linux/fs/hugetlbfs/inode.c
<<
>>
Prefs
   1/*
   2 * hugetlbpage-backed filesystem.  Based on ramfs.
   3 *
   4 * Nadia Yvette Chambers, 2002
   5 *
   6 * Copyright (C) 2002 Linus Torvalds.
   7 * License: GPL
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/thread_info.h>
  13#include <asm/current.h>
  14#include <linux/sched/signal.h>         /* remove ASAP */
  15#include <linux/falloc.h>
  16#include <linux/fs.h>
  17#include <linux/mount.h>
  18#include <linux/file.h>
  19#include <linux/kernel.h>
  20#include <linux/writeback.h>
  21#include <linux/pagemap.h>
  22#include <linux/highmem.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/capability.h>
  26#include <linux/ctype.h>
  27#include <linux/backing-dev.h>
  28#include <linux/hugetlb.h>
  29#include <linux/pagevec.h>
  30#include <linux/parser.h>
  31#include <linux/mman.h>
  32#include <linux/slab.h>
  33#include <linux/dnotify.h>
  34#include <linux/statfs.h>
  35#include <linux/security.h>
  36#include <linux/magic.h>
  37#include <linux/migrate.h>
  38#include <linux/uio.h>
  39
  40#include <linux/uaccess.h>
  41
  42static const struct super_operations hugetlbfs_ops;
  43static const struct address_space_operations hugetlbfs_aops;
  44const struct file_operations hugetlbfs_file_operations;
  45static const struct inode_operations hugetlbfs_dir_inode_operations;
  46static const struct inode_operations hugetlbfs_inode_operations;
  47
  48struct hugetlbfs_config {
  49        struct hstate           *hstate;
  50        long                    max_hpages;
  51        long                    nr_inodes;
  52        long                    min_hpages;
  53        kuid_t                  uid;
  54        kgid_t                  gid;
  55        umode_t                 mode;
  56};
  57
  58int sysctl_hugetlb_shm_group;
  59
  60enum {
  61        Opt_size, Opt_nr_inodes,
  62        Opt_mode, Opt_uid, Opt_gid,
  63        Opt_pagesize, Opt_min_size,
  64        Opt_err,
  65};
  66
  67static const match_table_t tokens = {
  68        {Opt_size,      "size=%s"},
  69        {Opt_nr_inodes, "nr_inodes=%s"},
  70        {Opt_mode,      "mode=%o"},
  71        {Opt_uid,       "uid=%u"},
  72        {Opt_gid,       "gid=%u"},
  73        {Opt_pagesize,  "pagesize=%s"},
  74        {Opt_min_size,  "min_size=%s"},
  75        {Opt_err,       NULL},
  76};
  77
  78#ifdef CONFIG_NUMA
  79static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
  80                                        struct inode *inode, pgoff_t index)
  81{
  82        vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
  83                                                        index);
  84}
  85
  86static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
  87{
  88        mpol_cond_put(vma->vm_policy);
  89}
  90#else
  91static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
  92                                        struct inode *inode, pgoff_t index)
  93{
  94}
  95
  96static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
  97{
  98}
  99#endif
 100
 101static void huge_pagevec_release(struct pagevec *pvec)
 102{
 103        int i;
 104
 105        for (i = 0; i < pagevec_count(pvec); ++i)
 106                put_page(pvec->pages[i]);
 107
 108        pagevec_reinit(pvec);
 109}
 110
 111/*
 112 * Mask used when checking the page offset value passed in via system
 113 * calls.  This value will be converted to a loff_t which is signed.
 114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
 115 * value.  The extra bit (- 1 in the shift value) is to take the sign
 116 * bit into account.
 117 */
 118#define PGOFF_LOFFT_MAX \
 119        (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
 120
 121static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
 122{
 123        struct inode *inode = file_inode(file);
 124        loff_t len, vma_len;
 125        int ret;
 126        struct hstate *h = hstate_file(file);
 127
 128        /*
 129         * vma address alignment (but not the pgoff alignment) has
 130         * already been checked by prepare_hugepage_range.  If you add
 131         * any error returns here, do so after setting VM_HUGETLB, so
 132         * is_vm_hugetlb_page tests below unmap_region go the right
 133         * way when do_mmap_pgoff unwinds (may be important on powerpc
 134         * and ia64).
 135         */
 136        vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
 137        vma->vm_ops = &hugetlb_vm_ops;
 138
 139        /*
 140         * page based offset in vm_pgoff could be sufficiently large to
 141         * overflow a (l)off_t when converted to byte offset.
 142         */
 143        if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
 144                return -EINVAL;
 145
 146        /* must be huge page aligned */
 147        if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
 148                return -EINVAL;
 149
 150        vma_len = (loff_t)(vma->vm_end - vma->vm_start);
 151        len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 152        /* check for overflow */
 153        if (len < vma_len)
 154                return -EINVAL;
 155
 156        inode_lock(inode);
 157        file_accessed(file);
 158
 159        ret = -ENOMEM;
 160        if (hugetlb_reserve_pages(inode,
 161                                vma->vm_pgoff >> huge_page_order(h),
 162                                len >> huge_page_shift(h), vma,
 163                                vma->vm_flags))
 164                goto out;
 165
 166        ret = 0;
 167        if (vma->vm_flags & VM_WRITE && inode->i_size < len)
 168                i_size_write(inode, len);
 169out:
 170        inode_unlock(inode);
 171
 172        return ret;
 173}
 174
 175/*
 176 * Called under down_write(mmap_sem).
