linux/fs/proc/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/string.h>
  63#include <linux/seq_file.h>
  64#include <linux/namei.h>
  65#include <linux/mnt_namespace.h>
  66#include <linux/mm.h>
  67#include <linux/swap.h>
  68#include <linux/rcupdate.h>
  69#include <linux/kallsyms.h>
  70#include <linux/stacktrace.h>
  71#include <linux/resource.h>
  72#include <linux/module.h>
  73#include <linux/mount.h>
  74#include <linux/security.h>
  75#include <linux/ptrace.h>
  76#include <linux/tracehook.h>
  77#include <linux/printk.h>
  78#include <linux/cache.h>
  79#include <linux/cgroup.h>
  80#include <linux/cpuset.h>
  81#include <linux/audit.h>
  82#include <linux/poll.h>
  83#include <linux/nsproxy.h>
  84#include <linux/oom.h>
  85#include <linux/elf.h>
  86#include <linux/pid_namespace.h>
  87#include <linux/user_namespace.h>
  88#include <linux/fs_struct.h>
  89#include <linux/slab.h>
  90#include <linux/sched/autogroup.h>
  91#include <linux/sched/mm.h>
  92#include <linux/sched/coredump.h>
  93#include <linux/sched/debug.h>
  94#include <linux/sched/stat.h>
  95#include <linux/flex_array.h>
  96#include <linux/posix-timers.h>
  97#ifdef CONFIG_HARDWALL
  98#include <asm/hardwall.h>
  99#endif
 100#include <trace/events/oom.h>
 101#include "internal.h"
 102#include "fd.h"
 103
 104#include "../../lib/kstrtox.h"
 105
 106/* NOTE:
 107 *      Implementing inode permission operations in /proc is almost
 108 *      certainly an error.  Permission checks need to happen during
 109 *      each system call not at open time.  The reason is that most of
 110 *      what we wish to check for permissions in /proc varies at runtime.
 111 *
 112 *      The classic example of a problem is opening file descriptors
 113 *      in /proc for a task before it execs a suid executable.
 114 */
 115
 116static u8 nlink_tid __ro_after_init;
 117static u8 nlink_tgid __ro_after_init;
 118
 119struct pid_entry {
 120        const char *name;
 121        unsigned int len;
 122        umode_t mode;
 123        const struct inode_operations *iop;
 124        const struct file_operations *fop;
 125        union proc_op op;
 126};
 127
 128#define NOD(NAME, MODE, IOP, FOP, OP) {                 \
 129        .name = (NAME),                                 \
 130        .len  = sizeof(NAME) - 1,                       \
 131        .mode = MODE,                                   \
 132        .iop  = IOP,                                    \
 133        .fop  = FOP,                                    \
 134        .op   = OP,                                     \
 135}
 136
 137#define DIR(NAME, MODE, iops, fops)     \
 138        NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 139#define LNK(NAME, get_link)                                     \
 140        NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
 141                &proc_pid_link_inode_operations, NULL,          \
 142                { .proc_get_link = get_link } )
 143#define REG(NAME, MODE, fops)                           \
 144        NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 145#define ONE(NAME, MODE, show)                           \
 146        NOD(NAME, (S_IFREG|(MODE)),                     \
 147                NULL, &proc_single_file_operations,     \
 148                { .proc_show = show } )
 149
 150/*
 151 * Count the number of hardlinks for the pid_entry table, excluding the .
 152 * and .. links.
 153 */
 154static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 155        unsigned int n)
 156{
 157        unsigned int i;
 158        unsigned int count;
 159
 160        count = 2;
 161        for (i = 0; i < n; ++i) {
 162                if (S_ISDIR(entries[i].mode))
 163                        ++count;
 164        }
 165
 166        return count;
 167}
 168
 169static int get_task_root(struct task_struct *task, struct path *root)
 170{
 171        int result = -ENOENT;
 172
 173        task_lock(task);
 174        if (task->fs) {
 175                get_fs_root(task->fs, root);
 176                result = 0;
 177        }
 178        task_unlock(task);
 179        return result;
 180}
 181
 182static int proc_cwd_link(struct dentry *dentry, struct path *path)
 183{
 184        struct task_struct *task = get_proc_task(d_inode(dentry));
 185        int result = -ENOENT;
 186
 187        if (task) {
 188                task_lock(task);
 189                if (task->fs) {
 190                        get_fs_pwd(task->fs, path);
 191                        result = 0;
 192                }
 193                task_unlock(task);
 194                put_task_struct(task);
 195        }
 196        return result;
 197}
 198
 199static int proc_root_link(struct dentry *dentry, struct path *path)
 200{
 201        struct task_struct *task = get_proc_task(d_inode(dentry));
 202        int result = -ENOENT;
 203
 204        if (task) {
 205                result = get_task_root(task, path);
 206                put_task_struct(task);
 207        }
 208        return result;
 209}
 210
 211static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 212                                     size_t _count, loff_t *pos)
 213{
 214        struct task_struct *tsk;
 215        struct mm_struct *mm;
 216        char *page;
 217        unsigned long count = _count;
 218        unsigned long arg_start, arg_end, env_start, env_end;
 219        unsigned long len1, len2, len;
 220        unsigned long p;
 221        char c;
 222        ssize_t rv;
 223
 224        BUG_ON(*pos < 0);
 225
 226        tsk = get_proc_task(file_inode(file));
 227        if (!tsk)
 228                return -ESRCH;
 229        mm = get_task_mm(tsk);
 230        put_task_struct(tsk);
 231        if (!mm)
 232                return 0;
 233        /* Check if process spawned far enough to have cmdline. */
 234        if (!mm->env_end) {
 235                rv = 0;
 236                goto out_mmput;
 237        }
 238
 239        page = (char *)__get_free_page(GFP_KERNEL);
 240        if (!page) {
 241                rv = -ENOMEM;
 242                goto out_mmput;
 243        }
 244
 245        down_read(&mm->mmap_sem);
 246        arg_start = mm->arg_start;
 247        arg_end = mm->arg_end;
 248        env_start = mm->env_start;
 249        env_end = mm->env_end;
 250        up_read(&mm->mmap_sem);
 251
 252        BUG_ON(arg_start > arg_end);
 253        BUG_ON(env_start > env_end);
 254
 255        len1 = arg_end - arg_start;
 256        len2 = env_end - env_start;
 257
 258        /* Empty ARGV. */
 259        if (len1 == 0) {
 260                rv = 0;
 261                goto out_free_page;
 262        }
 263        /*
 264         * Inherently racy -- command line shares address space
 265         * with code and data.
 266         */
 267        rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 268        if (rv <= 0)
 269                goto out_free_page;
 270
 271        rv = 0;
 272
 273        if (c == '\0') {
 274                /* Command line (set of strings) occupies whole ARGV. */
 275                if (len1 <= *pos)
 276                        goto out_free_page;
 277
 278                p = arg_start + *pos;
 279                len = len1 - *pos;
 280                while (count > 0 && len > 0) {
 281                        unsigned int _count;
 282                        int nr_read;
 283
 284                        _count = min3(count, len, PAGE_SIZE);
 285                        nr_read = access_remote_vm(mm, p, page, _count, 0);
 286                        if (nr_read < 0)
 287                                rv = nr_read;
 288                        if (nr_read <= 0)
 289                                goto out_free_page;
 290
 291                        if (copy_to_user(buf, page, nr_read)) {
 292                                rv = -EFAULT;
 293                                goto out_free_page;
 294                        }
 295
 296                        p       += nr_read;
 297                        len     -= nr_read;
 298                        buf     += nr_read;
 299                        count   -= nr_read;
 300                        rv      += nr_read;
 301                }
 302        } else {
 303                /*
 304                 * Command line (1 string) occupies ARGV and
 305                 * extends into ENVP.
 306                 */
 307                struct {
 308                        unsigned long p;
 309                        unsigned long len;
 310                } cmdline[2] = {
 311                        { .p = arg_start, .len = len1 },
 312                        { .p = env_start, .len = len2 },
 313                };
 314                loff_t pos1 = *pos;
 315                unsigned int i;
 316
 317                i = 0;
 318                while (i < 2 && pos1 >= cmdline[i].len) {
 319                        pos1 -= cmdline[i].len;
 320                        i++;
 321                }
 322                while (i < 2) {
 323                        p = cmdline[i].p + pos1;
 324                        len = cmdline[i].len - pos1;
 325                        while (count > 0 && len > 0) {
 326                                unsigned int _count, l;
 327                                int nr_read;
 328                                bool final;
 329
 330                                _count = min3(count, len, PAGE_SIZE);
 331                                nr_read = access_remote_vm(mm, p, page, _count, 0);
 332                                if (nr_read < 0)
 333                                        rv = nr_read;
 334                                if (nr_read <= 0)
 335                                        goto out_free_page;
 336
 337                                /*
 338                                 * Command line can be shorter than whole ARGV
 339                                 * even if last "marker" byte says it is not.
 340                                 */
 341                                final = false;
 342                                l = strnlen(page, nr_read);
 343                                if (l < nr_read) {
 344                                        nr_read = l;
 345                                        final = true;
 346                                }
 347
 348                                if (copy_to_user(buf, page, nr_read)) {
 349                                        rv = -EFAULT;
 350                                        goto out_free_page;
 351                                }
 352
 353                                p       += nr_read;
 354                                len     -= nr_read;
 355                                buf     += nr_read;
 356                                count   -= nr_read;
 357                                rv      += nr_read;
 358
 359                                if (final)
 360                                        goto out_free_page;
 361                        }
 362
 363                        /* Only first chunk can be read partially. */
 364                        pos1 = 0;
 365                        i++;
 366                }
 367        }
 368
 369out_free_page:
 370        free_page((unsigned long)page);
 371out_mmput:
 372        mmput(mm);
 373        if (rv > 0)
 374                *pos += rv;
 375        return rv;
 376}
 377
 378static const struct file_operations proc_pid_cmdline_ops = {
 379        .read   = proc_pid_cmdline_read,
 380        .llseek = generic_file_llseek,
 381};
 382
 383#ifdef CONFIG_KALLSYMS
 384/*
 385 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 386 * Returns the resolved symbol.  If that fails, simply return the address.
