205                 * Move the data pointer to the beginning of extended
2206                 * compatibilities proper or extended properties proper
2207                 * portions of the data
2208                 */
2209                if (le32_to_cpu(desc->dwLength) > len)
2210                        return -EINVAL;
2211
2212                ret = __ffs_do_os_desc_header(&type, desc);
2213                if (unlikely(ret < 0)) {
2214                        pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2215                                 num, ret);
2216                        return ret;
2217                }
2218                /*
2219                 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2220                 */
2221                feature_count = le16_to_cpu(desc->wCount);
2222                if (type == FFS_OS_DESC_EXT_COMPAT &&
2223                    (feature_count > 255 || desc->Reserved))
2224                                return -EINVAL;
2225                len -= ret;
2226                data += ret;
2227
2228                /*
2229                 * Process all function/property descriptors
2230                 * of this Feature Descriptor
2231                 */
2232                ret = ffs_do_single_os_desc(data, len, type,
2233                                            feature_count, entity, priv, desc);
2234                if (unlikely(ret < 0)) {
2235                        pr_debug("%s returns %d\n", __func__, ret);
2236                        return ret;
2237                }
2238
2239                len -= ret;
2240                data += ret;
2241        }
2242        return _len - len;
2243}
2244
2245/**
2246 * Validate contents of the buffer from userspace related to OS descriptors.
2247 */
2248static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2249                                 struct usb_os_desc_header *h, void *data,
2250                                 unsigned len, void *priv)
2251{
2252        struct ffs_data *ffs = priv;
2253        u8 length;
2254
2255        ENTER();
2256
2257        switch (type) {
2258        case FFS_OS_DESC_EXT_COMPAT: {
2259                struct usb_ext_compat_desc *d = data;
2260                int i;
2261
2262                if (len < sizeof(*d) ||
2263                    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2264                        return -EINVAL;
2265                if (d->Reserved1 != 1) {
2266                        /*
2267                         * According to the spec, Reserved1 must be set to 1
2268                         * but older kernels incorrectly rejected non-zero
2269                         * values.  We fix it here to avoid returning EINVAL
2270                         * in response to values we used to accept.
2271                         */
2272                        pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2273                        d->Reserved1 = 1;
2274                }
2275                for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2276                        if (d->Reserved2[i])
2277                                return -EINVAL;
2278
2279                length = sizeof(struct usb_ext_compat_desc);
2280        }
2281                break;
2282        case FFS_OS_DESC_EXT_PROP: {
2283                struct usb_ext_prop_desc *d = data;
2284                u32 type, pdl;
2285                u16 pnl;
2286
2287                if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2288                        return -EINVAL;
2289                length = le32_to_cpu(d->dwSize);
2290                if (len < length)
2291                        return -EINVAL;
2292                type = le32_to_cpu(d->dwPropertyDataType);
2293                if (type < USB_EXT_PROP_UNICODE ||
2294                    type > USB_EXT_PROP_UNICODE_MULTI) {
2295                        pr_vdebug("unsupported os descriptor property type: %d",
2296                                  type);
2297                        return -EINVAL;
2298                }
2299                pnl = le16_to_cpu(d->wPropertyNameLength);
2300                if (length < 14 + pnl) {
2301                        pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2302                                  length, pnl, type);
2303                        return -EINVAL;
2304                }
2305                pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2306                if (length != 14 + pnl + pdl) {
2307                        pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2308                                  length, pnl, pdl, type);
2309                        return -EINVAL;
2310                }
2311                ++ffs->ms_os_descs_ext_prop_count;
2312                /* property name reported to the host as "WCHAR"s */
2313                ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2314                ffs->ms_os_descs_ext_prop_data_len += pdl;
2315        }
2316                break;
2317        default:
2318                pr_vdebug("unknown descriptor: %d\n", type);
2319                return -EINVAL;
2320        }
2321        return length;
2322}
2323
2324static int __ffs_data_got_descs(struct ffs_data *ffs,
2325                                char *const _data, size_t len)
2326{
2327        char *data = _data, *raw_descs;
2328        unsigned os_descs_count = 0, counts[3], flags;
2329        int ret = -EINVAL, i;
2330        struct ffs_desc_helper helper;
2331
2332        ENTER();
2333
2334        if (get_unaligned_le32(data + 4) != len)
2335                goto error;
2336
2337        switch (get_unaligned_le32(data)) {
2338        case FUNCTIONFS_DESCRIPTORS_MAGIC:
2339                flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2340                data += 8;
2341                len  -= 8;
2342                break;
2343        case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2344                flags = get_unaligned_le32(data + 8);
2345                ffs->user_flags = flags;
2346                if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2347                              FUNCTIONFS_HAS_HS_DESC |
2348                              FUNCTIONFS_HAS_SS_DESC |
2349                              FUNCTIONFS_HAS_MS_OS_DESC |
2350                              FUNCTIONFS_VIRTUAL_ADDR |
2351                              FUNCTIONFS_EVENTFD |
2352                              FUNCTIONFS_ALL_CTRL_RECIP |
2353                              FUNCTIONFS_CONFIG0_SETUP)) {
2354                        ret = -ENOSYS;
2355                        goto error;
2356                }
2357                data += 12;
2358                len  -= 12;
2359                break;
2360        default:
2361                goto error;
2362        }
2363
2364        if (flags & FUNCTIONFS_EVENTFD) {
2365                if (len < 4)
2366                        goto error;
2367                ffs->ffs_eventfd =
2368                        eventfd_ctx_fdget((int)get_unaligned_le32(data));
2369                if (IS_ERR(ffs->ffs_eventfd)) {
