linux/fs/ubifs/debug.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements most of the debugging stuff which is compiled in only
  25 * when it is enabled. But some debugging check functions are implemented in
  26 * corresponding subsystem, just because they are closely related and utilize
  27 * various local functions of those subsystems.
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/debugfs.h>
  32#include <linux/math64.h>
  33#include <linux/uaccess.h>
  34#include <linux/random.h>
  35#include <linux/ctype.h>
  36#include "ubifs.h"
  37
  38static DEFINE_SPINLOCK(dbg_lock);
  39
  40static const char *get_key_fmt(int fmt)
  41{
  42        switch (fmt) {
  43        case UBIFS_SIMPLE_KEY_FMT:
  44                return "simple";
  45        default:
  46                return "unknown/invalid format";
  47        }
  48}
  49
  50static const char *get_key_hash(int hash)
  51{
  52        switch (hash) {
  53        case UBIFS_KEY_HASH_R5:
  54                return "R5";
  55        case UBIFS_KEY_HASH_TEST:
  56                return "test";
  57        default:
  58                return "unknown/invalid name hash";
  59        }
  60}
  61
  62static const char *get_key_type(int type)
  63{
  64        switch (type) {
  65        case UBIFS_INO_KEY:
  66                return "inode";
  67        case UBIFS_DENT_KEY:
  68                return "direntry";
  69        case UBIFS_XENT_KEY:
  70                return "xentry";
  71        case UBIFS_DATA_KEY:
  72                return "data";
  73        case UBIFS_TRUN_KEY:
  74                return "truncate";
  75        default:
  76                return "unknown/invalid key";
  77        }
  78}
  79
  80static const char *get_dent_type(int type)
  81{
  82        switch (type) {
  83        case UBIFS_ITYPE_REG:
  84                return "file";
  85        case UBIFS_ITYPE_DIR:
  86                return "dir";
  87        case UBIFS_ITYPE_LNK:
  88                return "symlink";
  89        case UBIFS_ITYPE_BLK:
  90                return "blkdev";
  91        case UBIFS_ITYPE_CHR:
  92                return "char dev";
  93        case UBIFS_ITYPE_FIFO:
  94                return "fifo";
  95        case UBIFS_ITYPE_SOCK:
  96                return "socket";
  97        default:
  98                return "unknown/invalid type";
  99        }
 100}
 101
 102const char *dbg_snprintf_key(const struct ubifs_info *c,
 103                             const union ubifs_key *key, char *buffer, int len)
 104{
 105        char *p = buffer;
 106        int type = key_type(c, key);
 107
 108        if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 109                switch (type) {
 110                case UBIFS_INO_KEY:
 111                        len -= snprintf(p, len, "(%lu, %s)",
 112                                        (unsigned long)key_inum(c, key),
 113                                        get_key_type(type));
 114                        break;
 115                case UBIFS_DENT_KEY:
 116                case UBIFS_XENT_KEY:
 117                        len -= snprintf(p, len, "(%lu, %s, %#08x)",
 118                                        (unsigned long)key_inum(c, key),
 119                                        get_key_type(type), key_hash(c, key));
 120                        break;
 121                case UBIFS_DATA_KEY:
 122                        len -= snprintf(p, len, "(%lu, %s, %u)",
 123                                        (unsigned long)key_inum(c, key),
 124                                        get_key_type(type), key_block(c, key));
 125                        break;
 126                case UBIFS_TRUN_KEY:
 127                        len -= snprintf(p, len, "(%lu, %s)",
 128                                        (unsigned long)key_inum(c, key),
 129                                        get_key_type(type));
 130                        break;
 131                default:
 132                        len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 133                                        key->u32[0], key->u32[1]);
 134                }
 135        } else
 136                len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 137        ubifs_assert(len > 0);
 138        return p;
 139}
 140
 141const char *dbg_ntype(int type)
 142{
 143        switch (type) {
 144        case UBIFS_PAD_NODE:
 145                return "padding node";
 146        case UBIFS_SB_NODE:
 147                return "superblock node";
 148        case UBIFS_MST_NODE:
 149                return "master node";
 150        case UBIFS_REF_NODE:
 151                return "reference node";
 152        case UBIFS_INO_NODE:
 153                return "inode node";
 154        case UBIFS_DENT_NODE:
 155                return "direntry node";
 156        case UBIFS_XENT_NODE:
 157                return "xentry node";
 158        case UBIFS_DATA_NODE:
 159                return "data node";
 160        case UBIFS_TRUN_NODE:
 161                return "truncate node";
 162        case UBIFS_IDX_NODE:
 163                return "indexing node";
 164        case UBIFS_CS_NODE:
 165                return "commit start node";
 166        case UBIFS_ORPH_NODE:
 167                return "orphan node";
 168        default:
 169                return "unknown node";
 170        }
 171}
 172
 173static const char *dbg_gtype(int type)
 174{
 175        switch (type) {
 176        case UBIFS_NO_NODE_GROUP:
 177                return "no node group";
 178        case UBIFS_IN_NODE_GROUP:
 179                return "in node group";
 180        case UBIFS_LAST_OF_NODE_GROUP:
 181                return "last of node group";
 182        default:
 183                return "unknown";
 184        }
 185}
 186
 187const char *dbg_cstate(int cmt_state)
 188{
 189        switch (cmt_state) {
 190        case COMMIT_RESTING:
 191                return "commit resting";
 192        case COMMIT_BACKGROUND:
 193                return "background commit requested";
 194        case COMMIT_REQUIRED:
 195                return "commit required";
 196        case COMMIT_RUNNING_BACKGROUND:
 197                return "BACKGROUND commit running";
 198        case COMMIT_RUNNING_REQUIRED:
 199                return "commit running and required";
 200        case COMMIT_BROKEN:
 201                return "broken commit";
 202        default:
 203                return "unknown commit state";
 204        }
 205}
 206
 207const char *dbg_jhead(int jhead)
 208{
 209        switch (jhead) {
 210        case GCHD:
 211                return "0 (GC)";
 212        case BASEHD:
 213                return "1 (base)";
 214        case DATAHD:
 215                return "2 (data)";
 216        default:
 217                return "unknown journal head";
 218        }
 219}
 220
 221static void dump_ch(const struct ubifs_ch *ch)
 222{
 223        pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 224        pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 225        pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 226               dbg_ntype(ch->node_type));
 227        pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 228               dbg_gtype(ch->group_type));
 229        pr_err("\tsqnum          %llu\n",
 230               (unsigned long long)le64_to_cpu(ch->sqnum));
 231        pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 232}
 233
 234void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 235{
 236        const struct ubifs_inode *ui = ubifs_inode(inode);
 237        struct fscrypt_name nm = {0};
 238        union ubifs_key key;
 239        struct ubifs_dent_node *dent, *pdent = NULL;
 240        int count = 2;
 241
 242        pr_err("Dump in-memory inode:");
 243        pr_err("\tinode          %lu\n", inode->i_ino);
 244        pr_err("\tsize           %llu\n",
 245               (unsigned long long)i_size_read(inode));
 246        pr_err("\tnlink          %u\n", inode->i_nlink);
 247        pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 248        pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 249        pr_err("\tatime          %u.%u\n",
 250               (unsigned int)inode->i_atime.tv_sec,
 251               (unsigned int)inode->i_atime.tv_nsec);
 252        pr_err("\tmtime          %u.%u\n",
 253               (unsigned int)inode->i_mtime.tv_sec,
 254               (unsigned int)inode->i_mtime.tv_nsec);
 255        pr_err("\tctime          %u.%u\n",
 256               (unsigned int)inode->i_ctime.tv_sec,
 257               (unsigned int)inode->i_ctime.tv_nsec);
 258        pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 259        pr_err("\txattr_size     %u\n", ui->xattr_size);
 260        pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 261        pr_err("\txattr_names    %u\n", ui->xattr_names);
 262        pr_err("\tdirty          %u\n", ui->dirty);
 263        pr_err("\txattr          %u\n", ui->xattr);
 264        pr_err("\tbulk_read      %u\n", ui->bulk_read);
 265        pr_err("\tsynced_i_size  %llu\n",
 266               (unsigned long long)ui->synced_i_size);
 267        pr_err("\tui_size        %llu\n",
 268               (unsigned long long)ui->ui_size);
 269        pr_err("\tflags          %d\n", ui->flags);
 270        pr_err("\tcompr_type     %d\n", ui->compr_type);
 271        pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 272        pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 273        pr_err("\tdata_len       %d\n", ui->data_len);
 274
 275        if (!S_ISDIR(inode->i_mode))
 276                return;
 277
 278        pr_err("List of directory entries:\n");
 279        ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 280
 281        lowest_dent_key(c, &key, inode->i_ino);
 282        while (1) {
 283                dent = ubifs_tnc_next_ent(c, &key, &nm);
 284                if (IS_ERR(dent)) {
