linux/fs/btrfs/file.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/compat.h>
  31#include <linux/slab.h>
  32#include <linux/btrfs.h>
  33#include <linux/uio.h>
  34#include <linux/iversion.h>
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "print-tree.h"
  40#include "tree-log.h"
  41#include "locking.h"
  42#include "volumes.h"
  43#include "qgroup.h"
  44#include "compression.h"
  45
  46static struct kmem_cache *btrfs_inode_defrag_cachep;
  47/*
  48 * when auto defrag is enabled we
  49 * queue up these defrag structs to remember which
  50 * inodes need defragging passes
  51 */
  52struct inode_defrag {
  53        struct rb_node rb_node;
  54        /* objectid */
  55        u64 ino;
  56        /*
  57         * transid where the defrag was added, we search for
  58         * extents newer than this
  59         */
  60        u64 transid;
  61
  62        /* root objectid */
  63        u64 root;
  64
  65        /* last offset we were able to defrag */
  66        u64 last_offset;
  67
  68        /* if we've wrapped around back to zero once already */
  69        int cycled;
  70};
  71
  72static int __compare_inode_defrag(struct inode_defrag *defrag1,
  73                                  struct inode_defrag *defrag2)
  74{
  75        if (defrag1->root > defrag2->root)
  76                return 1;
  77        else if (defrag1->root < defrag2->root)
  78                return -1;
  79        else if (defrag1->ino > defrag2->ino)
  80                return 1;
  81        else if (defrag1->ino < defrag2->ino)
  82                return -1;
  83        else
  84                return 0;
  85}
  86
  87/* pop a record for an inode into the defrag tree.  The lock
  88 * must be held already
  89 *
  90 * If you're inserting a record for an older transid than an
  91 * existing record, the transid already in the tree is lowered
  92 *
  93 * If an existing record is found the defrag item you
  94 * pass in is freed
  95 */
  96static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  97                                    struct inode_defrag *defrag)
  98{
  99        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 100        struct inode_defrag *entry;
 101        struct rb_node **p;
 102        struct rb_node *parent = NULL;
 103        int ret;
 104
 105        p = &fs_info->defrag_inodes.rb_node;
 106        while (*p) {
 107                parent = *p;
 108                entry = rb_entry(parent, struct inode_defrag, rb_node);
 109
 110                ret = __compare_inode_defrag(defrag, entry);
 111                if (ret < 0)
 112                        p = &parent->rb_left;
 113                else if (ret > 0)
 114                        p = &parent->rb_right;
 115                else {
 116                        /* if we're reinserting an entry for
 117                         * an old defrag run, make sure to
 118                         * lower the transid of our existing record
 119                         */
 120                        if (defrag->transid < entry->transid)
 121                                entry->transid = defrag->transid;
 122                        if (defrag->last_offset > entry->last_offset)
 123                                entry->last_offset = defrag->last_offset;
 124                        return -EEXIST;
 125                }
 126        }
 127        set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 128        rb_link_node(&defrag->rb_node, parent, p);
 129        rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 130        return 0;
 131}
 132
 133static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 134{
 135        if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 136                return 0;
 137
 138        if (btrfs_fs_closing(fs_info))
 139                return 0;
 140
 141        return 1;
 142}
 143
 144/*
 145 * insert a defrag record for this inode if auto defrag is
 146 * enabled
 147 */
 148int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 149                           struct btrfs_inode *inode)
 150{
 151        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 152        struct btrfs_root *root = inode->root;
 153        struct inode_defrag *defrag;
 154        u64 transid;
 155        int ret;
 156
 157        if (!__need_auto_defrag(fs_info))
 158                return 0;
 159
 160        if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 161                return 0;
 162
 163        if (trans)
 164                transid = trans->transid;
 165        else
 166                transid = inode->root->last_trans;
 167
 168        defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 169        if (!defrag)
 170                return -ENOMEM;
 171
 172        defrag->ino = btrfs_ino(inode);
 173        defrag->transid = transid;
 174        defrag->root = root->root_key.objectid;
 175
 176        spin_lock(&fs_info->defrag_inodes_lock);
 177        if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 178                /*
 179                 * If we set IN_DEFRAG flag and evict the inode from memory,
 180                 * and then re-read this inode, this new inode doesn't have
 181                 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 182                 */
 183                ret = __btrfs_add_inode_defrag(inode, defrag);
 184                if (ret)
 185                        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 186        } else {
 187                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 188        }
 189        spin_unlock(&fs_info->defrag_inodes_lock);
 190        return 0;
 191}
 192
 193/*
 194 * Requeue the defrag object. If there is a defrag object that points to
 195 * the same inode in the tree, we will merge them together (by
 196 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 197 */
 198static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 199                                       struct inode_defrag *defrag)
 200{
 201        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 202        int ret;
 203
 204        if (!__need_auto_defrag(fs_info))
 205                goto out;
 206
 207        /*
 208         * Here we don't check the IN_DEFRAG flag, because we need merge
 209         * them together.
 210         */
 211        spin_lock(&fs_info->defrag_inodes_lock);
 212        ret = __btrfs_add_inode_defrag(inode, defrag);
 213        spin_unlock(&fs_info->defrag_inodes_lock);
 214        if (ret)
 215                goto out;
 216        return;
 217out:
 218        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 219}
 220
 221/*
 222 * pick the defragable inode that we want, if it doesn't exist, we will get
 223 * the next one.
 224 */
 225static struct inode_defrag *
 226btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 227{
 228        struct inode_defrag *entry = NULL;
 229        struct inode_defrag tmp;
 230        struct rb_node *p;
 231        struct rb_node *parent = NULL;
 232        int ret;
 233
 234        tmp.ino = ino;
 235        tmp.root = root;
 236
 237        spin_lock(&fs_info->defrag_inodes_lock);
 238        p = fs_info->defrag_inodes.rb_node;
 239        while (p) {
 240                parent = p;
 241                entry = rb_entry(parent, struct inode_defrag, rb_node);
 242
 243                ret = __compare_inode_defrag(&tmp, entry);
 244                if (ret < 0)
 245                        p = parent->rb_left;
 246                else if (ret > 0)
 247                        p = parent->rb_right;
 248                else
 249                        goto out;
 250        }
 251
 252        if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 253                parent = rb_next(parent);
 254                if (parent)
 255                        entry = rb_entry(parent, struct inode_defrag, rb_node);
 256                else
 257                        entry = NULL;
 258        }
 259out:
 260        if (entry)
 261                rb_erase(parent, &fs_info->defrag_inodes);
 262        spin_unlock(&fs_info->defrag_inodes_lock);
 263        return entry;
 264}
 265
 266void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 267{
 268        struct inode_defrag *defrag;
 269        struct rb_node *node;
 270
 271        spin_lock(&fs_info->defrag_inodes_lock);
 272        node = rb_first(&fs_info->defrag_inodes);
 273        while (node) {
 274                rb_erase(node, &fs_info->defrag_inodes);
 275                defrag = rb_entry(node, struct inode_defrag, rb_node);
 276                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 277
 278                cond_resched_lock(&fs_info->defrag_inodes_lock);
 279
 280                node = rb_first(&fs_info->defrag_inodes);
 281        }
 282        spin_unlock(&fs_info->defrag_inodes_lock);
 283}
 284
 285#define BTRFS_DEFRAG_BATCH      1024
 286
 287static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 288                                    struct inode_defrag *defrag)
 289{
 290        struct btrfs_root *inode_root;
 291        struct inode *inode;
 292        struct btrfs_key key;
 293        struct btrfs_ioctl_defrag_range_args range;
 294        int num_defrag;
 295        int index;
 296        int ret;
 297
 298        /* get the inode */
 299        key.objectid = defrag->root;
 300        key.type = BTRFS_ROOT_ITEM_KEY;
 301        key.offset = (u64)-1;
 302
 303        index = srcu_read_lock(&fs_info->subvol_srcu);
 304
 305        inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 306        if (IS_ERR(inode_root)) {
 307                ret = PTR_ERR(inode_root);
 308                goto cleanup;
 309        }
 310
 311        key.objectid = defrag->ino;
 312        key.type = BTRFS_INODE_ITEM_KEY;
 313        key.offset = 0;
 314        inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 315        if (IS_ERR(inode)) {
 316                ret = PTR_ERR(inode);
 317                goto cleanup;
 318        }
 319        srcu_read_unlock(&fs_info->subvol_srcu, index);
 320
 321        /* do a chunk of defrag */
 322        clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 323        memset(&range, 0, sizeof(range));
 324        range.len = (u64)-1;
 325        range.start = defrag->last_offset;
 326
 327        sb_start_write(fs_info->sb);
 328        num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 329                                       BTRFS_DEFRAG_BATCH);
 330        sb_end_write(fs_info->sb);
 331        /*
 332         * if we filled the whole defrag batch, there
 333         * must be more work to do.  Queue this defrag
 334         * again
 335         */
 336        if (num_defrag == BTRFS_DEFRAG_BATCH) {
 337                defrag->last_offset = range.start;
 338                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 339        } else if (defrag->last_offset && !defrag->cycled) {
 340                /*
 341                 * we didn't fill our defrag batch, but
 342                 * we didn't start at zero.  Make sure we loop
 343                 * around to the start of the file.
 344                 */
 345                defrag->last_offset = 0;
 346                defrag->cycled = 1;
 347                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 348        } else {
 349                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 350        }
 351
 352        iput(inode);
 353        return 0;
 354cleanup:
 355        srcu_read_unlock(&fs_info->subvol_srcu, index);
 356        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 357        return ret;
 358}
 359
 360/*
 361 * run through the list of inodes in the FS that need
 362 * defragging
 363 */
 364int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 365{
 366        struct inode_defrag *defrag;
 367        u64 first_ino = 0;
 368        u64 root_objectid = 0;
 369
 370        atomic_inc(&fs_info->defrag_running);
 371        while (1) {
 372                /* Pause the auto defragger. */
 373                if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 374                             &fs_info->fs_state))
 375                        break;
 376
 377                if (!__need_auto_defrag(fs_info))
 378                        break;
 379
 380                /* find an inode to defrag */
 381                defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 382                                                 first_ino);
 383                if (!defrag) {
 384                        if (root_objectid || first_ino) {
 385                                root_objectid = 0;
 386                                first_ino = 0;
 387                                continue;
 388                        } else {
 389                                break;
 390                        }
 391                }
 392
 393                first_ino = defrag->ino + 1;
 394                root_objectid = defrag->root;
 395
 396                __btrfs_run_defrag_inode(fs_info, defrag);
 397        }
 398        atomic_dec(&fs_info->defrag_running);
 399
 400        /*
 401         * during unmount, we use the transaction_wait queue to
 402         * wait for the defragger to stop
 403         */
 404        wake_up(&fs_info->transaction_wait);
 405        return 0;
 406}
 407
 408/* simple helper to fault in pages and copy.  This should go away
 409 * and be replaced with calls into generic code.
 410 */
 411static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 412                                         struct page **prepared_pages,
 413                                         struct iov_iter *i)
 414{
 415        size_t copied = 0;
 416        size_t total_copied = 0;
 417        int pg = 0;
 418        int offset = pos & (PAGE_SIZE - 1);
 419
 420        while (write_bytes > 0) {
 421                size_t count = min_t(size_t,
 422                                     PAGE_SIZE - offset, write_bytes);
 423                struct page *page = prepared_pages[pg];
 424                /*
 425                 * Copy data from userspace to the current page
 426                 */
 427                copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 428
 429                /* Flush processor's dcache for this page */
 430                flush_dcache_page(page);
 431
 432                /*
 433                 * if we get a partial write, we can end up with
 434                 * partially up to date pages.  These add
 435                 * a lot of complexity, so make sure they don't
 436                 * happen by forcing this copy to be retried.
 437                 *
 438                 * The rest of the btrfs_file_write code will fall
 439                 * back to page at a time copies after we return 0.
 440                 */
 441                if (!PageUptodate(page) && copied < count)
 442                        copied = 0;
 443
 444                iov_iter_advance(i, copied);
 445                write_bytes -= copied;
 446                total_copied += copied;
 447
 448                /* Return to btrfs_file_write_iter to fault page */
 449                if (unlikely(copied == 0))
 450                        break;
 451
 452                if (copied < PAGE_SIZE - offset) {
 453                        offset += copied;
 454                } else {
 455                        pg++;
 456                        offset = 0;
 457                }
 458        }
 459        return total_copied;
 460}
 461
 462/*
 463 * unlocks pages after btrfs_file_write is done with them
 464 */
 465static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 466{
 467        size_t i;
 468        for (i = 0; i < num_pages; i++) {
 469                /* page checked is some magic around finding pages that
 470                 * have been modified without going through btrfs_set_page_dirty
 471                 * clear it here. There should be no need to mark the pages
 472                 * accessed as prepare_pages should have marked them accessed
 473                 * in prepare_pages via find_or_create_page()
 474                 */
 475                ClearPageChecked(pages[i]);
 476                unlock_page(pages[i]);
 477                put_page(pages[i]);
 478        }
 479}
 480
 481static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
 482                                         const u64 start,
 483                                         const u64 len,
 484                                         struct extent_state **cached_state)
 485{
 486        u64 search_start = start;
 487        const u64 end = start + len - 1;
 488
 489        while (search_start < end) {
 490                const u64 search_len = end - search_start + 1;
 491                struct extent_map *em;
 492                u64 em_len;
 493                int ret = 0;
 494
 495                em = btrfs_get_extent(inode, NULL, 0, search_start,
 496                                      search_len, 0);
 497                if (IS_ERR(em))
 498                        return PTR_ERR(em);
 499
 500                if (em->block_start != EXTENT_MAP_HOLE)
 501                        goto next;
 502
 503                em_len = em->len;
 504                if (em->start < search_start)
 505                        em_len -= search_start - em->start;
 506                if (em_len > search_len)
 507                        em_len = search_len;
 508
 509                ret = set_extent_bit(&inode->io_tree, search_start,
 510                                     search_start + em_len - 1,
 511                                     EXTENT_DELALLOC_NEW,
 512                                     NULL, cached_state, GFP_NOFS);
 513next:
 514                search_start = extent_map_end(em);
 515                free_extent_map(em);
 516                if (ret)
 517                        return ret;
 518        }
 519        return 0;
 520}
 521
 522/*
 523 * after copy_from_user, pages need to be dirtied and we need to make
 524 * sure holes are created between the current EOF and the start of
 525 * any next extents (if required).