2370                        ret = PTR_ERR(ffs->ffs_eventfd);
2371                        ffs->ffs_eventfd = NULL;
2372                        goto error;
2373                }
2374                data += 4;
2375                len  -= 4;
2376        }
2377
2378        /* Read fs_count, hs_count and ss_count (if present) */
2379        for (i = 0; i < 3; ++i) {
2380                if (!(flags & (1 << i))) {
2381                        counts[i] = 0;
2382                } else if (len < 4) {
2383                        goto error;
2384                } else {
2385                        counts[i] = get_unaligned_le32(data);
2386                        data += 4;
2387                        len  -= 4;
2388                }
2389        }
2390        if (flags & (1 << i)) {
2391                if (len < 4) {
2392                        goto error;
2393                }
2394                os_descs_count = get_unaligned_le32(data);
2395                data += 4;
2396                len -= 4;
2397        };
2398
2399        /* Read descriptors */
2400        raw_descs = data;
2401        helper.ffs = ffs;
2402        for (i = 0; i < 3; ++i) {
2403                if (!counts[i])
2404                        continue;
2405                helper.interfaces_count = 0;
2406                helper.eps_count = 0;
2407                ret = ffs_do_descs(counts[i], data, len,
2408                                   __ffs_data_do_entity, &helper);
2409                if (ret < 0)
2410                        goto error;
2411                if (!ffs->eps_count && !ffs->interfaces_count) {
2412                        ffs->eps_count = helper.eps_count;
2413                        ffs->interfaces_count = helper.interfaces_count;
2414                } else {
2415                        if (ffs->eps_count != helper.eps_count) {
2416                                ret = -EINVAL;
2417                                goto error;
2418                        }
2419                        if (ffs->interfaces_count != helper.interfaces_count) {
2420                                ret = -EINVAL;
2421                                goto error;
2422                        }
2423                }
2424                data += ret;
2425                len  -= ret;
2426        }
2427        if (os_descs_count) {
2428                ret = ffs_do_os_descs(os_descs_count, data, len,
2429                                      __ffs_data_do_os_desc, ffs);
2430                if (ret < 0)
2431                        goto error;
2432                data += ret;
2433                len -= ret;
2434        }
2435
2436        if (raw_descs == data || len) {
2437                ret = -EINVAL;
2438                goto error;
2439        }
2440
2441        ffs->raw_descs_data     = _data;
2442        ffs->raw_descs          = raw_descs;
2443        ffs->raw_descs_length   = data - raw_descs;
2444        ffs->fs_descs_count     = counts[0];
2445        ffs->hs_descs_count     = counts[1];
2446        ffs->ss_descs_count     = counts[2];
2447        ffs->ms_os_descs_count  = os_descs_count;
2448
2449        return 0;
2450
2451error:
2452        kfree(_data);
2453        return ret;
2454}
2455
2456static int __ffs_data_got_strings(struct ffs_data *ffs,
2457                                  char *const _data, size_t len)
2458{
2459        u32 str_count, needed_count, lang_count;
2460        struct usb_gadget_strings **stringtabs, *t;
2461        const char *data = _data;
2462        struct usb_string *s;
2463
2464        ENTER();
2465
2466        if (unlikely(len < 16 ||
2467                     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2468                     get_unaligned_le32(data + 4) != len))
2469                goto error;
2470        str_count  = get_unaligned_le32(data + 8);
2471        lang_count = get_unaligned_le32(data + 12);
2472
2473        /* if one is zero the other must be zero */
2474        if (unlikely(!str_count != !lang_count))
2475                goto error;
2476
2477        /* Do we have at least as many strings as descriptors need? */
2478        needed_count = ffs->strings_count;
2479        if (unlikely(str_count < needed_count))
2480                goto error;
2481
2482        /*
2483         * If we don't need any strings just return and free all
2484         * memory.
2485         */
2486        if (!needed_count) {
2487                kfree(_data);
2488                return 0;
2489        }
2490
2491        /* Allocate everything in one chunk so there's less maintenance. */
2492        {
2493                unsigned i = 0;
2494                vla_group(d);
2495                vla_item(d, struct usb_gadget_strings *, stringtabs,
2496                        lang_count + 1);
2497                vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2498                vla_item(d, struct usb_string, strings,
2499                        lang_count*(needed_count+1));
2500
2501                char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2502
2503                if (unlikely(!vlabuf)) {
2504                        kfree(_data);
2505                        return -ENOMEM;
2506                }
2507
2508                /* Initialize the VLA pointers */
2509                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2510                t = vla_ptr(vlabuf, d, stringtab);
2511                i = lang_count;
2512                do {
2513                        *stringtabs++ = t++;
2514                } while (--i);
2515                *stringtabs = NULL;
2516
2517                /* stringtabs = vlabuf = d_stringtabs for later kfree */
2518                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2519                t = vla_ptr(vlabuf, d, stringtab);
2520                s = vla_ptr(vlabuf, d, strings);
2521        }
2522
2523        /* For each language */
2524        data += 16;
2525        len -= 16;
2526
2527        do { /* lang_count > 0 so we can use do-while */
2528                unsigned needed = needed_count;
2529
2530                if (unlikely(len < 3))
2531                        goto error_free;
2532                t->language = get_unaligned_le16(data);
2533                t->strings  = s;
2534                ++t;
2535
2536                data += 2;
2537                len -= 2;
2538
2539                /* For each string */
2540                do { /* str_count > 0 so we can use do-while */
2541                        size_t length = strnlen(data, len);
2542
2543                        if (unlikely(length == len))
2544                                goto error_free;
2545
2546                        /*
2547                         * User may provide more strings then we need,
2548                         * if that's the case we simply ignore the
2549                         * rest
2550                         */
2551                        if (likely(needed)) {
2552                                /*
2553                                 * s->id will be set while adding
2554                                 * function to configuration so for
2555                                 * now just leave garbage here.