 285                        if (PTR_ERR(dent) != -ENOENT)
 286                                pr_err("error %ld\n", PTR_ERR(dent));
 287                        break;
 288                }
 289
 290                pr_err("\t%d: inode %llu, type %s, len %d\n",
 291                       count++, (unsigned long long) le64_to_cpu(dent->inum),
 292                       get_dent_type(dent->type),
 293                       le16_to_cpu(dent->nlen));
 294
 295                fname_name(&nm) = dent->name;
 296                fname_len(&nm) = le16_to_cpu(dent->nlen);
 297                kfree(pdent);
 298                pdent = dent;
 299                key_read(c, &dent->key, &key);
 300        }
 301        kfree(pdent);
 302}
 303
 304void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 305{
 306        int i, n;
 307        union ubifs_key key;
 308        const struct ubifs_ch *ch = node;
 309        char key_buf[DBG_KEY_BUF_LEN];
 310
 311        /* If the magic is incorrect, just hexdump the first bytes */
 312        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 313                pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 314                print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
 315                               (void *)node, UBIFS_CH_SZ, 1);
 316                return;
 317        }
 318
 319        spin_lock(&dbg_lock);
 320        dump_ch(node);
 321
 322        switch (ch->node_type) {
 323        case UBIFS_PAD_NODE:
 324        {
 325                const struct ubifs_pad_node *pad = node;
 326
 327                pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 328                break;
 329        }
 330        case UBIFS_SB_NODE:
 331        {
 332                const struct ubifs_sb_node *sup = node;
 333                unsigned int sup_flags = le32_to_cpu(sup->flags);
 334
 335                pr_err("\tkey_hash       %d (%s)\n",
 336                       (int)sup->key_hash, get_key_hash(sup->key_hash));
 337                pr_err("\tkey_fmt        %d (%s)\n",
 338                       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 339                pr_err("\tflags          %#x\n", sup_flags);
 340                pr_err("\tbig_lpt        %u\n",
 341                       !!(sup_flags & UBIFS_FLG_BIGLPT));
 342                pr_err("\tspace_fixup    %u\n",
 343                       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 344                pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 345                pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 346                pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 347                pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 348                pr_err("\tmax_bud_bytes  %llu\n",
 349                       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 350                pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 351                pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 352                pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 353                pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 354                pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 355                pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 356                pr_err("\tdefault_compr  %u\n",
 357                       (int)le16_to_cpu(sup->default_compr));
 358                pr_err("\trp_size        %llu\n",
 359                       (unsigned long long)le64_to_cpu(sup->rp_size));
 360                pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 361                pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 362                pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 363                pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 364                pr_err("\tUUID           %pUB\n", sup->uuid);
 365                break;
 366        }
 367        case UBIFS_MST_NODE:
 368        {
 369                const struct ubifs_mst_node *mst = node;
 370
 371                pr_err("\thighest_inum   %llu\n",
 372                       (unsigned long long)le64_to_cpu(mst->highest_inum));
 373                pr_err("\tcommit number  %llu\n",
 374                       (unsigned long long)le64_to_cpu(mst->cmt_no));
 375                pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 376                pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 377                pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 378                pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 379                pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 380                pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 381                pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 382                pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 383                pr_err("\tindex_size     %llu\n",
 384                       (unsigned long long)le64_to_cpu(mst->index_size));
 385                pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 386                pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 387                pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 388                pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 389                pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 390                pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 391                pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 392                pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 393                pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 394                pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 395                pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 396                pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 397                pr_err("\ttotal_free     %llu\n",
 398                       (unsigned long long)le64_to_cpu(mst->total_free));
 399                pr_err("\ttotal_dirty    %llu\n",
 400                       (unsigned long long)le64_to_cpu(mst->total_dirty));
 401                pr_err("\ttotal_used     %llu\n",
 402                       (unsigned long long)le64_to_cpu(mst->total_used));
 403                pr_err("\ttotal_dead     %llu\n",
 404                       (unsigned long long)le64_to_cpu(mst->total_dead));
 405                pr_err("\ttotal_dark     %llu\n",
 406                       (unsigned long long)le64_to_cpu(mst->total_dark));
 407                break;
 408        }
 409        case UBIFS_REF_NODE:
 410        {
 411                const struct ubifs_ref_node *ref = node;
 412
 413                pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 414                pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 415                pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 416                break;
 417        }
 418        case UBIFS_INO_NODE:
 419        {
 420                const struct ubifs_ino_node *ino = node;
 421
 422                key_read(c, &ino->key, &key);
 423                pr_err("\tkey            %s\n",
 424                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 425                pr_err("\tcreat_sqnum    %llu\n",
 426                       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 427                pr_err("\tsize           %llu\n",
 428                       (unsigned long long)le64_to_cpu(ino->size));
 429                pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 430                pr_err("\tatime          %lld.%u\n",
 431                       (long long)le64_to_cpu(ino->atime_sec),
 432                       le32_to_cpu(ino->atime_nsec));
 433                pr_err("\tmtime          %lld.%u\n",
 434                       (long long)le64_to_cpu(ino->mtime_sec),
 435                       le32_to_cpu(ino->mtime_nsec));
 436                pr_err("\tctime          %lld.%u\n",
 437                       (long long)le64_to_cpu(ino->ctime_sec),
 438                       le32_to_cpu(ino->ctime_nsec));
 439                pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 440                pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 441                pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 442                pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 443                pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 444                pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 445                pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 446                pr_err("\tcompr_type     %#x\n",
 447                       (int)le16_to_cpu(ino->compr_type));
 448                pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 449                break;
 450        }
 451        case UBIFS_DENT_NODE:
 452        case UBIFS_XENT_NODE:
 453        {
 454                const struct ubifs_dent_node *dent = node;
 455                int nlen = le16_to_cpu(dent->nlen);
 456
 457                key_read(c, &dent->key, &key);
 458                pr_err("\tkey            %s\n",
 459                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 460                pr_err("\tinum           %llu\n",
 461                       (unsigned long long)le64_to_cpu(dent->inum));
 462                pr_err("\ttype           %d\n", (int)dent->type);
 463                pr_err("\tnlen           %d\n", nlen);
 464                pr_err("\tname           ");
 465
 466                if (nlen > UBIFS_MAX_NLEN)
 467                        pr_err("(bad name length, not printing, bad or corrupted node)");
 468                else {
 469                        for (i = 0; i < nlen && dent->name[i]; i++)
 470                                pr_cont("%c", isprint(dent->name[i]) ?