 526 *
 527 * this also makes the decision about creating an inline extent vs
 528 * doing real data extents, marking pages dirty and delalloc as required.
 529 */
 530int btrfs_dirty_pages(struct inode *inode, struct page **pages,
 531                      size_t num_pages, loff_t pos, size_t write_bytes,
 532                      struct extent_state **cached)
 533{
 534        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 535        int err = 0;
 536        int i;
 537        u64 num_bytes;
 538        u64 start_pos;
 539        u64 end_of_last_block;
 540        u64 end_pos = pos + write_bytes;
 541        loff_t isize = i_size_read(inode);
 542        unsigned int extra_bits = 0;
 543
 544        start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 545        num_bytes = round_up(write_bytes + pos - start_pos,
 546                             fs_info->sectorsize);
 547
 548        end_of_last_block = start_pos + num_bytes - 1;
 549
 550        if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
 551                if (start_pos >= isize &&
 552                    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
 553                        /*
 554                         * There can't be any extents following eof in this case
 555                         * so just set the delalloc new bit for the range
 556                         * directly.
 557                         */
 558                        extra_bits |= EXTENT_DELALLOC_NEW;
 559                } else {
 560                        err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
 561                                                            start_pos,
 562                                                            num_bytes, cached);
 563                        if (err)
 564                                return err;
 565                }
 566        }
 567
 568        err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 569                                        extra_bits, cached, 0);
 570        if (err)
 571                return err;
 572
 573        for (i = 0; i < num_pages; i++) {
 574                struct page *p = pages[i];
 575                SetPageUptodate(p);
 576                ClearPageChecked(p);
 577                set_page_dirty(p);
 578        }
 579
 580        /*
 581         * we've only changed i_size in ram, and we haven't updated
 582         * the disk i_size.  There is no need to log the inode
 583         * at this time.
 584         */
 585        if (end_pos > isize)
 586                i_size_write(inode, end_pos);
 587        return 0;
 588}
 589
 590/*
 591 * this drops all the extents in the cache that intersect the range
 592 * [start, end].  Existing extents are split as required.
 593 */
 594void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 595                             int skip_pinned)
 596{
 597        struct extent_map *em;
 598        struct extent_map *split = NULL;
 599        struct extent_map *split2 = NULL;
 600        struct extent_map_tree *em_tree = &inode->extent_tree;
 601        u64 len = end - start + 1;
 602        u64 gen;
 603        int ret;
 604        int testend = 1;
 605        unsigned long flags;
 606        int compressed = 0;
 607        bool modified;
 608
 609        WARN_ON(end < start);
 610        if (end == (u64)-1) {
 611                len = (u64)-1;
 612                testend = 0;
 613        }
 614        while (1) {
 615                int no_splits = 0;
 616
 617                modified = false;
 618                if (!split)
 619                        split = alloc_extent_map();
 620                if (!split2)
 621                        split2 = alloc_extent_map();
 622                if (!split || !split2)
 623                        no_splits = 1;
 624
 625                write_lock(&em_tree->lock);
 626                em = lookup_extent_mapping(em_tree, start, len);
 627                if (!em) {
 628                        write_unlock(&em_tree->lock);
 629                        break;
 630                }
 631                flags = em->flags;
 632                gen = em->generation;
 633                if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 634                        if (testend && em->start + em->len >= start + len) {
 635                                free_extent_map(em);
 636                                write_unlock(&em_tree->lock);
 637                                break;
 638                        }
 639                        start = em->start + em->len;
 640                        if (testend)
 641                                len = start + len - (em->start + em->len);
 642                        free_extent_map(em);
 643                        write_unlock(&em_tree->lock);
 644                        continue;
 645                }
 646                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 647                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 648                clear_bit(EXTENT_FLAG_LOGGING, &flags);
 649                modified = !list_empty(&em->list);
 650                if (no_splits)
 651                        goto next;
 652
 653                if (em->start < start) {
 654                        split->start = em->start;
 655                        split->len = start - em->start;
 656
 657                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 658                                split->orig_start = em->orig_start;
 659                                split->block_start = em->block_start;
 660
 661                                if (compressed)
 662                                        split->block_len = em->block_len;
 663                                else
 664                                        split->block_len = split->len;
 665                                split->orig_block_len = max(split->block_len,
 666                                                em->orig_block_len);
 667                                split->ram_bytes = em->ram_bytes;
 668                        } else {
 669                                split->orig_start = split->start;
 670                                split->block_len = 0;
 671                                split->block_start = em->block_start;
 672                                split->orig_block_len = 0;
 673                                split->ram_bytes = split->len;
 674                        }
 675
 676                        split->generation = gen;
 677                        split->bdev = em->bdev;
 678                        split->flags = flags;
 679                        split->compress_type = em->compress_type;
 680                        replace_extent_mapping(em_tree, em, split, modified);
 681                        free_extent_map(split);
 682                        split = split2;
 683                        split2 = NULL;
 684                }
 685                if (testend && em->start + em->len > start + len) {
 686                        u64 diff = start + len - em->start;
 687
 688                        split->start = start + len;
 689                        split->len = em->start + em->len - (start + len);
 690                        split->bdev = em->bdev;
 691                        split->flags = flags;
 692                        split->compress_type = em->compress_type;
 693                        split->generation = gen;
 694
 695                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 696                                split->orig_block_len = max(em->block_len,
 697                                                    em->orig_block_len);
 698
 699                                split->ram_bytes = em->ram_bytes;
 700                                if (compressed) {
 701                                        split->block_len = em->block_len;
 702                                        split->block_start = em->block_start;
 703                                        split->orig_start = em->orig_start;
 704                                } else {
 705                                        split->block_len = split->len;
 706                                        split->block_start = em->block_start
 707                                                + diff;
 708                                        split->orig_start = em->orig_start;
 709                                }
 710                        } else {
 711                                split->ram_bytes = split->len;
 712                                split->orig_start = split->start;
 713                                split->block_len = 0;
 714                                split->block_start = em->block_start;
 715                                split->orig_block_len = 0;
 716                        }
 717
 718                        if (extent_map_in_tree(em)) {
 719                                replace_extent_mapping(em_tree, em, split,
 720                                                       modified);
 721                        } else {
 722                                ret = add_extent_mapping(em_tree, split,
 723                                                         modified);
 724                                ASSERT(ret == 0); /* Logic error */
 725                        }
 726                        free_extent_map(split);
 727                        split = NULL;
 728                }
 729next:
 730                if (extent_map_in_tree(em))
 731                        remove_extent_mapping(em_tree, em);
 732                write_unlock(&em_tree->lock);
 733
 734                /* once for us */
 735                free_extent_map(em);
 736                /* once for the tree*/
 737                free_extent_map(em);
 738        }
 739        if (split)
 740                free_extent_map(split);
 741        if (split2)
 742                free_extent_map(split2);
 743}
 744
 745/*
 746 * this is very complex, but the basic idea is to drop all extents
 747 * in the range start - end.  hint_block is filled in with a block number
 748 * that would be a good hint to the block allocator for this file.
 749 *
 750 * If an extent intersects the range but is not entirely inside the range
 751 * it is either truncated or split.  Anything entirely inside the range
 752 * is deleted from the tree.
 753 */
 754int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 755                         struct btrfs_root *root, struct inode *inode,
 756                         struct btrfs_path *path, u64 start, u64 end,
 757                         u64 *drop_end, int drop_cache,
 758                         int replace_extent,
 759                         u32 extent_item_size,
 760                         int *key_inserted)
 761{
 762        struct btrfs_fs_info *fs_info = root->fs_info;
 763        struct extent_buffer *leaf;
 764        struct btrfs_file_extent_item *fi;
 765        struct btrfs_key key;
 766        struct btrfs_key new_key;
 767        u64 ino = btrfs_ino(BTRFS_I(inode));
 768        u64 search_start = start;
 769        u64 disk_bytenr = 0;
 770        u64 num_bytes = 0;
 771        u64 extent_offset = 0;
 772        u64 extent_end = 0;
 773        u64 last_end = start;
 774        int del_nr = 0;
 775        int del_slot = 0;
 776        int extent_type;
 777        int recow;
 778        int ret;
 779        int modify_tree = -1;
 780        int update_refs;
 781        int found = 0;
 782        int leafs_visited = 0;
 783
 784        if (drop_cache)
 785                btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
 786
 787        if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 788                modify_tree = 0;
 789
 790        update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 791                       root == fs_info->tree_root);
 792        while (1) {
 793                recow = 0;
 794                ret = btrfs_lookup_file_extent(trans, root, path, ino,
 795                                               search_start, modify_tree);
 796                if (ret < 0)
 797                        break;
 798                if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 799                        leaf = path->nodes[0];
 800                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 801                        if (key.objectid == ino &&
 802                            key.type == BTRFS_EXTENT_DATA_KEY)
 803                                path->slots[0]--;
 804                }
 805                ret = 0;
 806                leafs_visited++;
 807next_slot:
 808                leaf = path->nodes[0];
 809                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 810                        BUG_ON(del_nr > 0);
 811                        ret = btrfs_next_leaf(root, path);
 812                        if (ret < 0)
 813                                break;
 814                        if (ret > 0) {
 815                                ret = 0;
 816                                break;
 817                        }
 818                        leafs_visited++;
 819                        leaf = path->nodes[0];
 820                        recow = 1;
 821                }
 822
 823                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 824
 825                if (key.objectid > ino)
 826                        break;
 827                if (WARN_ON_ONCE(key.objectid < ino) ||
 828                    key.type < BTRFS_EXTENT_DATA_KEY) {
 829                        ASSERT(del_nr == 0);
 830                        path->slots[0]++;
 831                        goto next_slot;
 832                }
 833                if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 834                        break;
 835
 836                fi = btrfs_item_ptr(leaf, path->slots[0],
 837                                    struct btrfs_file_extent_item);
 838                extent_type = btrfs_file_extent_type(leaf, fi);
 839
 840                if (extent_type == BTRFS_FILE_EXTENT_REG ||
 841                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 842                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 843                        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 844                        extent_offset = btrfs_file_extent_offset(leaf, fi);
 845                        extent_end = key.offset +
 846                                btrfs_file_extent_num_bytes(leaf, fi);
 847                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 848                        extent_end = key.offset +
 849                                btrfs_file_extent_inline_len(leaf,
 850                                                     path->slots[0], fi);
 851                } else {
 852                        /* can't happen */
 853                        BUG();
 854                }
 855
 856                /*
 857                 * Don't skip extent items representing 0 byte lengths. They
 858                 * used to be created (bug) if while punching holes we hit
 859                 * -ENOSPC condition. So if we find one here, just ensure we
 860                 * delete it, otherwise we would insert a new file extent item
 861                 * with the same key (offset) as that 0 bytes length file
 862                 * extent item in the call to setup_items_for_insert() later
 863                 * in this function.
 864                 */
 865                if (extent_end == key.offset && extent_end >= search_start) {
 866                        last_end = extent_end;
 867                        goto delete_extent_item;
 868                }
 869
 870                if (extent_end <= search_start) {
 871                        path->slots[0]++;
 872                        goto next_slot;
 873                }
 874
 875                found = 1;
 876                search_start = max(key.offset, start);
 877                if (recow || !modify_tree) {
 878                        modify_tree = -1;
 879                        btrfs_release_path(path);
 880                        continue;
 881                }
 882
 883                /*
 884                 *     | - range to drop - |
 885                 *  | -------- extent -------- |
 886                 */
 887                if (start > key.offset && end < extent_end) {
 888                        BUG_ON(del_nr > 0);
 889                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 890                                ret = -EOPNOTSUPP;
 891                                break;
 892                        }
 893
 894                        memcpy(&new_key, &key, sizeof(new_key));
 895                        new_key.offset = start;
 896                        ret = btrfs_duplicate_item(trans, root, path,
 897                                                   &new_key);
 898                        if (ret == -EAGAIN) {
 899                                btrfs_release_path(path);
 900                                continue;
 901                        }
 902                        if (ret < 0)
 903                                break;
 904
 905                        leaf = path->nodes[0];
 906                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 907                                            struct btrfs_file_extent_item);
 908                        btrfs_set_file_extent_num_bytes(leaf, fi,
 909                                                        start - key.offset);
 910
 911                        fi = btrfs_item_ptr(leaf, path->slots[0],
 912                                            struct btrfs_file_extent_item);
 913
 914                        extent_offset += start - key.offset;
 915                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 916                        btrfs_set_file_extent_num_bytes(leaf, fi,
 917                                                        extent_end - start);
 918                        btrfs_mark_buffer_dirty(leaf);
 919
 920                        if (update_refs && disk_bytenr > 0) {
 921                                ret = btrfs_inc_extent_ref(trans, root,
 922                                                disk_bytenr, num_bytes, 0,
 923                                                root->root_key.objectid,
 924                                                new_key.objectid,
 925                                                start - extent_offset);
 926                                BUG_ON(ret); /* -ENOMEM */
 927                        }
 928                        key.offset = start;
 929                }
 930                /*
 931                 * From here on out we will have actually dropped something, so
 932                 * last_end can be updated.