2556                                 */
2557                                s->s = data;
2558                                --needed;
2559                                ++s;
2560                        }
2561
2562                        data += length + 1;
2563                        len -= length + 1;
2564                } while (--str_count);
2565
2566                s->id = 0;   /* terminator */
2567                s->s = NULL;
2568                ++s;
2569
2570        } while (--lang_count);
2571
2572        /* Some garbage left? */
2573        if (unlikely(len))
2574                goto error_free;
2575
2576        /* Done! */
2577        ffs->stringtabs = stringtabs;
2578        ffs->raw_strings = _data;
2579
2580        return 0;
2581
2582error_free:
2583        kfree(stringtabs);
2584error:
2585        kfree(_data);
2586        return -EINVAL;
2587}
2588
2589
2590/* Events handling and management *******************************************/
2591
2592static void __ffs_event_add(struct ffs_data *ffs,
2593                            enum usb_functionfs_event_type type)
2594{
2595        enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2596        int neg = 0;
2597
2598        /*
2599         * Abort any unhandled setup
2600         *
2601         * We do not need to worry about some cmpxchg() changing value
2602         * of ffs->setup_state without holding the lock because when
2603         * state is FFS_SETUP_PENDING cmpxchg() in several places in
2604         * the source does nothing.
2605         */
2606        if (ffs->setup_state == FFS_SETUP_PENDING)
2607                ffs->setup_state = FFS_SETUP_CANCELLED;
2608
2609        /*
2610         * Logic of this function guarantees that there are at most four pending
2611         * evens on ffs->ev.types queue.  This is important because the queue
2612         * has space for four elements only and __ffs_ep0_read_events function
2613         * depends on that limit as well.  If more event types are added, those
2614         * limits have to be revisited or guaranteed to still hold.
2615         */
2616        switch (type) {
2617        case FUNCTIONFS_RESUME:
2618                rem_type2 = FUNCTIONFS_SUSPEND;
2619                /* FALL THROUGH */
2620        case FUNCTIONFS_SUSPEND:
2621        case FUNCTIONFS_SETUP:
2622                rem_type1 = type;
2623                /* Discard all similar events */
2624                break;
2625
2626        case FUNCTIONFS_BIND:
2627        case FUNCTIONFS_UNBIND:
2628        case FUNCTIONFS_DISABLE:
2629        case FUNCTIONFS_ENABLE:
2630                /* Discard everything other then power management. */
2631                rem_type1 = FUNCTIONFS_SUSPEND;
2632                rem_type2 = FUNCTIONFS_RESUME;
2633                neg = 1;
2634                break;
2635
2636        default:
2637                WARN(1, "%d: unknown event, this should not happen\n", type);
2638                return;
2639        }
2640
2641        {
2642                u8 *ev  = ffs->ev.types, *out = ev;
2643                unsigned n = ffs->ev.count;
2644                for (; n; --n, ++ev)
2645                        if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2646                                *out++ = *ev;
2647                        else
2648                                pr_vdebug("purging event %d\n", *ev);
2649                ffs->ev.count = out - ffs->ev.types;
2650        }
2651
2652        pr_vdebug("adding event %d\n", type);
2653        ffs->ev.types[ffs->ev.count++] = type;
2654        wake_up_locked(&ffs->ev.waitq);
2655        if (ffs->ffs_eventfd)
2656                eventfd_signal(ffs->ffs_eventfd, 1);
2657}
2658
2659static void ffs_event_add(struct ffs_data *ffs,
2660                          enum usb_functionfs_event_type type)
2661{
2662        unsigned long flags;
2663        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2664        __ffs_event_add(ffs, type);
2665        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2666}
2667
2668/* Bind/unbind USB function hooks *******************************************/
2669
2670static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2671{
2672        int i;
2673
2674        for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2675                if (ffs->eps_addrmap[i] == endpoint_address)
2676                        return i;
2677        return -ENOENT;
2678}
2679
2680static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2681                                    struct usb_descriptor_header *desc,
2682                                    void *priv)
2683{
2684        struct usb_endpoint_descriptor *ds = (void *)desc;
2685        struct ffs_function *func = priv;
2686        struct ffs_ep *ffs_ep;
2687        unsigned ep_desc_id;
2688        int idx;
2689        static const char *speed_names[] = { "full", "high", "super" };
2690
2691        if (type != FFS_DESCRIPTOR)
2692                return 0;
2693
2694        /*
2695         * If ss_descriptors is not NULL, we are reading super speed
2696         * descriptors; if hs_descriptors is not NULL, we are reading high
2697         * speed descriptors; otherwise, we are reading full speed
2698         * descriptors.
2699         */
2700        if (func->function.ss_descriptors) {
2701                ep_desc_id = 2;
2702                func->function.ss_descriptors[(long)valuep] = desc;
2703        } else if (func->function.hs_descriptors) {
2704                ep_desc_id = 1;
2705                func->function.hs_descriptors[(long)valuep] = desc;
2706        } else {
2707                ep_desc_id = 0;
2708                func->function.fs_descriptors[(long)valuep]    = desc;
2709        }
2710
2711        if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2712                return 0;
2713
2714        idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2715        if (idx < 0)
2716                return idx;
2717
2718        ffs_ep = func->eps + idx;
2719
2720        if (unlikely(ffs_ep->descs[ep_desc_id])) {
2721                pr_err("two %sspeed descriptors for EP %d\n",
2722                          speed_names[ep_desc_id],
2723                          ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2724                return -EINVAL;
2725        }
2726        ffs_ep->descs[ep_desc_id] = ds;
2727
2728        ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2729        if (ffs_ep->ep) {
2730                ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2731                if (!ds->wMaxPacketSize)
2732                        ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2733        } else {
2734                struct usb_request *req;
2735                struct usb_ep *ep;
2736                u8 bEndpointAddress;
2737
2738                /*
2739                 * We back up bEndpointAddress because autoconfig overwrites
2740                 * it with physical endpoint address.
2741                 */
2742                bEndpointAddress = ds->bEndpointAddress;
2743                pr_vdebug("autoconfig\n");
2744                ep = usb_ep_autoconfig(func->gadget, ds);
2745                if (unlikely(!ep))
2746                        return -ENOTSUPP;
2747                ep->driver_data = func->eps + idx;
2748
2749                req = usb_ep_alloc_request(ep, GFP_KERNEL);
2750                if (unlikely(!req))
2751                        return -ENOMEM;
2752
2753                ffs_ep->ep  = ep;
2754                ffs_ep->req = req;
2755                func->eps_revmap[ds->bEndpointAddress &
2756                                 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2757                /*
2758                 * If we use virtual address mapping, we restore
2759                 * original bEndpointAddress value.