 471                                        dent->name[i] : '?');
 472                }
 473                pr_cont("\n");
 474
 475                break;
 476        }
 477        case UBIFS_DATA_NODE:
 478        {
 479                const struct ubifs_data_node *dn = node;
 480                int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 481
 482                key_read(c, &dn->key, &key);
 483                pr_err("\tkey            %s\n",
 484                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 485                pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 486                pr_err("\tcompr_typ      %d\n",
 487                       (int)le16_to_cpu(dn->compr_type));
 488                pr_err("\tdata size      %d\n", dlen);
 489                pr_err("\tdata:\n");
 490                print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
 491                               (void *)&dn->data, dlen, 0);
 492                break;
 493        }
 494        case UBIFS_TRUN_NODE:
 495        {
 496                const struct ubifs_trun_node *trun = node;
 497
 498                pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 499                pr_err("\told_size       %llu\n",
 500                       (unsigned long long)le64_to_cpu(trun->old_size));
 501                pr_err("\tnew_size       %llu\n",
 502                       (unsigned long long)le64_to_cpu(trun->new_size));
 503                break;
 504        }
 505        case UBIFS_IDX_NODE:
 506        {
 507                const struct ubifs_idx_node *idx = node;
 508
 509                n = le16_to_cpu(idx->child_cnt);
 510                pr_err("\tchild_cnt      %d\n", n);
 511                pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 512                pr_err("\tBranches:\n");
 513
 514                for (i = 0; i < n && i < c->fanout - 1; i++) {
 515                        const struct ubifs_branch *br;
 516
 517                        br = ubifs_idx_branch(c, idx, i);
 518                        key_read(c, &br->key, &key);
 519                        pr_err("\t%d: LEB %d:%d len %d key %s\n",
 520                               i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 521                               le32_to_cpu(br->len),
 522                               dbg_snprintf_key(c, &key, key_buf,
 523                                                DBG_KEY_BUF_LEN));
 524                }
 525                break;
 526        }
 527        case UBIFS_CS_NODE:
 528                break;
 529        case UBIFS_ORPH_NODE:
 530        {
 531                const struct ubifs_orph_node *orph = node;
 532
 533                pr_err("\tcommit number  %llu\n",
 534                       (unsigned long long)
 535                                le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 536                pr_err("\tlast node flag %llu\n",
 537                       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 538                n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 539                pr_err("\t%d orphan inode numbers:\n", n);
 540                for (i = 0; i < n; i++)
 541                        pr_err("\t  ino %llu\n",
 542                               (unsigned long long)le64_to_cpu(orph->inos[i]));
 543                break;
 544        }
 545        default:
 546                pr_err("node type %d was not recognized\n",
 547                       (int)ch->node_type);
 548        }
 549        spin_unlock(&dbg_lock);
 550}
 551
 552void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 553{
 554        spin_lock(&dbg_lock);
 555        pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 556               req->new_ino, req->dirtied_ino);
 557        pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 558               req->new_ino_d, req->dirtied_ino_d);
 559        pr_err("\tnew_page    %d, dirtied_page %d\n",
 560               req->new_page, req->dirtied_page);
 561        pr_err("\tnew_dent    %d, mod_dent     %d\n",
 562               req->new_dent, req->mod_dent);
 563        pr_err("\tidx_growth  %d\n", req->idx_growth);
 564        pr_err("\tdata_growth %d dd_growth     %d\n",
 565               req->data_growth, req->dd_growth);
 566        spin_unlock(&dbg_lock);
 567}
 568
 569void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 570{
 571        spin_lock(&dbg_lock);
 572        pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 573               current->pid, lst->empty_lebs, lst->idx_lebs);
 574        pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 575               lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 576        pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 577               lst->total_used, lst->total_dark, lst->total_dead);
 578        spin_unlock(&dbg_lock);
 579}
 580
 581void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 582{
 583        int i;
 584        struct rb_node *rb;
 585        struct ubifs_bud *bud;
 586        struct ubifs_gced_idx_leb *idx_gc;
 587        long long available, outstanding, free;
 588
 589        spin_lock(&c->space_lock);
 590        spin_lock(&dbg_lock);
 591        pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 592               current->pid, bi->data_growth + bi->dd_growth,
 593               bi->data_growth + bi->dd_growth + bi->idx_growth);
 594        pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 595               bi->data_growth, bi->dd_growth, bi->idx_growth);
 596        pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 597               bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 598        pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 599               bi->page_budget, bi->inode_budget, bi->dent_budget);
 600        pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 601        pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 602               c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 603
 604        if (bi != &c->bi)
 605                /*
 606                 * If we are dumping saved budgeting data, do not print
 607                 * additional information which is about the current state, not
 608                 * the old one which corresponded to the saved budgeting data.
 609                 */
 610                goto out_unlock;
 611
 612        pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 613               c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 614        pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 615               atomic_long_read(&c->dirty_pg_cnt),
 616               atomic_long_read(&c->dirty_zn_cnt),
 617               atomic_long_read(&c->clean_zn_cnt));
 618        pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 619
 620        /* If we are in R/O mode, journal heads do not exist */
 621        if (c->jheads)
 622                for (i = 0; i < c->jhead_cnt; i++)
 623                        pr_err("\tjhead %s\t LEB %d\n",
 624                               dbg_jhead(c->jheads[i].wbuf.jhead),
 625                               c->jheads[i].wbuf.lnum);
 626        for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 627                bud = rb_entry(rb, struct ubifs_bud, rb);
 628                pr_err("\tbud LEB %d\n", bud->lnum);
 629        }
 630        list_for_each_entry(bud, &c->old_buds, list)
 631                pr_err("\told bud LEB %d\n", bud->lnum);
 632        list_for_each_entry(idx_gc, &c->idx_gc, list)
 633                pr_err("\tGC'ed idx LEB %d unmap %d\n",
 634                       idx_gc->lnum, idx_gc->unmap);
 635        pr_err("\tcommit state %d\n", c->cmt_state);
 636
 637        /* Print budgeting predictions */
 638        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 639        outstanding = c->bi.data_growth + c->bi.dd_growth;
 640        free = ubifs_get_free_space_nolock(c);
 641        pr_err("Budgeting predictions:\n");
 642        pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 643               available, outstanding, free);
 644out_unlock:
 645        spin_unlock(&dbg_lock);
 646        spin_unlock(&c->space_lock);
 647}
 648
 649void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 650{
 651        int i, spc, dark = 0, dead = 0;
 652        struct rb_node *rb;
 653        struct ubifs_bud *bud;
 654
 655        spc = lp->free + lp->dirty;
 656        if (spc < c->dead_wm)
 657                dead = spc;
 658        else
 659                dark = ubifs_calc_dark(c, spc);
 660
 661        if (lp->flags & LPROPS_INDEX)
 662                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 663                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 664                       lp->flags);
 665        else
 666                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 667                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 668                       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 669
 670        if (lp->flags & LPROPS_TAKEN) {
 671                if (lp->flags & LPROPS_INDEX)
 672                        pr_cont("index, taken");
 673                else
 674                        pr_cont("taken");
 675        } else {
 676                const char *s;
 677
 678                if (lp->flags & LPROPS_INDEX) {
 679                        switch (lp->flags & LPROPS_CAT_MASK) {
 680                        case LPROPS_DIRTY_IDX:
 681                                s = "dirty index";
 682                                break;
 683                        case LPROPS_FRDI_IDX:
 684                                s = "freeable index";
 685                                break;
 686                        default:
 687                                s = "index";
 688                        }
 689                } else {
 690                        switch (lp->flags & LPROPS_CAT_MASK) {
 691                        case LPROPS_UNCAT:
 692                                s = "not categorized";
 693                                break;
 694                        case LPROPS_DIRTY:
 695                                s = "dirty";
 696                                break;
 697                        case LPROPS_FREE:
 698                                s = "free";
 699                                break;
 700                        case LPROPS_EMPTY:
 701                                s = "empty";
 702                                break;
 703                        case LPROPS_FREEABLE:
 704                                s = "freeable";
 705                                break;
 706                        default:
 707                                s = NULL;
 708                                break;
 709                        }
 710                }
 711                pr_cont("%s", s);
 712        }
 713
 714        for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 715                bud = rb_entry(rb, struct ubifs_bud, rb);
 716                if (bud->lnum == lp->lnum) {
 717                        int head = 0;
 718                        for (i = 0; i < c->jhead_cnt; i++) {
 719                                /*
 720                                 * Note, if we are in R/O mode or in the middle
 721                                 * of mounting/re-mounting, the write-buffers do
 722                                 * not exist.