 387 */
 388static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 389                          struct pid *pid, struct task_struct *task)
 390{
 391        unsigned long wchan;
 392        char symname[KSYM_NAME_LEN];
 393
 394        wchan = get_wchan(task);
 395
 396        if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 397                        && !lookup_symbol_name(wchan, symname))
 398                seq_printf(m, "%s", symname);
 399        else
 400                seq_putc(m, '0');
 401
 402        return 0;
 403}
 404#endif /* CONFIG_KALLSYMS */
 405
 406static int lock_trace(struct task_struct *task)
 407{
 408        int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 409        if (err)
 410                return err;
 411        if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 412                mutex_unlock(&task->signal->cred_guard_mutex);
 413                return -EPERM;
 414        }
 415        return 0;
 416}
 417
 418static void unlock_trace(struct task_struct *task)
 419{
 420        mutex_unlock(&task->signal->cred_guard_mutex);
 421}
 422
 423#ifdef CONFIG_STACKTRACE
 424
 425#define MAX_STACK_TRACE_DEPTH   64
 426
 427static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 428                          struct pid *pid, struct task_struct *task)
 429{
 430        struct stack_trace trace;
 431        unsigned long *entries;
 432        int err;
 433        int i;
 434
 435        entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 436        if (!entries)
 437                return -ENOMEM;
 438
 439        trace.nr_entries        = 0;
 440        trace.max_entries       = MAX_STACK_TRACE_DEPTH;
 441        trace.entries           = entries;
 442        trace.skip              = 0;
 443
 444        err = lock_trace(task);
 445        if (!err) {
 446                save_stack_trace_tsk(task, &trace);
 447
 448                for (i = 0; i < trace.nr_entries; i++) {
 449                        seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 450                }
 451                unlock_trace(task);
 452        }
 453        kfree(entries);
 454
 455        return err;
 456}
 457#endif
 458
 459#ifdef CONFIG_SCHED_INFO
 460/*
 461 * Provides /proc/PID/schedstat
 462 */
 463static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 464                              struct pid *pid, struct task_struct *task)
 465{
 466        if (unlikely(!sched_info_on()))
 467                seq_printf(m, "0 0 0\n");
 468        else
 469                seq_printf(m, "%llu %llu %lu\n",
 470                   (unsigned long long)task->se.sum_exec_runtime,
 471                   (unsigned long long)task->sched_info.run_delay,
 472                   task->sched_info.pcount);
 473
 474        return 0;
 475}
 476#endif
 477
 478#ifdef CONFIG_LATENCYTOP
 479static int lstats_show_proc(struct seq_file *m, void *v)
 480{
 481        int i;
 482        struct inode *inode = m->private;
 483        struct task_struct *task = get_proc_task(inode);
 484
 485        if (!task)
 486                return -ESRCH;
 487        seq_puts(m, "Latency Top version : v0.1\n");
 488        for (i = 0; i < 32; i++) {
 489                struct latency_record *lr = &task->latency_record[i];
 490                if (lr->backtrace[0]) {
 491                        int q;
 492                        seq_printf(m, "%i %li %li",
 493                                   lr->count, lr->time, lr->max);
 494                        for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 495                                unsigned long bt = lr->backtrace[q];
 496                                if (!bt)
 497                                        break;
 498                                if (bt == ULONG_MAX)
 499                                        break;
 500                                seq_printf(m, " %ps", (void *)bt);
 501                        }
 502                        seq_putc(m, '\n');
 503                }
 504
 505        }
 506        put_task_struct(task);
 507        return 0;
 508}
 509
 510static int lstats_open(struct inode *inode, struct file *file)
 511{
 512        return single_open(file, lstats_show_proc, inode);
 513}
 514
 515static ssize_t lstats_write(struct file *file, const char __user *buf,
 516                            size_t count, loff_t *offs)
 517{
 518        struct task_struct *task = get_proc_task(file_inode(file));
 519
 520        if (!task)
 521                return -ESRCH;
 522        clear_all_latency_tracing(task);
 523        put_task_struct(task);
 524
 525        return count;
 526}
 527
 528static const struct file_operations proc_lstats_operations = {
 529        .open           = lstats_open,
 530        .read           = seq_read,
 531        .write          = lstats_write,
 532        .llseek         = seq_lseek,
 533        .release        = single_release,
 534};
 535
 536#endif
 537
 538static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 539                          struct pid *pid, struct task_struct *task)
 540{
 541        unsigned long totalpages = totalram_pages + total_swap_pages;
 542        unsigned long points = 0;
 543
 544        points = oom_badness(task, NULL, NULL, totalpages) *
 545                                        1000 / totalpages;
 546        seq_printf(m, "%lu\n", points);
 547
 548        return 0;
 549}
 550
 551struct limit_names {
 552        const char *name;
 553        const char *unit;
 554};
 555
 556static const struct limit_names lnames[RLIM_NLIMITS] = {
 557        [RLIMIT_CPU] = {"Max cpu time", "seconds"},
 558        [RLIMIT_FSIZE] = {"Max file size", "bytes"},
 559        [RLIMIT_DATA] = {"Max data size", "bytes"},
 560        [RLIMIT_STACK] = {"Max stack size", "bytes"},
 561        [RLIMIT_CORE] = {"Max core file size", "bytes"},
 562        [RLIMIT_RSS] = {"Max resident set", "bytes"},
 563        [RLIMIT_NPROC] = {"Max processes", "processes"},
 564        [RLIMIT_NOFILE] = {"Max open files", "files"},
 565        [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 566        [RLIMIT_AS] = {"Max address space", "bytes"},
 567        [RLIMIT_LOCKS] = {"Max file locks", "locks"},
 568        [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 569        [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 570        [RLIMIT_NICE] = {"Max nice priority", NULL},
 571        [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 572        [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 573};
 574
 575/* Display limits for a process */
 576static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 577                           struct pid *pid, struct task_struct *task)
 578{
 579        unsigned int i;
 580        unsigned long flags;
 581
 582        struct rlimit rlim[RLIM_NLIMITS];
 583
 584        if (!lock_task_sighand(task, &flags))
 585                return 0;
 586        memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 587        unlock_task_sighand(task, &flags);
 588
 589        /*
 590         * print the file header
 591         */
 592       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 593                  "Limit", "Soft Limit", "Hard Limit", "Units");
 594
 595        for (i = 0; i < RLIM_NLIMITS; i++) {
 596                if (rlim[i].rlim_cur == RLIM_INFINITY)
 597                        seq_printf(m, "%-25s %-20s ",
 598                                   lnames[i].name, "unlimited");
 599                else
 600                        seq_printf(m, "%-25s %-20lu ",
 601                                   lnames[i].name, rlim[i].rlim_cur);
 602
 603                if (rlim[i].rlim_max == RLIM_INFINITY)
 604                        seq_printf(m, "%-20s ", "unlimited");
 605                else
 606                        seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 607
 608                if (lnames[i].unit)
 609                        seq_printf(m, "%-10s\n", lnames[i].unit);
 610                else
 611                        seq_putc(m, '\n');
 612        }
 613
 614        return 0;
 615}
 616
 617#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 618static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 619                            struct pid *pid, struct task_struct *task)
 620{
 621        long nr;
 622        unsigned long args[6], sp, pc;
 623        int res;
 624
 625        res = lock_trace(task);
 626        if (res)
 627                return res;
 628
 629        if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 630                seq_puts(m, "running\n");
 631        else if (nr < 0)
 632                seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 633        else
 634                seq_printf(m,
 635                       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 636                       nr,
 637                       args[0], args[1], args[2], args[3], args[4], args[5],
 638                       sp, pc);
 639        unlock_trace(task);
 640
 641        return 0;
 642}
 643#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 644
 645/************************************************************************/
 646/*                       Here the fs part begins                        */
 647/************************************************************************/
 648
 649/* permission checks */
 650static int proc_fd_access_allowed(struct inode *inode)
 651{
 652        struct task_struct *task;
 653        int allowed = 0;
 654        /* Allow access to a task's file descriptors if it is us or we
 655         * may use ptrace attach to the process and find out that
 656         * information.
 657         */
 658        task = get_proc_task(inode);
 659        if (task) {
 660                allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 661                put_task_struct(task);
 662        }
 663        return allowed;
 664}
 665
 666int proc_setattr(struct dentry *dentry, struct iattr *attr)
 667{
 668        int error;
 669        struct inode *inode = d_inode(dentry);
 670
 671        if (attr->ia_valid & ATTR_MODE)
 672                return -EPERM;
 673
 674        error = setattr_prepare(dentry, attr);
 675        if (error)
 676                return error;
 677
 678        setattr_copy(inode, attr);
 679        mark_inode_dirty(inode);
 680        return 0;
 681}
 682
 683/*
 684 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 685 * or euid/egid (for hide_pid_min=2)?
 686 */
 687static bool has_pid_permissions(struct pid_namespace *pid,
 688                                 struct task_struct *task,
 689                                 int hide_pid_min)
 690{
 691        if (pid->hide_pid < hide_pid_min)
 692                return true;
 693        if (in_group_p(pid->pid_gid))
 694                return true;
 695        return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 696}
 697
 698
 699static int proc_pid_permission(struct inode *inode, int mask)
 700{
 701        struct pid_namespace *pid = inode->i_sb->s_fs_info;
 702        struct task_struct *task;
 703        bool has_perms;
 704
 705        task = get_proc_task(inode);
 706        if (!task)
 707                return -ESRCH;
 708        has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
 709        put_task_struct(task);
 710
 711        if (!has_perms) {
 712                if (pid->hide_pid == HIDEPID_INVISIBLE) {
 713                        /*
 714                         * Let's make getdents(), stat(), and open()
 715                         * consistent with each other.  If a process
 716                         * may not stat() a file, it shouldn't be seen
 717                         * in procfs at all.
 718                         */
 719                        return -ENOENT;
 720                }
 721
 722                return -EPERM;
 723        }
 724        return generic_permission(inode, mask);
 725}
 726
 727
 728
 729static const struct inode_operations proc_def_inode_operations = {
 730        .setattr        = proc_setattr,
 731};
 732
 733static int proc_single_show(struct seq_file *m, void *v)
 734{
 735        struct inode *inode = m->private;
 736        struct pid_namespace *ns;
 737        struct pid *pid;
 738        struct task_struct *task;
 739        int ret;
 740
 741        ns = inode->i_sb->s_fs_info;
 742        pid = proc_pid(inode);
 743        task = get_pid_task(pid, PIDTYPE_PID);
 744        if (!task)
 745                return -ESRCH;
 746
 747        ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 748
 749        put_task_struct(task);
 750        return ret;
 751}
 752
 753static int proc_single_open(struct inode *inode, struct file *filp)
 754{
 755        return single_open(filp, proc_single_show, inode);
 756}
 757
 758static const struct file_operations proc_single_file_operations = {
 759        .open           = proc_single_open,
 760        .read           = seq_read,
 761        .llseek         = seq_lseek,
 762        .release        = single_release,
 763};
 764
 765
 766struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 767{
 768        struct task_struct *task = get_proc_task(inode);
 769        struct mm_struct *mm = ERR_PTR(-ESRCH);
 770
 771        if (task) {
 772                mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 773                put_task_struct(task);
 774
 775                if (!IS_ERR_OR_NULL(mm)) {
 776                        /* ensure this mm_struct can't be freed */
 777                        mmgrab(mm);
 778                        /* but do not pin its memory */
 779                        mmput(mm);
 780                }
 781        }
 782
 783        return mm;
 784}
 785
 786static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 787{
 788        struct mm_struct *mm = proc_mem_open(inode, mode);
 789
 790        if (IS_ERR(mm))
 791                return PTR_ERR(mm);
 792
 793        file->private_data = mm;
 794        return 0;
 795}
 796
 797static int mem_open(struct inode *inode, struct file *file)
 798{
 799        int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 800
 801        /* OK to pass negative loff_t, we can catch out-of-range */
 802        file->f_mode |= FMODE_UNSIGNED_OFFSET;
 803
 804        return ret;
 805}
 806
 807static ssize_t mem_rw(struct file *file, char __user *buf,
 808                        size_t count, loff_t *ppos, int write)
 809{
 810        struct mm_struct *mm = file->private_data;
 811        unsigned long addr = *ppos;
 812        ssize_t copied;
 813        char *page;
 814        unsigned int flags;
 815
 816        if (!mm)
 817                return 0;
 818
 819        page = (char *)__get_free_page(GFP_KERNEL);
 820        if (!page)
 821                return -ENOMEM;
 822
 823        copied = 0;
 824        if (!mmget_not_zero(mm))
 825                goto free;
 826
 827        flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 828
 829        while (count > 0) {
 830                int this_len = min_t(int, count, PAGE_SIZE);
 831
 832                if (write && copy_from_user(page, buf, this_len)) {
 833                        copied = -EFAULT;
 834                        break;
 835                }
 836
 837                this_len = access_remote_vm(mm, addr, page, this_len, flags);
 838                if (!this_len) {
 839                        if (!copied)
 840                                copied = -EIO;
 841                        break;
 842                }
 843
 844                if (!write && copy_to_user(buf, page, this_len)) {
 845                        copied = -EFAULT;
 846                        break;
 847                }
 848
 849                buf += this_len;
 850                addr += this_len;
 851                copied += this_len;
 852                count -= this_len;
 853        }
 854        *ppos = addr;
 855
 856        mmput(mm);
 857free:
 858        free_page((unsigned long) page);
 859        return copied;
 860}
 861
 862static ssize_t mem_read(struct file *file, char __user *buf,
 863                        size_t count, loff_t *ppos)
 864{
 865        return mem_rw(file, buf, count, ppos, 0);
 866}
 867
 868static ssize_t mem_write(struct file *file, const char __user *buf,
 869                         size_t count, loff_t *ppos)
 870{
 871        return mem_rw(file, (char __user*)buf, count, ppos, 1);
 872}
 873
 874loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 875{
 876        switch (orig) {
 877        case 0:
 878                file->f_pos = offset;
 879                break;
 880        case 1:
 881                file->f_pos += offset;
 882                break;
 883        default:
 884                return -EINVAL;
 885        }
 886        force_successful_syscall_return();
 887        return file->f_pos;
 888}
 889
 890static int mem_release(struct inode *inode, struct file *file)
 891{
 892        struct mm_struct *mm = file->private_data;
 893        if (mm)
 894                mmdrop(mm);
 895        return 0;
 896}
 897
 898static const struct file_operations proc_mem_operations = {
 899        .llseek         = mem_lseek,
 900        .read           = mem_read,
 901        .write          = mem_write,
 902        .open           = mem_open,
 903        .release        = mem_release,
 904};
 905
 906static int environ_open(struct inode *inode, struct file *file)
 907{
 908        return __mem_open(inode, file, PTRACE_MODE_READ);
 909}
 910
 911static ssize_t environ_read(struct file *file, char __user *buf,
 912                        size_t count, loff_t *ppos)
 913{
 914        char *page;
 915        unsigned long src = *ppos;
 916        int ret = 0;
 917        struct mm_struct *mm = file->private_data;
 918        unsigned long env_start, env_end;
 919
 920        /* Ensure the process spawned far enough to have an environment. */
 921        if (!mm || !mm->env_end)
 922                return 0;
 923
 924        page = (char *)__get_free_page(GFP_KERNEL);
 925        if (!page)
 926                return -ENOMEM;
 927
 928        ret = 0;
 929        if (!mmget_not_zero(mm))
 930                goto free;
 931
 932        down_read(&mm->mmap_sem);
 933        env_start = mm->env_start;
 934        env_end = mm->env_end;
 935        up_read(&mm->mmap_sem);
 936
 937        while (count > 0) {
 938                size_t this_len, max_len;
 939                int retval;
 940
 941                if (src >= (env_end - env_start))
 942                        break;
 943
 944                this_len = env_end - (env_start + src);
 945
 946                max_len = min_t(size_t, PAGE_SIZE, count);
 947                this_len = min(max_len, this_len);
 948
 949                retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
 950
 951                if (retval <= 0) {
 952                        ret = retval;
 953                        break;
 954                }
 955
 956                if (copy_to_user(buf, page, retval)) {
 957                        ret = -EFAULT;
 958                        break;
 959                }
 960
 961                ret += retval;
 962                src += retval;
 963                buf += retval;
 964                count -= retval;
 965        }
 966        *ppos = src;
 967        mmput(mm);
 968
 969free:
 970        free_page((unsigned long) page);
 971        return ret;
 972}
 973
 974static const struct file_operations proc_environ_operations = {
 975        .open           = environ_open,
 976        .read           = environ_read,
 977        .llseek         = generic_file_llseek,
 978        .release        = mem_release,
 979};
 980
 981static int auxv_open(struct inode *inode, struct file *file)
 982{
 983        return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
 984}
 985
 986static ssize_t auxv_read(struct file *file, char __user *buf,
 987                        size_t count, loff_t *ppos)
 988{
 989        struct mm_struct *mm = file->private_data;
 990        unsigned int nwords = 0;
 991
 992        if (!mm)
 993                return 0;
 994        do {
 995                nwords += 2;
 996        } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 997        return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
 998                                       nwords * sizeof(mm->saved_auxv[0]));
 999}
1000
1001static const struct file_operations proc_auxv_operations = {
1002        .open           = auxv_open,
1003        .read           = auxv_read,
1004        .llseek         = generic_file_llseek,
1005        .release        = mem_release,
1006};
1007
1008static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1009                            loff_t *ppos)
1010{
1011        struct task_struct *task = get_proc_task(file_inode(file));
1012        char buffer[PROC_NUMBUF];
1013        int oom_adj = OOM_ADJUST_MIN;
1014        size_t len;
1015
1016        if (!task)
1017                return -ESRCH;
1018        if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1019                oom_adj = OOM_ADJUST_MAX;
1020        else
1021                oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1022                          OOM_SCORE_ADJ_MAX;
1023        put_task_struct(task);
1024        len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1025        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1026}
1027
1028static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1029{
1030        static DEFINE_MUTEX(oom_adj_mutex);
1031        struct mm_struct *mm = NULL;
1032        struct task_struct *task;
1033        int err = 0;
1034
1035        task = get_proc_task(file_inode(file));
1036        if (!task)
1037                return -ESRCH;
1038
1039        mutex_lock(&oom_adj_mutex);
1040        if (legacy) {
1041                if (oom_adj < task->signal->oom_score_adj &&
1042                                !capable(CAP_SYS_RESOURCE)) {
1043                        err = -EACCES;
1044                        goto err_unlock;
1045                }
1046                /*
1047                 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1048                 * /proc/pid/oom_score_adj instead.