2760                 */
2761                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2762                        ds->bEndpointAddress = bEndpointAddress;
2763        }
2764        ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2765
2766        return 0;
2767}
2768
2769static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2770                                   struct usb_descriptor_header *desc,
2771                                   void *priv)
2772{
2773        struct ffs_function *func = priv;
2774        unsigned idx;
2775        u8 newValue;
2776
2777        switch (type) {
2778        default:
2779        case FFS_DESCRIPTOR:
2780                /* Handled in previous pass by __ffs_func_bind_do_descs() */
2781                return 0;
2782
2783        case FFS_INTERFACE:
2784                idx = *valuep;
2785                if (func->interfaces_nums[idx] < 0) {
2786                        int id = usb_interface_id(func->conf, &func->function);
2787                        if (unlikely(id < 0))
2788                                return id;
2789                        func->interfaces_nums[idx] = id;
2790                }
2791                newValue = func->interfaces_nums[idx];
2792                break;
2793
2794        case FFS_STRING:
2795                /* String' IDs are allocated when fsf_data is bound to cdev */
2796                newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2797                break;
2798
2799        case FFS_ENDPOINT:
2800                /*
2801                 * USB_DT_ENDPOINT are handled in
2802                 * __ffs_func_bind_do_descs().
2803                 */
2804                if (desc->bDescriptorType == USB_DT_ENDPOINT)
2805                        return 0;
2806
2807                idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2808                if (unlikely(!func->eps[idx].ep))
2809                        return -EINVAL;
2810
2811                {
2812                        struct usb_endpoint_descriptor **descs;
2813                        descs = func->eps[idx].descs;
2814                        newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2815                }
2816                break;
2817        }
2818
2819        pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2820        *valuep = newValue;
2821        return 0;
2822}
2823
2824static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2825                                      struct usb_os_desc_header *h, void *data,
2826                                      unsigned len, void *priv)
2827{
2828        struct ffs_function *func = priv;
2829        u8 length = 0;
2830
2831        switch (type) {
2832        case FFS_OS_DESC_EXT_COMPAT: {
2833                struct usb_ext_compat_desc *desc = data;
2834                struct usb_os_desc_table *t;
2835
2836                t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2837                t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2838                memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2839                       ARRAY_SIZE(desc->CompatibleID) +
2840                       ARRAY_SIZE(desc->SubCompatibleID));
2841                length = sizeof(*desc);
2842        }
2843                break;
2844        case FFS_OS_DESC_EXT_PROP: {
2845                struct usb_ext_prop_desc *desc = data;
2846                struct usb_os_desc_table *t;
2847                struct usb_os_desc_ext_prop *ext_prop;
2848                char *ext_prop_name;
2849                char *ext_prop_data;
2850
2851                t = &func->function.os_desc_table[h->interface];
2852                t->if_id = func->interfaces_nums[h->interface];
2853
2854                ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2855                func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2856
2857                ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2858                ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2859                ext_prop->data_len = le32_to_cpu(*(__le32 *)
2860                        usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2861                length = ext_prop->name_len + ext_prop->data_len + 14;
2862
2863                ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2864                func->ffs->ms_os_descs_ext_prop_name_avail +=
2865                        ext_prop->name_len;
2866
2867                ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2868                func->ffs->ms_os_descs_ext_prop_data_avail +=
2869                        ext_prop->data_len;
2870                memcpy(ext_prop_data,
2871                       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2872                       ext_prop->data_len);
2873                /* unicode data reported to the host as "WCHAR"s */
2874                switch (ext_prop->type) {
2875                case USB_EXT_PROP_UNICODE:
2876                case USB_EXT_PROP_UNICODE_ENV:
2877                case USB_EXT_PROP_UNICODE_LINK:
2878                case USB_EXT_PROP_UNICODE_MULTI:
2879                        ext_prop->data_len *= 2;
2880                        break;
2881                }
2882                ext_prop->data = ext_prop_data;
2883
2884                memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2885                       ext_prop->name_len);
2886                /* property name reported to the host as "WCHAR"s */
2887                ext_prop->name_len *= 2;
2888                ext_prop->name = ext_prop_name;
2889
2890                t->os_desc->ext_prop_len +=
2891                        ext_prop->name_len + ext_prop->data_len + 14;
2892                ++t->os_desc->ext_prop_count;
2893                list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2894        }
2895                break;
2896        default:
2897                pr_vdebug("unknown descriptor: %d\n", type);
2898        }
2899
2900        return length;
2901}
2902
2903static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2904                                                struct usb_configuration *c)
2905{
2906        struct ffs_function *func = ffs_func_from_usb(f);
2907        struct f_fs_opts *ffs_opts =
2908                container_of(f->fi, struct f_fs_opts, func_inst);
2909        int ret;
2910
2911        ENTER();
2912
2913        /*
2914         * Legacy gadget triggers binding in functionfs_ready_callback,
2915         * which already uses locking; taking the same lock here would
2916         * cause a deadlock.
2917         *
2918         * Configfs-enabled gadgets however do need ffs_dev_lock.