 177 */
 178
 179#ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 180static unsigned long
 181hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 182                unsigned long len, unsigned long pgoff, unsigned long flags)
 183{
 184        struct mm_struct *mm = current->mm;
 185        struct vm_area_struct *vma;
 186        struct hstate *h = hstate_file(file);
 187        struct vm_unmapped_area_info info;
 188
 189        if (len & ~huge_page_mask(h))
 190                return -EINVAL;
 191        if (len > TASK_SIZE)
 192                return -ENOMEM;
 193
 194        if (flags & MAP_FIXED) {
 195                if (prepare_hugepage_range(file, addr, len))
 196                        return -EINVAL;
 197                return addr;
 198        }
 199
 200        if (addr) {
 201                addr = ALIGN(addr, huge_page_size(h));
 202                vma = find_vma(mm, addr);
 203                if (TASK_SIZE - len >= addr &&
 204                    (!vma || addr + len <= vm_start_gap(vma)))
 205                        return addr;
 206        }
 207
 208        info.flags = 0;
 209        info.length = len;
 210        info.low_limit = TASK_UNMAPPED_BASE;
 211        info.high_limit = TASK_SIZE;
 212        info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 213        info.align_offset = 0;
 214        return vm_unmapped_area(&info);
 215}
 216#endif
 217
 218static size_t
 219hugetlbfs_read_actor(struct page *page, unsigned long offset,
 220                        struct iov_iter *to, unsigned long size)
 221{
 222        size_t copied = 0;
 223        int i, chunksize;
 224
 225        /* Find which 4k chunk and offset with in that chunk */
 226        i = offset >> PAGE_SHIFT;
 227        offset = offset & ~PAGE_MASK;
 228
 229        while (size) {
 230                size_t n;
 231                chunksize = PAGE_SIZE;
 232                if (offset)
 233                        chunksize -= offset;
 234                if (chunksize > size)
 235                        chunksize = size;
 236                n = copy_page_to_iter(&page[i], offset, chunksize, to);
 237                copied += n;
 238                if (n != chunksize)
 239                        return copied;
 240                offset = 0;
 241                size -= chunksize;
 242                i++;
 243        }
 244        return copied;
 245}
 246
 247/*
 248 * Support for read() - Find the page attached to f_mapping and copy out the
 249 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
 250 * since it has PAGE_SIZE assumptions.
 251 */
 252static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
 253{
 254        struct file *file = iocb->ki_filp;
 255        struct hstate *h = hstate_file(file);
 256        struct address_space *mapping = file->f_mapping;
 257        struct inode *inode = mapping->host;
 258        unsigned long index = iocb->ki_pos >> huge_page_shift(h);
 259        unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
 260        unsigned long end_index;
 261        loff_t isize;
 262        ssize_t retval = 0;
 263
 264        while (iov_iter_count(to)) {
 265                struct page *page;
 266                size_t nr, copied;
 267
 268                /* nr is the maximum number of bytes to copy from this page */
 269                nr = huge_page_size(h);
 270                isize = i_size_read(inode);
 271                if (!isize)
 272                        break;
 273                end_index = (isize - 1) >> huge_page_shift(h);
 274                if (index > end_index)
 275                        break;
 276                if (index == end_index) {
 277                        nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
 278                        if (nr <= offset)
 279                                break;
 280                }
 281                nr = nr - offset;
 282
 283                /* Find the page */
 284                page = find_lock_page(mapping, index);
 285                if (unlikely(page == NULL)) {
 286                        /*
 287                         * We have a HOLE, zero out the user-buffer for the
 288                         * length of the hole or request.
 289                         */
 290                        copied = iov_iter_zero(nr, to);
 291                } else {
 292                        unlock_page(page);
 293
 294                        /*
 295                         * We have the page, copy it to user space buffer.
 296                         */
 297                        copied = hugetlbfs_read_actor(page, offset, to, nr);
 298                        put_page(page);
 299                }
 300                offset += copied;
 301                retval += copied;
 302                if (copied != nr && iov_iter_count(to)) {
 303                        if (!retval)
 304                                retval = -EFAULT;
 305                        break;
 306                }
 307                index += offset >> huge_page_shift(h);
 308                offset &= ~huge_page_mask(h);
 309        }
 310        iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
 311        return retval;
 312}
 313
 314static int hugetlbfs_write_begin(struct file *file,
 315                        struct address_space *mapping,
 316                        loff_t pos, unsigned len, unsigned flags,
 317                        struct page **pagep, void **fsdata)
 318{
 319        return -EINVAL;
 320}
 321
 322static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
 323                        loff_t pos, unsigned len, unsigned copied,
 324                        struct page *page, void *fsdata)
 325{
 326        BUG();
 327        return -EINVAL;
 328}
 329
 330static void remove_huge_page(struct page *page)
 331{
 332        ClearPageDirty(page);
 333        ClearPageUptodate(page);
 334        delete_from_page_cache(page);
 335}
 336
 337static void
 338hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
 339{
 340        struct vm_area_struct *vma;
 341
 342        /*
 343         * end == 0 indicates that the entire range after
 344         * start should be unmapped.
 345         */
 346        vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
 347                unsigned long v_offset;
 348                unsigned long v_end;
 349
 350                /*
 351                 * Can the expression below overflow on 32-bit arches?
 352                 * No, because the interval tree returns us only those vmas
 353                 * which overlap the truncated area starting at pgoff,
 354                 * and no vma on a 32-bit arch can span beyond the 4GB.
 355                 */
 356                if (vma->vm_pgoff < start)
 357                        v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
 358                else
 359                        v_offset = 0;
 360
 361                if (!end)
 362                        v_end = vma->vm_end;
 363                else {
 364                        v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
 365                                                        + vma->vm_start;
 366                        if (v_end > vma->vm_end)
 367                                v_end = vma->vm_end;
 368                }
 369
 370                unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
 371                                                                        NULL);
 372        }
 373}
 374
 375/*
 376 * remove_inode_hugepages handles two distinct cases: truncation and hole
 377 * punch.  There are subtle differences in operation for each case.
 378 *
 379 * truncation is indicated by end of range being LLONG_MAX
 380 *      In this case, we first scan the range and release found pages.