1049                 */
1050                pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1051                          current->comm, task_pid_nr(current), task_pid_nr(task),
1052                          task_pid_nr(task));
1053        } else {
1054                if ((short)oom_adj < task->signal->oom_score_adj_min &&
1055                                !capable(CAP_SYS_RESOURCE)) {
1056                        err = -EACCES;
1057                        goto err_unlock;
1058                }
1059        }
1060
1061        /*
1062         * Make sure we will check other processes sharing the mm if this is
1063         * not vfrok which wants its own oom_score_adj.
1064         * pin the mm so it doesn't go away and get reused after task_unlock
1065         */
1066        if (!task->vfork_done) {
1067                struct task_struct *p = find_lock_task_mm(task);
1068
1069                if (p) {
1070                        if (atomic_read(&p->mm->mm_users) > 1) {
1071                                mm = p->mm;
1072                                mmgrab(mm);
1073                        }
1074                        task_unlock(p);
1075                }
1076        }
1077
1078        task->signal->oom_score_adj = oom_adj;
1079        if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1080                task->signal->oom_score_adj_min = (short)oom_adj;
1081        trace_oom_score_adj_update(task);
1082
1083        if (mm) {
1084                struct task_struct *p;
1085
1086                rcu_read_lock();
1087                for_each_process(p) {
1088                        if (same_thread_group(task, p))
1089                                continue;
1090
1091                        /* do not touch kernel threads or the global init */
1092                        if (p->flags & PF_KTHREAD || is_global_init(p))
1093                                continue;
1094
1095                        task_lock(p);
1096                        if (!p->vfork_done && process_shares_mm(p, mm)) {
1097                                pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1098                                                task_pid_nr(p), p->comm,
1099                                                p->signal->oom_score_adj, oom_adj,
1100                                                task_pid_nr(task), task->comm);
1101                                p->signal->oom_score_adj = oom_adj;
1102                                if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1103                                        p->signal->oom_score_adj_min = (short)oom_adj;
1104                        }
1105                        task_unlock(p);
1106                }
1107                rcu_read_unlock();
1108                mmdrop(mm);
1109        }
1110err_unlock:
1111        mutex_unlock(&oom_adj_mutex);
1112        put_task_struct(task);
1113        return err;
1114}
1115
1116/*
1117 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1118 * kernels.  The effective policy is defined by oom_score_adj, which has a
1119 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1120 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1121 * Processes that become oom disabled via oom_adj will still be oom disabled
1122 * with this implementation.
1123 *
1124 * oom_adj cannot be removed since existing userspace binaries use it.
1125 */
1126static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1127                             size_t count, loff_t *ppos)
1128{
1129        char buffer[PROC_NUMBUF];
1130        int oom_adj;
1131        int err;
1132
1133        memset(buffer, 0, sizeof(buffer));
1134        if (count > sizeof(buffer) - 1)
1135                count = sizeof(buffer) - 1;
1136        if (copy_from_user(buffer, buf, count)) {
1137                err = -EFAULT;
1138                goto out;
1139        }
1140
1141        err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1142        if (err)
1143                goto out;
1144        if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1145             oom_adj != OOM_DISABLE) {
1146                err = -EINVAL;
1147                goto out;
1148        }
1149
1150        /*
1151         * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1152         * value is always attainable.
1153         */
1154        if (oom_adj == OOM_ADJUST_MAX)
1155                oom_adj = OOM_SCORE_ADJ_MAX;
1156        else
1157                oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1158
1159        err = __set_oom_adj(file, oom_adj, true);
1160out:
1161        return err < 0 ? err : count;
1162}
1163
1164static const struct file_operations proc_oom_adj_operations = {
1165        .read           = oom_adj_read,
1166        .write          = oom_adj_write,
1167        .llseek         = generic_file_llseek,
1168};
1169
1170static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1171                                        size_t count, loff_t *ppos)
1172{
1173        struct task_struct *task = get_proc_task(file_inode(file));
1174        char buffer[PROC_NUMBUF];
1175        short oom_score_adj = OOM_SCORE_ADJ_MIN;
1176        size_t len;
1177
1178        if (!task)
1179                return -ESRCH;
1180        oom_score_adj = task->signal->oom_score_adj;
1181        put_task_struct(task);
1182        len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1183        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1184}
1185
1186static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1187                                        size_t count, loff_t *ppos)
1188{
1189        char buffer[PROC_NUMBUF];
1190        int oom_score_adj;
1191        int err;
1192
1193        memset(buffer, 0, sizeof(buffer));
1194        if (count > sizeof(buffer) - 1)
1195                count = sizeof(buffer) - 1;
1196        if (copy_from_user(buffer, buf, count)) {
1197                err = -EFAULT;
1198                goto out;
1199        }
1200
1201        err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1202        if (err)
1203                goto out;
1204        if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1205                        oom_score_adj > OOM_SCORE_ADJ_MAX) {
1206                err = -EINVAL;
1207                goto out;
1208        }
1209
1210        err = __set_oom_adj(file, oom_score_adj, false);
1211out:
1212        return err < 0 ? err : count;
1213}
1214
1215static const struct file_operations proc_oom_score_adj_operations = {
1216        .read           = oom_score_adj_read,
1217        .write          = oom_score_adj_write,
1218        .llseek         = default_llseek,
1219};
1220
1221#ifdef CONFIG_AUDITSYSCALL
1222#define TMPBUFLEN 11
1223static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1224                                  size_t count, loff_t *ppos)
1225{
1226        struct inode * inode = file_inode(file);
1227        struct task_struct *task = get_proc_task(inode);
1228        ssize_t length;
1229        char tmpbuf[TMPBUFLEN];
1230
1231        if (!task)
1232                return -ESRCH;
1233        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1234                           from_kuid(file->f_cred->user_ns,
1235                                     audit_get_loginuid(task)));
1236        put_task_struct(task);
1237        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1238}
1239
1240static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1241                                   size_t count, loff_t *ppos)
1242{
1243        struct inode * inode = file_inode(file);
1244        uid_t loginuid;
1245        kuid_t kloginuid;
1246        int rv;
1247
1248        rcu_read_lock();
1249        if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1250                rcu_read_unlock();
1251                return -EPERM;
1252        }
1253        rcu_read_unlock();
1254
1255        if (*ppos != 0) {
1256                /* No partial writes. */
1257                return -EINVAL;
1258        }
1259
1260        rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1261        if (rv < 0)
1262                return rv;
1263
1264        /* is userspace tring to explicitly UNSET the loginuid? */
1265        if (loginuid == AUDIT_UID_UNSET) {
1266                kloginuid = INVALID_UID;
1267        } else {
1268                kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1269                if (!uid_valid(kloginuid))
1270                        return -EINVAL;
1271        }
1272
1273        rv = audit_set_loginuid(kloginuid);
1274        if (rv < 0)
1275                return rv;
1276        return count;
1277}
1278
1279static const struct file_operations proc_loginuid_operations = {
1280        .read           = proc_loginuid_read,
1281        .write          = proc_loginuid_write,
1282        .llseek         = generic_file_llseek,
1283};
1284
1285static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1286                                  size_t count, loff_t *ppos)
1287{
1288        struct inode * inode = file_inode(file);
1289        struct task_struct *task = get_proc_task(inode);
1290        ssize_t length;
1291        char tmpbuf[TMPBUFLEN];
1292
1293        if (!task)
1294                return -ESRCH;
1295        length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1296                                audit_get_sessionid(task));
1297        put_task_struct(task);
1298        return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1299}
1300
1301static const struct file_operations proc_sessionid_operations = {
1302        .read           = proc_sessionid_read,
1303        .llseek         = generic_file_llseek,
1304};
1305#endif
1306
1307#ifdef CONFIG_FAULT_INJECTION
1308static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1309                                      size_t count, loff_t *ppos)
1310{
1311        struct task_struct *task = get_proc_task(file_inode(file));
1312        char buffer[PROC_NUMBUF];
1313        size_t len;
1314        int make_it_fail;
1315
1316        if (!task)
1317                return -ESRCH;
1318        make_it_fail = task->make_it_fail;
1319        put_task_struct(task);
1320
1321        len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1322
1323        return simple_read_from_buffer(buf, count, ppos, buffer, len);
1324}
1325
1326static ssize_t proc_fault_inject_write(struct file * file,
1327                        const char __user * buf, size_t count, loff_t *ppos)
1328{
1329        struct task_struct *task;
1330        char buffer[PROC_NUMBUF];
1331        int make_it_fail;
1332        int rv;
1333
1334        if (!capable(CAP_SYS_RESOURCE))
1335                return -EPERM;
1336        memset(buffer, 0, sizeof(buffer));
1337        if (count > sizeof(buffer) - 1)
1338                count = sizeof(buffer) - 1;
1339        if (copy_from_user(buffer, buf, count))
1340                return -EFAULT;
1341        rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1342        if (rv < 0)
1343                return rv;
1344        if (make_it_fail < 0 || make_it_fail > 1)
1345                return -EINVAL;
1346
1347        task = get_proc_task(file_inode(file));
1348        if (!task)
1349                return -ESRCH;
1350        task->make_it_fail = make_it_fail;
1351        put_task_struct(task);
1352
1353        return count;
1354}
1355
1356static const struct file_operations proc_fault_inject_operations = {
1357        .read           = proc_fault_inject_read,
1358        .write          = proc_fault_inject_write,
1359        .llseek         = generic_file_llseek,
1360};
1361
1362static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1363                                   size_t count, loff_t *ppos)
1364{
1365        struct task_struct *task;
1366        int err;
1367        unsigned int n;
1368
1369        err = kstrtouint_from_user(buf, count, 0, &n);
1370        if (err)
1371                return err;
1372
1373        task = get_proc_task(file_inode(file));
1374        if (!task)
1375                return -ESRCH;
1376        task->fail_nth = n;
1377        put_task_struct(task);
1378
1379        return count;
1380}
1381
1382static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1383                                  size_t count, loff_t *ppos)
1384{
1385        struct task_struct *task;
1386        char numbuf[PROC_NUMBUF];
1387        ssize_t len;
1388
1389        task = get_proc_task(file_inode(file));
1390        if (!task)
1391                return -ESRCH;
1392        len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1393        len = simple_read_from_buffer(buf, count, ppos, numbuf, len);
1394        put_task_struct(task);
1395
1396        return len;
1397}
1398
1399static const struct file_operations proc_fail_nth_operations = {
1400        .read           = proc_fail_nth_read,
1401        .write          = proc_fail_nth_write,
1402};
1403#endif
1404
1405
1406#ifdef CONFIG_SCHED_DEBUG
1407/*
1408 * Print out various scheduling related per-task fields:
1409 */
1410static int sched_show(struct seq_file *m, void *v)
1411{
1412        struct inode *inode = m->private;
1413        struct pid_namespace *ns = inode->i_sb->s_fs_info;
1414        struct task_struct *p;
1415
1416        p = get_proc_task(inode);
1417        if (!p)
1418                return -ESRCH;
1419        proc_sched_show_task(p, ns, m);
1420
1421        put_task_struct(p);
1422
1423        return 0;
1424}
1425
1426static ssize_t
1427sched_write(struct file *file, const char __user *buf,
1428            size_t count, loff_t *offset)
1429{
1430        struct inode *inode = file_inode(file);
1431        struct task_struct *p;
1432
1433        p = get_proc_task(inode);