 723                                 */
 724                                if (c->jheads &&
 725                                    lp->lnum == c->jheads[i].wbuf.lnum) {
 726                                        pr_cont(", jhead %s", dbg_jhead(i));
 727                                        head = 1;
 728                                }
 729                        }
 730                        if (!head)
 731                                pr_cont(", bud of jhead %s",
 732                                       dbg_jhead(bud->jhead));
 733                }
 734        }
 735        if (lp->lnum == c->gc_lnum)
 736                pr_cont(", GC LEB");
 737        pr_cont(")\n");
 738}
 739
 740void ubifs_dump_lprops(struct ubifs_info *c)
 741{
 742        int lnum, err;
 743        struct ubifs_lprops lp;
 744        struct ubifs_lp_stats lst;
 745
 746        pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 747        ubifs_get_lp_stats(c, &lst);
 748        ubifs_dump_lstats(&lst);
 749
 750        for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 751                err = ubifs_read_one_lp(c, lnum, &lp);
 752                if (err) {
 753                        ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 754                        continue;
 755                }
 756
 757                ubifs_dump_lprop(c, &lp);
 758        }
 759        pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 760}
 761
 762void ubifs_dump_lpt_info(struct ubifs_info *c)
 763{
 764        int i;
 765
 766        spin_lock(&dbg_lock);
 767        pr_err("(pid %d) dumping LPT information\n", current->pid);
 768        pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 769        pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 770        pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 771        pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 772        pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 773        pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 774        pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 775        pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 776        pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 777        pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 778        pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 779        pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 780        pr_err("\tspace_bits:    %d\n", c->space_bits);
 781        pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 782        pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 783        pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 784        pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 785        pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 786        pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 787        pr_err("\tLPT head is at %d:%d\n",
 788               c->nhead_lnum, c->nhead_offs);
 789        pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 790        if (c->big_lpt)
 791                pr_err("\tLPT lsave is at %d:%d\n",
 792                       c->lsave_lnum, c->lsave_offs);
 793        for (i = 0; i < c->lpt_lebs; i++)
 794                pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 795                       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 796                       c->ltab[i].tgc, c->ltab[i].cmt);
 797        spin_unlock(&dbg_lock);
 798}
 799
 800void ubifs_dump_sleb(const struct ubifs_info *c,
 801                     const struct ubifs_scan_leb *sleb, int offs)
 802{
 803        struct ubifs_scan_node *snod;
 804
 805        pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 806               current->pid, sleb->lnum, offs);
 807
 808        list_for_each_entry(snod, &sleb->nodes, list) {
 809                cond_resched();
 810                pr_err("Dumping node at LEB %d:%d len %d\n",
 811                       sleb->lnum, snod->offs, snod->len);
 812                ubifs_dump_node(c, snod->node);
 813        }
 814}
 815
 816void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 817{
 818        struct ubifs_scan_leb *sleb;
 819        struct ubifs_scan_node *snod;
 820        void *buf;
 821
 822        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 823
 824        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 825        if (!buf) {
 826                ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 827                return;
 828        }
 829
 830        sleb = ubifs_scan(c, lnum, 0, buf, 0);
 831        if (IS_ERR(sleb)) {
 832                ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 833                goto out;
 834        }
 835
 836        pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 837               sleb->nodes_cnt, sleb->endpt);
 838
 839        list_for_each_entry(snod, &sleb->nodes, list) {
 840                cond_resched();
 841                pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 842                       snod->offs, snod->len);
 843                ubifs_dump_node(c, snod->node);
 844        }
 845
 846        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 847        ubifs_scan_destroy(sleb);
 848
 849out:
 850        vfree(buf);
 851        return;
 852}
 853
 854void ubifs_dump_znode(const struct ubifs_info *c,
 855                      const struct ubifs_znode *znode)
 856{
 857        int n;
 858        const struct ubifs_zbranch *zbr;
 859        char key_buf[DBG_KEY_BUF_LEN];
 860
 861        spin_lock(&dbg_lock);
 862        if (znode->parent)
 863                zbr = &znode->parent->zbranch[znode->iip];
 864        else
 865                zbr = &c->zroot;
 866
 867        pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 868               znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 869               znode->level, znode->child_cnt, znode->flags);
 870
 871        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 872                spin_unlock(&dbg_lock);
 873                return;
 874        }
 875
 876        pr_err("zbranches:\n");
 877        for (n = 0; n < znode->child_cnt; n++) {
 878                zbr = &znode->zbranch[n];
 879                if (znode->level > 0)
 880                        pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 881                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 882                               dbg_snprintf_key(c, &zbr->key, key_buf,
 883                                                DBG_KEY_BUF_LEN));
 884                else
 885                        pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 886                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 887                               dbg_snprintf_key(c, &zbr->key, key_buf,
 888                                                DBG_KEY_BUF_LEN));
 889        }
 890        spin_unlock(&dbg_lock);
 891}
 892
 893void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 894{
 895        int i;
 896
 897        pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 898               current->pid, cat, heap->cnt);
 899        for (i = 0; i < heap->cnt; i++) {
 900                struct ubifs_lprops *lprops = heap->arr[i];
 901
 902                pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 903                       i, lprops->lnum, lprops->hpos, lprops->free,
 904                       lprops->dirty, lprops->flags);
 905        }
 906        pr_err("(pid %d) finish dumping heap\n", current->pid);
 907}
 908
 909void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 910                      struct ubifs_nnode *parent, int iip)
 911{
 912        int i;
 913
 914        pr_err("(pid %d) dumping pnode:\n", current->pid);
 915        pr_err("\taddress %zx parent %zx cnext %zx\n",
 916               (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 917        pr_err("\tflags %lu iip %d level %d num %d\n",
 918               pnode->flags, iip, pnode->level, pnode->num);
 919        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 920                struct ubifs_lprops *lp = &pnode->lprops[i];
 921
 922                pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 923                       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 924        }
 925}
 926
 927void ubifs_dump_tnc(struct ubifs_info *c)
 928{
 929        struct ubifs_znode *znode;
 930        int level;
 931
 932        pr_err("\n");
 933        pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 934        znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 935        level = znode->level;
 936        pr_err("== Level %d ==\n", level);
 937        while (znode) {
 938                if (level != znode->level) {
 939                        level = znode->level;
 940                        pr_err("== Level %d ==\n", level);
 941                }
 942                ubifs_dump_znode(c, znode);
 943                znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 944        }
 945        pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 946}
 947
 948static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 949                      void *priv)
 950{
 951        ubifs_dump_znode(c, znode);
 952        return 0;
 953}
 954
 955/**
 956 * ubifs_dump_index - dump the on-flash index.
 957 * @c: UBIFS file-system description object
 958 *
 959 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 960 * which dumps only in-memory znodes and does not read znodes which from flash.
 961 */
 962void ubifs_dump_index(struct ubifs_info *c)
 963{
 964        dbg_walk_index(c, NULL, dump_znode, NULL);
 965}
 966
 967/**
 968 * dbg_save_space_info - save information about flash space.
 969 * @c: UBIFS file-system description object
 970 *
 971 * This function saves information about UBIFS free space, dirty space, etc, in
 972 * order to check it later.
 973 */
 974void dbg_save_space_info(struct ubifs_info *c)
 975{
 976        struct ubifs_debug_info *d = c->dbg;
 977        int freeable_cnt;
 978
 979        spin_lock(&c->space_lock);
 980        memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 981        memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 982        d->saved_idx_gc_cnt = c->idx_gc_cnt;
 983
 984        /*
 985         * We use a dirty hack here and zero out @c->freeable_cnt, because it
 986         * affects the free space calculations, and UBIFS might not know about
 987         * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 988         * only when we read their lprops, and we do this only lazily, upon the
 989         * need. So at any given point of time @c->freeable_cnt might be not
 990         * exactly accurate.
 991         *
 992         * Just one example about the issue we hit when we did not zero
 993         * @c->freeable_cnt.
 994         * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
 995         *    amount of free space in @d->saved_free
 996         * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
 997         *    information from flash, where we cache LEBs from various
 998         *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
 999         *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1000         *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1001         *    -> 'ubifs_add_to_cat()').
1002         * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1003         *    becomes %1.
1004         * 4. We calculate the amount of free space when the re-mount is
1005         *    finished in 'dbg_check_space_info()' and it does not match
1006         *    @d->saved_free.