 933                 */
 934                last_end = extent_end;
 935
 936                /*
 937                 *  | ---- range to drop ----- |
 938                 *      | -------- extent -------- |
 939                 */
 940                if (start <= key.offset && end < extent_end) {
 941                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 942                                ret = -EOPNOTSUPP;
 943                                break;
 944                        }
 945
 946                        memcpy(&new_key, &key, sizeof(new_key));
 947                        new_key.offset = end;
 948                        btrfs_set_item_key_safe(fs_info, path, &new_key);
 949
 950                        extent_offset += end - key.offset;
 951                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 952                        btrfs_set_file_extent_num_bytes(leaf, fi,
 953                                                        extent_end - end);
 954                        btrfs_mark_buffer_dirty(leaf);
 955                        if (update_refs && disk_bytenr > 0)
 956                                inode_sub_bytes(inode, end - key.offset);
 957                        break;
 958                }
 959
 960                search_start = extent_end;
 961                /*
 962                 *       | ---- range to drop ----- |
 963                 *  | -------- extent -------- |
 964                 */
 965                if (start > key.offset && end >= extent_end) {
 966                        BUG_ON(del_nr > 0);
 967                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 968                                ret = -EOPNOTSUPP;
 969                                break;
 970                        }
 971
 972                        btrfs_set_file_extent_num_bytes(leaf, fi,
 973                                                        start - key.offset);
 974                        btrfs_mark_buffer_dirty(leaf);
 975                        if (update_refs && disk_bytenr > 0)
 976                                inode_sub_bytes(inode, extent_end - start);
 977                        if (end == extent_end)
 978                                break;
 979
 980                        path->slots[0]++;
 981                        goto next_slot;
 982                }
 983
 984                /*
 985                 *  | ---- range to drop ----- |
 986                 *    | ------ extent ------ |
 987                 */
 988                if (start <= key.offset && end >= extent_end) {
 989delete_extent_item:
 990                        if (del_nr == 0) {
 991                                del_slot = path->slots[0];
 992                                del_nr = 1;
 993                        } else {
 994                                BUG_ON(del_slot + del_nr != path->slots[0]);
 995                                del_nr++;
 996                        }
 997
 998                        if (update_refs &&
 999                            extent_type == BTRFS_FILE_EXTENT_INLINE) {
1000                                inode_sub_bytes(inode,
1001                                                extent_end - key.offset);
1002                                extent_end = ALIGN(extent_end,
1003                                                   fs_info->sectorsize);
1004                        } else if (update_refs && disk_bytenr > 0) {
1005                                ret = btrfs_free_extent(trans, root,
1006                                                disk_bytenr, num_bytes, 0,
1007                                                root->root_key.objectid,
1008                                                key.objectid, key.offset -
1009                                                extent_offset);
1010                                BUG_ON(ret); /* -ENOMEM */
1011                                inode_sub_bytes(inode,
1012                                                extent_end - key.offset);
1013                        }
1014
1015                        if (end == extent_end)
1016                                break;
1017
1018                        if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1019                                path->slots[0]++;
1020                                goto next_slot;
1021                        }
1022
1023                        ret = btrfs_del_items(trans, root, path, del_slot,
1024                                              del_nr);
1025                        if (ret) {
1026                                btrfs_abort_transaction(trans, ret);
1027                                break;
1028                        }
1029
1030                        del_nr = 0;
1031                        del_slot = 0;
1032
1033                        btrfs_release_path(path);
1034                        continue;
1035                }
1036
1037                BUG_ON(1);
1038        }
1039
1040        if (!ret && del_nr > 0) {
1041                /*
1042                 * Set path->slots[0] to first slot, so that after the delete
1043                 * if items are move off from our leaf to its immediate left or
1044                 * right neighbor leafs, we end up with a correct and adjusted
1045                 * path->slots[0] for our insertion (if replace_extent != 0).
1046                 */
1047                path->slots[0] = del_slot;
1048                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1049                if (ret)
1050                        btrfs_abort_transaction(trans, ret);
1051        }
1052
1053        leaf = path->nodes[0];
1054        /*
1055         * If btrfs_del_items() was called, it might have deleted a leaf, in
1056         * which case it unlocked our path, so check path->locks[0] matches a
1057         * write lock.
1058         */
1059        if (!ret && replace_extent && leafs_visited == 1 &&
1060            (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1061             path->locks[0] == BTRFS_WRITE_LOCK) &&
1062            btrfs_leaf_free_space(fs_info, leaf) >=
1063            sizeof(struct btrfs_item) + extent_item_size) {
1064
1065                key.objectid = ino;
1066                key.type = BTRFS_EXTENT_DATA_KEY;
1067                key.offset = start;
1068                if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1069                        struct btrfs_key slot_key;
1070
1071                        btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1072                        if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1073                                path->slots[0]++;
1074                }
1075                setup_items_for_insert(root, path, &key,
1076                                       &extent_item_size,
1077                                       extent_item_size,
1078                                       sizeof(struct btrfs_item) +
1079                                       extent_item_size, 1);
1080                *key_inserted = 1;
1081        }
1082
1083        if (!replace_extent || !(*key_inserted))
1084                btrfs_release_path(path);
1085        if (drop_end)
1086                *drop_end = found ? min(end, last_end) : end;
1087        return ret;
1088}
1089
1090int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1091                       struct btrfs_root *root, struct inode *inode, u64 start,
1092                       u64 end, int drop_cache)
1093{
1094        struct btrfs_path *path;
1095        int ret;
1096
1097        path = btrfs_alloc_path();
1098        if (!path)
1099                return -ENOMEM;
1100        ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1101                                   drop_cache, 0, 0, NULL);
1102        btrfs_free_path(path);
1103        return ret;
1104}
1105
1106static int extent_mergeable(struct extent_buffer *leaf, int slot,
1107                            u64 objectid, u64 bytenr, u64 orig_offset,
1108                            u64 *start, u64 *end)
1109{
1110        struct btrfs_file_extent_item *fi;
1111        struct btrfs_key key;
1112        u64 extent_end;
1113
1114        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1115                return 0;
1116
1117        btrfs_item_key_to_cpu(leaf, &key, slot);
1118        if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1119                return 0;
1120
1121        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1122        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1123            btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1124            btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1125            btrfs_file_extent_compression(leaf, fi) ||
1126            btrfs_file_extent_encryption(leaf, fi) ||
1127            btrfs_file_extent_other_encoding(leaf, fi))
1128                return 0;
1129
1130        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1131        if ((*start && *start != key.offset) || (*end && *end != extent_end))
1132                return 0;
1133
1134        *start = key.offset;
1135        *end = extent_end;
1136        return 1;
1137}
1138
1139/*
1140 * Mark extent in the range start - end as written.
1141 *
1142 * This changes extent type from 'pre-allocated' to 'regular'. If only
1143 * part of extent is marked as written, the extent will be split into
1144 * two or three.
1145 */
1146int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1147                              struct btrfs_inode *inode, u64 start, u64 end)
1148{
1149        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1150        struct btrfs_root *root = inode->root;
1151        struct extent_buffer *leaf;
1152        struct btrfs_path *path;
1153        struct btrfs_file_extent_item *fi;
1154        struct btrfs_key key;
1155        struct btrfs_key new_key;
1156        u64 bytenr;
1157        u64 num_bytes;
1158        u64 extent_end;
1159        u64 orig_offset;
1160        u64 other_start;
1161        u64 other_end;
1162        u64 split;
1163        int del_nr = 0;
1164        int del_slot = 0;
1165        int recow;
1166        int ret;
1167        u64 ino = btrfs_ino(inode);
1168
1169        path = btrfs_alloc_path();
1170        if (!path)
1171                return -ENOMEM;
1172again:
1173        recow = 0;
1174        split = start;
1175        key.objectid = ino;
1176        key.type = BTRFS_EXTENT_DATA_KEY;
1177        key.offset = split;
1178
1179        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1180        if (ret < 0)
1181                goto out;
1182        if (ret > 0 && path->slots[0] > 0)
1183                path->slots[0]--;
1184
1185        leaf = path->nodes[0];
1186        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1187        if (key.objectid != ino ||
1188            key.type != BTRFS_EXTENT_DATA_KEY) {
1189                ret = -EINVAL;
1190                btrfs_abort_transaction(trans, ret);
1191                goto out;
1192        }
1193        fi = btrfs_item_ptr(leaf, path->slots[0],
1194                            struct btrfs_file_extent_item);
1195        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1196                ret = -EINVAL;
1197                btrfs_abort_transaction(trans, ret);
1198                goto out;
1199        }
1200        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1201        if (key.offset > start || extent_end < end) {
1202                ret = -EINVAL;
1203                btrfs_abort_transaction(trans, ret);
1204                goto out;
1205        }
1206
1207        bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1208        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209        orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1210        memcpy(&new_key, &key, sizeof(new_key));
1211
1212        if (start == key.offset && end < extent_end) {
1213                other_start = 0;
1214                other_end = start;
1215                if (extent_mergeable(leaf, path->slots[0] - 1,
1216                                     ino, bytenr, orig_offset,
1217                                     &other_start, &other_end)) {
1218                        new_key.offset = end;
1219                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1220                        fi = btrfs_item_ptr(leaf, path->slots[0],
1221                                            struct btrfs_file_extent_item);
1222                        btrfs_set_file_extent_generation(leaf, fi,
1223                                                         trans->transid);
1224                        btrfs_set_file_extent_num_bytes(leaf, fi,
1225                                                        extent_end - end);
1226                        btrfs_set_file_extent_offset(leaf, fi,
1227                                                     end - orig_offset);
1228                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1229                                            struct btrfs_file_extent_item);
1230                        btrfs_set_file_extent_generation(leaf, fi,
1231                                                         trans->transid);
1232                        btrfs_set_file_extent_num_bytes(leaf, fi,
1233                                                        end - other_start);
1234                        btrfs_mark_buffer_dirty(leaf);
1235                        goto out;
1236                }
1237        }
1238
1239        if (start > key.offset && end == extent_end) {
1240                other_start = end;
1241                other_end = 0;
1242                if (extent_mergeable(leaf, path->slots[0] + 1,
1243                                     ino, bytenr, orig_offset,
1244                                     &other_start, &other_end)) {
1245                        fi = btrfs_item_ptr(leaf, path->slots[0],
1246                                            struct btrfs_file_extent_item);
1247                        btrfs_set_file_extent_num_bytes(leaf, fi,
1248                                                        start - key.offset);
1249                        btrfs_set_file_extent_generation(leaf, fi,
1250                                                         trans->transid);
1251                        path->slots[0]++;
1252                        new_key.offset = start;
1253                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1254
1255                        fi = btrfs_item_ptr(leaf, path->slots[0],
1256                                            struct btrfs_file_extent_item);
1257                        btrfs_set_file_extent_generation(leaf, fi,
1258                                                         trans->transid);
1259                        btrfs_set_file_extent_num_bytes(leaf, fi,
1260                                                        other_end - start);
1261                        btrfs_set_file_extent_offset(leaf, fi,
1262                                                     start - orig_offset);
1263                        btrfs_mark_buffer_dirty(leaf);
1264                        goto out;
1265                }
1266        }
1267
1268        while (start > key.offset || end < extent_end) {
1269                if (key.offset == start)
1270                        split = end;
1271
1272                new_key.offset = split;
1273                ret = btrfs_duplicate_item(trans, root, path, &new_key);
1274                if (ret == -EAGAIN) {
1275                        btrfs_release_path(path);
1276                        goto again;
1277                }
1278                if (ret < 0) {
1279                        btrfs_abort_transaction(trans, ret);
1280                        goto out;
1281                }
1282
1283                leaf = path->nodes[0];
1284                fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1285                                    struct btrfs_file_extent_item);
1286                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1287                btrfs_set_file_extent_num_bytes(leaf, fi,
1288                                                split - key.offset);
1289
1290                fi = btrfs_item_ptr(leaf, path->slots[0],
1291                                    struct btrfs_file_extent_item);
1292
1293                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1294                btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1295                btrfs_set_file_extent_num_bytes(leaf, fi,
1296                                                extent_end - split);
1297                btrfs_mark_buffer_dirty(leaf);
1298
1299                ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1300                                           0, root->root_key.objectid,
1301                                           ino, orig_offset);
1302                if (ret) {
1303                        btrfs_abort_transaction(trans, ret);
1304                        goto out;
1305                }
1306
1307                if (split == start) {
1308                        key.offset = start;
1309                } else {
1310                        if (start != key.offset) {
1311                                ret = -EINVAL;
1312                                btrfs_abort_transaction(trans, ret);
1313                                goto out;
1314                        }
1315                        path->slots[0]--;
1316                        extent_end = end;
1317                }
1318                recow = 1;
1319        }
1320
1321        other_start = end;
1322        other_end = 0;
1323        if (extent_mergeable(leaf, path->slots[0] + 1,
1324                             ino, bytenr, orig_offset,
1325                             &other_start, &other_end)) {
1326                if (recow) {
1327                        btrfs_release_path(path);
1328                        goto again;
1329                }
1330                extent_end = other_end;
1331                del_slot = path->slots[0] + 1;
1332                del_nr++;
1333                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1334                                        0, root->root_key.objectid,
1335                                        ino, orig_offset);
1336                if (ret) {
1337                        btrfs_abort_transaction(trans, ret);
1338                        goto out;
1339                }
1340        }
1341        other_start = 0;
1342        other_end = start;
1343        if (extent_mergeable(leaf, path->slots[0] - 1,
1344                             ino, bytenr, orig_offset,
1345                             &other_start, &other_end)) {
1346                if (recow) {
1347                        btrfs_release_path(path);
1348                        goto again;
1349                }
1350                key.offset = other_start;
1351                del_slot = path->slots[0];
1352                del_nr++;
1353                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1354                                        0, root->root_key.objectid,
1355                                        ino, orig_offset);
1356                if (ret) {
1357                        btrfs_abort_transaction(trans, ret);
1358                        goto out;
1359                }
1360        }
1361        if (del_nr == 0) {
1362                fi = btrfs_item_ptr(leaf, path->slots[0],
1363                           struct btrfs_file_extent_item);
1364                btrfs_set_file_extent_type(leaf, fi,
1365                                           BTRFS_FILE_EXTENT_REG);
1366                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1367                btrfs_mark_buffer_dirty(leaf);
1368        } else {
1369                fi = btrfs_item_ptr(leaf, del_slot - 1,
1370                           struct btrfs_file_extent_item);
1371                btrfs_set_file_extent_type(leaf, fi,
1372                                           BTRFS_FILE_EXTENT_REG);
1373                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1374                btrfs_set_file_extent_num_bytes(leaf, fi,
1375                                                extent_end - key.offset);
1376                btrfs_mark_buffer_dirty(leaf);
1377
1378                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1379                if (ret < 0) {
1380                        btrfs_abort_transaction(trans, ret);
1381                        goto out;
1382                }
1383        }
1384out:
1385        btrfs_free_path(path);
1386        return 0;
1387}
1388
1389/*
1390 * on error we return an unlocked page and the error value
1391 * on success we return a locked page and 0
1392 */
1393static int prepare_uptodate_page(struct inode *inode,
1394                                 struct page *page, u64 pos,
1395                                 bool force_uptodate)
1396{
1397        int ret = 0;
1398
1399        if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1400            !PageUptodate(page)) {
1401                ret = btrfs_readpage(NULL, page);
1402                if (ret)
1403                        return ret;
1404                lock_page(page);
1405                if (!PageUptodate(page)) {
1406                        unlock_page(page);
1407                        return -EIO;
1408                }
1409                if (page->mapping != inode->i_mapping) {
1410                        unlock_page(page);
1411                        return -EAGAIN;
1412                }
1413        }
1414        return 0;
1415}
1416
1417/*
1418 * this just gets pages into the page cache and locks them down.