2919         */
2920        if (!ffs_opts->no_configfs)
2921                ffs_dev_lock();
2922        ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2923        func->ffs = ffs_opts->dev->ffs_data;
2924        if (!ffs_opts->no_configfs)
2925                ffs_dev_unlock();
2926        if (ret)
2927                return ERR_PTR(ret);
2928
2929        func->conf = c;
2930        func->gadget = c->cdev->gadget;
2931
2932        /*
2933         * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2934         * configurations are bound in sequence with list_for_each_entry,
2935         * in each configuration its functions are bound in sequence
2936         * with list_for_each_entry, so we assume no race condition
2937         * with regard to ffs_opts->bound access
2938         */
2939        if (!ffs_opts->refcnt) {
2940                ret = functionfs_bind(func->ffs, c->cdev);
2941                if (ret)
2942                        return ERR_PTR(ret);
2943        }
2944        ffs_opts->refcnt++;
2945        func->function.strings = func->ffs->stringtabs;
2946
2947        return ffs_opts;
2948}
2949
2950static int _ffs_func_bind(struct usb_configuration *c,
2951                          struct usb_function *f)
2952{
2953        struct ffs_function *func = ffs_func_from_usb(f);
2954        struct ffs_data *ffs = func->ffs;
2955
2956        const int full = !!func->ffs->fs_descs_count;
2957        const int high = !!func->ffs->hs_descs_count;
2958        const int super = !!func->ffs->ss_descs_count;
2959
2960        int fs_len, hs_len, ss_len, ret, i;
2961        struct ffs_ep *eps_ptr;
2962
2963        /* Make it a single chunk, less management later on */
2964        vla_group(d);
2965        vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2966        vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2967                full ? ffs->fs_descs_count + 1 : 0);
2968        vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2969                high ? ffs->hs_descs_count + 1 : 0);
2970        vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2971                super ? ffs->ss_descs_count + 1 : 0);
2972        vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2973        vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2974                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2975        vla_item_with_sz(d, char[16], ext_compat,
2976                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2977        vla_item_with_sz(d, struct usb_os_desc, os_desc,
2978                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2979        vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2980                         ffs->ms_os_descs_ext_prop_count);
2981        vla_item_with_sz(d, char, ext_prop_name,
2982                         ffs->ms_os_descs_ext_prop_name_len);
2983        vla_item_with_sz(d, char, ext_prop_data,
2984                         ffs->ms_os_descs_ext_prop_data_len);
2985        vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2986        char *vlabuf;
2987
2988        ENTER();
2989
2990        /* Has descriptors only for speeds gadget does not support */
2991        if (unlikely(!(full | high | super)))
2992                return -ENOTSUPP;
2993
2994        /* Allocate a single chunk, less management later on */
2995        vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2996        if (unlikely(!vlabuf))
2997                return -ENOMEM;
2998
2999        ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3000        ffs->ms_os_descs_ext_prop_name_avail =
3001                vla_ptr(vlabuf, d, ext_prop_name);
3002        ffs->ms_os_descs_ext_prop_data_avail =
3003                vla_ptr(vlabuf, d, ext_prop_data);
3004
3005        /* Copy descriptors  */
3006        memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3007               ffs->raw_descs_length);
3008
3009        memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3010        eps_ptr = vla_ptr(vlabuf, d, eps);
3011        for (i = 0; i < ffs->eps_count; i++)
3012                eps_ptr[i].num = -1;
3013
3014        /* Save pointers
3015         * d_eps == vlabuf, func->eps used to kfree vlabuf later
3016        */
3017        func->eps             = vla_ptr(vlabuf, d, eps);
3018        func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3019
3020        /*
3021         * Go through all the endpoint descriptors and allocate
3022         * endpoints first, so that later we can rewrite the endpoint
3023         * numbers without worrying that it may be described later on.
3024         */
3025        if (likely(full)) {
3026                func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3027                fs_len = ffs_do_descs(ffs->fs_descs_count,
3028                                      vla_ptr(vlabuf, d, raw_descs),
3029                                      d_raw_descs__sz,
3030                                      __ffs_func_bind_do_descs, func);
3031                if (unlikely(fs_len < 0)) {
3032                        ret = fs_len;
3033                        goto error;
3034                }
3035        } else {
3036                fs_len = 0;
3037        }
3038
3039        if (likely(high)) {
3040                func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3041                hs_len = ffs_do_descs(ffs->hs_descs_count,
3042                                      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3043                                      d_raw_descs__sz - fs_len,
3044                                      __ffs_func_bind_do_descs, func);
3045                if (unlikely(hs_len < 0)) {
3046                        ret = hs_len;
3047                        goto error;
3048                }
3049        } else {
3050                hs_len = 0;
3051        }
3052
3053        if (likely(super)) {
3054                func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3055                ss_len = ffs_do_descs(ffs->ss_descs_count,
3056                                vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3057                                d_raw_descs__sz - fs_len - hs_len,
3058                                __ffs_func_bind_do_descs, func);
3059                if (unlikely(ss_len < 0)) {
3060                        ret = ss_len;
3061                        goto error;
3062                }
3063        } else {
3064                ss_len = 0;
3065        }
3066
3067        /*
3068         * Now handle interface numbers allocation and interface and
3069         * endpoint numbers rewriting.  We can do that in one go
3070         * now.