 381 *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
 382 *      maps and global counts.  Page faults can not race with truncation
 383 *      in this routine.  hugetlb_no_page() prevents page faults in the
 384 *      truncated range.  It checks i_size before allocation, and again after
 385 *      with the page table lock for the page held.  The same lock must be
 386 *      acquired to unmap a page.
 387 * hole punch is indicated if end is not LLONG_MAX
 388 *      In the hole punch case we scan the range and release found pages.
 389 *      Only when releasing a page is the associated region/reserv map
 390 *      deleted.  The region/reserv map for ranges without associated
 391 *      pages are not modified.  Page faults can race with hole punch.
 392 *      This is indicated if we find a mapped page.
 393 * Note: If the passed end of range value is beyond the end of file, but
 394 * not LLONG_MAX this routine still performs a hole punch operation.
 395 */
 396static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
 397                                   loff_t lend)
 398{
 399        struct hstate *h = hstate_inode(inode);
 400        struct address_space *mapping = &inode->i_data;
 401        const pgoff_t start = lstart >> huge_page_shift(h);
 402        const pgoff_t end = lend >> huge_page_shift(h);
 403        struct vm_area_struct pseudo_vma;
 404        struct pagevec pvec;
 405        pgoff_t next, index;
 406        int i, freed = 0;
 407        bool truncate_op = (lend == LLONG_MAX);
 408
 409        memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
 410        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 411        pagevec_init(&pvec);
 412        next = start;
 413        while (next < end) {
 414                /*
 415                 * When no more pages are found, we are done.
 416                 */
 417                if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
 418                        break;
 419
 420                for (i = 0; i < pagevec_count(&pvec); ++i) {
 421                        struct page *page = pvec.pages[i];
 422                        u32 hash;
 423
 424                        index = page->index;
 425                        hash = hugetlb_fault_mutex_hash(h, current->mm,
 426                                                        &pseudo_vma,
 427                                                        mapping, index, 0);
 428                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
 429
 430                        /*
 431                         * If page is mapped, it was faulted in after being
 432                         * unmapped in caller.  Unmap (again) now after taking
 433                         * the fault mutex.  The mutex will prevent faults
 434                         * until we finish removing the page.
 435                         *
 436                         * This race can only happen in the hole punch case.
 437                         * Getting here in a truncate operation is a bug.
 438                         */
 439                        if (unlikely(page_mapped(page))) {
 440                                BUG_ON(truncate_op);
 441
 442                                i_mmap_lock_write(mapping);
 443                                hugetlb_vmdelete_list(&mapping->i_mmap,
 444                                        index * pages_per_huge_page(h),
 445                                        (index + 1) * pages_per_huge_page(h));
 446                                i_mmap_unlock_write(mapping);
 447                        }
 448
 449                        lock_page(page);
 450                        /*
 451                         * We must free the huge page and remove from page
 452                         * cache (remove_huge_page) BEFORE removing the
 453                         * region/reserve map (hugetlb_unreserve_pages).  In
 454                         * rare out of memory conditions, removal of the
 455                         * region/reserve map could fail. Correspondingly,
 456                         * the subpool and global reserve usage count can need
 457                         * to be adjusted.
 458                         */
 459                        VM_BUG_ON(PagePrivate(page));
 460                        remove_huge_page(page);
 461                        freed++;
 462                        if (!truncate_op) {
 463                                if (unlikely(hugetlb_unreserve_pages(inode,
 464                                                        index, index + 1, 1)))
 465                                        hugetlb_fix_reserve_counts(inode);
 466                        }
 467
 468                        unlock_page(page);
 469                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 470                }
 471                huge_pagevec_release(&pvec);
 472                cond_resched();
 473        }
 474
 475        if (truncate_op)
 476                (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
 477}
 478
 479static void hugetlbfs_evict_inode(struct inode *inode)
 480{
 481        struct resv_map *resv_map;
 482
 483        remove_inode_hugepages(inode, 0, LLONG_MAX);
 484        resv_map = (struct resv_map *)inode->i_mapping->private_data;
 485        /* root inode doesn't have the resv_map, so we should check it */
 486        if (resv_map)
 487                resv_map_release(&resv_map->refs);
 488        clear_inode(inode);
 489}
 490
 491static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
 492{
 493        pgoff_t pgoff;
 494        struct address_space *mapping = inode->i_mapping;
 495        struct hstate *h = hstate_inode(inode);
 496
 497        BUG_ON(offset & ~huge_page_mask(h));
 498        pgoff = offset >> PAGE_SHIFT;
 499
 500        i_size_write(inode, offset);
 501        i_mmap_lock_write(mapping);
 502        if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 503                hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
 504        i_mmap_unlock_write(mapping);
 505        remove_inode_hugepages(inode, offset, LLONG_MAX);
 506        return 0;
 507}
 508
 509static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
 510{
 511        struct hstate *h = hstate_inode(inode);
 512        loff_t hpage_size = huge_page_size(h);
 513        loff_t hole_start, hole_end;
 514
 515        /*
 516         * For hole punch round up the beginning offset of the hole and
 517         * round down the end.