1419 */
1420static noinline int prepare_pages(struct inode *inode, struct page **pages,
1421                                  size_t num_pages, loff_t pos,
1422                                  size_t write_bytes, bool force_uptodate)
1423{
1424        int i;
1425        unsigned long index = pos >> PAGE_SHIFT;
1426        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1427        int err = 0;
1428        int faili;
1429
1430        for (i = 0; i < num_pages; i++) {
1431again:
1432                pages[i] = find_or_create_page(inode->i_mapping, index + i,
1433                                               mask | __GFP_WRITE);
1434                if (!pages[i]) {
1435                        faili = i - 1;
1436                        err = -ENOMEM;
1437                        goto fail;
1438                }
1439
1440                if (i == 0)
1441                        err = prepare_uptodate_page(inode, pages[i], pos,
1442                                                    force_uptodate);
1443                if (!err && i == num_pages - 1)
1444                        err = prepare_uptodate_page(inode, pages[i],
1445                                                    pos + write_bytes, false);
1446                if (err) {
1447                        put_page(pages[i]);
1448                        if (err == -EAGAIN) {
1449                                err = 0;
1450                                goto again;
1451                        }
1452                        faili = i - 1;
1453                        goto fail;
1454                }
1455                wait_on_page_writeback(pages[i]);
1456        }
1457
1458        return 0;
1459fail:
1460        while (faili >= 0) {
1461                unlock_page(pages[faili]);
1462                put_page(pages[faili]);
1463                faili--;
1464        }
1465        return err;
1466
1467}
1468
1469/*
1470 * This function locks the extent and properly waits for data=ordered extents
1471 * to finish before allowing the pages to be modified if need.
1472 *
1473 * The return value:
1474 * 1 - the extent is locked
1475 * 0 - the extent is not locked, and everything is OK
1476 * -EAGAIN - need re-prepare the pages
1477 * the other < 0 number - Something wrong happens
1478 */
1479static noinline int
1480lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1481                                size_t num_pages, loff_t pos,
1482                                size_t write_bytes,
1483                                u64 *lockstart, u64 *lockend,
1484                                struct extent_state **cached_state)
1485{
1486        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1487        u64 start_pos;
1488        u64 last_pos;
1489        int i;
1490        int ret = 0;
1491
1492        start_pos = round_down(pos, fs_info->sectorsize);
1493        last_pos = start_pos
1494                + round_up(pos + write_bytes - start_pos,
1495                           fs_info->sectorsize) - 1;
1496
1497        if (start_pos < inode->vfs_inode.i_size) {
1498                struct btrfs_ordered_extent *ordered;
1499
1500                lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1501                                cached_state);
1502                ordered = btrfs_lookup_ordered_range(inode, start_pos,
1503                                                     last_pos - start_pos + 1);
1504                if (ordered &&
1505                    ordered->file_offset + ordered->len > start_pos &&
1506                    ordered->file_offset <= last_pos) {
1507                        unlock_extent_cached(&inode->io_tree, start_pos,
1508                                        last_pos, cached_state);
1509                        for (i = 0; i < num_pages; i++) {
1510                                unlock_page(pages[i]);
1511                                put_page(pages[i]);
1512                        }
1513                        btrfs_start_ordered_extent(&inode->vfs_inode,
1514                                        ordered, 1);
1515                        btrfs_put_ordered_extent(ordered);
1516                        return -EAGAIN;
1517                }
1518                if (ordered)
1519                        btrfs_put_ordered_extent(ordered);
1520                clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1521                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1522                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1523                                 0, 0, cached_state);
1524                *lockstart = start_pos;
1525                *lockend = last_pos;
1526                ret = 1;
1527        }
1528
1529        for (i = 0; i < num_pages; i++) {
1530                if (clear_page_dirty_for_io(pages[i]))
1531                        account_page_redirty(pages[i]);
1532                set_page_extent_mapped(pages[i]);
1533                WARN_ON(!PageLocked(pages[i]));
1534        }
1535
1536        return ret;
1537}
1538
1539static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1540                                    size_t *write_bytes)
1541{
1542        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1543        struct btrfs_root *root = inode->root;
1544        struct btrfs_ordered_extent *ordered;
1545        u64 lockstart, lockend;
1546        u64 num_bytes;
1547        int ret;
1548
1549        ret = btrfs_start_write_no_snapshotting(root);
1550        if (!ret)
1551                return -ENOSPC;
1552
1553        lockstart = round_down(pos, fs_info->sectorsize);
1554        lockend = round_up(pos + *write_bytes,
1555                           fs_info->sectorsize) - 1;
1556
1557        while (1) {
1558                lock_extent(&inode->io_tree, lockstart, lockend);
1559                ordered = btrfs_lookup_ordered_range(inode, lockstart,
1560                                                     lockend - lockstart + 1);
1561                if (!ordered) {
1562                        break;
1563                }
1564                unlock_extent(&inode->io_tree, lockstart, lockend);
1565                btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1566                btrfs_put_ordered_extent(ordered);
1567        }
1568
1569        num_bytes = lockend - lockstart + 1;
1570        ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571                        NULL, NULL, NULL);
1572        if (ret <= 0) {
1573                ret = 0;
1574                btrfs_end_write_no_snapshotting(root);
1575        } else {
1576                *write_bytes = min_t(size_t, *write_bytes ,
1577                                     num_bytes - pos + lockstart);
1578        }
1579
1580        unlock_extent(&inode->io_tree, lockstart, lockend);
1581
1582        return ret;
1583}
1584
1585static noinline ssize_t __btrfs_buffered_write(struct file *file,
1586                                               struct iov_iter *i,
1587                                               loff_t pos)
1588{
1589        struct inode *inode = file_inode(file);
1590        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1591        struct btrfs_root *root = BTRFS_I(inode)->root;
1592        struct page **pages = NULL;
1593        struct extent_state *cached_state = NULL;
1594        struct extent_changeset *data_reserved = NULL;
1595        u64 release_bytes = 0;
1596        u64 lockstart;
1597        u64 lockend;
1598        size_t num_written = 0;
1599        int nrptrs;
1600        int ret = 0;
1601        bool only_release_metadata = false;
1602        bool force_page_uptodate = false;
1603
1604        nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1605                        PAGE_SIZE / (sizeof(struct page *)));
1606        nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1607        nrptrs = max(nrptrs, 8);
1608        pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1609        if (!pages)
1610                return -ENOMEM;
1611
1612        while (iov_iter_count(i) > 0) {
1613                size_t offset = pos & (PAGE_SIZE - 1);
1614                size_t sector_offset;
1615                size_t write_bytes = min(iov_iter_count(i),
1616                                         nrptrs * (size_t)PAGE_SIZE -
1617                                         offset);
1618                size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1619                                                PAGE_SIZE);
1620                size_t reserve_bytes;
1621                size_t dirty_pages;
1622                size_t copied;
1623                size_t dirty_sectors;
1624                size_t num_sectors;
1625                int extents_locked;
1626
1627                WARN_ON(num_pages > nrptrs);
1628
1629                /*
1630                 * Fault pages before locking them in prepare_pages
1631                 * to avoid recursive lock
1632                 */
1633                if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1634                        ret = -EFAULT;
1635                        break;
1636                }
1637
1638                sector_offset = pos & (fs_info->sectorsize - 1);
1639                reserve_bytes = round_up(write_bytes + sector_offset,
1640                                fs_info->sectorsize);
1641
1642                extent_changeset_release(data_reserved);
1643                ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1644                                                  write_bytes);
1645                if (ret < 0) {
1646                        if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1647                                                      BTRFS_INODE_PREALLOC)) &&
1648                            check_can_nocow(BTRFS_I(inode), pos,
1649                                        &write_bytes) > 0) {
1650                                /*
1651                                 * For nodata cow case, no need to reserve
1652                                 * data space.
1653                                 */
1654                                only_release_metadata = true;
1655                                /*
1656                                 * our prealloc extent may be smaller than
1657                                 * write_bytes, so scale down.
1658                                 */
1659                                num_pages = DIV_ROUND_UP(write_bytes + offset,
1660                                                         PAGE_SIZE);
1661                                reserve_bytes = round_up(write_bytes +
1662                                                         sector_offset,
1663                                                         fs_info->sectorsize);
1664                        } else {
1665                                break;
1666                        }
1667                }
1668
1669                WARN_ON(reserve_bytes == 0);
1670                ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1671                                reserve_bytes);
1672                if (ret) {
1673                        if (!only_release_metadata)
1674                                btrfs_free_reserved_data_space(inode,
1675                                                data_reserved, pos,
1676                                                write_bytes);
1677                        else
1678                                btrfs_end_write_no_snapshotting(root);
1679                        break;
1680                }
1681
1682                release_bytes = reserve_bytes;
1683again:
1684                /*
1685                 * This is going to setup the pages array with the number of
1686                 * pages we want, so we don't really need to worry about the
1687                 * contents of pages from loop to loop
1688                 */
1689                ret = prepare_pages(inode, pages, num_pages,
1690                                    pos, write_bytes,
1691                                    force_page_uptodate);
1692                if (ret) {
1693                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1694                                                       reserve_bytes);
1695                        break;
1696                }
1697
1698                extents_locked = lock_and_cleanup_extent_if_need(
1699                                BTRFS_I(inode), pages,
1700                                num_pages, pos, write_bytes, &lockstart,
1701                                &lockend, &cached_state);
1702                if (extents_locked < 0) {
1703                        if (extents_locked == -EAGAIN)
1704                                goto again;
1705                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1706                                                       reserve_bytes);
1707                        ret = extents_locked;
1708                        break;
1709                }
1710
1711                copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1712
1713                num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1714                dirty_sectors = round_up(copied + sector_offset,
1715                                        fs_info->sectorsize);
1716                dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1717
1718                /*
1719                 * if we have trouble faulting in the pages, fall
1720                 * back to one page at a time
1721                 */
1722                if (copied < write_bytes)
1723                        nrptrs = 1;
1724
1725                if (copied == 0) {
1726                        force_page_uptodate = true;
1727                        dirty_sectors = 0;
1728                        dirty_pages = 0;
1729                } else {
1730                        force_page_uptodate = false;
1731                        dirty_pages = DIV_ROUND_UP(copied + offset,
1732                                                   PAGE_SIZE);
1733                }
1734
1735                if (num_sectors > dirty_sectors) {
1736                        /* release everything except the sectors we dirtied */
1737                        release_bytes -= dirty_sectors <<
1738                                                fs_info->sb->s_blocksize_bits;
1739                        if (only_release_metadata) {
1740                                btrfs_delalloc_release_metadata(BTRFS_I(inode),
1741                                                                release_bytes);
1742                        } else {
1743                                u64 __pos;
1744
1745                                __pos = round_down(pos,
1746                                                   fs_info->sectorsize) +
1747                                        (dirty_pages << PAGE_SHIFT);
1748                                btrfs_delalloc_release_space(inode,
1749                                                data_reserved, __pos,
1750                                                release_bytes);
1751                        }
1752                }
1753
1754                release_bytes = round_up(copied + sector_offset,
1755                                        fs_info->sectorsize);
1756
1757                if (copied > 0)
1758                        ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1759                                                pos, copied, &cached_state);
1760                if (extents_locked)
1761                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1762                                             lockstart, lockend, &cached_state);
1763                btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1764                if (ret) {
1765                        btrfs_drop_pages(pages, num_pages);
1766                        break;
1767                }
1768
1769                release_bytes = 0;
1770                if (only_release_metadata)
1771                        btrfs_end_write_no_snapshotting(root);
1772
1773                if (only_release_metadata && copied > 0) {
1774                        lockstart = round_down(pos,
1775                                               fs_info->sectorsize);
1776                        lockend = round_up(pos + copied,
1777                                           fs_info->sectorsize) - 1;
1778
1779                        set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1780                                       lockend, EXTENT_NORESERVE, NULL,
1781                                       NULL, GFP_NOFS);
1782                        only_release_metadata = false;
1783                }
1784
1785                btrfs_drop_pages(pages, num_pages);
1786
1787                cond_resched();
1788
1789                balance_dirty_pages_ratelimited(inode->i_mapping);
1790                if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1791                        btrfs_btree_balance_dirty(fs_info);
1792
1793                pos += copied;
1794                num_written += copied;
1795        }
1796
1797        kfree(pages);
1798
1799        if (release_bytes) {
1800                if (only_release_metadata) {
1801                        btrfs_end_write_no_snapshotting(root);
1802                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
1803                                        release_bytes);
1804                } else {
1805                        btrfs_delalloc_release_space(inode, data_reserved,
1806                                        round_down(pos, fs_info->sectorsize),
1807                                        release_bytes);
1808                }
1809        }
1810
1811        extent_changeset_free(data_reserved);
1812        return num_written ? num_written : ret;
1813}
1814
1815static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1816{
1817        struct file *file = iocb->ki_filp;
1818        struct inode *inode = file_inode(file);
1819        loff_t pos = iocb->ki_pos;
1820        ssize_t written;
1821        ssize_t written_buffered;
1822        loff_t endbyte;
1823        int err;
1824
1825        written = generic_file_direct_write(iocb, from);
1826
1827        if (written < 0 || !iov_iter_count(from))
1828                return written;
1829
1830        pos += written;
1831        written_buffered = __btrfs_buffered_write(file, from, pos);
1832        if (written_buffered < 0) {
1833                err = written_buffered;
1834                goto out;
1835        }
1836        /*
1837         * Ensure all data is persisted. We want the next direct IO read to be
1838         * able to read what was just written.
