linux/fs/kernfs/mount.c
<<
>>
Prefs
   1/*
   2 * fs/kernfs/mount.c - kernfs mount implementation
   3 *
   4 * Copyright (c) 2001-3 Patrick Mochel
   5 * Copyright (c) 2007 SUSE Linux Products GmbH
   6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   7 *
   8 * This file is released under the GPLv2.
   9 */
  10
  11#include <linux/fs.h>
  12#include <linux/mount.h>
  13#include <linux/init.h>
  14#include <linux/magic.h>
  15#include <linux/slab.h>
  16#include <linux/pagemap.h>
  17#include <linux/namei.h>
  18#include <linux/seq_file.h>
  19#include <linux/exportfs.h>
  20
  21#include "kernfs-internal.h"
  22
  23struct kmem_cache *kernfs_node_cache;
  24
  25static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
  26{
  27        struct kernfs_root *root = kernfs_info(sb)->root;
  28        struct kernfs_syscall_ops *scops = root->syscall_ops;
  29
  30        if (scops && scops->remount_fs)
  31                return scops->remount_fs(root, flags, data);
  32        return 0;
  33}
  34
  35static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
  36{
  37        struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
  38        struct kernfs_syscall_ops *scops = root->syscall_ops;
  39
  40        if (scops && scops->show_options)
  41                return scops->show_options(sf, root);
  42        return 0;
  43}
  44
  45static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
  46{
  47        struct kernfs_node *node = kernfs_dentry_node(dentry);
  48        struct kernfs_root *root = kernfs_root(node);
  49        struct kernfs_syscall_ops *scops = root->syscall_ops;
  50
  51        if (scops && scops->show_path)
  52                return scops->show_path(sf, node, root);
  53
  54        seq_dentry(sf, dentry, " \t\n\\");
  55        return 0;
  56}
  57
  58const struct super_operations kernfs_sops = {
  59        .statfs         = simple_statfs,
  60        .drop_inode     = generic_delete_inode,
  61        .evict_inode    = kernfs_evict_inode,
  62
  63        .remount_fs     = kernfs_sop_remount_fs,
  64        .show_options   = kernfs_sop_show_options,
  65        .show_path      = kernfs_sop_show_path,
  66};
  67
  68/*
  69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
  70 * number and generation
  71 */
  72struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root,
  73        const union kernfs_node_id *id)
  74{
  75        struct kernfs_node *kn;
  76
  77        kn = kernfs_find_and_get_node_by_ino(root, id->ino);
  78        if (!kn)
  79                return NULL;
  80        if (kn->id.generation != id->generation) {
  81                kernfs_put(kn);
  82                return NULL;
  83        }
  84        return kn;
  85}
  86
  87static struct inode *kernfs_fh_get_inode(struct super_block *sb,
  88                u64 ino, u32 generation)
  89{
  90        struct kernfs_super_info *info = kernfs_info(sb);
  91        struct inode *inode;
  92        struct kernfs_node *kn;
  93
  94        if (ino == 0)
  95                return ERR_PTR(-ESTALE);
  96
  97        kn = kernfs_find_and_get_node_by_ino(info->root, ino);
  98        if (!kn)
  99                return ERR_PTR(-ESTALE);
 100        inode = kernfs_get_inode(sb, kn);
 101        kernfs_put(kn);
 102        if (!inode)
 103                return ERR_PTR(-ESTALE);
 104
 105        if (generation && inode->i_generation != generation) {
 106                /* we didn't find the right inode.. */
 107                iput(inode);
 108                return ERR_PTR(-ESTALE);
 109        }
 110        return inode;
 111}
 112
 113static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
 114                int fh_len, int fh_type)
 115{
 116        return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
 117                                    kernfs_fh_get_inode);
 118}
 119
 120static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid,
 121                int fh_len, int fh_type)
 122{
 123        return generic_fh_to_parent(sb, fid, fh_len, fh_type,
 124                                    kernfs_fh_get_inode);
 125}
 126
 127static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
 128{
 129        struct kernfs_node *kn = kernfs_dentry_node(child);
 130
 131        return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
 132}
 133
 134static const struct export_operations kernfs_export_ops = {
 135        .fh_to_dentry   = kernfs_fh_to_dentry,
 136        .fh_to_parent   = kernfs_fh_to_parent,
 137        .get_parent     = kernfs_get_parent_dentry,
 138};
 139
 140/**
 141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
 142 * @sb: the super_block in question
 143 *
 144 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
 145 * %NULL is returned.