 518         */
 519        hole_start = round_up(offset, hpage_size);
 520        hole_end = round_down(offset + len, hpage_size);
 521
 522        if (hole_end > hole_start) {
 523                struct address_space *mapping = inode->i_mapping;
 524                struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 525
 526                inode_lock(inode);
 527
 528                /* protected by i_mutex */
 529                if (info->seals & F_SEAL_WRITE) {
 530                        inode_unlock(inode);
 531                        return -EPERM;
 532                }
 533
 534                i_mmap_lock_write(mapping);
 535                if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
 536                        hugetlb_vmdelete_list(&mapping->i_mmap,
 537                                                hole_start >> PAGE_SHIFT,
 538                                                hole_end  >> PAGE_SHIFT);
 539                i_mmap_unlock_write(mapping);
 540                remove_inode_hugepages(inode, hole_start, hole_end);
 541                inode_unlock(inode);
 542        }
 543
 544        return 0;
 545}
 546
 547static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
 548                                loff_t len)
 549{
 550        struct inode *inode = file_inode(file);
 551        struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 552        struct address_space *mapping = inode->i_mapping;
 553        struct hstate *h = hstate_inode(inode);
 554        struct vm_area_struct pseudo_vma;
 555        struct mm_struct *mm = current->mm;
 556        loff_t hpage_size = huge_page_size(h);
 557        unsigned long hpage_shift = huge_page_shift(h);
 558        pgoff_t start, index, end;
 559        int error;
 560        u32 hash;
 561
 562        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
 563                return -EOPNOTSUPP;
 564
 565        if (mode & FALLOC_FL_PUNCH_HOLE)
 566                return hugetlbfs_punch_hole(inode, offset, len);
 567
 568        /*
 569         * Default preallocate case.
 570         * For this range, start is rounded down and end is rounded up
 571         * as well as being converted to page offsets.
 572         */
 573        start = offset >> hpage_shift;
 574        end = (offset + len + hpage_size - 1) >> hpage_shift;
 575
 576        inode_lock(inode);
 577
 578        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
 579        error = inode_newsize_ok(inode, offset + len);
 580        if (error)
 581                goto out;
 582
 583        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
 584                error = -EPERM;
 585                goto out;
 586        }
 587
 588        /*
 589         * Initialize a pseudo vma as this is required by the huge page
 590         * allocation routines.  If NUMA is configured, use page index
 591         * as input to create an allocation policy.
 592         */
 593        memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
 594        pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
 595        pseudo_vma.vm_file = file;
 596
 597        for (index = start; index < end; index++) {
 598                /*
 599                 * This is supposed to be the vaddr where the page is being
 600                 * faulted in, but we have no vaddr here.
 601                 */
 602                struct page *page;
 603                unsigned long addr;
 604                int avoid_reserve = 0;
 605
 606                cond_resched();
 607
 608                /*
 609                 * fallocate(2) manpage permits EINTR; we may have been
 610                 * interrupted because we are using up too much memory.
 611                 */
 612                if (signal_pending(current)) {
 613                        error = -EINTR;
 614                        break;
 615                }
 616
 617                /* Set numa allocation policy based on index */
 618                hugetlb_set_vma_policy(&pseudo_vma, inode, index);
 619
 620                /* addr is the offset within the file (zero based) */
 621                addr = index * hpage_size;
 622
 623                /* mutex taken here, fault path and hole punch */
 624                hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
 625                                                index, addr);
 626                mutex_lock(&hugetlb_fault_mutex_table[hash]);
 627
 628                /* See if already present in mapping to avoid alloc/free */
 629                page = find_get_page(mapping, index);
 630                if (page) {
 631                        put_page(page);
 632                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 633                        hugetlb_drop_vma_policy(&pseudo_vma);
 634                        continue;
 635                }
 636
 637                /* Allocate page and add to page cache */
 638                page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
 639                hugetlb_drop_vma_policy(&pseudo_vma);
 640                if (IS_ERR(page)) {
 641                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 642                        error = PTR_ERR(page);
 643                        goto out;
 644                }
 645                clear_huge_page(page, addr, pages_per_huge_page(h));
 646                __SetPageUptodate(page);
 647                error = huge_add_to_page_cache(page, mapping, index);
 648                if (unlikely(error)) {
 649                        put_page(page);
 650                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 651                        goto out;
 652                }
 653
 654                mutex_unlock(&hugetlb_fault_mutex_table[hash]);
 655
 656                /*
 657                 * unlock_page because locked by add_to_page_cache()
 658                 * page_put due to reference from alloc_huge_page()
 659                 */
 660                unlock_page(page);
 661                put_page(page);
 662        }
 663
 664        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
 665                i_size_write(inode, offset + len);
 666        inode->i_ctime = current_time(inode);
 667out:
 668        inode_unlock(inode);
 669        return error;
 670}
 671
 672static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
 673{
 674        struct inode *inode = d_inode(dentry);
 675        struct hstate *h = hstate_inode(inode);
 676        int error;
 677        unsigned int ia_valid = attr->ia_valid;
 678        struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 679
 680        BUG_ON(!inode);
 681
 682        error = setattr_prepare(dentry, attr);
 683        if (error)
 684                return error;
 685
 686        if (ia_valid & ATTR_SIZE) {
 687                loff_t oldsize = inode->i_size;
 688                loff_t newsize = attr->ia_size;
 689
 690                if (newsize & ~huge_page_mask(h))
 691                        return -EINVAL;
 692                /* protected by i_mutex */
 693                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 694                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 695                        return -EPERM;
 696                error = hugetlb_vmtruncate(inode, newsize);
 697                if (error)
 698                        return error;
 699        }
 700
 701        setattr_copy(inode, attr);
 702        mark_inode_dirty(inode);
 703        return 0;
 704}
 705
 706static struct inode *hugetlbfs_get_root(struct super_block *sb,
 707                                        struct hugetlbfs_config *config)
 708{
 709        struct inode *inode;
 710
 711        inode = new_inode(sb);
 712        if (inode) {
 713                inode->i_ino = get_next_ino();
 714                inode->i_mode = S_IFDIR | config->mode;
 715                inode->i_uid = config->uid;
 716                inode->i_gid = config->gid;
 717                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 718                inode->i_op = &hugetlbfs_dir_inode_operations;
 719                inode->i_fop = &simple_dir_operations;
 720                /* directory inodes start off with i_nlink == 2 (for "." entry) */
 721                inc_nlink(inode);
 722                lockdep_annotate_inode_mutex_key(inode);
 723        }
 724        return inode;
 725}
 726
 727/*
 728 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
 729 * be taken from reclaim -- unlike regular filesystems. This needs an
 730 * annotation because huge_pmd_share() does an allocation under hugetlb's
 731 * i_mmap_rwsem.