1839         */
1840        endbyte = pos + written_buffered - 1;
1841        err = btrfs_fdatawrite_range(inode, pos, endbyte);
1842        if (err)
1843                goto out;
1844        err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1845        if (err)
1846                goto out;
1847        written += written_buffered;
1848        iocb->ki_pos = pos + written_buffered;
1849        invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1850                                 endbyte >> PAGE_SHIFT);
1851out:
1852        return written ? written : err;
1853}
1854
1855static void update_time_for_write(struct inode *inode)
1856{
1857        struct timespec now;
1858
1859        if (IS_NOCMTIME(inode))
1860                return;
1861
1862        now = current_time(inode);
1863        if (!timespec_equal(&inode->i_mtime, &now))
1864                inode->i_mtime = now;
1865
1866        if (!timespec_equal(&inode->i_ctime, &now))
1867                inode->i_ctime = now;
1868
1869        if (IS_I_VERSION(inode))
1870                inode_inc_iversion(inode);
1871}
1872
1873static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1874                                    struct iov_iter *from)
1875{
1876        struct file *file = iocb->ki_filp;
1877        struct inode *inode = file_inode(file);
1878        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1879        struct btrfs_root *root = BTRFS_I(inode)->root;
1880        u64 start_pos;
1881        u64 end_pos;
1882        ssize_t num_written = 0;
1883        bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1884        ssize_t err;
1885        loff_t pos;
1886        size_t count = iov_iter_count(from);
1887        loff_t oldsize;
1888        int clean_page = 0;
1889
1890        if (!(iocb->ki_flags & IOCB_DIRECT) &&
1891            (iocb->ki_flags & IOCB_NOWAIT))
1892                return -EOPNOTSUPP;
1893
1894        if (!inode_trylock(inode)) {
1895                if (iocb->ki_flags & IOCB_NOWAIT)
1896                        return -EAGAIN;
1897                inode_lock(inode);
1898        }
1899
1900        err = generic_write_checks(iocb, from);
1901        if (err <= 0) {
1902                inode_unlock(inode);
1903                return err;
1904        }
1905
1906        pos = iocb->ki_pos;
1907        if (iocb->ki_flags & IOCB_NOWAIT) {
1908                /*
1909                 * We will allocate space in case nodatacow is not set,
1910                 * so bail
1911                 */
1912                if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1913                                              BTRFS_INODE_PREALLOC)) ||
1914                    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1915                        inode_unlock(inode);
1916                        return -EAGAIN;
1917                }
1918        }
1919
1920        current->backing_dev_info = inode_to_bdi(inode);
1921        err = file_remove_privs(file);
1922        if (err) {
1923                inode_unlock(inode);
1924                goto out;
1925        }
1926
1927        /*
1928         * If BTRFS flips readonly due to some impossible error
1929         * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1930         * although we have opened a file as writable, we have
1931         * to stop this write operation to ensure FS consistency.
1932         */
1933        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1934                inode_unlock(inode);
1935                err = -EROFS;
1936                goto out;
1937        }
1938
1939        /*
1940         * We reserve space for updating the inode when we reserve space for the
1941         * extent we are going to write, so we will enospc out there.  We don't
1942         * need to start yet another transaction to update the inode as we will
1943         * update the inode when we finish writing whatever data we write.
1944         */
1945        update_time_for_write(inode);
1946
1947        start_pos = round_down(pos, fs_info->sectorsize);
1948        oldsize = i_size_read(inode);
1949        if (start_pos > oldsize) {
1950                /* Expand hole size to cover write data, preventing empty gap */
1951                end_pos = round_up(pos + count,
1952                                   fs_info->sectorsize);
1953                err = btrfs_cont_expand(inode, oldsize, end_pos);
1954                if (err) {
1955                        inode_unlock(inode);
1956                        goto out;
1957                }
1958                if (start_pos > round_up(oldsize, fs_info->sectorsize))
1959                        clean_page = 1;
1960        }
1961
1962        if (sync)
1963                atomic_inc(&BTRFS_I(inode)->sync_writers);
1964
1965        if (iocb->ki_flags & IOCB_DIRECT) {
1966                num_written = __btrfs_direct_write(iocb, from);
1967        } else {
1968                num_written = __btrfs_buffered_write(file, from, pos);
1969                if (num_written > 0)
1970                        iocb->ki_pos = pos + num_written;
1971                if (clean_page)
1972                        pagecache_isize_extended(inode, oldsize,
1973                                                i_size_read(inode));
1974        }
1975
1976        inode_unlock(inode);
1977
1978        /*
1979         * We also have to set last_sub_trans to the current log transid,
1980         * otherwise subsequent syncs to a file that's been synced in this
1981         * transaction will appear to have already occurred.
1982         */
1983        spin_lock(&BTRFS_I(inode)->lock);
1984        BTRFS_I(inode)->last_sub_trans = root->log_transid;
1985        spin_unlock(&BTRFS_I(inode)->lock);
1986        if (num_written > 0)
1987                num_written = generic_write_sync(iocb, num_written);
1988
1989        if (sync)
1990                atomic_dec(&BTRFS_I(inode)->sync_writers);
1991out:
1992        current->backing_dev_info = NULL;
1993        return num_written ? num_written : err;
1994}
1995
1996int btrfs_release_file(struct inode *inode, struct file *filp)
1997{
1998        struct btrfs_file_private *private = filp->private_data;
1999
2000        if (private && private->trans)
2001                btrfs_ioctl_trans_end(filp);
2002        if (private && private->filldir_buf)
2003                kfree(private->filldir_buf);
2004        kfree(private);
2005        filp->private_data = NULL;
2006
2007        /*
2008         * ordered_data_close is set by settattr when we are about to truncate
2009         * a file from a non-zero size to a zero size.  This tries to
2010         * flush down new bytes that may have been written if the
2011         * application were using truncate to replace a file in place.
2012         */
2013        if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014                               &BTRFS_I(inode)->runtime_flags))
2015                        filemap_flush(inode->i_mapping);
2016        return 0;
2017}
2018
2019static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020{
2021        int ret;
2022        struct blk_plug plug;
2023
2024        /*
2025         * This is only called in fsync, which would do synchronous writes, so
2026         * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2027         * multiple disks using raid profile, a large IO can be split to
2028         * several segments of stripe length (currently 64K).
2029         */
2030        blk_start_plug(&plug);
2031        atomic_inc(&BTRFS_I(inode)->sync_writers);
2032        ret = btrfs_fdatawrite_range(inode, start, end);
2033        atomic_dec(&BTRFS_I(inode)->sync_writers);
2034        blk_finish_plug(&plug);
2035
2036        return ret;
2037}
2038
2039/*
2040 * fsync call for both files and directories.  This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2042 *
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2045 *
2046 * It drops the inode mutex before doing the tree log commit.  This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2049 */
2050int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2051{
2052        struct dentry *dentry = file_dentry(file);
2053        struct inode *inode = d_inode(dentry);
2054        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2055        struct btrfs_root *root = BTRFS_I(inode)->root;
2056        struct btrfs_trans_handle *trans;
2057        struct btrfs_log_ctx ctx;
2058        int ret = 0, err;
2059        bool full_sync = false;
2060        u64 len;
2061
2062        /*
2063         * The range length can be represented by u64, we have to do the typecasts
2064         * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2065         */
2066        len = (u64)end - (u64)start + 1;
2067        trace_btrfs_sync_file(file, datasync);
2068
2069        btrfs_init_log_ctx(&ctx, inode);
2070
2071        /*
2072         * We write the dirty pages in the range and wait until they complete
2073         * out of the ->i_mutex. If so, we can flush the dirty pages by
2074         * multi-task, and make the performance up.  See
2075         * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2076         */
2077        ret = start_ordered_ops(inode, start, end);
2078        if (ret)
2079                goto out;
2080
2081        inode_lock(inode);
2082        atomic_inc(&root->log_batch);
2083        full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2084                             &BTRFS_I(inode)->runtime_flags);
2085        /*
2086         * We might have have had more pages made dirty after calling
2087         * start_ordered_ops and before acquiring the inode's i_mutex.
2088         */
2089        if (full_sync) {
2090                /*
2091                 * For a full sync, we need to make sure any ordered operations
2092                 * start and finish before we start logging the inode, so that
2093                 * all extents are persisted and the respective file extent
2094                 * items are in the fs/subvol btree.
2095                 */
2096                ret = btrfs_wait_ordered_range(inode, start, len);
2097        } else {
2098                /*
2099                 * Start any new ordered operations before starting to log the
2100                 * inode. We will wait for them to finish in btrfs_sync_log().
2101                 *
2102                 * Right before acquiring the inode's mutex, we might have new
2103                 * writes dirtying pages, which won't immediately start the
2104                 * respective ordered operations - that is done through the
2105                 * fill_delalloc callbacks invoked from the writepage and
2106                 * writepages address space operations. So make sure we start
2107                 * all ordered operations before starting to log our inode. Not
2108                 * doing this means that while logging the inode, writeback
2109                 * could start and invoke writepage/writepages, which would call
2110                 * the fill_delalloc callbacks (cow_file_range,
2111                 * submit_compressed_extents). These callbacks add first an
2112                 * extent map to the modified list of extents and then create
2113                 * the respective ordered operation, which means in
2114                 * tree-log.c:btrfs_log_inode() we might capture all existing
2115                 * ordered operations (with btrfs_get_logged_extents()) before
2116                 * the fill_delalloc callback adds its ordered operation, and by
2117                 * the time we visit the modified list of extent maps (with
2118                 * btrfs_log_changed_extents()), we see and process the extent
2119                 * map they created. We then use the extent map to construct a
2120                 * file extent item for logging without waiting for the
2121                 * respective ordered operation to finish - this file extent
2122                 * item points to a disk location that might not have yet been
2123                 * written to, containing random data - so after a crash a log
2124                 * replay will make our inode have file extent items that point
2125                 * to disk locations containing invalid data, as we returned
2126                 * success to userspace without waiting for the respective
2127                 * ordered operation to finish, because it wasn't captured by
2128                 * btrfs_get_logged_extents().
2129                 */
2130                ret = start_ordered_ops(inode, start, end);
2131        }
2132        if (ret) {
2133                inode_unlock(inode);
2134                goto out;
2135        }
2136        atomic_inc(&root->log_batch);
2137
2138        /*
2139         * If the last transaction that changed this file was before the current
2140         * transaction and we have the full sync flag set in our inode, we can
2141         * bail out now without any syncing.
2142         *
2143         * Note that we can't bail out if the full sync flag isn't set. This is
2144         * because when the full sync flag is set we start all ordered extents
2145         * and wait for them to fully complete - when they complete they update
2146         * the inode's last_trans field through:
2147         *
2148         *     btrfs_finish_ordered_io() ->
2149         *         btrfs_update_inode_fallback() ->
2150         *             btrfs_update_inode() ->
2151         *                 btrfs_set_inode_last_trans()
2152         *
2153         * So we are sure that last_trans is up to date and can do this check to
2154         * bail out safely. For the fast path, when the full sync flag is not
2155         * set in our inode, we can not do it because we start only our ordered
2156         * extents and don't wait for them to complete (that is when
2157         * btrfs_finish_ordered_io runs), so here at this point their last_trans
2158         * value might be less than or equals to fs_info->last_trans_committed,
2159         * and setting a speculative last_trans for an inode when a buffered
2160         * write is made (such as fs_info->generation + 1 for example) would not
2161         * be reliable since after setting the value and before fsync is called
2162         * any number of transactions can start and commit (transaction kthread
2163         * commits the current transaction periodically), and a transaction
2164         * commit does not start nor waits for ordered extents to complete.