 146 */
 147struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
 148{
 149        if (sb->s_op == &kernfs_sops)
 150                return kernfs_info(sb)->root;
 151        return NULL;
 152}
 153
 154/*
 155 * find the next ancestor in the path down to @child, where @parent was the
 156 * ancestor whose descendant we want to find.
 157 *
 158 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
 159 * node.  If @parent is b, then we return the node for c.
 160 * Passing in d as @parent is not ok.
 161 */
 162static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
 163                                              struct kernfs_node *parent)
 164{
 165        if (child == parent) {
 166                pr_crit_once("BUG in find_next_ancestor: called with parent == child");
 167                return NULL;
 168        }
 169
 170        while (child->parent != parent) {
 171                if (!child->parent)
 172                        return NULL;
 173                child = child->parent;
 174        }
 175
 176        return child;
 177}
 178
 179/**
 180 * kernfs_node_dentry - get a dentry for the given kernfs_node
 181 * @kn: kernfs_node for which a dentry is needed
 182 * @sb: the kernfs super_block
 183 */
 184struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
 185                                  struct super_block *sb)
 186{
 187        struct dentry *dentry;
 188        struct kernfs_node *knparent = NULL;
 189
 190        BUG_ON(sb->s_op != &kernfs_sops);
 191
 192        dentry = dget(sb->s_root);
 193
 194        /* Check if this is the root kernfs_node */
 195        if (!kn->parent)
 196                return dentry;
 197
 198        knparent = find_next_ancestor(kn, NULL);
 199        if (WARN_ON(!knparent))
 200                return ERR_PTR(-EINVAL);
 201
 202        do {
 203                struct dentry *dtmp;
 204                struct kernfs_node *kntmp;
 205
 206                if (kn == knparent)
 207                        return dentry;
 208                kntmp = find_next_ancestor(kn, knparent);
 209                if (WARN_ON(!kntmp))
 210                        return ERR_PTR(-EINVAL);
 211                dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
 212                                               strlen(kntmp->name));
 213                dput(dentry);
 214                if (IS_ERR(dtmp))
 215                        return dtmp;
 216                knparent = kntmp;
 217                dentry = dtmp;
 218        } while (true);
 219}
 220
 221static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
 222{
 223        struct kernfs_super_info *info = kernfs_info(sb);
 224        struct inode *inode;
 225        struct dentry *root;
 226
 227        info->sb = sb;
 228        /* Userspace would break if executables or devices appear on sysfs */
 229        sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 230        sb->s_blocksize = PAGE_SIZE;
 231        sb->s_blocksize_bits = PAGE_SHIFT;
 232        sb->s_magic = magic;
 233        sb->s_op = &kernfs_sops;
 234        sb->s_xattr = kernfs_xattr_handlers;
 235        if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
 236                sb->s_export_op = &kernfs_export_ops;
 237        sb->s_time_gran = 1;
 238
 239        /* get root inode, initialize and unlock it */
 240        mutex_lock(&kernfs_mutex);
 241        inode = kernfs_get_inode(sb, info->root->kn);
 242        mutex_unlock(&kernfs_mutex);
 243        if (!inode) {
 244                pr_debug("kernfs: could not get root inode\n");
 245                return -ENOMEM;
 246        }
 247
 248        /* instantiate and link root dentry */
 249        root = d_make_root(inode);
 250        if (!root) {
 251                pr_debug("%s: could not get root dentry!\n", __func__);
 252                return -ENOMEM;
 253        }
 254        sb->s_root = root;
 255        sb->s_d_op = &kernfs_dops;
 256        return 0;
 257}
 258
 259static int kernfs_test_super(struct super_block *sb, void *data)
 260{
 261        struct kernfs_super_info *sb_info = kernfs_info(sb);
 262        struct kernfs_super_info *info = data;
 263
 264        return sb_info->root == info->root && sb_info->ns == info->ns;
 265}
 266
 267static int kernfs_set_super(struct super_block *sb, void *data)
 268{
 269        int error;
 270        error = set_anon_super(sb, data);
 271        if (!error)
 272                sb->s_fs_info = data;
 273        return error;
 274}
 275
 276/**
 277 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
 278 * @sb: super_block of interest
 279 *
 280 * Return the namespace tag associated with kernfs super_block @sb.