1007         */
1008        freeable_cnt = c->freeable_cnt;
1009        c->freeable_cnt = 0;
1010        d->saved_free = ubifs_get_free_space_nolock(c);
1011        c->freeable_cnt = freeable_cnt;
1012        spin_unlock(&c->space_lock);
1013}
1014
1015/**
1016 * dbg_check_space_info - check flash space information.
1017 * @c: UBIFS file-system description object
1018 *
1019 * This function compares current flash space information with the information
1020 * which was saved when the 'dbg_save_space_info()' function was called.
1021 * Returns zero if the information has not changed, and %-EINVAL it it has
1022 * changed.
1023 */
1024int dbg_check_space_info(struct ubifs_info *c)
1025{
1026        struct ubifs_debug_info *d = c->dbg;
1027        struct ubifs_lp_stats lst;
1028        long long free;
1029        int freeable_cnt;
1030
1031        spin_lock(&c->space_lock);
1032        freeable_cnt = c->freeable_cnt;
1033        c->freeable_cnt = 0;
1034        free = ubifs_get_free_space_nolock(c);
1035        c->freeable_cnt = freeable_cnt;
1036        spin_unlock(&c->space_lock);
1037
1038        if (free != d->saved_free) {
1039                ubifs_err(c, "free space changed from %lld to %lld",
1040                          d->saved_free, free);
1041                goto out;
1042        }
1043
1044        return 0;
1045
1046out:
1047        ubifs_msg(c, "saved lprops statistics dump");
1048        ubifs_dump_lstats(&d->saved_lst);
1049        ubifs_msg(c, "saved budgeting info dump");
1050        ubifs_dump_budg(c, &d->saved_bi);
1051        ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1052        ubifs_msg(c, "current lprops statistics dump");
1053        ubifs_get_lp_stats(c, &lst);
1054        ubifs_dump_lstats(&lst);
1055        ubifs_msg(c, "current budgeting info dump");
1056        ubifs_dump_budg(c, &c->bi);
1057        dump_stack();
1058        return -EINVAL;
1059}
1060
1061/**
1062 * dbg_check_synced_i_size - check synchronized inode size.
1063 * @c: UBIFS file-system description object
1064 * @inode: inode to check
1065 *
1066 * If inode is clean, synchronized inode size has to be equivalent to current
1067 * inode size. This function has to be called only for locked inodes (@i_mutex
1068 * has to be locked). Returns %0 if synchronized inode size if correct, and
1069 * %-EINVAL if not.
1070 */
1071int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1072{
1073        int err = 0;
1074        struct ubifs_inode *ui = ubifs_inode(inode);
1075
1076        if (!dbg_is_chk_gen(c))
1077                return 0;
1078        if (!S_ISREG(inode->i_mode))
1079                return 0;
1080
1081        mutex_lock(&ui->ui_mutex);
1082        spin_lock(&ui->ui_lock);
1083        if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1084                ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1085                          ui->ui_size, ui->synced_i_size);
1086                ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1087                          inode->i_mode, i_size_read(inode));
1088                dump_stack();
1089                err = -EINVAL;
1090        }
1091        spin_unlock(&ui->ui_lock);
1092        mutex_unlock(&ui->ui_mutex);
1093        return err;
1094}
1095
1096/*
1097 * dbg_check_dir - check directory inode size and link count.
1098 * @c: UBIFS file-system description object
1099 * @dir: the directory to calculate size for
1100 * @size: the result is returned here
1101 *
1102 * This function makes sure that directory size and link count are correct.
1103 * Returns zero in case of success and a negative error code in case of
1104 * failure.
1105 *
1106 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1107 * calling this function.
1108 */
1109int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1110{
1111        unsigned int nlink = 2;
1112        union ubifs_key key;
1113        struct ubifs_dent_node *dent, *pdent = NULL;
1114        struct fscrypt_name nm = {0};
1115        loff_t size = UBIFS_INO_NODE_SZ;
1116
1117        if (!dbg_is_chk_gen(c))
1118                return 0;
1119
1120        if (!S_ISDIR(dir->i_mode))
1121                return 0;
1122
1123        lowest_dent_key(c, &key, dir->i_ino);
1124        while (1) {
1125                int err;
1126
1127                dent = ubifs_tnc_next_ent(c, &key, &nm);
1128                if (IS_ERR(dent)) {
1129                        err = PTR_ERR(dent);
1130                        if (err == -ENOENT)
1131                                break;
1132                        return err;
1133                }
1134
1135                fname_name(&nm) = dent->name;
1136                fname_len(&nm) = le16_to_cpu(dent->nlen);
1137                size += CALC_DENT_SIZE(fname_len(&nm));
1138                if (dent->type == UBIFS_ITYPE_DIR)
1139                        nlink += 1;
1140                kfree(pdent);
1141                pdent = dent;
1142                key_read(c, &dent->key, &key);
1143        }
1144        kfree(pdent);
1145
1146        if (i_size_read(dir) != size) {
1147                ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1148                          dir->i_ino, (unsigned long long)i_size_read(dir),
1149                          (unsigned long long)size);
1150                ubifs_dump_inode(c, dir);
1151                dump_stack();
1152                return -EINVAL;
1153        }
1154        if (dir->i_nlink != nlink) {
1155                ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1156                          dir->i_ino, dir->i_nlink, nlink);
1157                ubifs_dump_inode(c, dir);
1158                dump_stack();
1159                return -EINVAL;
1160        }
1161
1162        return 0;
1163}
1164
1165/**
1166 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1167 * @c: UBIFS file-system description object
1168 * @zbr1: first zbranch
1169 * @zbr2: following zbranch
1170 *
1171 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1172 * names of the direntries/xentries which are referred by the keys. This
1173 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1174 * sure the name of direntry/xentry referred by @zbr1 is less than
1175 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1176 * and a negative error code in case of failure.
1177 */
1178static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1179                               struct ubifs_zbranch *zbr2)
1180{
1181        int err, nlen1, nlen2, cmp;
1182        struct ubifs_dent_node *dent1, *dent2;
1183        union ubifs_key key;
1184        char key_buf[DBG_KEY_BUF_LEN];
1185
1186        ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1187        dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1188        if (!dent1)
1189                return -ENOMEM;
1190        dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1191        if (!dent2) {
1192                err = -ENOMEM;
1193                goto out_free;
1194        }
1195
1196        err = ubifs_tnc_read_node(c, zbr1, dent1);
1197        if (err)
1198                goto out_free;
1199        err = ubifs_validate_entry(c, dent1);
1200        if (err)
1201                goto out_free;
1202
1203        err = ubifs_tnc_read_node(c, zbr2, dent2);
1204        if (err)
1205                goto out_free;
1206        err = ubifs_validate_entry(c, dent2);
1207        if (err)
1208                goto out_free;
1209
1210        /* Make sure node keys are the same as in zbranch */
1211        err = 1;
1212        key_read(c, &dent1->key, &key);
1213        if (keys_cmp(c, &zbr1->key, &key)) {
1214                ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1215                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1216                                                       DBG_KEY_BUF_LEN));
1217                ubifs_err(c, "but it should have key %s according to tnc",
1218                          dbg_snprintf_key(c, &zbr1->key, key_buf,
1219                                           DBG_KEY_BUF_LEN));
1220                ubifs_dump_node(c, dent1);
1221                goto out_free;
1222        }
1223
1224        key_read(c, &dent2->key, &key);
1225        if (keys_cmp(c, &zbr2->key, &key)) {
1226                ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1227                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1228                                                       DBG_KEY_BUF_LEN));
1229                ubifs_err(c, "but it should have key %s according to tnc",
1230                          dbg_snprintf_key(c, &zbr2->key, key_buf,
1231                                           DBG_KEY_BUF_LEN));
1232                ubifs_dump_node(c, dent2);
1233                goto out_free;
1234        }
1235
1236        nlen1 = le16_to_cpu(dent1->nlen);
1237        nlen2 = le16_to_cpu(dent2->nlen);
1238
1239        cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1240        if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1241                err = 0;
1242                goto out_free;
1243        }
1244        if (cmp == 0 && nlen1 == nlen2)
1245                ubifs_err(c, "2 xent/dent nodes with the same name");
1246        else
1247                ubifs_err(c, "bad order of colliding key %s",
1248                          dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1249
1250        ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1251        ubifs_dump_node(c, dent1);
1252        ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1253        ubifs_dump_node(c, dent2);
1254
1255out_free:
1256        kfree(dent2);
1257        kfree(dent1);
1258        return err;
1259}
1260
1261/**
1262 * dbg_check_znode - check if znode is all right.