 732 */
 733static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
 734
 735static struct inode *hugetlbfs_get_inode(struct super_block *sb,
 736                                        struct inode *dir,
 737                                        umode_t mode, dev_t dev)
 738{
 739        struct inode *inode;
 740        struct resv_map *resv_map;
 741
 742        resv_map = resv_map_alloc();
 743        if (!resv_map)
 744                return NULL;
 745
 746        inode = new_inode(sb);
 747        if (inode) {
 748                struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
 749
 750                inode->i_ino = get_next_ino();
 751                inode_init_owner(inode, dir, mode);
 752                lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
 753                                &hugetlbfs_i_mmap_rwsem_key);
 754                inode->i_mapping->a_ops = &hugetlbfs_aops;
 755                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 756                inode->i_mapping->private_data = resv_map;
 757                info->seals = F_SEAL_SEAL;
 758                switch (mode & S_IFMT) {
 759                default:
 760                        init_special_inode(inode, mode, dev);
 761                        break;
 762                case S_IFREG:
 763                        inode->i_op = &hugetlbfs_inode_operations;
 764                        inode->i_fop = &hugetlbfs_file_operations;
 765                        break;
 766                case S_IFDIR:
 767                        inode->i_op = &hugetlbfs_dir_inode_operations;
 768                        inode->i_fop = &simple_dir_operations;
 769
 770                        /* directory inodes start off with i_nlink == 2 (for "." entry) */
 771                        inc_nlink(inode);
 772                        break;
 773                case S_IFLNK:
 774                        inode->i_op = &page_symlink_inode_operations;
 775                        inode_nohighmem(inode);
 776                        break;
 777                }
 778                lockdep_annotate_inode_mutex_key(inode);
 779        } else
 780                kref_put(&resv_map->refs, resv_map_release);
 781
 782        return inode;
 783}
 784
 785/*
 786 * File creation. Allocate an inode, and we're done..
 787 */
 788static int hugetlbfs_mknod(struct inode *dir,
 789                        struct dentry *dentry, umode_t mode, dev_t dev)
 790{
 791        struct inode *inode;
 792        int error = -ENOSPC;
 793
 794        inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
 795        if (inode) {
 796                dir->i_ctime = dir->i_mtime = current_time(dir);
 797                d_instantiate(dentry, inode);
 798                dget(dentry);   /* Extra count - pin the dentry in core */
 799                error = 0;
 800        }
 801        return error;
 802}
 803
 804static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 805{
 806        int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
 807        if (!retval)
 808                inc_nlink(dir);
 809        return retval;
 810}
 811
 812static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
 813{
 814        return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
 815}
 816
 817static int hugetlbfs_symlink(struct inode *dir,
 818                        struct dentry *dentry, const char *symname)
 819{
 820        struct inode *inode;
 821        int error = -ENOSPC;
 822
 823        inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
 824        if (inode) {
 825                int l = strlen(symname)+1;
 826                error = page_symlink(inode, symname, l);
 827                if (!error) {
 828                        d_instantiate(dentry, inode);
 829                        dget(dentry);
 830                } else
 831                        iput(inode);
 832        }
 833        dir->i_ctime = dir->i_mtime = current_time(dir);
 834
 835        return error;
 836}
 837
 838/*
 839 * mark the head page dirty
 840 */
 841static int hugetlbfs_set_page_dirty(struct page *page)
 842{
 843        struct page *head = compound_head(page);
 844
 845        SetPageDirty(head);
 846        return 0;
 847}
 848
 849static int hugetlbfs_migrate_page(struct address_space *mapping,
 850                                struct page *newpage, struct page *page,
 851                                enum migrate_mode mode)
 852{
 853        int rc;
 854
 855        rc = migrate_huge_page_move_mapping(mapping, newpage, page);
 856        if (rc != MIGRATEPAGE_SUCCESS)
 857                return rc;
 858        if (mode != MIGRATE_SYNC_NO_COPY)
 859                migrate_page_copy(newpage, page);
 860        else
 861                migrate_page_states(newpage, page);
 862
 863        return MIGRATEPAGE_SUCCESS;
 864}
 865
 866static int hugetlbfs_error_remove_page(struct address_space *mapping,
 867                                struct page *page)
 868{
 869        struct inode *inode = mapping->host;
 870        pgoff_t index = page->index;
 871
 872        remove_huge_page(page);
 873        if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
 874                hugetlb_fix_reserve_counts(inode);
 875
 876        return 0;
 877}
 878
 879/*
 880 * Display the mount options in /proc/mounts.