1434        if (!p)
1435                return -ESRCH;
1436        proc_sched_set_task(p);
1437
1438        put_task_struct(p);
1439
1440        return count;
1441}
1442
1443static int sched_open(struct inode *inode, struct file *filp)
1444{
1445        return single_open(filp, sched_show, inode);
1446}
1447
1448static const struct file_operations proc_pid_sched_operations = {
1449        .open           = sched_open,
1450        .read           = seq_read,
1451        .write          = sched_write,
1452        .llseek         = seq_lseek,
1453        .release        = single_release,
1454};
1455
1456#endif
1457
1458#ifdef CONFIG_SCHED_AUTOGROUP
1459/*
1460 * Print out autogroup related information:
1461 */
1462static int sched_autogroup_show(struct seq_file *m, void *v)
1463{
1464        struct inode *inode = m->private;
1465        struct task_struct *p;
1466
1467        p = get_proc_task(inode);
1468        if (!p)
1469                return -ESRCH;
1470        proc_sched_autogroup_show_task(p, m);
1471
1472        put_task_struct(p);
1473
1474        return 0;
1475}
1476
1477static ssize_t
1478sched_autogroup_write(struct file *file, const char __user *buf,
1479            size_t count, loff_t *offset)
1480{
1481        struct inode *inode = file_inode(file);
1482        struct task_struct *p;
1483        char buffer[PROC_NUMBUF];
1484        int nice;
1485        int err;
1486
1487        memset(buffer, 0, sizeof(buffer));
1488        if (count > sizeof(buffer) - 1)
1489                count = sizeof(buffer) - 1;
1490        if (copy_from_user(buffer, buf, count))
1491                return -EFAULT;
1492
1493        err = kstrtoint(strstrip(buffer), 0, &nice);
1494        if (err < 0)
1495                return err;
1496
1497        p = get_proc_task(inode);
1498        if (!p)
1499                return -ESRCH;
1500
1501        err = proc_sched_autogroup_set_nice(p, nice);
1502        if (err)
1503                count = err;
1504
1505        put_task_struct(p);
1506
1507        return count;
1508}
1509
1510static int sched_autogroup_open(struct inode *inode, struct file *filp)
1511{
1512        int ret;
1513
1514        ret = single_open(filp, sched_autogroup_show, NULL);
1515        if (!ret) {
1516                struct seq_file *m = filp->private_data;
1517
1518                m->private = inode;
1519        }
1520        return ret;
1521}
1522
1523static const struct file_operations proc_pid_sched_autogroup_operations = {
1524        .open           = sched_autogroup_open,
1525        .read           = seq_read,
1526        .write          = sched_autogroup_write,
1527        .llseek         = seq_lseek,
1528        .release        = single_release,
1529};
1530
1531#endif /* CONFIG_SCHED_AUTOGROUP */
1532
1533static ssize_t comm_write(struct file *file, const char __user *buf,
1534                                size_t count, loff_t *offset)
1535{
1536        struct inode *inode = file_inode(file);
1537        struct task_struct *p;
1538        char buffer[TASK_COMM_LEN];
1539        const size_t maxlen = sizeof(buffer) - 1;
1540
1541        memset(buffer, 0, sizeof(buffer));
1542        if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1543                return -EFAULT;
1544
1545        p = get_proc_task(inode);
1546        if (!p)
1547                return -ESRCH;
1548
1549        if (same_thread_group(current, p))
1550                set_task_comm(p, buffer);
1551        else
1552                count = -EINVAL;
1553
1554        put_task_struct(p);
1555
1556        return count;
1557}
1558
1559static int comm_show(struct seq_file *m, void *v)
1560{
1561        struct inode *inode = m->private;
1562        struct task_struct *p;
1563
1564        p = get_proc_task(inode);
1565        if (!p)
1566                return -ESRCH;
1567
1568        task_lock(p);
1569        seq_printf(m, "%s\n", p->comm);
1570        task_unlock(p);
1571
1572        put_task_struct(p);
1573
1574        return 0;
1575}
1576
1577static int comm_open(struct inode *inode, struct file *filp)
1578{
1579        return single_open(filp, comm_show, inode);
1580}
1581
1582static const struct file_operations proc_pid_set_comm_operations = {
1583        .open           = comm_open,
1584        .read           = seq_read,
1585        .write          = comm_write,
1586        .llseek         = seq_lseek,
1587        .release        = single_release,
1588};
1589
1590static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1591{
1592        struct task_struct *task;
1593        struct file *exe_file;
1594
1595        task = get_proc_task(d_inode(dentry));
1596        if (!task)
1597                return -ENOENT;
1598        exe_file = get_task_exe_file(task);
1599        put_task_struct(task);
1600        if (exe_file) {
1601                *exe_path = exe_file->f_path;
1602                path_get(&exe_file->f_path);
1603                fput(exe_file);
1604                return 0;
1605        } else
1606                return -ENOENT;
1607}
1608
1609static const char *proc_pid_get_link(struct dentry *dentry,
1610                                     struct inode *inode,
1611                                     struct delayed_call *done)
1612{
1613        struct path path;
1614        int error = -EACCES;
1615
1616        if (!dentry)
1617                return ERR_PTR(-ECHILD);
1618
1619        /* Are we allowed to snoop on the tasks file descriptors? */
1620        if (!proc_fd_access_allowed(inode))
1621                goto out;
1622
1623        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1624        if (error)
1625                goto out;
1626
1627        nd_jump_link(&path);
1628        return NULL;
1629out:
1630        return ERR_PTR(error);
1631}
1632
1633static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1634{
1635        char *tmp = (char *)__get_free_page(GFP_KERNEL);
1636        char *pathname;
1637        int len;
1638
1639        if (!tmp)
1640                return -ENOMEM;
1641
1642        pathname = d_path(path, tmp, PAGE_SIZE);
1643        len = PTR_ERR(pathname);
1644        if (IS_ERR(pathname))
1645                goto out;
1646        len = tmp + PAGE_SIZE - 1 - pathname;
1647
1648        if (len > buflen)
1649                len = buflen;
1650        if (copy_to_user(buffer, pathname, len))
1651                len = -EFAULT;
1652 out:
1653        free_page((unsigned long)tmp);
1654        return len;
1655}
1656
1657static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1658{
1659        int error = -EACCES;
1660        struct inode *inode = d_inode(dentry);
1661        struct path path;
1662
1663        /* Are we allowed to snoop on the tasks file descriptors? */
1664        if (!proc_fd_access_allowed(inode))
1665                goto out;
1666
1667        error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1668        if (error)
1669                goto out;
1670
1671        error = do_proc_readlink(&path, buffer, buflen);
1672        path_put(&path);
1673out:
1674        return error;
1675}
1676
1677const struct inode_operations proc_pid_link_inode_operations = {
1678        .readlink       = proc_pid_readlink,
1679        .get_link       = proc_pid_get_link,
1680        .setattr        = proc_setattr,
1681};
1682
1683
1684/* building an inode */
1685
1686void task_dump_owner(struct task_struct *task, umode_t mode,
1687                     kuid_t *ruid, kgid_t *rgid)
1688{
1689        /* Depending on the state of dumpable compute who should own a
1690         * proc file for a task.
1691         */
1692        const struct cred *cred;
1693        kuid_t uid;
1694        kgid_t gid;
1695
1696        /* Default to the tasks effective ownership */
1697        rcu_read_lock();
1698        cred = __task_cred(task);
1699        uid = cred->euid;
1700        gid = cred->egid;
1701        rcu_read_unlock();
1702
1703        /*
1704         * Before the /proc/pid/status file was created the only way to read
1705         * the effective uid of a /process was to stat /proc/pid.  Reading
1706         * /proc/pid/status is slow enough that procps and other packages
1707         * kept stating /proc/pid.  To keep the rules in /proc simple I have
1708         * made this apply to all per process world readable and executable
1709         * directories.
1710         */
1711        if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1712                struct mm_struct *mm;
1713                task_lock(task);
1714                mm = task->mm;
1715                /* Make non-dumpable tasks owned by some root */
1716                if (mm) {
1717                        if (get_dumpable(mm) != SUID_DUMP_USER) {
1718                                struct user_namespace *user_ns = mm->user_ns;
1719
1720                                uid = make_kuid(user_ns, 0);
1721                                if (!uid_valid(uid))
1722                                        uid = GLOBAL_ROOT_UID;
1723
1724                                gid = make_kgid(user_ns, 0);
1725                                if (!gid_valid(gid))
1726                                        gid = GLOBAL_ROOT_GID;
1727                        }
1728                } else {
1729                        uid = GLOBAL_ROOT_UID;
1730                        gid = GLOBAL_ROOT_GID;
1731                }
1732                task_unlock(task);
1733        }
1734        *ruid = uid;
1735        *rgid = gid;
1736}
1737
1738struct inode *proc_pid_make_inode(struct super_block * sb,
1739                                  struct task_struct *task, umode_t mode)
1740{
1741        struct inode * inode;
1742        struct proc_inode *ei;
1743
1744        /* We need a new inode */
1745
1746        inode = new_inode(sb);
1747        if (!inode)
1748                goto out;
1749
1750        /* Common stuff */
1751        ei = PROC_I(inode);
1752        inode->i_mode = mode;
1753        inode->i_ino = get_next_ino();
1754        inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1755        inode->i_op = &proc_def_inode_operations;
1756
1757        /*
1758         * grab the reference to task.
1759         */
1760        ei->pid = get_task_pid(task, PIDTYPE_PID);
1761        if (!ei->pid)
1762                goto out_unlock;
1763
1764        task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1765        security_task_to_inode(task, inode);
1766
1767out:
1768        return inode;
1769
1770out_unlock:
1771        iput(inode);
1772        return NULL;
1773}
1774
1775int pid_getattr(const struct path *path, struct kstat *stat,
1776                u32 request_mask, unsigned int query_flags)
1777{
1778        struct inode *inode = d_inode(path->dentry);
1779        struct task_struct *task;
1780        struct pid_namespace *pid = path->dentry->d_sb->s_fs_info;
1781
1782        generic_fillattr(inode, stat);
1783
1784        rcu_read_lock();
1785        stat->uid = GLOBAL_ROOT_UID;
1786        stat->gid = GLOBAL_ROOT_GID;
1787        task = pid_task(proc_pid(inode), PIDTYPE_PID);
1788        if (task) {
1789                if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1790                        rcu_read_unlock();
1791                        /*
1792                         * This doesn't prevent learning whether PID exists,
1793                         * it only makes getattr() consistent with readdir().
1794                         */
1795                        return -ENOENT;
1796                }
1797                task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1798        }
1799        rcu_read_unlock();
1800        return 0;
1801}
1802
1803/* dentry stuff */
1804
1805/*
1806 *      Exceptional case: normally we are not allowed to unhash a busy
1807 * directory. In this case, however, we can do it - no aliasing problems
1808 * due to the way we treat inodes.
1809 *
1810 * Rewrite the inode's ownerships here because the owning task may have
1811 * performed a setuid(), etc.
1812 *
1813 */
1814int pid_revalidate(struct dentry *dentry, unsigned int flags)
1815{
1816        struct inode *inode;
1817        struct task_struct *task;
1818
1819        if (flags & LOOKUP_RCU)
1820                return -ECHILD;
1821
1822        inode = d_inode(dentry);
1823        task = get_proc_task(inode);
1824
1825        if (task) {
1826                task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1827
1828                inode->i_mode &= ~(S_ISUID | S_ISGID);
1829                security_task_to_inode(task, inode);
1830                put_task_struct(task);
1831                return 1;
1832        }
1833        return 0;
1834}
1835
1836static inline bool proc_inode_is_dead(struct inode *inode)
1837{
1838        return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1839}
1840
1841int pid_delete_dentry(const struct dentry *dentry)
1842{
1843        /* Is the task we represent dead?
1844         * If so, then don't put the dentry on the lru list,
1845         * kill it immediately.
1846         */
1847        return proc_inode_is_dead(d_inode(dentry));
1848}
1849
1850const struct dentry_operations pid_dentry_operations =
1851{
1852        .d_revalidate   = pid_revalidate,
1853        .d_delete       = pid_delete_dentry,
1854};
1855
1856/* Lookups */
1857
1858/*
1859 * Fill a directory entry.
1860 *
1861 * If possible create the dcache entry and derive our inode number and
1862 * file type from dcache entry.
1863 *
1864 * Since all of the proc inode numbers are dynamically generated, the inode
1865 * numbers do not exist until the inode is cache.  This means creating the
1866 * the dcache entry in readdir is necessary to keep the inode numbers
1867 * reported by readdir in sync with the inode numbers reported
1868 * by stat.