 281 */
 282const void *kernfs_super_ns(struct super_block *sb)
 283{
 284        struct kernfs_super_info *info = kernfs_info(sb);
 285
 286        return info->ns;
 287}
 288
 289/**
 290 * kernfs_mount_ns - kernfs mount helper
 291 * @fs_type: file_system_type of the fs being mounted
 292 * @flags: mount flags specified for the mount
 293 * @root: kernfs_root of the hierarchy being mounted
 294 * @magic: file system specific magic number
 295 * @new_sb_created: tell the caller if we allocated a new superblock
 296 * @ns: optional namespace tag of the mount
 297 *
 298 * This is to be called from each kernfs user's file_system_type->mount()
 299 * implementation, which should pass through the specified @fs_type and
 300 * @flags, and specify the hierarchy and namespace tag to mount via @root
 301 * and @ns, respectively.
 302 *
 303 * The return value can be passed to the vfs layer verbatim.
 304 */
 305struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
 306                                struct kernfs_root *root, unsigned long magic,
 307                                bool *new_sb_created, const void *ns)
 308{
 309        struct super_block *sb;
 310        struct kernfs_super_info *info;
 311        int error;
 312
 313        info = kzalloc(sizeof(*info), GFP_KERNEL);
 314        if (!info)
 315                return ERR_PTR(-ENOMEM);
 316
 317        info->root = root;
 318        info->ns = ns;
 319
 320        sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
 321                         &init_user_ns, info);
 322        if (IS_ERR(sb) || sb->s_fs_info != info)
 323                kfree(info);
 324        if (IS_ERR(sb))
 325                return ERR_CAST(sb);
 326
 327        if (new_sb_created)
 328                *new_sb_created = !sb->s_root;
 329
 330        if (!sb->s_root) {
 331                struct kernfs_super_info *info = kernfs_info(sb);
 332
 333                error = kernfs_fill_super(sb, magic);
 334                if (error) {
 335                        deactivate_locked_super(sb);
 336                        return ERR_PTR(error);
 337                }
 338                sb->s_flags |= SB_ACTIVE;
 339
 340                mutex_lock(&kernfs_mutex);
 341                list_add(&info->node, &root->supers);
 342                mutex_unlock(&kernfs_mutex);
 343        }
 344
 345        return dget(sb->s_root);
 346}
 347
 348/**
 349 * kernfs_kill_sb - kill_sb for kernfs
 350 * @sb: super_block being killed
 351 *
 352 * This can be used directly for file_system_type->kill_sb().  If a kernfs
 353 * user needs extra cleanup, it can implement its own kill_sb() and call
 354 * this function at the end.
 355 */
 356void kernfs_kill_sb(struct super_block *sb)
 357{
 358        struct kernfs_super_info *info = kernfs_info(sb);
 359
 360        mutex_lock(&kernfs_mutex);
 361        list_del(&info->node);
 362        mutex_unlock(&kernfs_mutex);
 363
 364        /*
 365         * Remove the superblock from fs_supers/s_instances
 366         * so we can't find it, before freeing kernfs_super_info.
 367         */
 368        kill_anon_super(sb);
 369        kfree(info);
 370}
 371
 372/**
 373 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
 374 * @kernfs_root: the kernfs_root in question
 375 * @ns: the namespace tag
 376 *
 377 * Pin the superblock so the superblock won't be destroyed in subsequent
 378 * operations.  This can be used to block ->kill_sb() which may be useful
 379 * for kernfs users which dynamically manage superblocks.
 380 *
 381 * Returns NULL if there's no superblock associated to this kernfs_root, or
 382 * -EINVAL if the superblock is being freed.
 383 */
 384struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
 385{
 386        struct kernfs_super_info *info;
 387        struct super_block *sb = NULL;
 388
 389        mutex_lock(&kernfs_mutex);
 390        list_for_each_entry(info, &root->supers, node) {
 391                if (info->ns == ns) {
 392                        sb = info->sb;
 393                        if (!atomic_inc_not_zero(&info->sb->s_active))
 394                                sb = ERR_PTR(-EINVAL);
 395                        break;
 396                }
 397        }
 398        mutex_unlock(&kernfs_mutex);
 399        return sb;
 400}
 401
 402void __init kernfs_init(void)
 403{
 404
 405        /*
 406         * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
 407         * can access the slab lock free. This could introduce stale nodes,
 408         * please see how kernfs_find_and_get_node_by_ino filters out stale
 409         * nodes.
 410         */
 411        kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
 412                                              sizeof(struct kernfs_node),
 413                                              0,
 414                                              SLAB_PANIC | SLAB_TYPESAFE_BY_RCU,
 415                                              NULL);
 416}
 417