 881 */
 882static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
 883{
 884        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
 885        struct hugepage_subpool *spool = sbinfo->spool;
 886        unsigned long hpage_size = huge_page_size(sbinfo->hstate);
 887        unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
 888        char mod;
 889
 890        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
 891                seq_printf(m, ",uid=%u",
 892                           from_kuid_munged(&init_user_ns, sbinfo->uid));
 893        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
 894                seq_printf(m, ",gid=%u",
 895                           from_kgid_munged(&init_user_ns, sbinfo->gid));
 896        if (sbinfo->mode != 0755)
 897                seq_printf(m, ",mode=%o", sbinfo->mode);
 898        if (sbinfo->max_inodes != -1)
 899                seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
 900
 901        hpage_size /= 1024;
 902        mod = 'K';
 903        if (hpage_size >= 1024) {
 904                hpage_size /= 1024;
 905                mod = 'M';
 906        }
 907        seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
 908        if (spool) {
 909                if (spool->max_hpages != -1)
 910                        seq_printf(m, ",size=%llu",
 911                                   (unsigned long long)spool->max_hpages << hpage_shift);
 912                if (spool->min_hpages != -1)
 913                        seq_printf(m, ",min_size=%llu",
 914                                   (unsigned long long)spool->min_hpages << hpage_shift);
 915        }
 916        return 0;
 917}
 918
 919static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 920{
 921        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
 922        struct hstate *h = hstate_inode(d_inode(dentry));
 923
 924        buf->f_type = HUGETLBFS_MAGIC;
 925        buf->f_bsize = huge_page_size(h);
 926        if (sbinfo) {
 927                spin_lock(&sbinfo->stat_lock);
 928                /* If no limits set, just report 0 for max/free/used
 929                 * blocks, like simple_statfs() */
 930                if (sbinfo->spool) {
 931                        long free_pages;
 932
 933                        spin_lock(&sbinfo->spool->lock);
 934                        buf->f_blocks = sbinfo->spool->max_hpages;
 935                        free_pages = sbinfo->spool->max_hpages
 936                                - sbinfo->spool->used_hpages;
 937                        buf->f_bavail = buf->f_bfree = free_pages;
 938                        spin_unlock(&sbinfo->spool->lock);
 939                        buf->f_files = sbinfo->max_inodes;
 940                        buf->f_ffree = sbinfo->free_inodes;
 941                }
 942                spin_unlock(&sbinfo->stat_lock);
 943        }
 944        buf->f_namelen = NAME_MAX;
 945        return 0;
 946}
 947
 948static void hugetlbfs_put_super(struct super_block *sb)
 949{
 950        struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
 951
 952        if (sbi) {
 953                sb->s_fs_info = NULL;
 954
 955                if (sbi->spool)
 956                        hugepage_put_subpool(sbi->spool);
 957
 958                kfree(sbi);
 959        }
 960}
 961
 962static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 963{
 964        if (sbinfo->free_inodes >= 0) {
 965                spin_lock(&sbinfo->stat_lock);
 966                if (unlikely(!sbinfo->free_inodes)) {
 967                        spin_unlock(&sbinfo->stat_lock);
 968                        return 0;
 969                }
 970                sbinfo->free_inodes--;
 971                spin_unlock(&sbinfo->stat_lock);
 972        }
 973
 974        return 1;
 975}
 976
 977static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
 978{
 979        if (sbinfo->free_inodes >= 0) {
 980                spin_lock(&sbinfo->stat_lock);
 981                sbinfo->free_inodes++;
 982                spin_unlock(&sbinfo->stat_lock);
 983        }
 984}
 985
 986
 987static struct kmem_cache *hugetlbfs_inode_cachep;
 988
 989static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
 990{
 991        struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
 992        struct hugetlbfs_inode_info *p;
 993
 994        if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
 995                return NULL;
 996        p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
 997        if (unlikely(!p)) {
 998                hugetlbfs_inc_free_inodes(sbinfo);
 999                return NULL;
1000        }
1001
1002        /*
1003         * Any time after allocation, hugetlbfs_destroy_inode can be called
1004         * for the inode.  mpol_free_shared_policy is unconditionally called
1005         * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1006         * in case of a quick call to destroy.
1007         *
1008         * Note that the policy is initialized even if we are creating a
1009         * private inode.  This simplifies hugetlbfs_destroy_inode.
1010         */
1011        mpol_shared_policy_init(&p->policy, NULL);
1012
1013        return &p->vfs_inode;
1014}
1015
1016static void hugetlbfs_i_callback(struct rcu_head *head)
1017{
1018        struct inode *inode = container_of(head, struct inode, i_rcu);
1019        kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1020}
1021
1022static void hugetlbfs_destroy_inode(struct inode *inode)
1023{
1024        hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1025        mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1026        call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1027}
1028
1029static const struct address_space_operations hugetlbfs_aops = {
1030        .write_begin    = hugetlbfs_write_begin,
1031        .write_end      = hugetlbfs_write_end,
1032        .set_page_dirty = hugetlbfs_set_page_dirty,
1033        .migratepage    = hugetlbfs_migrate_page,
1034        .error_remove_page      = hugetlbfs_error_remove_page,
1035};
1036
1037
1038static void init_once(void *foo)
1039{
1040        struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1041
1042        inode_init_once(&ei->vfs_inode);
1043}
1044
1045const struct file_operations hugetlbfs_file_operations = {
1046        .read_iter              = hugetlbfs_read_iter,
1047        .mmap                   = hugetlbfs_file_mmap,
1048        .fsync                  = noop_fsync,
1049        .get_unmapped_area      = hugetlb_get_unmapped_area,
1050        .llseek                 = default_llseek,
1051        .fallocate              = hugetlbfs_fallocate,
1052};
1053
1054static const struct inode_operations hugetlbfs_dir_inode_operations = {
1055        .create         = hugetlbfs_create,
1056        .lookup         = simple_lookup,
1057        .link           = simple_link,
1058        .unlink         = simple_unlink,
1059        .symlink        = hugetlbfs_symlink,
1060        .mkdir          = hugetlbfs_mkdir,
1061        .rmdir          = simple_rmdir,
1062        .mknod          = hugetlbfs_mknod,
1063        .rename         = simple_rename,
1064        .setattr        = hugetlbfs_setattr,
1065};
1066
1067static const struct inode_operations hugetlbfs_inode_operations = {
1068        .setattr        = hugetlbfs_setattr,