2165         */
2166        smp_mb();
2167        if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2168            (full_sync && BTRFS_I(inode)->last_trans <=
2169             fs_info->last_trans_committed) ||
2170            (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2171             BTRFS_I(inode)->last_trans
2172             <= fs_info->last_trans_committed)) {
2173                /*
2174                 * We've had everything committed since the last time we were
2175                 * modified so clear this flag in case it was set for whatever
2176                 * reason, it's no longer relevant.
2177                 */
2178                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2179                          &BTRFS_I(inode)->runtime_flags);
2180                /*
2181                 * An ordered extent might have started before and completed
2182                 * already with io errors, in which case the inode was not
2183                 * updated and we end up here. So check the inode's mapping
2184                 * for any errors that might have happened since we last
2185                 * checked called fsync.
2186                 */
2187                ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2188                inode_unlock(inode);
2189                goto out;
2190        }
2191
2192        /*
2193         * ok we haven't committed the transaction yet, lets do a commit
2194         */
2195        if (file->private_data)
2196                btrfs_ioctl_trans_end(file);
2197
2198        /*
2199         * We use start here because we will need to wait on the IO to complete
2200         * in btrfs_sync_log, which could require joining a transaction (for
2201         * example checking cross references in the nocow path).  If we use join
2202         * here we could get into a situation where we're waiting on IO to
2203         * happen that is blocked on a transaction trying to commit.  With start
2204         * we inc the extwriter counter, so we wait for all extwriters to exit
2205         * before we start blocking join'ers.  This comment is to keep somebody
2206         * from thinking they are super smart and changing this to
2207         * btrfs_join_transaction *cough*Josef*cough*.
2208         */
2209        trans = btrfs_start_transaction(root, 0);
2210        if (IS_ERR(trans)) {
2211                ret = PTR_ERR(trans);
2212                inode_unlock(inode);
2213                goto out;
2214        }
2215        trans->sync = true;
2216
2217        ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2218        if (ret < 0) {
2219                /* Fallthrough and commit/free transaction. */
2220                ret = 1;
2221        }
2222
2223        /* we've logged all the items and now have a consistent
2224         * version of the file in the log.  It is possible that
2225         * someone will come in and modify the file, but that's
2226         * fine because the log is consistent on disk, and we
2227         * have references to all of the file's extents
2228         *
2229         * It is possible that someone will come in and log the
2230         * file again, but that will end up using the synchronization
2231         * inside btrfs_sync_log to keep things safe.
2232         */
2233        inode_unlock(inode);
2234
2235        /*
2236         * If any of the ordered extents had an error, just return it to user
2237         * space, so that the application knows some writes didn't succeed and
2238         * can take proper action (retry for e.g.). Blindly committing the
2239         * transaction in this case, would fool userspace that everything was
2240         * successful. And we also want to make sure our log doesn't contain
2241         * file extent items pointing to extents that weren't fully written to -
2242         * just like in the non fast fsync path, where we check for the ordered
2243         * operation's error flag before writing to the log tree and return -EIO
2244         * if any of them had this flag set (btrfs_wait_ordered_range) -
2245         * therefore we need to check for errors in the ordered operations,
2246         * which are indicated by ctx.io_err.
2247         */
2248        if (ctx.io_err) {
2249                btrfs_end_transaction(trans);
2250                ret = ctx.io_err;
2251                goto out;
2252        }
2253
2254        if (ret != BTRFS_NO_LOG_SYNC) {
2255                if (!ret) {
2256                        ret = btrfs_sync_log(trans, root, &ctx);
2257                        if (!ret) {
2258                                ret = btrfs_end_transaction(trans);
2259                                goto out;
2260                        }
2261                }
2262                if (!full_sync) {
2263                        ret = btrfs_wait_ordered_range(inode, start, len);
2264                        if (ret) {
2265                                btrfs_end_transaction(trans);
2266                                goto out;
2267                        }
2268                }
2269                ret = btrfs_commit_transaction(trans);
2270        } else {
2271                ret = btrfs_end_transaction(trans);
2272        }
2273out:
2274        ASSERT(list_empty(&ctx.list));
2275        err = file_check_and_advance_wb_err(file);
2276        if (!ret)
2277                ret = err;
2278        return ret > 0 ? -EIO : ret;
2279}
2280
2281static const struct vm_operations_struct btrfs_file_vm_ops = {
2282        .fault          = filemap_fault,
2283        .map_pages      = filemap_map_pages,
2284        .page_mkwrite   = btrfs_page_mkwrite,
2285};
2286
2287static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2288{
2289        struct address_space *mapping = filp->f_mapping;
2290
2291        if (!mapping->a_ops->readpage)
2292                return -ENOEXEC;
2293
2294        file_accessed(filp);
2295        vma->vm_ops = &btrfs_file_vm_ops;
2296
2297        return 0;
2298}
2299
2300static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2301                          int slot, u64 start, u64 end)
2302{
2303        struct btrfs_file_extent_item *fi;
2304        struct btrfs_key key;
2305
2306        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2307                return 0;
2308
2309        btrfs_item_key_to_cpu(leaf, &key, slot);
2310        if (key.objectid != btrfs_ino(inode) ||
2311            key.type != BTRFS_EXTENT_DATA_KEY)
2312                return 0;
2313
2314        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2315
2316        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2317                return 0;
2318
2319        if (btrfs_file_extent_disk_bytenr(leaf, fi))
2320                return 0;
2321
2322        if (key.offset == end)
2323                return 1;
2324        if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2325                return 1;
2326        return 0;
2327}
2328
2329static int fill_holes(struct btrfs_trans_handle *trans,
2330                struct btrfs_inode *inode,
2331                struct btrfs_path *path, u64 offset, u64 end)
2332{
2333        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2334        struct btrfs_root *root = inode->root;
2335        struct extent_buffer *leaf;
2336        struct btrfs_file_extent_item *fi;
2337        struct extent_map *hole_em;
2338        struct extent_map_tree *em_tree = &inode->extent_tree;
2339        struct btrfs_key key;
2340        int ret;
2341
2342        if (btrfs_fs_incompat(fs_info, NO_HOLES))
2343                goto out;
2344
2345        key.objectid = btrfs_ino(inode);
2346        key.type = BTRFS_EXTENT_DATA_KEY;
2347        key.offset = offset;
2348
2349        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2350        if (ret <= 0) {
2351                /*
2352                 * We should have dropped this offset, so if we find it then
2353                 * something has gone horribly wrong.
2354                 */
2355                if (ret == 0)
2356                        ret = -EINVAL;
2357                return ret;
2358        }
2359
2360        leaf = path->nodes[0];
2361        if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2362                u64 num_bytes;
2363
2364                path->slots[0]--;
2365                fi = btrfs_item_ptr(leaf, path->slots[0],
2366                                    struct btrfs_file_extent_item);
2367                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2368                        end - offset;
2369                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2370                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2371                btrfs_set_file_extent_offset(leaf, fi, 0);
2372                btrfs_mark_buffer_dirty(leaf);
2373                goto out;
2374        }
2375
2376        if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2377                u64 num_bytes;
2378
2379                key.offset = offset;
2380                btrfs_set_item_key_safe(fs_info, path, &key);
2381                fi = btrfs_item_ptr(leaf, path->slots[0],
2382                                    struct btrfs_file_extent_item);
2383                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2384                        offset;
2385                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2386                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2387                btrfs_set_file_extent_offset(leaf, fi, 0);
2388                btrfs_mark_buffer_dirty(leaf);
2389                goto out;
2390        }
2391        btrfs_release_path(path);
2392
2393        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2394                        offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2395        if (ret)
2396                return ret;
2397
2398out:
2399        btrfs_release_path(path);
2400
2401        hole_em = alloc_extent_map();
2402        if (!hole_em) {
2403                btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2404                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2405        } else {
2406                hole_em->start = offset;
2407                hole_em->len = end - offset;
2408                hole_em->ram_bytes = hole_em->len;
2409                hole_em->orig_start = offset;
2410
2411                hole_em->block_start = EXTENT_MAP_HOLE;
2412                hole_em->block_len = 0;
2413                hole_em->orig_block_len = 0;
2414                hole_em->bdev = fs_info->fs_devices->latest_bdev;
2415                hole_em->compress_type = BTRFS_COMPRESS_NONE;
2416                hole_em->generation = trans->transid;
2417
2418                do {
2419                        btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2420                        write_lock(&em_tree->lock);
2421                        ret = add_extent_mapping(em_tree, hole_em, 1);
2422                        write_unlock(&em_tree->lock);
2423                } while (ret == -EEXIST);
2424                free_extent_map(hole_em);
2425                if (ret)
2426                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2427                                        &inode->runtime_flags);
2428        }
2429
2430        return 0;
2431}
2432
2433/*
2434 * Find a hole extent on given inode and change start/len to the end of hole
2435 * extent.(hole/vacuum extent whose em->start <= start &&
2436 *         em->start + em->len > start)
2437 * When a hole extent is found, return 1 and modify start/len.
2438 */
2439static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2440{
2441        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2442        struct extent_map *em;
2443        int ret = 0;
2444
2445        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2446                              round_down(*start, fs_info->sectorsize),
2447                              round_up(*len, fs_info->sectorsize), 0);
2448        if (IS_ERR(em))
2449                return PTR_ERR(em);
2450
2451        /* Hole or vacuum extent(only exists in no-hole mode) */
2452        if (em->block_start == EXTENT_MAP_HOLE) {
2453                ret = 1;
2454                *len = em->start + em->len > *start + *len ?
2455                       0 : *start + *len - em->start - em->len;
2456                *start = em->start + em->len;
2457        }
2458        free_extent_map(em);
2459        return ret;
2460}
2461
2462static int btrfs_punch_hole_lock_range(struct inode *inode,
2463                                       const u64 lockstart,
2464                                       const u64 lockend,
2465                                       struct extent_state **cached_state)
2466{
2467        while (1) {
2468                struct btrfs_ordered_extent *ordered;
2469                int ret;
2470
2471                truncate_pagecache_range(inode, lockstart, lockend);
2472
2473                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2474                                 cached_state);
2475                ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2476
2477                /*
2478                 * We need to make sure we have no ordered extents in this range
2479                 * and nobody raced in and read a page in this range, if we did
2480                 * we need to try again.
2481                 */
2482                if ((!ordered ||
2483                    (ordered->file_offset + ordered->len <= lockstart ||
2484                     ordered->file_offset > lockend)) &&
2485                     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2486                        if (ordered)
2487                                btrfs_put_ordered_extent(ordered);
2488                        break;
2489                }
2490                if (ordered)
2491                        btrfs_put_ordered_extent(ordered);
2492                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2493                                     lockend, cached_state);
2494                ret = btrfs_wait_ordered_range(inode, lockstart,
2495                                               lockend - lockstart + 1);
2496                if (ret)
2497                        return ret;
2498        }
2499        return 0;
2500}
2501
2502static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2503{
2504        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2505        struct btrfs_root *root = BTRFS_I(inode)->root;
2506        struct extent_state *cached_state = NULL;
2507        struct btrfs_path *path;
2508        struct btrfs_block_rsv *rsv;
2509        struct btrfs_trans_handle *trans;
2510        u64 lockstart;
2511        u64 lockend;
2512        u64 tail_start;
2513        u64 tail_len;
2514        u64 orig_start = offset;
2515        u64 cur_offset;
2516        u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2517        u64 drop_end;
2518        int ret = 0;
2519        int err = 0;
2520        unsigned int rsv_count;
2521        bool same_block;
2522        bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2523        u64 ino_size;
2524        bool truncated_block = false;
2525        bool updated_inode = false;
2526
2527        ret = btrfs_wait_ordered_range(inode, offset, len);
2528        if (ret)
2529                return ret;
2530
2531        inode_lock(inode);
2532        ino_size = round_up(inode->i_size, fs_info->sectorsize);
2533        ret = find_first_non_hole(inode, &offset, &len);
2534        if (ret < 0)
2535                goto out_only_mutex;
2536        if (ret && !len) {
2537                /* Already in a large hole */
2538                ret = 0;
2539                goto out_only_mutex;
2540        }
2541
2542        lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2543        lockend = round_down(offset + len,
2544                             btrfs_inode_sectorsize(inode)) - 1;
2545        same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2546                == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2547        /*
2548         * We needn't truncate any block which is beyond the end of the file
2549         * because we are sure there is no data there.
2550         */
2551        /*
2552         * Only do this if we are in the same block and we aren't doing the
2553         * entire block.