1263 * @c: UBIFS file-system description object
1264 * @zbr: zbranch which points to this znode
1265 *
1266 * This function makes sure that znode referred to by @zbr is all right.
1267 * Returns zero if it is, and %-EINVAL if it is not.
1268 */
1269static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1270{
1271        struct ubifs_znode *znode = zbr->znode;
1272        struct ubifs_znode *zp = znode->parent;
1273        int n, err, cmp;
1274
1275        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1276                err = 1;
1277                goto out;
1278        }
1279        if (znode->level < 0) {
1280                err = 2;
1281                goto out;
1282        }
1283        if (znode->iip < 0 || znode->iip >= c->fanout) {
1284                err = 3;
1285                goto out;
1286        }
1287
1288        if (zbr->len == 0)
1289                /* Only dirty zbranch may have no on-flash nodes */
1290                if (!ubifs_zn_dirty(znode)) {
1291                        err = 4;
1292                        goto out;
1293                }
1294
1295        if (ubifs_zn_dirty(znode)) {
1296                /*
1297                 * If znode is dirty, its parent has to be dirty as well. The
1298                 * order of the operation is important, so we have to have
1299                 * memory barriers.
1300                 */
1301                smp_mb();
1302                if (zp && !ubifs_zn_dirty(zp)) {
1303                        /*
1304                         * The dirty flag is atomic and is cleared outside the
1305                         * TNC mutex, so znode's dirty flag may now have
1306                         * been cleared. The child is always cleared before the
1307                         * parent, so we just need to check again.
1308                         */
1309                        smp_mb();
1310                        if (ubifs_zn_dirty(znode)) {
1311                                err = 5;
1312                                goto out;
1313                        }
1314                }
1315        }
1316
1317        if (zp) {
1318                const union ubifs_key *min, *max;
1319
1320                if (znode->level != zp->level - 1) {
1321                        err = 6;
1322                        goto out;
1323                }
1324
1325                /* Make sure the 'parent' pointer in our znode is correct */
1326                err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1327                if (!err) {
1328                        /* This zbranch does not exist in the parent */
1329                        err = 7;
1330                        goto out;
1331                }
1332
1333                if (znode->iip >= zp->child_cnt) {
1334                        err = 8;
1335                        goto out;
1336                }
1337
1338                if (znode->iip != n) {
1339                        /* This may happen only in case of collisions */
1340                        if (keys_cmp(c, &zp->zbranch[n].key,
1341                                     &zp->zbranch[znode->iip].key)) {
1342                                err = 9;
1343                                goto out;
1344                        }
1345                        n = znode->iip;
1346                }
1347
1348                /*
1349                 * Make sure that the first key in our znode is greater than or
1350                 * equal to the key in the pointing zbranch.
1351                 */
1352                min = &zbr->key;
1353                cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1354                if (cmp == 1) {
1355                        err = 10;
1356                        goto out;
1357                }
1358
1359                if (n + 1 < zp->child_cnt) {
1360                        max = &zp->zbranch[n + 1].key;
1361
1362                        /*
1363                         * Make sure the last key in our znode is less or
1364                         * equivalent than the key in the zbranch which goes
1365                         * after our pointing zbranch.
1366                         */
1367                        cmp = keys_cmp(c, max,
1368                                &znode->zbranch[znode->child_cnt - 1].key);
1369                        if (cmp == -1) {
1370                                err = 11;
1371                                goto out;
1372                        }
1373                }
1374        } else {
1375                /* This may only be root znode */
1376                if (zbr != &c->zroot) {
1377                        err = 12;
1378                        goto out;
1379                }
1380        }
1381
1382        /*
1383         * Make sure that next key is greater or equivalent then the previous
1384         * one.
1385         */
1386        for (n = 1; n < znode->child_cnt; n++) {
1387                cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1388                               &znode->zbranch[n].key);
1389                if (cmp > 0) {
1390                        err = 13;
1391                        goto out;
1392                }
1393                if (cmp == 0) {
1394                        /* This can only be keys with colliding hash */
1395                        if (!is_hash_key(c, &znode->zbranch[n].key)) {
1396                                err = 14;
1397                                goto out;
1398                        }
1399
1400                        if (znode->level != 0 || c->replaying)
1401                                continue;
1402
1403                        /*
1404                         * Colliding keys should follow binary order of
1405                         * corresponding xentry/dentry names.
1406                         */
1407                        err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1408                                                  &znode->zbranch[n]);
1409                        if (err < 0)
1410                                return err;
1411                        if (err) {
1412                                err = 15;
1413                                goto out;
1414                        }
1415                }
1416        }
1417
1418        for (n = 0; n < znode->child_cnt; n++) {
1419                if (!znode->zbranch[n].znode &&
1420                    (znode->zbranch[n].lnum == 0 ||
1421                     znode->zbranch[n].len == 0)) {
1422                        err = 16;
1423                        goto out;
1424                }
1425
1426                if (znode->zbranch[n].lnum != 0 &&
1427                    znode->zbranch[n].len == 0) {
1428                        err = 17;
1429                        goto out;
1430                }
1431
1432                if (znode->zbranch[n].lnum == 0 &&
1433                    znode->zbranch[n].len != 0) {
1434                        err = 18;
1435                        goto out;
1436                }
1437
1438                if (znode->zbranch[n].lnum == 0 &&
1439                    znode->zbranch[n].offs != 0) {
1440                        err = 19;
1441                        goto out;
1442                }
1443
1444                if (znode->level != 0 && znode->zbranch[n].znode)
1445                        if (znode->zbranch[n].znode->parent != znode) {
1446                                err = 20;
1447                                goto out;
1448                        }
1449        }
1450
1451        return 0;
1452
1453out:
1454        ubifs_err(c, "failed, error %d", err);
1455        ubifs_msg(c, "dump of the znode");
1456        ubifs_dump_znode(c, znode);
1457        if (zp) {
1458                ubifs_msg(c, "dump of the parent znode");
1459                ubifs_dump_znode(c, zp);
1460        }
1461        dump_stack();
1462        return -EINVAL;
1463}
1464
1465/**
1466 * dbg_check_tnc - check TNC tree.
1467 * @c: UBIFS file-system description object
1468 * @extra: do extra checks that are possible at start commit
1469 *
1470 * This function traverses whole TNC tree and checks every znode. Returns zero
1471 * if everything is all right and %-EINVAL if something is wrong with TNC.
1472 */
1473int dbg_check_tnc(struct ubifs_info *c, int extra)
1474{
1475        struct ubifs_znode *znode;
1476        long clean_cnt = 0, dirty_cnt = 0;
1477        int err, last;
1478
1479        if (!dbg_is_chk_index(c))
1480                return 0;
1481
1482        ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1483        if (!c->zroot.znode)
1484                return 0;
1485
1486        znode = ubifs_tnc_postorder_first(c->zroot.znode);
1487        while (1) {
1488                struct ubifs_znode *prev;
1489                struct ubifs_zbranch *zbr;
1490
1491                if (!znode->parent)
1492                        zbr = &c->zroot;
1493                else
1494                        zbr = &znode->parent->zbranch[znode->iip];
1495
1496                err = dbg_check_znode(c, zbr);
1497                if (err)
1498                        return err;
1499
1500                if (extra) {
1501                        if (ubifs_zn_dirty(znode))
1502                                dirty_cnt += 1;
1503                        else
1504                                clean_cnt += 1;
1505                }
1506
1507                prev = znode;
1508                znode = ubifs_tnc_postorder_next(znode);
1509                if (!znode)
1510                        break;
1511
1512                /*
1513                 * If the last key of this znode is equivalent to the first key
1514                 * of the next znode (collision), then check order of the keys.