1069};
1070
1071static const struct super_operations hugetlbfs_ops = {
1072        .alloc_inode    = hugetlbfs_alloc_inode,
1073        .destroy_inode  = hugetlbfs_destroy_inode,
1074        .evict_inode    = hugetlbfs_evict_inode,
1075        .statfs         = hugetlbfs_statfs,
1076        .put_super      = hugetlbfs_put_super,
1077        .show_options   = hugetlbfs_show_options,
1078};
1079
1080enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1081
1082/*
1083 * Convert size option passed from command line to number of huge pages
1084 * in the pool specified by hstate.  Size option could be in bytes
1085 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1086 */
1087static long
1088hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1089                         enum hugetlbfs_size_type val_type)
1090{
1091        if (val_type == NO_SIZE)
1092                return -1;
1093
1094        if (val_type == SIZE_PERCENT) {
1095                size_opt <<= huge_page_shift(h);
1096                size_opt *= h->max_huge_pages;
1097                do_div(size_opt, 100);
1098        }
1099
1100        size_opt >>= huge_page_shift(h);
1101        return size_opt;
1102}
1103
1104static int
1105hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1106{
1107        char *p, *rest;
1108        substring_t args[MAX_OPT_ARGS];
1109        int option;
1110        unsigned long long max_size_opt = 0, min_size_opt = 0;
1111        enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1112
1113        if (!options)
1114                return 0;
1115
1116        while ((p = strsep(&options, ",")) != NULL) {
1117                int token;
1118                if (!*p)
1119                        continue;
1120
1121                token = match_token(p, tokens, args);
1122                switch (token) {
1123                case Opt_uid:
1124                        if (match_int(&args[0], &option))
1125                                goto bad_val;
1126                        pconfig->uid = make_kuid(current_user_ns(), option);
1127                        if (!uid_valid(pconfig->uid))
1128                                goto bad_val;
1129                        break;
1130
1131                case Opt_gid:
1132                        if (match_int(&args[0], &option))
1133                                goto bad_val;
1134                        pconfig->gid = make_kgid(current_user_ns(), option);
1135                        if (!gid_valid(pconfig->gid))
1136                                goto bad_val;
1137                        break;
1138
1139                case Opt_mode:
1140                        if (match_octal(&args[0], &option))
1141                                goto bad_val;
1142                        pconfig->mode = option & 01777U;
1143                        break;
1144
1145                case Opt_size: {
1146                        /* memparse() will accept a K/M/G without a digit */
1147                        if (!isdigit(*args[0].from))
1148                                goto bad_val;
1149                        max_size_opt = memparse(args[0].from, &rest);
1150                        max_val_type = SIZE_STD;
1151                        if (*rest == '%')
1152                                max_val_type = SIZE_PERCENT;
1153                        break;
1154                }
1155
1156                case Opt_nr_inodes:
1157                        /* memparse() will accept a K/M/G without a digit */
1158                        if (!isdigit(*args[0].from))
1159                                goto bad_val;
1160                        pconfig->nr_inodes = memparse(args[0].from, &rest);
1161                        break;
1162
1163                case Opt_pagesize: {
1164                        unsigned long ps;
1165                        ps = memparse(args[0].from, &rest);
1166                        pconfig->hstate = size_to_hstate(ps);
1167                        if (!pconfig->hstate) {
1168                                pr_err("Unsupported page size %lu MB\n",
1169                                        ps >> 20);
1170                                return -EINVAL;
1171                        }
1172                        break;
1173                }
1174
1175                case Opt_min_size: {
1176                        /* memparse() will accept a K/M/G without a digit */
1177                        if (!isdigit(*args[0].from))
1178                                goto bad_val;
1179                        min_size_opt = memparse(args[0].from, &rest);
1180                        min_val_type = SIZE_STD;
1181                        if (*rest == '%')
1182                                min_val_type = SIZE_PERCENT;
1183                        break;
1184                }
1185
1186                default:
1187                        pr_err("Bad mount option: \"%s\"\n", p);
1188                        return -EINVAL;
1189                        break;
1190                }
1191        }
1192
1193        /*
1194         * Use huge page pool size (in hstate) to convert the size
1195         * options to number of huge pages.  If NO_SIZE, -1 is returned.
1196         */
1197        pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1198                                                max_size_opt, max_val_type);
1199        pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1200                                                min_size_opt, min_val_type);
1201
1202        /*
1203         * If max_size was specified, then min_size must be smaller
1204         */
1205        if (max_val_type > NO_SIZE &&
1206            pconfig->min_hpages > pconfig->max_hpages) {
1207                pr_err("minimum size can not be greater than maximum size\n");
1208                return -EINVAL;
1209        }
1210
1211        return 0;
1212
1213bad_val:
1214        pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1215        return -EINVAL;
1216}
1217
1218static int
1219hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1220{
1221        int ret;
1222        struct hugetlbfs_config config;
1223        struct hugetlbfs_sb_info *sbinfo;
1224
1225        config.max_hpages = -1; /* No limit on size by default */
1226        config.nr_inodes = -1; /* No limit on number of inodes by default */
1227        config.uid = current_fsuid();
1228        config.gid = current_fsgid();
1229        config.mode = 0755;
1230        config.hstate = &default_hstate;
1231        config.min_hpages = -1; /* No default minimum size */
1232        ret = hugetlbfs_parse_options(data, &config);
1233        if (ret)
1234                return ret;
1235
1236        sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1237        if (!sbinfo)
1238                return -ENOMEM;
1239        sb->s_fs_info = sbinfo;
1240        sbinfo->hstate = config.hstate;
1241        spin_lock_init(&sbinfo->stat_lock);
1242        sbinfo->max_inodes = config.nr_inodes;
1243        sbinfo->free_inodes = config.nr_inodes;
1244        sbinfo->spool = NULL;
1245        sbinfo->uid = config.uid;
1246        sbinfo->gid = config.gid;
1247        sbinfo->mode = config.mode;
1248
1249        /*
1250         * Allocate and initialize subpool if maximum or minimum size is
1251         * specified.  Any needed reservations (for minimim size) are taken
1252         * taken when the subpool is created.