3071         */
3072        ret = ffs_do_descs(ffs->fs_descs_count +
3073                           (high ? ffs->hs_descs_count : 0) +
3074                           (super ? ffs->ss_descs_count : 0),
3075                           vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3076                           __ffs_func_bind_do_nums, func);
3077        if (unlikely(ret < 0))
3078                goto error;
3079
3080        func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3081        if (c->cdev->use_os_string) {
3082                for (i = 0; i < ffs->interfaces_count; ++i) {
3083                        struct usb_os_desc *desc;
3084
3085                        desc = func->function.os_desc_table[i].os_desc =
3086                                vla_ptr(vlabuf, d, os_desc) +
3087                                i * sizeof(struct usb_os_desc);
3088                        desc->ext_compat_id =
3089                                vla_ptr(vlabuf, d, ext_compat) + i * 16;
3090                        INIT_LIST_HEAD(&desc->ext_prop);
3091                }
3092                ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3093                                      vla_ptr(vlabuf, d, raw_descs) +
3094                                      fs_len + hs_len + ss_len,
3095                                      d_raw_descs__sz - fs_len - hs_len -
3096                                      ss_len,
3097                                      __ffs_func_bind_do_os_desc, func);
3098                if (unlikely(ret < 0))
3099                        goto error;
3100        }
3101        func->function.os_desc_n =
3102                c->cdev->use_os_string ? ffs->interfaces_count : 0;
3103
3104        /* And we're done */
3105        ffs_event_add(ffs, FUNCTIONFS_BIND);
3106        return 0;
3107
3108error:
3109        /* XXX Do we need to release all claimed endpoints here? */
3110        return ret;
3111}
3112
3113static int ffs_func_bind(struct usb_configuration *c,
3114                         struct usb_function *f)
3115{
3116        struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3117        struct ffs_function *func = ffs_func_from_usb(f);
3118        int ret;
3119
3120        if (IS_ERR(ffs_opts))
3121                return PTR_ERR(ffs_opts);
3122
3123        ret = _ffs_func_bind(c, f);
3124        if (ret && !--ffs_opts->refcnt)
3125                functionfs_unbind(func->ffs);
3126
3127        return ret;
3128}
3129
3130
3131/* Other USB function hooks *************************************************/
3132
3133static void ffs_reset_work(struct work_struct *work)
3134{
3135        struct ffs_data *ffs = container_of(work,
3136                struct ffs_data, reset_work);
3137        ffs_data_reset(ffs);
3138}
3139
3140static int ffs_func_set_alt(struct usb_function *f,
3141                            unsigned interface, unsigned alt)
3142{
3143        struct ffs_function *func = ffs_func_from_usb(f);
3144        struct ffs_data *ffs = func->ffs;
3145        int ret = 0, intf;
3146
3147        if (alt != (unsigned)-1) {
3148                intf = ffs_func_revmap_intf(func, interface);
3149                if (unlikely(intf < 0))
3150                        return intf;
3151        }
3152
3153        if (ffs->func)
3154                ffs_func_eps_disable(ffs->func);
3155
3156        if (ffs->state == FFS_DEACTIVATED) {
3157                ffs->state = FFS_CLOSING;
3158                INIT_WORK(&ffs->reset_work, ffs_reset_work);
3159                schedule_work(&ffs->reset_work);
3160                return -ENODEV;
3161        }
3162
3163        if (ffs->state != FFS_ACTIVE)
3164                return -ENODEV;
3165
3166        if (alt == (unsigned)-1) {
3167                ffs->func = NULL;
3168                ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3169                return 0;
3170        }
3171
3172        ffs->func = func;
3173        ret = ffs_func_eps_enable(func);
3174        if (likely(ret >= 0))
3175                ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3176        return ret;
3177}
3178
3179static void ffs_func_disable(struct usb_function *f)
3180{
3181        ffs_func_set_alt(f, 0, (unsigned)-1);
3182}
3183
3184static int ffs_func_setup(struct usb_function *f,
3185                          const struct usb_ctrlrequest *creq)
3186{
3187        struct ffs_function *func = ffs_func_from_usb(f);
3188        struct ffs_data *ffs = func->ffs;
3189        unsigned long flags;
3190        int ret;
3191
3192        ENTER();
3193
3194        pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3195        pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3196        pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3197        pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3198        pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3199
3200        /*
3201         * Most requests directed to interface go through here
3202         * (notable exceptions are set/get interface) so we need to
3203         * handle them.  All other either handled by composite or
3204         * passed to usb_configuration->setup() (if one is set).  No
3205         * matter, we will handle requests directed to endpoint here
3206         * as well (as it's straightforward).  Other request recipient
3207         * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3208         * is being used.
3209         */
3210        if (ffs->state != FFS_ACTIVE)
3211                return -ENODEV;
3212
3213        switch (creq->bRequestType & USB_RECIP_MASK) {
3214        case USB_RECIP_INTERFACE:
3215                ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3216                if (unlikely(ret < 0))
3217                        return ret;
3218                break;
3219
3220        case USB_RECIP_ENDPOINT:
3221                ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3222                if (unlikely(ret < 0))
3223                        return ret;
3224                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3225                        ret = func->ffs->eps_addrmap[ret];
3226                break;
3227
3228        default:
3229                if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3230                        ret = le16_to_cpu(creq->wIndex);
3231                else
3232                        return -EOPNOTSUPP;
3233        }
3234
3235        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3236        ffs->ev.setup = *creq;
3237        ffs->ev.setup.wIndex = cpu_to_le16(ret);
3238        __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3239        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3240
3241        return 0;
3242}
3243
3244static bool ffs_func_req_match(struct usb_function *f,