1869 */
1870bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1871        const char *name, int len,
1872        instantiate_t instantiate, struct task_struct *task, const void *ptr)
1873{
1874        struct dentry *child, *dir = file->f_path.dentry;
1875        struct qstr qname = QSTR_INIT(name, len);
1876        struct inode *inode;
1877        unsigned type;
1878        ino_t ino;
1879
1880        child = d_hash_and_lookup(dir, &qname);
1881        if (!child) {
1882                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1883                child = d_alloc_parallel(dir, &qname, &wq);
1884                if (IS_ERR(child))
1885                        goto end_instantiate;
1886                if (d_in_lookup(child)) {
1887                        int err = instantiate(d_inode(dir), child, task, ptr);
1888                        d_lookup_done(child);
1889                        if (err < 0) {
1890                                dput(child);
1891                                goto end_instantiate;
1892                        }
1893                }
1894        }
1895        inode = d_inode(child);
1896        ino = inode->i_ino;
1897        type = inode->i_mode >> 12;
1898        dput(child);
1899        return dir_emit(ctx, name, len, ino, type);
1900
1901end_instantiate:
1902        return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1903}
1904
1905/*
1906 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1907 * which represent vma start and end addresses.
1908 */
1909static int dname_to_vma_addr(struct dentry *dentry,
1910                             unsigned long *start, unsigned long *end)
1911{
1912        const char *str = dentry->d_name.name;
1913        unsigned long long sval, eval;
1914        unsigned int len;
1915
1916        len = _parse_integer(str, 16, &sval);
1917        if (len & KSTRTOX_OVERFLOW)
1918                return -EINVAL;
1919        if (sval != (unsigned long)sval)
1920                return -EINVAL;
1921        str += len;
1922
1923        if (*str != '-')
1924                return -EINVAL;
1925        str++;
1926
1927        len = _parse_integer(str, 16, &eval);
1928        if (len & KSTRTOX_OVERFLOW)
1929                return -EINVAL;
1930        if (eval != (unsigned long)eval)
1931                return -EINVAL;
1932        str += len;
1933
1934        if (*str != '\0')
1935                return -EINVAL;
1936
1937        *start = sval;
1938        *end = eval;
1939
1940        return 0;
1941}
1942
1943static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1944{
1945        unsigned long vm_start, vm_end;
1946        bool exact_vma_exists = false;
1947        struct mm_struct *mm = NULL;
1948        struct task_struct *task;
1949        struct inode *inode;
1950        int status = 0;
1951
1952        if (flags & LOOKUP_RCU)
1953                return -ECHILD;
1954
1955        inode = d_inode(dentry);
1956        task = get_proc_task(inode);
1957        if (!task)
1958                goto out_notask;
1959
1960        mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1961        if (IS_ERR_OR_NULL(mm))
1962                goto out;
1963
1964        if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1965                down_read(&mm->mmap_sem);
1966                exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1967                up_read(&mm->mmap_sem);
1968        }
1969
1970        mmput(mm);
1971
1972        if (exact_vma_exists) {
1973                task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1974
1975                security_task_to_inode(task, inode);
1976                status = 1;
1977        }
1978
1979out:
1980        put_task_struct(task);
1981
1982out_notask:
1983        return status;
1984}
1985
1986static const struct dentry_operations tid_map_files_dentry_operations = {
1987        .d_revalidate   = map_files_d_revalidate,
1988        .d_delete       = pid_delete_dentry,
1989};
1990
1991static int map_files_get_link(struct dentry *dentry, struct path *path)
1992{
1993        unsigned long vm_start, vm_end;
1994        struct vm_area_struct *vma;
1995        struct task_struct *task;
1996        struct mm_struct *mm;
1997        int rc;
1998
1999        rc = -ENOENT;
2000        task = get_proc_task(d_inode(dentry));
2001        if (!task)
2002                goto out;
2003
2004        mm = get_task_mm(task);
2005        put_task_struct(task);
2006        if (!mm)
2007                goto out;
2008
2009        rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2010        if (rc)
2011                goto out_mmput;
2012
2013        rc = -ENOENT;
2014        down_read(&mm->mmap_sem);
2015        vma = find_exact_vma(mm, vm_start, vm_end);
2016        if (vma && vma->vm_file) {
2017                *path = vma->vm_file->f_path;
2018                path_get(path);
2019                rc = 0;
2020        }
2021        up_read(&mm->mmap_sem);
2022
2023out_mmput:
2024        mmput(mm);
2025out:
2026        return rc;
2027}
2028
2029struct map_files_info {
2030        unsigned long   start;
2031        unsigned long   end;
2032        fmode_t         mode;
2033};
2034
2035/*
2036 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2037 * symlinks may be used to bypass permissions on ancestor directories in the
2038 * path to the file in question.
2039 */
2040static const char *
2041proc_map_files_get_link(struct dentry *dentry,
2042                        struct inode *inode,
2043                        struct delayed_call *done)
2044{
2045        if (!capable(CAP_SYS_ADMIN))
2046                return ERR_PTR(-EPERM);
2047
2048        return proc_pid_get_link(dentry, inode, done);
2049}
2050
2051/*
2052 * Identical to proc_pid_link_inode_operations except for get_link()
2053 */
2054static const struct inode_operations proc_map_files_link_inode_operations = {
2055        .readlink       = proc_pid_readlink,
2056        .get_link       = proc_map_files_get_link,
2057        .setattr        = proc_setattr,
2058};
2059
2060static int
2061proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2062                           struct task_struct *task, const void *ptr)
2063{
2064        fmode_t mode = (fmode_t)(unsigned long)ptr;
2065        struct proc_inode *ei;
2066        struct inode *inode;
2067
2068        inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2069                                    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2070                                    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2071        if (!inode)
2072                return -ENOENT;
2073
2074        ei = PROC_I(inode);
2075        ei->op.proc_get_link = map_files_get_link;
2076
2077        inode->i_op = &proc_map_files_link_inode_operations;
2078        inode->i_size = 64;
2079
2080        d_set_d_op(dentry, &tid_map_files_dentry_operations);
2081        d_add(dentry, inode);
2082
2083        return 0;
2084}
2085
2086static struct dentry *proc_map_files_lookup(struct inode *dir,
2087                struct dentry *dentry, unsigned int flags)
2088{
2089        unsigned long vm_start, vm_end;
2090        struct vm_area_struct *vma;
2091        struct task_struct *task;
2092        int result;
2093        struct mm_struct *mm;
2094
2095        result = -ENOENT;
2096        task = get_proc_task(dir);
2097        if (!task)
2098                goto out;
2099
2100        result = -EACCES;
2101        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2102                goto out_put_task;
2103
2104        result = -ENOENT;
2105        if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2106                goto out_put_task;
2107
2108        mm = get_task_mm(task);
2109        if (!mm)
2110                goto out_put_task;
2111
2112        down_read(&mm->mmap_sem);
2113        vma = find_exact_vma(mm, vm_start, vm_end);
2114        if (!vma)
2115                goto out_no_vma;
2116
2117        if (vma->vm_file)
2118                result = proc_map_files_instantiate(dir, dentry, task,
2119                                (void *)(unsigned long)vma->vm_file->f_mode);
2120
2121out_no_vma:
2122        up_read(&mm->mmap_sem);
2123        mmput(mm);
2124out_put_task:
2125        put_task_struct(task);
2126out:
2127        return ERR_PTR(result);
2128}
2129
2130static const struct inode_operations proc_map_files_inode_operations = {
2131        .lookup         = proc_map_files_lookup,
2132        .permission     = proc_fd_permission,
2133        .setattr        = proc_setattr,
2134};
2135
2136static int
2137proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2138{
2139        struct vm_area_struct *vma;
2140        struct task_struct *task;
2141        struct mm_struct *mm;
2142        unsigned long nr_files, pos, i;
2143        struct flex_array *fa = NULL;
2144        struct map_files_info info;
2145        struct map_files_info *p;
2146        int ret;
2147
2148        ret = -ENOENT;
2149        task = get_proc_task(file_inode(file));
2150        if (!task)
2151                goto out;
2152
2153        ret = -EACCES;
2154        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2155                goto out_put_task;
2156
2157        ret = 0;
2158        if (!dir_emit_dots(file, ctx))
2159                goto out_put_task;
2160
2161        mm = get_task_mm(task);
2162        if (!mm)
2163                goto out_put_task;
2164        down_read(&mm->mmap_sem);
2165
2166        nr_files = 0;
2167
2168        /*
2169         * We need two passes here:
2170         *
2171         *  1) Collect vmas of mapped files with mmap_sem taken
2172         *  2) Release mmap_sem and instantiate entries
2173         *
2174         * otherwise we get lockdep complained, since filldir()
2175         * routine might require mmap_sem taken in might_fault().
2176         */
2177
2178        for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2179                if (vma->vm_file && ++pos > ctx->pos)
2180                        nr_files++;
2181        }
2182
2183        if (nr_files) {
2184                fa = flex_array_alloc(sizeof(info), nr_files,
2185                                        GFP_KERNEL);
2186                if (!fa || flex_array_prealloc(fa, 0, nr_files,
2187                                                GFP_KERNEL)) {
2188                        ret = -ENOMEM;
2189                        if (fa)
2190                                flex_array_free(fa);
2191                        up_read(&mm->mmap_sem);
2192                        mmput(mm);
2193                        goto out_put_task;
2194                }
2195                for (i = 0, vma = mm->mmap, pos = 2; vma;
2196                                vma = vma->vm_next) {
2197                        if (!vma->vm_file)
2198                                continue;
2199                        if (++pos <= ctx->pos)
2200                                continue;
2201
2202                        info.start = vma->vm_start;
2203                        info.end = vma->vm_end;
2204                        info.mode = vma->vm_file->f_mode;
2205                        if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2206                                BUG();
2207                }
2208        }
2209        up_read(&mm->mmap_sem);
2210
2211        for (i = 0; i < nr_files; i++) {
2212                char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2213                unsigned int len;
2214
2215                p = flex_array_get(fa, i);
2216                len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2217                if (!proc_fill_cache(file, ctx,
2218                                      buf, len,
2219                                      proc_map_files_instantiate,
2220                                      task,
2221                                      (void *)(unsigned long)p->mode))
2222                        break;
2223                ctx->pos++;
2224        }
2225        if (fa)
2226                flex_array_free(fa);
2227        mmput(mm);
2228
2229out_put_task:
2230        put_task_struct(task);
2231out:
2232        return ret;
2233}
2234
2235static const struct file_operations proc_map_files_operations = {
2236        .read           = generic_read_dir,
2237        .iterate_shared = proc_map_files_readdir,
2238        .llseek         = generic_file_llseek,
2239};
2240
2241#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2242struct timers_private {
2243        struct pid *pid;
2244        struct task_struct *task;
2245        struct sighand_struct *sighand;
2246        struct pid_namespace *ns;
2247        unsigned long flags;
2248};
2249
2250static void *timers_start(struct seq_file *m, loff_t *pos)
2251{
2252        struct timers_private *tp = m->private;
2253
2254        tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2255        if (!tp->task)
2256                return ERR_PTR(-ESRCH);
2257
2258        tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2259        if (!tp->sighand)
2260                return ERR_PTR(-ESRCH);
2261
2262        return seq_list_start(&tp->task->signal->posix_timers, *pos);
2263}
2264
2265static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2266{
2267        struct timers_private *tp = m->private;
2268        return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2269}
2270
2271static void timers_stop(struct seq_file *m, void *v)
2272{
2273        struct timers_private *tp = m->private;
2274
2275        if (tp->sighand) {
2276                unlock_task_sighand(tp->task, &tp->flags);
2277                tp->sighand = NULL;
2278        }
2279
2280        if (tp->task) {
2281                put_task_struct(tp->task);
2282                tp->task = NULL;
2283        }
2284}
2285
2286static int show_timer(struct seq_file *m, void *v)
2287{
2288        struct k_itimer *timer;
2289        struct timers_private *tp = m->private;
2290        int notify;
2291        static const char * const nstr[] = {
2292                [SIGEV_SIGNAL] = "signal",
2293                [SIGEV_NONE] = "none",
2294                [SIGEV_THREAD] = "thread",
2295        };
2296
2297        timer = list_entry((struct list_head *)v, struct k_itimer, list);
2298        notify = timer->it_sigev_notify;
2299
2300        seq_printf(m, "ID: %d\n", timer->it_id);
2301        seq_printf(m, "signal: %d/%px\n",
2302                   timer->sigq->info.si_signo,
2303                   timer->sigq->info.si_value.sival_ptr);
2304        seq_printf(m, "notify: %s/%s.%d\n",
2305                   nstr[notify & ~SIGEV_THREAD_ID],
2306                   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2307                   pid_nr_ns(timer->it_pid, tp->ns));
2308        seq_printf(m, "ClockID: %d\n", timer->it_clock);
2309
2310        return 0;
2311}
2312
2313static const struct seq_operations proc_timers_seq_ops = {
2314        .start  = timers_start,
2315        .next   = timers_next,
2316        .stop   = timers_stop,
2317        .show   = show_timer,
2318};
2319
2320static int proc_timers_open(struct inode *inode, struct file *file)
2321{
2322        struct timers_private *tp;
2323
2324        tp = __seq_open_private(file, &proc_timers_seq_ops,
2325                        sizeof(struct timers_private));
2326        if (!tp)
2327                return -ENOMEM;
2328
2329        tp->pid = proc_pid(inode);