1253         */
1254        if (config.max_hpages != -1 || config.min_hpages != -1) {
1255                sbinfo->spool = hugepage_new_subpool(config.hstate,
1256                                                        config.max_hpages,
1257                                                        config.min_hpages);
1258                if (!sbinfo->spool)
1259                        goto out_free;
1260        }
1261        sb->s_maxbytes = MAX_LFS_FILESIZE;
1262        sb->s_blocksize = huge_page_size(config.hstate);
1263        sb->s_blocksize_bits = huge_page_shift(config.hstate);
1264        sb->s_magic = HUGETLBFS_MAGIC;
1265        sb->s_op = &hugetlbfs_ops;
1266        sb->s_time_gran = 1;
1267        sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1268        if (!sb->s_root)
1269                goto out_free;
1270        return 0;
1271out_free:
1272        kfree(sbinfo->spool);
1273        kfree(sbinfo);
1274        return -ENOMEM;
1275}
1276
1277static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1278        int flags, const char *dev_name, void *data)
1279{
1280        return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1281}
1282
1283static struct file_system_type hugetlbfs_fs_type = {
1284        .name           = "hugetlbfs",
1285        .mount          = hugetlbfs_mount,
1286        .kill_sb        = kill_litter_super,
1287};
1288
1289static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1290
1291static int can_do_hugetlb_shm(void)
1292{
1293        kgid_t shm_group;
1294        shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1295        return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1296}
1297
1298static int get_hstate_idx(int page_size_log)
1299{
1300        struct hstate *h = hstate_sizelog(page_size_log);
1301
1302        if (!h)
1303                return -1;
1304        return h - hstates;
1305}
1306
1307static const struct dentry_operations anon_ops = {
1308        .d_dname = simple_dname
1309};
1310
1311/*
1312 * Note that size should be aligned to proper hugepage size in caller side,
1313 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1314 */
1315struct file *hugetlb_file_setup(const char *name, size_t size,
1316                                vm_flags_t acctflag, struct user_struct **user,
1317                                int creat_flags, int page_size_log)
1318{
1319        struct file *file = ERR_PTR(-ENOMEM);
1320        struct inode *inode;
1321        struct path path;
1322        struct super_block *sb;
1323        struct qstr quick_string;
1324        int hstate_idx;
1325
1326        hstate_idx = get_hstate_idx(page_size_log);
1327        if (hstate_idx < 0)
1328                return ERR_PTR(-ENODEV);
1329
1330        *user = NULL;
1331        if (!hugetlbfs_vfsmount[hstate_idx])
1332                return ERR_PTR(-ENOENT);
1333
1334        if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1335                *user = current_user();
1336                if (user_shm_lock(size, *user)) {
1337                        task_lock(current);
1338                        pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1339                                current->comm, current->pid);
1340                        task_unlock(current);
1341                } else {
1342                        *user = NULL;
1343                        return ERR_PTR(-EPERM);
1344                }
1345        }
1346
1347        sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1348        quick_string.name = name;
1349        quick_string.len = strlen(quick_string.name);
1350        quick_string.hash = 0;
1351        path.dentry = d_alloc_pseudo(sb, &quick_string);
1352        if (!path.dentry)
1353                goto out_shm_unlock;
1354
1355        d_set_d_op(path.dentry, &anon_ops);
1356        path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1357        file = ERR_PTR(-ENOSPC);
1358        inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1359        if (!inode)
1360                goto out_dentry;
1361        if (creat_flags == HUGETLB_SHMFS_INODE)
1362                inode->i_flags |= S_PRIVATE;
1363
1364        file = ERR_PTR(-ENOMEM);
1365        if (hugetlb_reserve_pages(inode, 0,
1366                        size >> huge_page_shift(hstate_inode(inode)), NULL,
1367                        acctflag))
1368                goto out_inode;
1369
1370        d_instantiate(path.dentry, inode);
1371        inode->i_size = size;
1372        clear_nlink(inode);
1373
1374        file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1375                        &hugetlbfs_file_operations);
1376        if (IS_ERR(file))
1377                goto out_dentry; /* inode is already attached */
1378
1379        return file;
1380
1381out_inode:
1382        iput(inode);
1383out_dentry:
1384        path_put(&path);
1385out_shm_unlock:
1386        if (*user) {
1387                user_shm_unlock(size, *user);
1388                *user = NULL;
1389        }
1390        return file;
1391}
1392
1393static int __init init_hugetlbfs_fs(void)
1394{
1395        struct hstate *h;
1396        int error;
1397        int i;
1398
1399        if (!hugepages_supported()) {
1400                pr_info("disabling because there are no supported hugepage sizes\n");
1401                return -ENOTSUPP;
1402        }
1403
1404        error = -ENOMEM;
1405        hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1406                                        sizeof(struct hugetlbfs_inode_info),
1407                                        0, SLAB_ACCOUNT, init_once);
1408        if (hugetlbfs_inode_cachep == NULL)
1409                goto out2;
1410
1411        error = register_filesystem(&hugetlbfs_fs_type);
1412        if (error)
1413                goto out;
1414
1415        i = 0;
1416        for_each_hstate(h) {
1417                char buf[50];
1418                unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1419
1420                snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1421                hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1422                                                        buf);
1423
1424                if (IS_ERR(hugetlbfs_vfsmount[i])) {
1425                        pr_err("Cannot mount internal hugetlbfs for "
1426                                "page size %uK", ps_kb);
1427                        error = PTR_ERR(hugetlbfs_vfsmount[i]);
1428                        hugetlbfs_vfsmount[i] = NULL;
1429                }
1430                i++;
1431        }
1432        /* Non default hstates are optional */
1433        if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1434                return 0;
1435
1436 out:
1437        kmem_cache_destroy(hugetlbfs_inode_cachep);
1438 out2:
1439        return error;
1440}
1441fs_initcall(init_hugetlbfs_fs)
1442