3245                               const struct usb_ctrlrequest *creq,
3246                               bool config0)
3247{
3248        struct ffs_function *func = ffs_func_from_usb(f);
3249
3250        if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3251                return false;
3252
3253        switch (creq->bRequestType & USB_RECIP_MASK) {
3254        case USB_RECIP_INTERFACE:
3255                return (ffs_func_revmap_intf(func,
3256                                             le16_to_cpu(creq->wIndex)) >= 0);
3257        case USB_RECIP_ENDPOINT:
3258                return (ffs_func_revmap_ep(func,
3259                                           le16_to_cpu(creq->wIndex)) >= 0);
3260        default:
3261                return (bool) (func->ffs->user_flags &
3262                               FUNCTIONFS_ALL_CTRL_RECIP);
3263        }
3264}
3265
3266static void ffs_func_suspend(struct usb_function *f)
3267{
3268        ENTER();
3269        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3270}
3271
3272static void ffs_func_resume(struct usb_function *f)
3273{
3274        ENTER();
3275        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3276}
3277
3278
3279/* Endpoint and interface numbers reverse mapping ***************************/
3280
3281static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3282{
3283        num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3284        return num ? num : -EDOM;
3285}
3286
3287static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3288{
3289        short *nums = func->interfaces_nums;
3290        unsigned count = func->ffs->interfaces_count;
3291
3292        for (; count; --count, ++nums) {
3293                if (*nums >= 0 && *nums == intf)
3294                        return nums - func->interfaces_nums;
3295        }
3296
3297        return -EDOM;
3298}
3299
3300
3301/* Devices management *******************************************************/
3302
3303static LIST_HEAD(ffs_devices);
3304
3305static struct ffs_dev *_ffs_do_find_dev(const char *name)
3306{
3307        struct ffs_dev *dev;
3308
3309        if (!name)
3310                return NULL;
3311
3312        list_for_each_entry(dev, &ffs_devices, entry) {
3313                if (strcmp(dev->name, name) == 0)
3314                        return dev;
3315        }
3316
3317        return NULL;
3318}
3319
3320/*
3321 * ffs_lock must be taken by the caller of this function
3322 */
3323static struct ffs_dev *_ffs_get_single_dev(void)
3324{
3325        struct ffs_dev *dev;
3326
3327        if (list_is_singular(&ffs_devices)) {
3328                dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3329                if (dev->single)
3330                        return dev;
3331        }
3332
3333        return NULL;
3334}
3335
3336/*
3337 * ffs_lock must be taken by the caller of this function
3338 */
3339static struct ffs_dev *_ffs_find_dev(const char *name)
3340{
3341        struct ffs_dev *dev;
3342
3343        dev = _ffs_get_single_dev();
3344        if (dev)
3345                return dev;
3346
3347        return _ffs_do_find_dev(name);
3348}
3349
3350/* Configfs support *********************************************************/
3351
3352static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3353{
3354        return container_of(to_config_group(item), struct f_fs_opts,
3355                            func_inst.group);
3356}
3357
3358static void ffs_attr_release(struct config_item *item)
3359{
3360        struct f_fs_opts *opts = to_ffs_opts(item);
3361
3362        usb_put_function_instance(&opts->func_inst);
3363}
3364
3365static struct configfs_item_operations ffs_item_ops = {
3366        .release        = ffs_attr_release,
3367};
3368
3369static const struct config_item_type ffs_func_type = {
3370        .ct_item_ops    = &ffs_item_ops,
3371        .ct_owner       = THIS_MODULE,
3372};
3373
3374
3375/* Function registration interface ******************************************/
3376
3377static void ffs_free_inst(struct usb_function_instance *f)
3378{
3379        struct f_fs_opts *opts;
3380
3381        opts = to_f_fs_opts(f);
3382        ffs_dev_lock();
3383        _ffs_free_dev(opts->dev);
3384        ffs_dev_unlock();
3385        kfree(opts);
3386}
3387
3388static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3389{
3390        if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3391                return -ENAMETOOLONG;
3392        return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3393}
3394
3395static struct usb_function_instance *ffs_alloc_inst(void)
3396{
3397        struct f_fs_opts *opts;
3398        struct ffs_dev *dev;
3399
3400        opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3401        if (!opts)
3402                return ERR_PTR(-ENOMEM);
3403
3404        opts->func_inst.set_inst_name = ffs_set_inst_name;
3405        opts->func_inst.free_func_inst = ffs_free_inst;
3406        ffs_dev_lock();
3407        dev = _ffs_alloc_dev();
3408        ffs_dev_unlock();
3409        if (IS_ERR(dev)) {
3410                kfree(opts);
3411                return ERR_CAST(dev);
3412        }
3413        opts->dev = dev;
3414        dev->opts = opts;
3415
3416        config_group_init_type_name(&opts->func_inst.group, "",
3417                                    &ffs_func_type);
3418        return &opts->func_inst;
3419}
3420
3421static void ffs_free(struct usb_function *f)
3422{
3423        kfree(ffs_func_from_usb(f));
3424}
3425
3426static void ffs_func_unbind(struct usb_configuration *c,
3427                            struct usb_function *f)
3428{
3429        struct ffs_function *func = ffs_func_from_usb(f);
3430        struct ffs_data *ffs = func->ffs;
3431        struct f_fs_opts *opts =
3432                container_of(f->fi, struct f_fs_opts, func_inst);
3433        struct ffs_ep *ep = func->eps;
3434        unsigned count = ffs->eps_count;
3435        unsigned long flags;
3436
3437        ENTER();
3438        if (ffs->func == func) {
3439                ffs_func_eps_disable(func);
3440                ffs->func = NULL;
3441        }
3442
3443        if (!--opts->refcnt)
3444                functionfs_unbind(ffs);
3445
3446        /* cleanup after autoconfig */
3447        spin_lock_irqsave(&func->ffs->eps_lock, flags);
3448        while (count--) {
3449                if (ep->ep && ep->req)
3450                        usb_ep_free_request(ep->ep, ep->req);
3451                ep->req = NULL;
3452                ++ep;
3453        }
3454        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3455        kfree(func->eps);
3456        func->eps = NULL;
3457        /*
3458         * eps, descriptors and interfaces_nums are allocated in the
3459         * same chunk so only one free is required.