2330        tp->ns = inode->i_sb->s_fs_info;
2331        return 0;
2332}
2333
2334static const struct file_operations proc_timers_operations = {
2335        .open           = proc_timers_open,
2336        .read           = seq_read,
2337        .llseek         = seq_lseek,
2338        .release        = seq_release_private,
2339};
2340#endif
2341
2342static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2343                                        size_t count, loff_t *offset)
2344{
2345        struct inode *inode = file_inode(file);
2346        struct task_struct *p;
2347        u64 slack_ns;
2348        int err;
2349
2350        err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2351        if (err < 0)
2352                return err;
2353
2354        p = get_proc_task(inode);
2355        if (!p)
2356                return -ESRCH;
2357
2358        if (p != current) {
2359                if (!capable(CAP_SYS_NICE)) {
2360                        count = -EPERM;
2361                        goto out;
2362                }
2363
2364                err = security_task_setscheduler(p);
2365                if (err) {
2366                        count = err;
2367                        goto out;
2368                }
2369        }
2370
2371        task_lock(p);
2372        if (slack_ns == 0)
2373                p->timer_slack_ns = p->default_timer_slack_ns;
2374        else
2375                p->timer_slack_ns = slack_ns;
2376        task_unlock(p);
2377
2378out:
2379        put_task_struct(p);
2380
2381        return count;
2382}
2383
2384static int timerslack_ns_show(struct seq_file *m, void *v)
2385{
2386        struct inode *inode = m->private;
2387        struct task_struct *p;
2388        int err = 0;
2389
2390        p = get_proc_task(inode);
2391        if (!p)
2392                return -ESRCH;
2393
2394        if (p != current) {
2395
2396                if (!capable(CAP_SYS_NICE)) {
2397                        err = -EPERM;
2398                        goto out;
2399                }
2400                err = security_task_getscheduler(p);
2401                if (err)
2402                        goto out;
2403        }
2404
2405        task_lock(p);
2406        seq_printf(m, "%llu\n", p->timer_slack_ns);
2407        task_unlock(p);
2408
2409out:
2410        put_task_struct(p);
2411
2412        return err;
2413}
2414
2415static int timerslack_ns_open(struct inode *inode, struct file *filp)
2416{
2417        return single_open(filp, timerslack_ns_show, inode);
2418}
2419
2420static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2421        .open           = timerslack_ns_open,
2422        .read           = seq_read,
2423        .write          = timerslack_ns_write,
2424        .llseek         = seq_lseek,
2425        .release        = single_release,
2426};
2427
2428static int proc_pident_instantiate(struct inode *dir,
2429        struct dentry *dentry, struct task_struct *task, const void *ptr)
2430{
2431        const struct pid_entry *p = ptr;
2432        struct inode *inode;
2433        struct proc_inode *ei;
2434
2435        inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2436        if (!inode)
2437                goto out;
2438
2439        ei = PROC_I(inode);
2440        if (S_ISDIR(inode->i_mode))
2441                set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2442        if (p->iop)
2443                inode->i_op = p->iop;
2444        if (p->fop)
2445                inode->i_fop = p->fop;
2446        ei->op = p->op;
2447        d_set_d_op(dentry, &pid_dentry_operations);
2448        d_add(dentry, inode);
2449        /* Close the race of the process dying before we return the dentry */
2450        if (pid_revalidate(dentry, 0))
2451                return 0;
2452out:
2453        return -ENOENT;
2454}
2455
2456static struct dentry *proc_pident_lookup(struct inode *dir, 
2457                                         struct dentry *dentry,
2458                                         const struct pid_entry *ents,
2459                                         unsigned int nents)
2460{
2461        int error;
2462        struct task_struct *task = get_proc_task(dir);
2463        const struct pid_entry *p, *last;
2464
2465        error = -ENOENT;
2466
2467        if (!task)
2468                goto out_no_task;
2469
2470        /*
2471         * Yes, it does not scale. And it should not. Don't add
2472         * new entries into /proc/<tgid>/ without very good reasons.
2473         */
2474        last = &ents[nents];
2475        for (p = ents; p < last; p++) {
2476                if (p->len != dentry->d_name.len)
2477                        continue;
2478                if (!memcmp(dentry->d_name.name, p->name, p->len))
2479                        break;
2480        }
2481        if (p >= last)
2482                goto out;
2483
2484        error = proc_pident_instantiate(dir, dentry, task, p);
2485out:
2486        put_task_struct(task);
2487out_no_task:
2488        return ERR_PTR(error);
2489}
2490
2491static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2492                const struct pid_entry *ents, unsigned int nents)
2493{
2494        struct task_struct *task = get_proc_task(file_inode(file));
2495        const struct pid_entry *p;
2496
2497        if (!task)
2498                return -ENOENT;
2499
2500        if (!dir_emit_dots(file, ctx))
2501                goto out;
2502
2503        if (ctx->pos >= nents + 2)
2504                goto out;
2505
2506        for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2507                if (!proc_fill_cache(file, ctx, p->name, p->len,
2508                                proc_pident_instantiate, task, p))
2509                        break;
2510                ctx->pos++;
2511        }
2512out:
2513        put_task_struct(task);
2514        return 0;
2515}
2516
2517#ifdef CONFIG_SECURITY
2518static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2519                                  size_t count, loff_t *ppos)
2520{
2521        struct inode * inode = file_inode(file);
2522        char *p = NULL;
2523        ssize_t length;
2524        struct task_struct *task = get_proc_task(inode);
2525
2526        if (!task)
2527                return -ESRCH;
2528
2529        length = security_getprocattr(task,
2530                                      (char*)file->f_path.dentry->d_name.name,
2531                                      &p);
2532        put_task_struct(task);
2533        if (length > 0)
2534                length = simple_read_from_buffer(buf, count, ppos, p, length);
2535        kfree(p);
2536        return length;
2537}
2538
2539static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2540                                   size_t count, loff_t *ppos)
2541{
2542        struct inode * inode = file_inode(file);
2543        void *page;
2544        ssize_t length;
2545        struct task_struct *task = get_proc_task(inode);
2546
2547        length = -ESRCH;
2548        if (!task)
2549                goto out_no_task;
2550
2551        /* A task may only write its own attributes. */
2552        length = -EACCES;
2553        if (current != task)
2554                goto out;
2555
2556        if (count > PAGE_SIZE)
2557                count = PAGE_SIZE;
2558
2559        /* No partial writes. */
2560        length = -EINVAL;
2561        if (*ppos != 0)
2562                goto out;
2563
2564        page = memdup_user(buf, count);
2565        if (IS_ERR(page)) {
2566                length = PTR_ERR(page);
2567                goto out;
2568        }
2569
2570        /* Guard against adverse ptrace interaction */
2571        length = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2572        if (length < 0)
2573                goto out_free;
2574
2575        length = security_setprocattr(file->f_path.dentry->d_name.name,
2576                                      page, count);
2577        mutex_unlock(&current->signal->cred_guard_mutex);
2578out_free:
2579        kfree(page);
2580out:
2581        put_task_struct(task);
2582out_no_task:
2583        return length;
2584}
2585
2586static const struct file_operations proc_pid_attr_operations = {
2587        .read           = proc_pid_attr_read,
2588        .write          = proc_pid_attr_write,
2589        .llseek         = generic_file_llseek,
2590};
2591
2592static const struct pid_entry attr_dir_stuff[] = {
2593        REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2594        REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2595        REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2596        REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2597        REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2598        REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2599};
2600
2601static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2602{
2603        return proc_pident_readdir(file, ctx, 
2604                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2605}
2606
2607static const struct file_operations proc_attr_dir_operations = {
2608        .read           = generic_read_dir,
2609        .iterate_shared = proc_attr_dir_readdir,
2610        .llseek         = generic_file_llseek,
2611};
2612
2613static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2614                                struct dentry *dentry, unsigned int flags)
2615{
2616        return proc_pident_lookup(dir, dentry,
2617                                  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2618}
2619
2620static const struct inode_operations proc_attr_dir_inode_operations = {
2621        .lookup         = proc_attr_dir_lookup,
2622        .getattr        = pid_getattr,
2623        .setattr        = proc_setattr,
2624};
2625
2626#endif
2627
2628#ifdef CONFIG_ELF_CORE
2629static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2630                                         size_t count, loff_t *ppos)
2631{
2632        struct task_struct *task = get_proc_task(file_inode(file));
2633        struct mm_struct *mm;
2634        char buffer[PROC_NUMBUF];
2635        size_t len;
2636        int ret;
2637
2638        if (!task)
2639                return -ESRCH;
2640
2641        ret = 0;
2642        mm = get_task_mm(task);
2643        if (mm) {
2644                len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2645                               ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2646                                MMF_DUMP_FILTER_SHIFT));
2647                mmput(mm);
2648                ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2649        }
2650
2651        put_task_struct(task);
2652
2653        return ret;
2654}
2655
2656static ssize_t proc_coredump_filter_write(struct file *file,
2657                                          const char __user *buf,
2658                                          size_t count,
2659                                          loff_t *ppos)
2660{
2661        struct task_struct *task;
2662        struct mm_struct *mm;
2663        unsigned int val;
2664        int ret;
2665        int i;
2666        unsigned long mask;
2667
2668        ret = kstrtouint_from_user(buf, count, 0, &val);
2669        if (ret < 0)
2670                return ret;
2671
2672        ret = -ESRCH;
2673        task = get_proc_task(file_inode(file));
2674        if (!task)
2675                goto out_no_task;
2676
2677        mm = get_task_mm(task);
2678        if (!mm)
2679                goto out_no_mm;
2680        ret = 0;
2681
2682        for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2683                if (val & mask)
2684                        set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2685                else
2686                        clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2687        }
2688
2689        mmput(mm);
2690 out_no_mm:
2691        put_task_struct(task);
2692 out_no_task:
2693        if (ret < 0)
2694                return ret;
2695        return count;
2696}
2697
2698static const struct file_operations proc_coredump_filter_operations = {
2699        .read           = proc_coredump_filter_read,
2700        .write          = proc_coredump_filter_write,
2701        .llseek         = generic_file_llseek,
2702};
2703#endif
2704
2705#ifdef CONFIG_TASK_IO_ACCOUNTING
2706static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2707{
2708        struct task_io_accounting acct = task->ioac;
2709        unsigned long flags;
2710        int result;
2711
2712        result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2713        if (result)
2714                return result;
2715
2716        if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2717                result = -EACCES;
2718                goto out_unlock;
2719        }
2720
2721        if (whole && lock_task_sighand(task, &flags)) {
2722                struct task_struct *t = task;
2723
2724                task_io_accounting_add(&acct, &task->signal->ioac);
2725                while_each_thread(task, t)
2726                        task_io_accounting_add(&acct, &t->ioac);
2727
2728                unlock_task_sighand(task, &flags);
2729        }
2730        seq_printf(m,
2731                   "rchar: %llu\n"
2732                   "wchar: %llu\n"
2733                   "syscr: %llu\n"
2734                   "syscw: %llu\n"
2735                   "read_bytes: %llu\n"
2736                   "write_bytes: %llu\n"
2737                   "cancelled_write_bytes: %llu\n",
2738                   (unsigned long long)acct.rchar,
2739                   (unsigned long long)acct.wchar,
2740                   (unsigned long long)acct.syscr,
2741                   (unsigned long long)acct.syscw,
2742                   (unsigned long long)acct.read_bytes,
2743                   (unsigned long long)acct.write_bytes,
2744                   (unsigned long long)acct.cancelled_write_bytes);
2745        result = 0;
2746
2747out_unlock:
2748        mutex_unlock(&task->signal->cred_guard_mutex);
2749        return result;
2750}
2751
2752static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2753                                  struct pid *pid, struct task_struct *task)
2754{
2755        return do_io_accounting(task, m, 0);
2756}
2757
2758static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2759                                   struct pid *pid, struct task_struct *task)
2760{
2761        return do_io_accounting(task, m, 1);
2762}
2763#endif /* CONFIG_TASK_IO_ACCOUNTING */
2764
2765#ifdef CONFIG_USER_NS
2766static int proc_id_map_open(struct inode *inode, struct file *file,
2767        const struct seq_operations *seq_ops)
2768{
2769        struct user_namespace *ns = NULL;
2770        struct task_struct *task;
2771        struct seq_file *seq;
2772        int ret = -EINVAL;
2773
2774        task = get_proc_task(inode);
2775        if (task) {
2776                rcu_read_lock();
2777                ns = get_user_ns(task_cred_xxx(task, user_ns));
2778                rcu_read_unlock();
2779                put_task_struct(task);
2780        }
2781        if (!ns)
2782                goto err;
2783
2784        ret = seq_open(file, seq_ops);
2785        if (ret)
2786                goto err_put_ns;
2787
2788        seq = file->private_data;
2789        seq->private = ns;
2790
2791        return 0;
2792err_put_ns:
2793        put_user_ns(ns);
2794err:
2795        return ret;
2796}
2797
2798static int proc_id_map_release(struct inode *inode, struct file *file)
2799{
2800        struct seq_file *seq = file->private_data;
2801        struct user_namespace *ns = seq->private;
2802        put_user_ns(ns);
2803        return seq_release(inode, file);
2804}
2805
2806static int proc_uid_map_open(struct inode *inode, struct file *file)
2807{
2808        return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2809}
2810
2811static int proc_gid_map_open(struct inode *inode, struct file *file)
2812{
2813        return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2814}
2815
2816static int proc_projid_map_open(struct inode *inode, struct file *file)
2817{
2818        return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2819}
2820
2821static const struct file_operations proc_uid_map_operations = {
2822        .open           = proc_uid_map_open,
2823        .write          = proc_uid_map_write,
2824        .read           = seq_read,
2825        .llseek         = seq_lseek,
2826        .release        = proc_id_map_release,
2827};
2828
2829static const struct file_operations proc_gid_map_operations = {
2830        .open           = proc_gid_map_open,
2831        .write          = proc_gid_map_write,
2832        .read           = seq_read,
2833        .llseek         = seq_lseek,
2834        .release        = proc_id_map_release,
2835};
2836
2837static const struct file_operations proc_projid_map_operations = {
2838        .open           = proc_projid_map_open,
2839        .write          = proc_projid_map_write,
2840        .read           = seq_read,
2841        .llseek         = seq_lseek,
2842        .release        = proc_id_map_release,
2843};
2844
2845static int proc_setgroups_open(struct inode *inode, struct file *file)
2846{
2847        struct user_namespace *ns = NULL;
2848        struct task_struct *task;
2849        int ret;
2850
2851        ret = -ESRCH;
2852        task = get_proc_task(inode);
2853        if (task) {
2854                rcu_read_lock();
2855                ns = get_user_ns(task_cred_xxx(task, user_ns));
2856                rcu_read_unlock();
2857                put_task_struct(task);
2858        }
2859        if (!ns)
2860                goto err;
2861
2862        if (file->f_mode & FMODE_WRITE) {
2863                ret = -EACCES;
2864                if (!ns_capable(ns, CAP_SYS_ADMIN))
2865                        goto err_put_ns;
2866        }
2867
2868        ret = single_open(file, &proc_setgroups_show, ns);
2869        if (ret)
2870                goto err_put_ns;
2871
2872        return 0;
2873err_put_ns:
2874        put_user_ns(ns);
2875err:
2876        return ret;
2877}
2878
2879static int proc_setgroups_release(struct inode *inode, struct file *file)
2880{
2881        struct seq_file *seq = file->private_data;
2882        struct user_namespace *ns = seq->private;
2883        int ret = single_release(inode, file);
2884        put_user_ns(ns);
2885        return ret;
2886}
2887
2888static const struct file_operations proc_setgroups_operations = {
2889        .open           = proc_setgroups_open,
2890        .write          = proc_setgroups_write,
2891        .read           = seq_read,
2892        .llseek         = seq_lseek,
2893        .release        = proc_setgroups_release,
2894};
2895#endif /* CONFIG_USER_NS */
2896
2897static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2898                                struct pid *pid, struct task_struct *task)
2899{
2900        int err = lock_trace(task);
2901        if (!err) {
2902                seq_printf(m, "%08x\n", task->personality);
2903                unlock_trace(task);
2904        }
2905        return err;
2906}
2907
2908#ifdef CONFIG_LIVEPATCH
2909static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2910                                struct pid *pid, struct task_struct *task)
2911{
2912        seq_printf(m, "%d\n", task->patch_state);
2913        return 0;
2914}
2915#endif /* CONFIG_LIVEPATCH */
2916
2917/*
2918 * Thread groups
2919 */
2920static const struct file_operations proc_task_operations;
2921static const struct inode_operations proc_task_inode_operations;
2922
2923static const struct pid_entry tgid_base_stuff[] = {
2924        DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2925        DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2926        DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2927        DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2928        DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2929#ifdef CONFIG_NET
2930        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2931#endif
2932        REG("environ",    S_IRUSR, proc_environ_operations),
2933        REG("auxv",       S_IRUSR, proc_auxv_operations),
2934        ONE("status",     S_IRUGO, proc_pid_status),
2935        ONE("personality", S_IRUSR, proc_pid_personality),
2936        ONE("limits",     S_IRUGO, proc_pid_limits),
2937#ifdef CONFIG_SCHED_DEBUG
2938        REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2939#endif
2940#ifdef CONFIG_SCHED_AUTOGROUP
2941        REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2942#endif
2943        REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2944#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2945        ONE("syscall",    S_IRUSR, proc_pid_syscall),
2946#endif
2947        REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2948        ONE("stat",       S_IRUGO, proc_tgid_stat),
2949        ONE("statm",      S_IRUGO, proc_pid_statm),
2950        REG("maps",       S_IRUGO, proc_pid_maps_operations),
2951#ifdef CONFIG_NUMA
2952        REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2953#endif
2954        REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2955        LNK("cwd",        proc_cwd_link),
2956        LNK("root",       proc_root_link),
2957        LNK("exe",        proc_exe_link),
2958        REG("mounts",     S_IRUGO, proc_mounts_operations),
2959        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2960        REG("mountstats", S_IRUSR, proc_mountstats_operations),
2961#ifdef CONFIG_PROC_PAGE_MONITOR
2962        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2963        REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2964        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2965        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2966#endif
2967#ifdef CONFIG_SECURITY
2968        DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2969#endif
2970#ifdef CONFIG_KALLSYMS
2971        ONE("wchan",      S_IRUGO, proc_pid_wchan),
2972#endif
2973#ifdef CONFIG_STACKTRACE
2974        ONE("stack",      S_IRUSR, proc_pid_stack),
2975#endif
2976#ifdef CONFIG_SCHED_INFO
2977        ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2978#endif
2979#ifdef CONFIG_LATENCYTOP
2980        REG("latency",  S_IRUGO, proc_lstats_operations),
2981#endif
2982#ifdef CONFIG_PROC_PID_CPUSET
2983        ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2984#endif
2985#ifdef CONFIG_CGROUPS
2986        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2987#endif
2988        ONE("oom_score",  S_IRUGO, proc_oom_score),
2989        REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2990        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2991#ifdef CONFIG_AUDITSYSCALL
2992        REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2993        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2994#endif
2995#ifdef CONFIG_FAULT_INJECTION
2996        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2997        REG("fail-nth", 0644, proc_fail_nth_operations),
2998#endif
2999#ifdef CONFIG_ELF_CORE
3000        REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3001#endif
3002#ifdef CONFIG_TASK_IO_ACCOUNTING
3003        ONE("io",       S_IRUSR, proc_tgid_io_accounting),
3004#endif
3005#ifdef CONFIG_HARDWALL
3006        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3007#endif
3008#ifdef CONFIG_USER_NS
3009        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3010        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3011        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3012        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3013#endif
3014#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3015        REG("timers",     S_IRUGO, proc_timers_operations),
3016#endif
3017        REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3018#ifdef CONFIG_LIVEPATCH
3019        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3020#endif
3021};
3022
3023static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3024{
3025        return proc_pident_readdir(file, ctx,
3026                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3027}
3028
3029static const struct file_operations proc_tgid_base_operations = {
3030        .read           = generic_read_dir,
3031        .iterate_shared = proc_tgid_base_readdir,
3032        .llseek         = generic_file_llseek,
3033};
3034
3035static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3036{
3037        return proc_pident_lookup(dir, dentry,
3038                                  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3039}
3040
3041static const struct inode_operations proc_tgid_base_inode_operations = {
3042        .lookup         = proc_tgid_base_lookup,
3043        .getattr        = pid_getattr,
3044        .setattr        = proc_setattr,
3045        .permission     = proc_pid_permission,
3046};
3047
3048static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3049{
3050        struct dentry *dentry, *leader, *dir;
3051        char buf[10 + 1];
3052        struct qstr name;
3053
3054        name.name = buf;
3055        name.len = snprintf(buf, sizeof(buf), "%u", pid);
3056        /* no ->d_hash() rejects on procfs */
3057        dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3058        if (dentry) {
3059                d_invalidate(dentry);
3060                dput(dentry);
3061        }
3062
3063        if (pid == tgid)
3064                return;
3065
3066        name.name = buf;
3067        name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3068        leader = d_hash_and_lookup(mnt->mnt_root, &name);
3069        if (!leader)
3070                goto out;
3071
3072        name.name = "task";
3073        name.len = strlen(name.name);
3074        dir = d_hash_and_lookup(leader, &name);
3075        if (!dir)
3076                goto out_put_leader;
3077
3078        name.name = buf;
3079        name.len = snprintf(buf, sizeof(buf), "%u", pid);
3080        dentry = d_hash_and_lookup(dir, &name);
3081        if (dentry) {
3082                d_invalidate(dentry);
3083                dput(dentry);
3084        }
3085
3086        dput(dir);
3087out_put_leader:
3088        dput(leader);
3089out:
3090        return;
3091}
3092
3093/**
3094 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3095 * @task: task that should be flushed.
3096 *
3097 * When flushing dentries from proc, one needs to flush them from global
3098 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3099 * in. This call is supposed to do all of this job.
3100 *
3101 * Looks in the dcache for
3102 * /proc/@pid
3103 * /proc/@tgid/task/@pid
3104 * if either directory is present flushes it and all of it'ts children
3105 * from the dcache.
3106 *
3107 * It is safe and reasonable to cache /proc entries for a task until
3108 * that task exits.  After that they just clog up the dcache with
3109 * useless entries, possibly causing useful dcache entries to be
3110 * flushed instead.  This routine is proved to flush those useless
3111 * dcache entries at process exit time.
3112 *
3113 * NOTE: This routine is just an optimization so it does not guarantee
3114 *       that no dcache entries will exist at process exit time it
3115 *       just makes it very unlikely that any will persist.
3116 */
3117
3118void proc_flush_task(struct task_struct *task)
3119{
3120        int i;
3121        struct pid *pid, *tgid;
3122        struct upid *upid;
3123
3124        pid = task_pid(task);
3125        tgid = task_tgid(task);
3126
3127        for (i = 0; i <= pid->level; i++) {
3128                upid = &pid->numbers[i];
3129                proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3130                                        tgid->numbers[i].nr);
3131        }
3132}
3133
3134static int proc_pid_instantiate(struct inode *dir,
3135                                   struct dentry * dentry,
3136                                   struct task_struct *task, const void *ptr)
3137{
3138        struct inode *inode;
3139
3140        inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3141        if (!inode)
3142                goto out;
3143
3144        inode->i_op = &proc_tgid_base_inode_operations;
3145        inode->i_fop = &proc_tgid_base_operations;
3146        inode->i_flags|=S_IMMUTABLE;
3147
3148        set_nlink(inode, nlink_tgid);
3149
3150        d_set_d_op(dentry, &pid_dentry_operations);
3151
3152        d_add(dentry, inode);
3153        /* Close the race of the process dying before we return the dentry */
3154        if (pid_revalidate(dentry, 0))
3155                return 0;
3156out:
3157        return -ENOENT;
3158}
3159
3160struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3161{
3162        int result = -ENOENT;
3163        struct task_struct *task;
3164        unsigned tgid;
3165        struct pid_namespace *ns;
3166
3167        tgid = name_to_int(&dentry->d_name);
3168        if (tgid == ~0U)
3169                goto out;
3170
3171        ns = dentry->d_sb->s_fs_info;
3172        rcu_read_lock();
3173        task = find_task_by_pid_ns(tgid, ns);
3174        if (task)
3175                get_task_struct(task);
3176        rcu_read_unlock();
3177        if (!task)
3178                goto out;
3179
3180        result = proc_pid_instantiate(dir, dentry, task, NULL);
3181        put_task_struct(task);
3182out:
3183        return ERR_PTR(result);
3184}
3185
3186/*
3187 * Find the first task with tgid >= tgid
3188 *
3189 */
3190struct tgid_iter {
3191        unsigned int tgid;
3192        struct task_struct *task;
3193};
3194static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3195{
3196        struct pid *pid;
3197
3198        if (iter.task)
3199                put_task_struct(iter.task);
3200        rcu_read_lock();
3201retry:
3202        iter.task = NULL;
3203        pid = find_ge_pid(iter.tgid, ns);
3204        if (pid) {
3205                iter.tgid = pid_nr_ns(pid, ns);
3206                iter.task = pid_task(pid, PIDTYPE_PID);
3207                /* What we to know is if the pid we have find is the
3208                 * pid of a thread_group_leader.  Testing for task
3209                 * being a thread_group_leader is the obvious thing
3210                 * todo but there is a window when it fails, due to
3211                 * the pid transfer logic in de_thread.
3212                 *
3213                 * So we perform the straight forward test of seeing
3214                 * if the pid we have found is the pid of a thread
3215                 * group leader, and don't worry if the task we have
3216                 * found doesn't happen to be a thread group leader.
3217                 * As we don't care in the case of readdir.