2554         */
2555        if (same_block && len < fs_info->sectorsize) {
2556                if (offset < ino_size) {
2557                        truncated_block = true;
2558                        ret = btrfs_truncate_block(inode, offset, len, 0);
2559                } else {
2560                        ret = 0;
2561                }
2562                goto out_only_mutex;
2563        }
2564
2565        /* zero back part of the first block */
2566        if (offset < ino_size) {
2567                truncated_block = true;
2568                ret = btrfs_truncate_block(inode, offset, 0, 0);
2569                if (ret) {
2570                        inode_unlock(inode);
2571                        return ret;
2572                }
2573        }
2574
2575        /* Check the aligned pages after the first unaligned page,
2576         * if offset != orig_start, which means the first unaligned page
2577         * including several following pages are already in holes,
2578         * the extra check can be skipped */
2579        if (offset == orig_start) {
2580                /* after truncate page, check hole again */
2581                len = offset + len - lockstart;
2582                offset = lockstart;
2583                ret = find_first_non_hole(inode, &offset, &len);
2584                if (ret < 0)
2585                        goto out_only_mutex;
2586                if (ret && !len) {
2587                        ret = 0;
2588                        goto out_only_mutex;
2589                }
2590                lockstart = offset;
2591        }
2592
2593        /* Check the tail unaligned part is in a hole */
2594        tail_start = lockend + 1;
2595        tail_len = offset + len - tail_start;
2596        if (tail_len) {
2597                ret = find_first_non_hole(inode, &tail_start, &tail_len);
2598                if (unlikely(ret < 0))
2599                        goto out_only_mutex;
2600                if (!ret) {
2601                        /* zero the front end of the last page */
2602                        if (tail_start + tail_len < ino_size) {
2603                                truncated_block = true;
2604                                ret = btrfs_truncate_block(inode,
2605                                                        tail_start + tail_len,
2606                                                        0, 1);
2607                                if (ret)
2608                                        goto out_only_mutex;
2609                        }
2610                }
2611        }
2612
2613        if (lockend < lockstart) {
2614                ret = 0;
2615                goto out_only_mutex;
2616        }
2617
2618        ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2619                                          &cached_state);
2620        if (ret) {
2621                inode_unlock(inode);
2622                goto out_only_mutex;
2623        }
2624
2625        path = btrfs_alloc_path();
2626        if (!path) {
2627                ret = -ENOMEM;
2628                goto out;
2629        }
2630
2631        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2632        if (!rsv) {
2633                ret = -ENOMEM;
2634                goto out_free;
2635        }
2636        rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2637        rsv->failfast = 1;
2638
2639        /*
2640         * 1 - update the inode
2641         * 1 - removing the extents in the range
2642         * 1 - adding the hole extent if no_holes isn't set
2643         */
2644        rsv_count = no_holes ? 2 : 3;
2645        trans = btrfs_start_transaction(root, rsv_count);
2646        if (IS_ERR(trans)) {
2647                err = PTR_ERR(trans);
2648                goto out_free;
2649        }
2650
2651        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2652                                      min_size, 0);
2653        BUG_ON(ret);
2654        trans->block_rsv = rsv;
2655
2656        cur_offset = lockstart;
2657        len = lockend - cur_offset;
2658        while (cur_offset < lockend) {
2659                ret = __btrfs_drop_extents(trans, root, inode, path,
2660                                           cur_offset, lockend + 1,
2661                                           &drop_end, 1, 0, 0, NULL);
2662                if (ret != -ENOSPC)
2663                        break;
2664
2665                trans->block_rsv = &fs_info->trans_block_rsv;
2666
2667                if (cur_offset < drop_end && cur_offset < ino_size) {
2668                        ret = fill_holes(trans, BTRFS_I(inode), path,
2669                                        cur_offset, drop_end);
2670                        if (ret) {
2671                                /*
2672                                 * If we failed then we didn't insert our hole
2673                                 * entries for the area we dropped, so now the
2674                                 * fs is corrupted, so we must abort the
2675                                 * transaction.
2676                                 */
2677                                btrfs_abort_transaction(trans, ret);
2678                                err = ret;
2679                                break;
2680                        }
2681                }
2682
2683                cur_offset = drop_end;
2684
2685                ret = btrfs_update_inode(trans, root, inode);
2686                if (ret) {
2687                        err = ret;
2688                        break;
2689                }
2690
2691                btrfs_end_transaction(trans);
2692                btrfs_btree_balance_dirty(fs_info);
2693
2694                trans = btrfs_start_transaction(root, rsv_count);
2695                if (IS_ERR(trans)) {
2696                        ret = PTR_ERR(trans);
2697                        trans = NULL;
2698                        break;
2699                }
2700
2701                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2702                                              rsv, min_size, 0);
2703                BUG_ON(ret);    /* shouldn't happen */
2704                trans->block_rsv = rsv;
2705
2706                ret = find_first_non_hole(inode, &cur_offset, &len);
2707                if (unlikely(ret < 0))
2708                        break;
2709                if (ret && !len) {
2710                        ret = 0;
2711                        break;
2712                }
2713        }
2714
2715        if (ret) {
2716                err = ret;
2717                goto out_trans;
2718        }
2719
2720        trans->block_rsv = &fs_info->trans_block_rsv;
2721        /*
2722         * If we are using the NO_HOLES feature we might have had already an
2723         * hole that overlaps a part of the region [lockstart, lockend] and
2724         * ends at (or beyond) lockend. Since we have no file extent items to
2725         * represent holes, drop_end can be less than lockend and so we must
2726         * make sure we have an extent map representing the existing hole (the
2727         * call to __btrfs_drop_extents() might have dropped the existing extent
2728         * map representing the existing hole), otherwise the fast fsync path
2729         * will not record the existence of the hole region
2730         * [existing_hole_start, lockend].
2731         */
2732        if (drop_end <= lockend)
2733                drop_end = lockend + 1;
2734        /*
2735         * Don't insert file hole extent item if it's for a range beyond eof
2736         * (because it's useless) or if it represents a 0 bytes range (when
2737         * cur_offset == drop_end).
2738         */
2739        if (cur_offset < ino_size && cur_offset < drop_end) {
2740                ret = fill_holes(trans, BTRFS_I(inode), path,
2741                                cur_offset, drop_end);
2742                if (ret) {
2743                        /* Same comment as above. */
2744                        btrfs_abort_transaction(trans, ret);
2745                        err = ret;
2746                        goto out_trans;
2747                }
2748        }
2749
2750out_trans:
2751        if (!trans)
2752                goto out_free;
2753
2754        inode_inc_iversion(inode);
2755        inode->i_mtime = inode->i_ctime = current_time(inode);
2756
2757        trans->block_rsv = &fs_info->trans_block_rsv;
2758        ret = btrfs_update_inode(trans, root, inode);
2759        updated_inode = true;
2760        btrfs_end_transaction(trans);
2761        btrfs_btree_balance_dirty(fs_info);
2762out_free:
2763        btrfs_free_path(path);
2764        btrfs_free_block_rsv(fs_info, rsv);
2765out:
2766        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2767                             &cached_state);
2768out_only_mutex:
2769        if (!updated_inode && truncated_block && !ret && !err) {
2770                /*
2771                 * If we only end up zeroing part of a page, we still need to
2772                 * update the inode item, so that all the time fields are
2773                 * updated as well as the necessary btrfs inode in memory fields
2774                 * for detecting, at fsync time, if the inode isn't yet in the
2775                 * log tree or it's there but not up to date.
2776                 */
2777                trans = btrfs_start_transaction(root, 1);
2778                if (IS_ERR(trans)) {
2779                        err = PTR_ERR(trans);
2780                } else {
2781                        err = btrfs_update_inode(trans, root, inode);
2782                        ret = btrfs_end_transaction(trans);
2783                }
2784        }
2785        inode_unlock(inode);
2786        if (ret && !err)
2787                err = ret;
2788        return err;
2789}
2790
2791/* Helper structure to record which range is already reserved */
2792struct falloc_range {
2793        struct list_head list;
2794        u64 start;
2795        u64 len;
2796};
2797
2798/*
2799 * Helper function to add falloc range
2800 *
2801 * Caller should have locked the larger range of extent containing
2802 * [start, len)
2803 */
2804static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2805{
2806        struct falloc_range *prev = NULL;
2807        struct falloc_range *range = NULL;
2808
2809        if (list_empty(head))
2810                goto insert;
2811
2812        /*
2813         * As fallocate iterate by bytenr order, we only need to check
2814         * the last range.
2815         */
2816        prev = list_entry(head->prev, struct falloc_range, list);
2817        if (prev->start + prev->len == start) {
2818                prev->len += len;
2819                return 0;
2820        }
2821insert:
2822        range = kmalloc(sizeof(*range), GFP_KERNEL);
2823        if (!range)
2824                return -ENOMEM;
2825        range->start = start;
2826        range->len = len;
2827        list_add_tail(&range->list, head);
2828        return 0;
2829}
2830
2831static int btrfs_fallocate_update_isize(struct inode *inode,
2832                                        const u64 end,
2833                                        const int mode)
2834{
2835        struct btrfs_trans_handle *trans;
2836        struct btrfs_root *root = BTRFS_I(inode)->root;
2837        int ret;
2838        int ret2;
2839
2840        if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2841                return 0;
2842
2843        trans = btrfs_start_transaction(root, 1);
2844        if (IS_ERR(trans))
2845                return PTR_ERR(trans);
2846
2847        inode->i_ctime = current_time(inode);
2848        i_size_write(inode, end);
2849        btrfs_ordered_update_i_size(inode, end, NULL);
2850        ret = btrfs_update_inode(trans, root, inode);
2851        ret2 = btrfs_end_transaction(trans);
2852
2853        return ret ? ret : ret2;
2854}
2855
2856enum {
2857        RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2858        RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2859        RANGE_BOUNDARY_HOLE = 2,
2860};
2861
2862static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2863                                                 u64 offset)
2864{
2865        const u64 sectorsize = btrfs_inode_sectorsize(inode);
2866        struct extent_map *em;
2867        int ret;
2868
2869        offset = round_down(offset, sectorsize);
2870        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2871        if (IS_ERR(em))
2872                return PTR_ERR(em);
2873
2874        if (em->block_start == EXTENT_MAP_HOLE)
2875                ret = RANGE_BOUNDARY_HOLE;
2876        else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2877                ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2878        else
2879                ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2880
2881        free_extent_map(em);
2882        return ret;
2883}
2884
2885static int btrfs_zero_range(struct inode *inode,
2886                            loff_t offset,
2887                            loff_t len,
2888                            const int mode)
2889{
2890        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2891        struct extent_map *em;
2892        struct extent_changeset *data_reserved = NULL;
2893        int ret;
2894        u64 alloc_hint = 0;
2895        const u64 sectorsize = btrfs_inode_sectorsize(inode);
2896        u64 alloc_start = round_down(offset, sectorsize);
2897        u64 alloc_end = round_up(offset + len, sectorsize);
2898        u64 bytes_to_reserve = 0;
2899        bool space_reserved = false;
2900
2901        inode_dio_wait(inode);
2902
2903        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2904                              alloc_start, alloc_end - alloc_start, 0);
2905        if (IS_ERR(em)) {
2906                ret = PTR_ERR(em);
2907                goto out;
2908        }
2909
2910        /*
2911         * Avoid hole punching and extent allocation for some cases. More cases
2912         * could be considered, but these are unlikely common and we keep things
2913         * as simple as possible for now. Also, intentionally, if the target
2914         * range contains one or more prealloc extents together with regular
2915         * extents and holes, we drop all the existing extents and allocate a
2916         * new prealloc extent, so that we get a larger contiguous disk extent.
2917         */
2918        if (em->start <= alloc_start &&
2919            test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2920                const u64 em_end = em->start + em->len;
2921
2922                if (em_end >= offset + len) {
2923                        /*
2924                         * The whole range is already a prealloc extent,
2925                         * do nothing except updating the inode's i_size if
2926                         * needed.
2927                         */
2928                        free_extent_map(em);
2929                        ret = btrfs_fallocate_update_isize(inode, offset + len,
2930                                                           mode);
2931                        goto out;
2932                }
2933                /*
2934                 * Part of the range is already a prealloc extent, so operate
2935                 * only on the remaining part of the range.
2936                 */
2937                alloc_start = em_end;
2938                ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2939                len = offset + len - alloc_start;
2940                offset = alloc_start;
2941                alloc_hint = em->block_start + em->len;
2942        }
2943        free_extent_map(em);
2944
2945        if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2946            BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2947                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2948                                      alloc_start, sectorsize, 0);
2949                if (IS_ERR(em)) {
2950                        ret = PTR_ERR(em);
2951                        goto out;
2952                }
2953
2954                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2955                        free_extent_map(em);
2956                        ret = btrfs_fallocate_update_isize(inode, offset + len,
2957                                                           mode);
2958                        goto out;
2959                }
2960                if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2961                        free_extent_map(em);
2962                        ret = btrfs_truncate_block(inode, offset, len, 0);
2963                        if (!ret)
2964                                ret = btrfs_fallocate_update_isize(inode,
2965                                                                   offset + len,
2966                                                                   mode);
2967                        return ret;
2968                }
2969                free_extent_map(em);
2970                alloc_start = round_down(offset, sectorsize);
2971                alloc_end = alloc_start + sectorsize;
2972                goto reserve_space;
2973        }
2974
2975        alloc_start = round_up(offset, sectorsize);
2976        alloc_end = round_down(offset + len, sectorsize);
2977
2978        /*
2979         * For unaligned ranges, check the pages at the boundaries, they might
2980         * map to an extent, in which case we need to partially zero them, or
2981         * they might map to a hole, in which case we need our allocation range
2982         * to cover them.