1515                 */
1516                last = prev->child_cnt - 1;
1517                if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1518                    !keys_cmp(c, &prev->zbranch[last].key,
1519                              &znode->zbranch[0].key)) {
1520                        err = dbg_check_key_order(c, &prev->zbranch[last],
1521                                                  &znode->zbranch[0]);
1522                        if (err < 0)
1523                                return err;
1524                        if (err) {
1525                                ubifs_msg(c, "first znode");
1526                                ubifs_dump_znode(c, prev);
1527                                ubifs_msg(c, "second znode");
1528                                ubifs_dump_znode(c, znode);
1529                                return -EINVAL;
1530                        }
1531                }
1532        }
1533
1534        if (extra) {
1535                if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1536                        ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1537                                  atomic_long_read(&c->clean_zn_cnt),
1538                                  clean_cnt);
1539                        return -EINVAL;
1540                }
1541                if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1542                        ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1543                                  atomic_long_read(&c->dirty_zn_cnt),
1544                                  dirty_cnt);
1545                        return -EINVAL;
1546                }
1547        }
1548
1549        return 0;
1550}
1551
1552/**
1553 * dbg_walk_index - walk the on-flash index.
1554 * @c: UBIFS file-system description object
1555 * @leaf_cb: called for each leaf node
1556 * @znode_cb: called for each indexing node
1557 * @priv: private data which is passed to callbacks
1558 *
1559 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1560 * node and @znode_cb for each indexing node. Returns zero in case of success
1561 * and a negative error code in case of failure.
1562 *
1563 * It would be better if this function removed every znode it pulled to into
1564 * the TNC, so that the behavior more closely matched the non-debugging
1565 * behavior.
1566 */
1567int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1568                   dbg_znode_callback znode_cb, void *priv)
1569{
1570        int err;
1571        struct ubifs_zbranch *zbr;
1572        struct ubifs_znode *znode, *child;
1573
1574        mutex_lock(&c->tnc_mutex);
1575        /* If the root indexing node is not in TNC - pull it */
1576        if (!c->zroot.znode) {
1577                c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1578                if (IS_ERR(c->zroot.znode)) {
1579                        err = PTR_ERR(c->zroot.znode);
1580                        c->zroot.znode = NULL;
1581                        goto out_unlock;
1582                }
1583        }
1584
1585        /*
1586         * We are going to traverse the indexing tree in the postorder manner.
1587         * Go down and find the leftmost indexing node where we are going to
1588         * start from.
1589         */
1590        znode = c->zroot.znode;
1591        while (znode->level > 0) {
1592                zbr = &znode->zbranch[0];
1593                child = zbr->znode;
1594                if (!child) {
1595                        child = ubifs_load_znode(c, zbr, znode, 0);
1596                        if (IS_ERR(child)) {
1597                                err = PTR_ERR(child);
1598                                goto out_unlock;
1599                        }
1600                        zbr->znode = child;
1601                }
1602
1603                znode = child;
1604        }
1605
1606        /* Iterate over all indexing nodes */
1607        while (1) {
1608                int idx;
1609
1610                cond_resched();
1611
1612                if (znode_cb) {
1613                        err = znode_cb(c, znode, priv);
1614                        if (err) {
1615                                ubifs_err(c, "znode checking function returned error %d",
1616                                          err);
1617                                ubifs_dump_znode(c, znode);
1618                                goto out_dump;
1619                        }
1620                }
1621                if (leaf_cb && znode->level == 0) {
1622                        for (idx = 0; idx < znode->child_cnt; idx++) {
1623                                zbr = &znode->zbranch[idx];
1624                                err = leaf_cb(c, zbr, priv);
1625                                if (err) {
1626                                        ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1627                                                  err, zbr->lnum, zbr->offs);
1628                                        goto out_dump;
1629                                }
1630                        }
1631                }
1632
1633                if (!znode->parent)
1634                        break;
1635
1636                idx = znode->iip + 1;
1637                znode = znode->parent;
1638                if (idx < znode->child_cnt) {
1639                        /* Switch to the next index in the parent */
1640                        zbr = &znode->zbranch[idx];
1641                        child = zbr->znode;
1642                        if (!child) {
1643                                child = ubifs_load_znode(c, zbr, znode, idx);
1644                                if (IS_ERR(child)) {
1645                                        err = PTR_ERR(child);
1646                                        goto out_unlock;
1647                                }
1648                                zbr->znode = child;
1649                        }
1650                        znode = child;
1651                } else
1652                        /*
1653                         * This is the last child, switch to the parent and
1654                         * continue.
1655                         */
1656                        continue;
1657
1658                /* Go to the lowest leftmost znode in the new sub-tree */
1659                while (znode->level > 0) {
1660                        zbr = &znode->zbranch[0];
1661                        child = zbr->znode;
1662                        if (!child) {
1663                                child = ubifs_load_znode(c, zbr, znode, 0);
1664                                if (IS_ERR(child)) {
1665                                        err = PTR_ERR(child);
1666                                        goto out_unlock;
1667                                }
1668                                zbr->znode = child;
1669                        }
1670                        znode = child;
1671                }
1672        }
1673
1674        mutex_unlock(&c->tnc_mutex);
1675        return 0;
1676
1677out_dump:
1678        if (znode->parent)
1679                zbr = &znode->parent->zbranch[znode->iip];
1680        else
1681                zbr = &c->zroot;
1682        ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1683        ubifs_dump_znode(c, znode);
1684out_unlock:
1685        mutex_unlock(&c->tnc_mutex);
1686        return err;
1687}
1688
1689/**
1690 * add_size - add znode size to partially calculated index size.
1691 * @c: UBIFS file-system description object
1692 * @znode: znode to add size for
1693 * @priv: partially calculated index size
1694 *
1695 * This is a helper function for 'dbg_check_idx_size()' which is called for
1696 * every indexing node and adds its size to the 'long long' variable pointed to
1697 * by @priv.
1698 */
1699static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1700{
1701        long long *idx_size = priv;
1702        int add;
1703
1704        add = ubifs_idx_node_sz(c, znode->child_cnt);
1705        add = ALIGN(add, 8);
1706        *idx_size += add;
1707        return 0;
1708}
1709
1710/**
1711 * dbg_check_idx_size - check index size.
1712 * @c: UBIFS file-system description object
1713 * @idx_size: size to check
1714 *
1715 * This function walks the UBIFS index, calculates its size and checks that the
1716 * size is equivalent to @idx_size. Returns zero in case of success and a
1717 * negative error code in case of failure.
1718 */
1719int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1720{
1721        int err;
1722        long long calc = 0;
1723
1724        if (!dbg_is_chk_index(c))
1725                return 0;
1726
1727        err = dbg_walk_index(c, NULL, add_size, &calc);
1728        if (err) {
1729                ubifs_err(c, "error %d while walking the index", err);
1730                return err;
1731        }
1732
1733        if (calc != idx_size) {
1734                ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1735                          calc, idx_size);
1736                dump_stack();
1737                return -EINVAL;
1738        }
1739
1740        return 0;
1741}
1742
1743/**
1744 * struct fsck_inode - information about an inode used when checking the file-system.
1745 * @rb: link in the RB-tree of inodes
1746 * @inum: inode number
1747 * @mode: inode type, permissions, etc
1748 * @nlink: inode link count
1749 * @xattr_cnt: count of extended attributes
1750 * @references: how many directory/xattr entries refer this inode (calculated
1751 *              while walking the index)
1752 * @calc_cnt: for directory inode count of child directories
1753 * @size: inode size (read from on-flash inode)
1754 * @xattr_sz: summary size of all extended attributes (read from on-flash
1755 *            inode)
1756 * @calc_sz: for directories calculated directory size
1757 * @calc_xcnt: count of extended attributes
1758 * @calc_xsz: calculated summary size of all extended attributes
1759 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1760 *             inode (read from on-flash inode)
1761 * @calc_xnms: calculated sum of lengths of all extended attribute names
1762 */
1763struct fsck_inode {
1764        struct rb_node rb;
1765        ino_t inum;
1766        umode_t mode;
1767        unsigned int nlink;
1768        unsigned int xattr_cnt;
1769        int references;
1770        int calc_cnt;
1771        long long size;
1772        unsigned int xattr_sz;
1773        long long calc_sz;
1774        long long calc_xcnt;
1775        long long calc_xsz;
1776        unsigned int xattr_nms;
1777        long long calc_xnms;
1778};
1779
1780/**
1781 * struct fsck_data - private FS checking information.