3218                 */
3219                if (!iter.task || !has_group_leader_pid(iter.task)) {
3220                        iter.tgid += 1;
3221                        goto retry;
3222                }
3223                get_task_struct(iter.task);
3224        }
3225        rcu_read_unlock();
3226        return iter;
3227}
3228
3229#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3230
3231/* for the /proc/ directory itself, after non-process stuff has been done */
3232int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3233{
3234        struct tgid_iter iter;
3235        struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3236        loff_t pos = ctx->pos;
3237
3238        if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3239                return 0;
3240
3241        if (pos == TGID_OFFSET - 2) {
3242                struct inode *inode = d_inode(ns->proc_self);
3243                if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3244                        return 0;
3245                ctx->pos = pos = pos + 1;
3246        }
3247        if (pos == TGID_OFFSET - 1) {
3248                struct inode *inode = d_inode(ns->proc_thread_self);
3249                if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3250                        return 0;
3251                ctx->pos = pos = pos + 1;
3252        }
3253        iter.tgid = pos - TGID_OFFSET;
3254        iter.task = NULL;
3255        for (iter = next_tgid(ns, iter);
3256             iter.task;
3257             iter.tgid += 1, iter = next_tgid(ns, iter)) {
3258                char name[10 + 1];
3259                int len;
3260
3261                cond_resched();
3262                if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3263                        continue;
3264
3265                len = snprintf(name, sizeof(name), "%u", iter.tgid);
3266                ctx->pos = iter.tgid + TGID_OFFSET;
3267                if (!proc_fill_cache(file, ctx, name, len,
3268                                     proc_pid_instantiate, iter.task, NULL)) {
3269                        put_task_struct(iter.task);
3270                        return 0;
3271                }
3272        }
3273        ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3274        return 0;
3275}
3276
3277/*
3278 * proc_tid_comm_permission is a special permission function exclusively
3279 * used for the node /proc/<pid>/task/<tid>/comm.
3280 * It bypasses generic permission checks in the case where a task of the same
3281 * task group attempts to access the node.
3282 * The rationale behind this is that glibc and bionic access this node for
3283 * cross thread naming (pthread_set/getname_np(!self)). However, if
3284 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3285 * which locks out the cross thread naming implementation.
3286 * This function makes sure that the node is always accessible for members of
3287 * same thread group.
3288 */
3289static int proc_tid_comm_permission(struct inode *inode, int mask)
3290{
3291        bool is_same_tgroup;
3292        struct task_struct *task;
3293
3294        task = get_proc_task(inode);
3295        if (!task)
3296                return -ESRCH;
3297        is_same_tgroup = same_thread_group(current, task);
3298        put_task_struct(task);
3299
3300        if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3301                /* This file (/proc/<pid>/task/<tid>/comm) can always be
3302                 * read or written by the members of the corresponding
3303                 * thread group.
3304                 */
3305                return 0;
3306        }
3307
3308        return generic_permission(inode, mask);
3309}
3310
3311static const struct inode_operations proc_tid_comm_inode_operations = {
3312                .permission = proc_tid_comm_permission,
3313};
3314
3315/*
3316 * Tasks
3317 */
3318static const struct pid_entry tid_base_stuff[] = {
3319        DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3320        DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3321        DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3322#ifdef CONFIG_NET
3323        DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3324#endif
3325        REG("environ",   S_IRUSR, proc_environ_operations),
3326        REG("auxv",      S_IRUSR, proc_auxv_operations),
3327        ONE("status",    S_IRUGO, proc_pid_status),
3328        ONE("personality", S_IRUSR, proc_pid_personality),
3329        ONE("limits",    S_IRUGO, proc_pid_limits),
3330#ifdef CONFIG_SCHED_DEBUG
3331        REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3332#endif
3333        NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3334                         &proc_tid_comm_inode_operations,
3335                         &proc_pid_set_comm_operations, {}),
3336#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3337        ONE("syscall",   S_IRUSR, proc_pid_syscall),
3338#endif
3339        REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3340        ONE("stat",      S_IRUGO, proc_tid_stat),
3341        ONE("statm",     S_IRUGO, proc_pid_statm),
3342        REG("maps",      S_IRUGO, proc_tid_maps_operations),
3343#ifdef CONFIG_PROC_CHILDREN
3344        REG("children",  S_IRUGO, proc_tid_children_operations),
3345#endif
3346#ifdef CONFIG_NUMA
3347        REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3348#endif
3349        REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3350        LNK("cwd",       proc_cwd_link),
3351        LNK("root",      proc_root_link),
3352        LNK("exe",       proc_exe_link),
3353        REG("mounts",    S_IRUGO, proc_mounts_operations),
3354        REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3355#ifdef CONFIG_PROC_PAGE_MONITOR
3356        REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3357        REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3358        REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3359        REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3360#endif
3361#ifdef CONFIG_SECURITY
3362        DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3363#endif
3364#ifdef CONFIG_KALLSYMS
3365        ONE("wchan",     S_IRUGO, proc_pid_wchan),
3366#endif
3367#ifdef CONFIG_STACKTRACE
3368        ONE("stack",      S_IRUSR, proc_pid_stack),
3369#endif
3370#ifdef CONFIG_SCHED_INFO
3371        ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3372#endif
3373#ifdef CONFIG_LATENCYTOP
3374        REG("latency",  S_IRUGO, proc_lstats_operations),
3375#endif
3376#ifdef CONFIG_PROC_PID_CPUSET
3377        ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3378#endif
3379#ifdef CONFIG_CGROUPS
3380        ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3381#endif
3382        ONE("oom_score", S_IRUGO, proc_oom_score),
3383        REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3384        REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3385#ifdef CONFIG_AUDITSYSCALL
3386        REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3387        REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3388#endif
3389#ifdef CONFIG_FAULT_INJECTION
3390        REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3391        REG("fail-nth", 0644, proc_fail_nth_operations),
3392#endif
3393#ifdef CONFIG_TASK_IO_ACCOUNTING
3394        ONE("io",       S_IRUSR, proc_tid_io_accounting),
3395#endif
3396#ifdef CONFIG_HARDWALL
3397        ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3398#endif
3399#ifdef CONFIG_USER_NS
3400        REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3401        REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3402        REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3403        REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3404#endif
3405#ifdef CONFIG_LIVEPATCH
3406        ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3407#endif
3408};
3409
3410static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3411{
3412        return proc_pident_readdir(file, ctx,
3413                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3414}
3415
3416static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3417{
3418        return proc_pident_lookup(dir, dentry,
3419                                  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3420}
3421
3422static const struct file_operations proc_tid_base_operations = {
3423        .read           = generic_read_dir,
3424        .iterate_shared = proc_tid_base_readdir,
3425        .llseek         = generic_file_llseek,
3426};
3427
3428static const struct inode_operations proc_tid_base_inode_operations = {
3429        .lookup         = proc_tid_base_lookup,
3430        .getattr        = pid_getattr,
3431        .setattr        = proc_setattr,
3432};
3433
3434static int proc_task_instantiate(struct inode *dir,
3435        struct dentry *dentry, struct task_struct *task, const void *ptr)
3436{
3437        struct inode *inode;
3438        inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3439
3440        if (!inode)
3441                goto out;
3442        inode->i_op = &proc_tid_base_inode_operations;
3443        inode->i_fop = &proc_tid_base_operations;
3444        inode->i_flags|=S_IMMUTABLE;
3445
3446        set_nlink(inode, nlink_tid);
3447
3448        d_set_d_op(dentry, &pid_dentry_operations);
3449
3450        d_add(dentry, inode);
3451        /* Close the race of the process dying before we return the dentry */
3452        if (pid_revalidate(dentry, 0))
3453                return 0;
3454out:
3455        return -ENOENT;
3456}
3457
3458static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3459{
3460        int result = -ENOENT;
3461        struct task_struct *task;
3462        struct task_struct *leader = get_proc_task(dir);
3463        unsigned tid;
3464        struct pid_namespace *ns;
3465
3466        if (!leader)
3467                goto out_no_task;
3468
3469        tid = name_to_int(&dentry->d_name);
3470        if (tid == ~0U)
3471                goto out;
3472
3473        ns = dentry->d_sb->s_fs_info;
3474        rcu_read_lock();
3475        task = find_task_by_pid_ns(tid, ns);
3476        if (task)
3477                get_task_struct(task);
3478        rcu_read_unlock();
3479        if (!task)
3480                goto out;
3481        if (!same_thread_group(leader, task))
3482                goto out_drop_task;
3483
3484        result = proc_task_instantiate(dir, dentry, task, NULL);
3485out_drop_task:
3486        put_task_struct(task);
3487out:
3488        put_task_struct(leader);
3489out_no_task:
3490        return ERR_PTR(result);
3491}
3492
3493/*
3494 * Find the first tid of a thread group to return to user space.
3495 *
3496 * Usually this is just the thread group leader, but if the users
3497 * buffer was too small or there was a seek into the middle of the
3498 * directory we have more work todo.
3499 *
3500 * In the case of a short read we start with find_task_by_pid.
3501 *
3502 * In the case of a seek we start with the leader and walk nr
3503 * threads past it.
3504 */
3505static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3506                                        struct pid_namespace *ns)
3507{
3508        struct task_struct *pos, *task;
3509        unsigned long nr = f_pos;
3510
3511        if (nr != f_pos)        /* 32bit overflow? */
3512                return NULL;
3513
3514        rcu_read_lock();
3515        task = pid_task(pid, PIDTYPE_PID);
3516        if (!task)
3517                goto fail;
3518
3519        /* Attempt to start with the tid of a thread */
3520        if (tid && nr) {
3521                pos = find_task_by_pid_ns(tid, ns);
3522                if (pos && same_thread_group(pos, task))
3523                        goto found;
3524        }
3525
3526        /* If nr exceeds the number of threads there is nothing todo */
3527        if (nr >= get_nr_threads(task))
3528                goto fail;
3529
3530        /* If we haven't found our starting place yet start
3531         * with the leader and walk nr threads forward.
3532         */
3533        pos = task = task->group_leader;
3534        do {
3535                if (!nr--)
3536                        goto found;
3537        } while_each_thread(task, pos);
3538fail:
3539        pos = NULL;
3540        goto out;
3541found:
3542        get_task_struct(pos);
3543out:
3544        rcu_read_unlock();
3545        return pos;
3546}
3547
3548/*
3549 * Find the next thread in the thread list.
3550 * Return NULL if there is an error or no next thread.
3551 *
3552 * The reference to the input task_struct is released.
3553 */
3554static struct task_struct *next_tid(struct task_struct *start)
3555{
3556        struct task_struct *pos = NULL;
3557        rcu_read_lock();
3558        if (pid_alive(start)) {
3559                pos = next_thread(start);
3560                if (thread_group_leader(pos))
3561                        pos = NULL;
3562                else
3563                        get_task_struct(pos);
3564        }
3565        rcu_read_unlock();
3566        put_task_struct(start);
3567        return pos;
3568}
3569
3570/* for the /proc/TGID/task/ directories */
3571static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3572{
3573        struct inode *inode = file_inode(file);
3574        struct task_struct *task;
3575        struct pid_namespace *ns;
3576        int tid;
3577
3578        if (proc_inode_is_dead(inode))
3579                return -ENOENT;
3580
3581        if (!dir_emit_dots(file, ctx))
3582                return 0;
3583
3584        /* f_version caches the tgid value that the last readdir call couldn't
3585         * return. lseek aka telldir automagically resets f_version to 0.
3586         */
3587        ns = inode->i_sb->s_fs_info;
3588        tid = (int)file->f_version;
3589        file->f_version = 0;
3590        for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3591             task;
3592             task = next_tid(task), ctx->pos++) {
3593                char name[10 + 1];
3594                int len;
3595                tid = task_pid_nr_ns(task, ns);
3596                len = snprintf(name, sizeof(name), "%u", tid);
3597                if (!proc_fill_cache(file, ctx, name, len,
3598                                proc_task_instantiate, task, NULL)) {
3599                        /* returning this tgid failed, save it as the first
3600                         * pid for the next readir call */
3601                        file->f_version = (u64)tid;
3602                        put_task_struct(task);
3603                        break;
3604                }
3605        }
3606
3607        return 0;
3608}
3609
3610static int proc_task_getattr(const struct path *path, struct kstat *stat,
3611                             u32 request_mask, unsigned int query_flags)
3612{
3613        struct inode *inode = d_inode(path->dentry);
3614        struct task_struct *p = get_proc_task(inode);
3615        generic_fillattr(inode, stat);
3616
3617        if (p) {
3618                stat->nlink += get_nr_threads(p);
3619                put_task_struct(p);
3620        }
3621
3622        return 0;
3623}
3624
3625static const struct inode_operations proc_task_inode_operations = {
3626        .lookup         = proc_task_lookup,
3627        .getattr        = proc_task_getattr,
3628        .setattr        = proc_setattr,
3629        .permission     = proc_pid_permission,
3630};
3631
3632static const struct file_operations proc_task_operations = {
3633        .read           = generic_read_dir,
3634        .iterate_shared = proc_task_readdir,
3635        .llseek         = generic_file_llseek,
3636};
3637
3638void __init set_proc_pid_nlink(void)
3639{
3640        nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3641        nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3642}
3643