2983         */
2984        if (!IS_ALIGNED(offset, sectorsize)) {
2985                ret = btrfs_zero_range_check_range_boundary(inode, offset);
2986                if (ret < 0)
2987                        goto out;
2988                if (ret == RANGE_BOUNDARY_HOLE) {
2989                        alloc_start = round_down(offset, sectorsize);
2990                        ret = 0;
2991                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2992                        ret = btrfs_truncate_block(inode, offset, 0, 0);
2993                        if (ret)
2994                                goto out;
2995                } else {
2996                        ret = 0;
2997                }
2998        }
2999
3000        if (!IS_ALIGNED(offset + len, sectorsize)) {
3001                ret = btrfs_zero_range_check_range_boundary(inode,
3002                                                            offset + len);
3003                if (ret < 0)
3004                        goto out;
3005                if (ret == RANGE_BOUNDARY_HOLE) {
3006                        alloc_end = round_up(offset + len, sectorsize);
3007                        ret = 0;
3008                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3009                        ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3010                        if (ret)
3011                                goto out;
3012                } else {
3013                        ret = 0;
3014                }
3015        }
3016
3017reserve_space:
3018        if (alloc_start < alloc_end) {
3019                struct extent_state *cached_state = NULL;
3020                const u64 lockstart = alloc_start;
3021                const u64 lockend = alloc_end - 1;
3022
3023                bytes_to_reserve = alloc_end - alloc_start;
3024                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3025                                                      bytes_to_reserve);
3026                if (ret < 0)
3027                        goto out;
3028                space_reserved = true;
3029                ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3030                                                alloc_start, bytes_to_reserve);
3031                if (ret)
3032                        goto out;
3033                ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3034                                                  &cached_state);
3035                if (ret)
3036                        goto out;
3037                ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3038                                                alloc_end - alloc_start,
3039                                                i_blocksize(inode),
3040                                                offset + len, &alloc_hint);
3041                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3042                                     lockend, &cached_state);
3043                /* btrfs_prealloc_file_range releases reserved space on error */
3044                if (ret) {
3045                        space_reserved = false;
3046                        goto out;
3047                }
3048        }
3049        ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3050 out:
3051        if (ret && space_reserved)
3052                btrfs_free_reserved_data_space(inode, data_reserved,
3053                                               alloc_start, bytes_to_reserve);
3054        extent_changeset_free(data_reserved);
3055
3056        return ret;
3057}
3058
3059static long btrfs_fallocate(struct file *file, int mode,
3060                            loff_t offset, loff_t len)
3061{
3062        struct inode *inode = file_inode(file);
3063        struct extent_state *cached_state = NULL;
3064        struct extent_changeset *data_reserved = NULL;
3065        struct falloc_range *range;
3066        struct falloc_range *tmp;
3067        struct list_head reserve_list;
3068        u64 cur_offset;
3069        u64 last_byte;
3070        u64 alloc_start;
3071        u64 alloc_end;
3072        u64 alloc_hint = 0;
3073        u64 locked_end;
3074        u64 actual_end = 0;
3075        struct extent_map *em;
3076        int blocksize = btrfs_inode_sectorsize(inode);
3077        int ret;
3078
3079        alloc_start = round_down(offset, blocksize);
3080        alloc_end = round_up(offset + len, blocksize);
3081        cur_offset = alloc_start;
3082
3083        /* Make sure we aren't being give some crap mode */
3084        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3085                     FALLOC_FL_ZERO_RANGE))
3086                return -EOPNOTSUPP;
3087
3088        if (mode & FALLOC_FL_PUNCH_HOLE)
3089                return btrfs_punch_hole(inode, offset, len);
3090
3091        /*
3092         * Only trigger disk allocation, don't trigger qgroup reserve
3093         *
3094         * For qgroup space, it will be checked later.
3095         */
3096        if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3097                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3098                                                      alloc_end - alloc_start);
3099                if (ret < 0)
3100                        return ret;
3101        }
3102
3103        inode_lock(inode);
3104
3105        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3106                ret = inode_newsize_ok(inode, offset + len);
3107                if (ret)
3108                        goto out;
3109        }
3110
3111        /*
3112         * TODO: Move these two operations after we have checked
3113         * accurate reserved space, or fallocate can still fail but
3114         * with page truncated or size expanded.
3115         *
3116         * But that's a minor problem and won't do much harm BTW.
3117         */
3118        if (alloc_start > inode->i_size) {
3119                ret = btrfs_cont_expand(inode, i_size_read(inode),
3120                                        alloc_start);
3121                if (ret)
3122                        goto out;
3123        } else if (offset + len > inode->i_size) {
3124                /*
3125                 * If we are fallocating from the end of the file onward we
3126                 * need to zero out the end of the block if i_size lands in the
3127                 * middle of a block.
3128                 */
3129                ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3130                if (ret)
3131                        goto out;
3132        }
3133
3134        /*
3135         * wait for ordered IO before we have any locks.  We'll loop again
3136         * below with the locks held.
3137         */
3138        ret = btrfs_wait_ordered_range(inode, alloc_start,
3139                                       alloc_end - alloc_start);
3140        if (ret)
3141                goto out;
3142
3143        if (mode & FALLOC_FL_ZERO_RANGE) {
3144                ret = btrfs_zero_range(inode, offset, len, mode);
3145                inode_unlock(inode);
3146                return ret;
3147        }
3148
3149        locked_end = alloc_end - 1;
3150        while (1) {
3151                struct btrfs_ordered_extent *ordered;
3152
3153                /* the extent lock is ordered inside the running
3154                 * transaction
3155                 */
3156                lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3157                                 locked_end, &cached_state);
3158                ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3159
3160                if (ordered &&
3161                    ordered->file_offset + ordered->len > alloc_start &&
3162                    ordered->file_offset < alloc_end) {
3163                        btrfs_put_ordered_extent(ordered);
3164                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3165                                             alloc_start, locked_end,
3166                                             &cached_state);
3167                        /*
3168                         * we can't wait on the range with the transaction
3169                         * running or with the extent lock held
3170                         */
3171                        ret = btrfs_wait_ordered_range(inode, alloc_start,
3172                                                       alloc_end - alloc_start);
3173                        if (ret)
3174                                goto out;
3175                } else {
3176                        if (ordered)
3177                                btrfs_put_ordered_extent(ordered);
3178                        break;
3179                }
3180        }
3181
3182        /* First, check if we exceed the qgroup limit */
3183        INIT_LIST_HEAD(&reserve_list);
3184        while (cur_offset < alloc_end) {
3185                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3186                                      alloc_end - cur_offset, 0);
3187                if (IS_ERR(em)) {
3188                        ret = PTR_ERR(em);
3189                        break;
3190                }
3191                last_byte = min(extent_map_end(em), alloc_end);
3192                actual_end = min_t(u64, extent_map_end(em), offset + len);
3193                last_byte = ALIGN(last_byte, blocksize);
3194                if (em->block_start == EXTENT_MAP_HOLE ||
3195                    (cur_offset >= inode->i_size &&
3196                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3197                        ret = add_falloc_range(&reserve_list, cur_offset,
3198                                               last_byte - cur_offset);
3199                        if (ret < 0) {
3200                                free_extent_map(em);
3201                                break;
3202                        }
3203                        ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3204                                        cur_offset, last_byte - cur_offset);
3205                        if (ret < 0) {
3206                                free_extent_map(em);
3207                                break;
3208                        }
3209                } else {
3210                        /*
3211                         * Do not need to reserve unwritten extent for this
3212                         * range, free reserved data space first, otherwise
3213                         * it'll result in false ENOSPC error.
3214                         */
3215                        btrfs_free_reserved_data_space(inode, data_reserved,
3216                                        cur_offset, last_byte - cur_offset);
3217                }
3218                free_extent_map(em);
3219                cur_offset = last_byte;
3220        }
3221
3222        /*
3223         * If ret is still 0, means we're OK to fallocate.
3224         * Or just cleanup the list and exit.
3225         */
3226        list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3227                if (!ret)
3228                        ret = btrfs_prealloc_file_range(inode, mode,
3229                                        range->start,
3230                                        range->len, i_blocksize(inode),
3231                                        offset + len, &alloc_hint);
3232                else
3233                        btrfs_free_reserved_data_space(inode,
3234                                        data_reserved, range->start,
3235                                        range->len);
3236                list_del(&range->list);
3237                kfree(range);
3238        }
3239        if (ret < 0)
3240                goto out_unlock;
3241
3242        /*
3243         * We didn't need to allocate any more space, but we still extended the
3244         * size of the file so we need to update i_size and the inode item.
3245         */
3246        ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3247out_unlock:
3248        unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3249                             &cached_state);
3250out:
3251        inode_unlock(inode);
3252        /* Let go of our reservation. */
3253        if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3254                btrfs_free_reserved_data_space(inode, data_reserved,
3255                                alloc_start, alloc_end - cur_offset);
3256        extent_changeset_free(data_reserved);
3257        return ret;
3258}
3259
3260static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3261{
3262        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3263        struct extent_map *em = NULL;
3264        struct extent_state *cached_state = NULL;
3265        u64 lockstart;
3266        u64 lockend;
3267        u64 start;
3268        u64 len;
3269        int ret = 0;
3270
3271        if (inode->i_size == 0)
3272                return -ENXIO;
3273
3274        /*
3275         * *offset can be negative, in this case we start finding DATA/HOLE from
3276         * the very start of the file.
3277         */
3278        start = max_t(loff_t, 0, *offset);
3279
3280        lockstart = round_down(start, fs_info->sectorsize);
3281        lockend = round_up(i_size_read(inode),
3282                           fs_info->sectorsize);
3283        if (lockend <= lockstart)
3284                lockend = lockstart + fs_info->sectorsize;
3285        lockend--;
3286        len = lockend - lockstart + 1;
3287
3288        lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3289                         &cached_state);
3290
3291        while (start < inode->i_size) {
3292                em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3293                                start, len, 0);
3294                if (IS_ERR(em)) {
3295                        ret = PTR_ERR(em);
3296                        em = NULL;
3297                        break;
3298                }
3299
3300                if (whence == SEEK_HOLE &&
3301                    (em->block_start == EXTENT_MAP_HOLE ||
3302                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3303                        break;
3304                else if (whence == SEEK_DATA &&
3305                           (em->block_start != EXTENT_MAP_HOLE &&
3306                            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3307                        break;
3308
3309                start = em->start + em->len;
3310                free_extent_map(em);
3311                em = NULL;
3312                cond_resched();
3313        }
3314        free_extent_map(em);
3315        if (!ret) {
3316                if (whence == SEEK_DATA && start >= inode->i_size)
3317                        ret = -ENXIO;
3318                else
3319                        *offset = min_t(loff_t, start, inode->i_size);
3320        }
3321        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3322                             &cached_state);
3323        return ret;
3324}
3325
3326static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3327{
3328        struct inode *inode = file->f_mapping->host;
3329        int ret;
3330
3331        inode_lock(inode);
3332        switch (whence) {
3333        case SEEK_END:
3334        case SEEK_CUR:
3335                offset = generic_file_llseek(file, offset, whence);
3336                goto out;
3337        case SEEK_DATA:
3338        case SEEK_HOLE:
3339                if (offset >= i_size_read(inode)) {
3340                        inode_unlock(inode);
3341                        return -ENXIO;
3342                }
3343
3344                ret = find_desired_extent(inode, &offset, whence);
3345                if (ret) {
3346                        inode_unlock(inode);
3347                        return ret;
3348                }
3349        }
3350
3351        offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3352out:
3353        inode_unlock(inode);
3354        return offset;
3355}
3356
3357static int btrfs_file_open(struct inode *inode, struct file *filp)
3358{
3359        filp->f_mode |= FMODE_NOWAIT;
3360        return generic_file_open(inode, filp);
3361}
3362
3363const struct file_operations btrfs_file_operations = {
3364        .llseek         = btrfs_file_llseek,
3365        .read_iter      = generic_file_read_iter,
3366        .splice_read    = generic_file_splice_read,
3367        .write_iter     = btrfs_file_write_iter,
3368        .mmap           = btrfs_file_mmap,
3369        .open           = btrfs_file_open,
3370        .release        = btrfs_release_file,
3371        .fsync          = btrfs_sync_file,
3372        .fallocate      = btrfs_fallocate,
3373        .unlocked_ioctl = btrfs_ioctl,
3374#ifdef CONFIG_COMPAT
3375        .compat_ioctl   = btrfs_compat_ioctl,
3376#endif
3377        .clone_file_range = btrfs_clone_file_range,
3378        .dedupe_file_range = btrfs_dedupe_file_range,
3379};
3380
3381void btrfs_auto_defrag_exit(void)
3382{
3383        kmem_cache_destroy(btrfs_inode_defrag_cachep);
3384}
3385
3386int __init btrfs_auto_defrag_init(void)
3387{
3388        btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3389                                        sizeof(struct inode_defrag), 0,
3390                                        SLAB_MEM_SPREAD,
3391                                        NULL);
3392        if (!btrfs_inode_defrag_cachep)
3393                return -ENOMEM;
3394
3395        return 0;
3396}
3397
3398int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3399{
3400        int ret;
3401
3402        /*
3403         * So with compression we will find and lock a dirty page and clear the
3404         * first one as dirty, setup an async extent, and immediately return
3405         * with the entire range locked but with nobody actually marked with
3406         * writeback.  So we can't just filemap_write_and_wait_range() and
3407         * expect it to work since it will just kick off a thread to do the
3408         * actual work.  So we need to call filemap_fdatawrite_range _again_
3409         * since it will wait on the page lock, which won't be unlocked until
3410         * after the pages have been marked as writeback and so we're good to go
3411         * from there.  We have to do this otherwise we'll miss the ordered
3412         * extents and that results in badness.  Please Josef, do not think you
3413         * know better and pull this out at some point in the future, it is
3414         * right and you are wrong.
3415         */
3416        ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3417        if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3418                             &BTRFS_I(inode)->runtime_flags))
3419                ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3420
3421        return ret;
3422}
3423