3460         */
3461        func->function.fs_descriptors = NULL;
3462        func->function.hs_descriptors = NULL;
3463        func->function.ss_descriptors = NULL;
3464        func->interfaces_nums = NULL;
3465
3466        ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3467}
3468
3469static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3470{
3471        struct ffs_function *func;
3472
3473        ENTER();
3474
3475        func = kzalloc(sizeof(*func), GFP_KERNEL);
3476        if (unlikely(!func))
3477                return ERR_PTR(-ENOMEM);
3478
3479        func->function.name    = "Function FS Gadget";
3480
3481        func->function.bind    = ffs_func_bind;
3482        func->function.unbind  = ffs_func_unbind;
3483        func->function.set_alt = ffs_func_set_alt;
3484        func->function.disable = ffs_func_disable;
3485        func->function.setup   = ffs_func_setup;
3486        func->function.req_match = ffs_func_req_match;
3487        func->function.suspend = ffs_func_suspend;
3488        func->function.resume  = ffs_func_resume;
3489        func->function.free_func = ffs_free;
3490
3491        return &func->function;
3492}
3493
3494/*
3495 * ffs_lock must be taken by the caller of this function
3496 */
3497static struct ffs_dev *_ffs_alloc_dev(void)
3498{
3499        struct ffs_dev *dev;
3500        int ret;
3501
3502        if (_ffs_get_single_dev())
3503                        return ERR_PTR(-EBUSY);
3504
3505        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3506        if (!dev)
3507                return ERR_PTR(-ENOMEM);
3508
3509        if (list_empty(&ffs_devices)) {
3510                ret = functionfs_init();
3511                if (ret) {
3512                        kfree(dev);
3513                        return ERR_PTR(ret);
3514                }
3515        }
3516
3517        list_add(&dev->entry, &ffs_devices);
3518
3519        return dev;
3520}
3521
3522int ffs_name_dev(struct ffs_dev *dev, const char *name)
3523{
3524        struct ffs_dev *existing;
3525        int ret = 0;
3526
3527        ffs_dev_lock();
3528
3529        existing = _ffs_do_find_dev(name);
3530        if (!existing)
3531                strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3532        else if (existing != dev)
3533                ret = -EBUSY;
3534
3535        ffs_dev_unlock();
3536
3537        return ret;
3538}
3539EXPORT_SYMBOL_GPL(ffs_name_dev);
3540
3541int ffs_single_dev(struct ffs_dev *dev)
3542{
3543        int ret;
3544
3545        ret = 0;
3546        ffs_dev_lock();
3547
3548        if (!list_is_singular(&ffs_devices))
3549                ret = -EBUSY;
3550        else
3551                dev->single = true;
3552
3553        ffs_dev_unlock();
3554        return ret;
3555}
3556EXPORT_SYMBOL_GPL(ffs_single_dev);
3557
3558/*
3559 * ffs_lock must be taken by the caller of this function
3560 */
3561static void _ffs_free_dev(struct ffs_dev *dev)
3562{
3563        list_del(&dev->entry);
3564
3565        /* Clear the private_data pointer to stop incorrect dev access */
3566        if (dev->ffs_data)
3567                dev->ffs_data->private_data = NULL;
3568
3569        kfree(dev);
3570        if (list_empty(&ffs_devices))
3571                functionfs_cleanup();
3572}
3573
3574static void *ffs_acquire_dev(const char *dev_name)
3575{
3576        struct ffs_dev *ffs_dev;
3577
3578        ENTER();
3579        ffs_dev_lock();
3580
3581        ffs_dev = _ffs_find_dev(dev_name);
3582        if (!ffs_dev)
3583                ffs_dev = ERR_PTR(-ENOENT);
3584        else if (ffs_dev->mounted)
3585                ffs_dev = ERR_PTR(-EBUSY);
3586        else if (ffs_dev->ffs_acquire_dev_callback &&
3587            ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3588                ffs_dev = ERR_PTR(-ENOENT);
3589        else
3590                ffs_dev->mounted = true;
3591
3592        ffs_dev_unlock();
3593        return ffs_dev;
3594}
3595
3596static void ffs_release_dev(struct ffs_data *ffs_data)
3597{
3598        struct ffs_dev *ffs_dev;
3599
3600        ENTER();
3601        ffs_dev_lock();
3602
3603        ffs_dev = ffs_data->private_data;
3604        if (ffs_dev) {
3605                ffs_dev->mounted = false;
3606
3607                if (ffs_dev->ffs_release_dev_callback)
3608                        ffs_dev->ffs_release_dev_callback(ffs_dev);
3609        }
3610
3611        ffs_dev_unlock();
3612}
3613
3614static int ffs_ready(struct ffs_data *ffs)
3615{
3616        struct ffs_dev *ffs_obj;
3617        int ret = 0;
3618
3619        ENTER();
3620        ffs_dev_lock();
3621
3622        ffs_obj = ffs->private_data;
3623        if (!ffs_obj) {
3624                ret = -EINVAL;
3625                goto done;
3626        }
3627        if (WARN_ON(ffs_obj->desc_ready)) {
3628                ret = -EBUSY;
3629                goto done;
3630        }
3631
3632        ffs_obj->desc_ready = true;
3633        ffs_obj->ffs_data = ffs;
3634
3635        if (ffs_obj->ffs_ready_callback) {
3636                ret = ffs_obj->ffs_ready_callback(ffs);
3637                if (ret)
3638                        goto done;
3639        }
3640
3641        set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3642done:
3643        ffs_dev_unlock();
3644        return ret;
3645}
3646
3647static void ffs_closed(struct ffs_data *ffs)
3648{
3649        struct ffs_dev *ffs_obj;
3650        struct f_fs_opts *opts;
3651        struct config_item *ci;
3652
3653        ENTER();
3654        ffs_dev_lock();
3655
3656        ffs_obj = ffs->private_data;
3657        if (!ffs_obj)
3658                goto done;
3659
3660        ffs_obj->desc_ready = false;
3661        ffs_obj->ffs_data = NULL;
3662
3663        if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3664            ffs_obj->ffs_closed_callback)
3665                ffs_obj->ffs_closed_callback(ffs);
3666
3667        if (ffs_obj->opts)
3668                opts = ffs_obj->opts;
3669        else
3670                goto done;
3671
3672        if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3673            || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3674                goto done;
3675
3676        ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3677        ffs_dev_unlock();
3678
3679        if (test_bit(FFS_FL_BOUND, &ffs->flags))
3680                unregister_gadget_item(ci);
3681        return;
3682done:
3683        ffs_dev_unlock();
3684}
3685
3686/* Misc helper functions ****************************************************/
3687
3688static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3689{
3690        return nonblock
3691                ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3692                : mutex_lock_interruptible(mutex);
3693}
3694
3695static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3696{
3697        char *data;
3698
3699        if (unlikely(!len))
3700                return NULL;
3701
3702        data = kmalloc(len, GFP_KERNEL);
3703        if (unlikely(!data))
3704                return ERR_PTR(-ENOMEM);
3705
3706        if (unlikely(copy_from_user(data, buf, len))) {
3707                kfree(data);
3708                return ERR_PTR(-EFAULT);
3709        }
3710
3711        pr_vdebug("Buffer from user space:\n");
3712        ffs_dump_mem("", data, len);
3713
3714        return data;
3715}
3716
3717DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3718MODULE_LICENSE("GPL");
3719MODULE_AUTHOR("Michal Nazarewicz");
3720