1782 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1783 */
1784struct fsck_data {
1785        struct rb_root inodes;
1786};
1787
1788/**
1789 * add_inode - add inode information to RB-tree of inodes.
1790 * @c: UBIFS file-system description object
1791 * @fsckd: FS checking information
1792 * @ino: raw UBIFS inode to add
1793 *
1794 * This is a helper function for 'check_leaf()' which adds information about
1795 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1796 * case of success and a negative error code in case of failure.
1797 */
1798static struct fsck_inode *add_inode(struct ubifs_info *c,
1799                                    struct fsck_data *fsckd,
1800                                    struct ubifs_ino_node *ino)
1801{
1802        struct rb_node **p, *parent = NULL;
1803        struct fsck_inode *fscki;
1804        ino_t inum = key_inum_flash(c, &ino->key);
1805        struct inode *inode;
1806        struct ubifs_inode *ui;
1807
1808        p = &fsckd->inodes.rb_node;
1809        while (*p) {
1810                parent = *p;
1811                fscki = rb_entry(parent, struct fsck_inode, rb);
1812                if (inum < fscki->inum)
1813                        p = &(*p)->rb_left;
1814                else if (inum > fscki->inum)
1815                        p = &(*p)->rb_right;
1816                else
1817                        return fscki;
1818        }
1819
1820        if (inum > c->highest_inum) {
1821                ubifs_err(c, "too high inode number, max. is %lu",
1822                          (unsigned long)c->highest_inum);
1823                return ERR_PTR(-EINVAL);
1824        }
1825
1826        fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1827        if (!fscki)
1828                return ERR_PTR(-ENOMEM);
1829
1830        inode = ilookup(c->vfs_sb, inum);
1831
1832        fscki->inum = inum;
1833        /*
1834         * If the inode is present in the VFS inode cache, use it instead of
1835         * the on-flash inode which might be out-of-date. E.g., the size might
1836         * be out-of-date. If we do not do this, the following may happen, for
1837         * example:
1838         *   1. A power cut happens
1839         *   2. We mount the file-system R/O, the replay process fixes up the
1840         *      inode size in the VFS cache, but on on-flash.
1841         *   3. 'check_leaf()' fails because it hits a data node beyond inode
1842         *      size.
1843         */
1844        if (!inode) {
1845                fscki->nlink = le32_to_cpu(ino->nlink);
1846                fscki->size = le64_to_cpu(ino->size);
1847                fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1848                fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1849                fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1850                fscki->mode = le32_to_cpu(ino->mode);
1851        } else {
1852                ui = ubifs_inode(inode);
1853                fscki->nlink = inode->i_nlink;
1854                fscki->size = inode->i_size;
1855                fscki->xattr_cnt = ui->xattr_cnt;
1856                fscki->xattr_sz = ui->xattr_size;
1857                fscki->xattr_nms = ui->xattr_names;
1858                fscki->mode = inode->i_mode;
1859                iput(inode);
1860        }
1861
1862        if (S_ISDIR(fscki->mode)) {
1863                fscki->calc_sz = UBIFS_INO_NODE_SZ;
1864                fscki->calc_cnt = 2;
1865        }
1866
1867        rb_link_node(&fscki->rb, parent, p);
1868        rb_insert_color(&fscki->rb, &fsckd->inodes);
1869
1870        return fscki;
1871}
1872
1873/**
1874 * search_inode - search inode in the RB-tree of inodes.
1875 * @fsckd: FS checking information
1876 * @inum: inode number to search
1877 *
1878 * This is a helper function for 'check_leaf()' which searches inode @inum in
1879 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1880 * the inode was not found.
1881 */
1882static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1883{
1884        struct rb_node *p;
1885        struct fsck_inode *fscki;
1886
1887        p = fsckd->inodes.rb_node;
1888        while (p) {
1889                fscki = rb_entry(p, struct fsck_inode, rb);
1890                if (inum < fscki->inum)
1891                        p = p->rb_left;
1892                else if (inum > fscki->inum)
1893                        p = p->rb_right;
1894                else
1895                        return fscki;
1896        }
1897        return NULL;
1898}
1899
1900/**
1901 * read_add_inode - read inode node and add it to RB-tree of inodes.
1902 * @c: UBIFS file-system description object
1903 * @fsckd: FS checking information
1904 * @inum: inode number to read
1905 *
1906 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1907 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1908 * information pointer in case of success and a negative error code in case of
1909 * failure.
1910 */
1911static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1912                                         struct fsck_data *fsckd, ino_t inum)
1913{
1914        int n, err;
1915        union ubifs_key key;
1916        struct ubifs_znode *znode;
1917        struct ubifs_zbranch *zbr;
1918        struct ubifs_ino_node *ino;
1919        struct fsck_inode *fscki;
1920
1921        fscki = search_inode(fsckd, inum);
1922        if (fscki)
1923                return fscki;
1924
1925        ino_key_init(c, &key, inum);
1926        err = ubifs_lookup_level0(c, &key, &znode, &n);
1927        if (!err) {
1928                ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1929                return ERR_PTR(-ENOENT);
1930        } else if (err < 0) {
1931                ubifs_err(c, "error %d while looking up inode %lu",
1932                          err, (unsigned long)inum);
1933                return ERR_PTR(err);
1934        }
1935
1936        zbr = &znode->zbranch[n];
1937        if (zbr->len < UBIFS_INO_NODE_SZ) {
1938                ubifs_err(c, "bad node %lu node length %d",
1939                          (unsigned long)inum, zbr->len);
1940                return ERR_PTR(-EINVAL);
1941        }
1942
1943        ino = kmalloc(zbr->len, GFP_NOFS);
1944        if (!ino)
1945                return ERR_PTR(-ENOMEM);
1946
1947        err = ubifs_tnc_read_node(c, zbr, ino);
1948        if (err) {
1949                ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1950                          zbr->lnum, zbr->offs, err);
1951                kfree(ino);
1952                return ERR_PTR(err);
1953        }
1954
1955        fscki = add_inode(c, fsckd, ino);
1956        kfree(ino);
1957        if (IS_ERR(fscki)) {
1958                ubifs_err(c, "error %ld while adding inode %lu node",
1959                          PTR_ERR(fscki), (unsigned long)inum);
1960                return fscki;
1961        }
1962
1963        return fscki;
1964}
1965
1966/**
1967 * check_leaf - check leaf node.
1968 * @c: UBIFS file-system description object
1969 * @zbr: zbranch of the leaf node to check
1970 * @priv: FS checking information
1971 *
1972 * This is a helper function for 'dbg_check_filesystem()' which is called for
1973 * every single leaf node while walking the indexing tree. It checks that the
1974 * leaf node referred from the indexing tree exists, has correct CRC, and does
1975 * some other basic validation. This function is also responsible for building
1976 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1977 * calculates reference count, size, etc for each inode in order to later
1978 * compare them to the information stored inside the inodes and detect possible
1979 * inconsistencies. Returns zero in case of success and a negative error code
1980 * in case of failure.
1981 */
1982static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1983                      void *priv)
1984{
1985        ino_t inum;
1986        void *node;
1987        struct ubifs_ch *ch;
1988        int err, type = key_type(c, &zbr->key);
1989        struct fsck_inode *fscki;
1990
1991        if (zbr->len < UBIFS_CH_SZ) {
1992                ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1993                          zbr->len, zbr->lnum, zbr->offs);
1994                return -EINVAL;
1995        }
1996
1997        node = kmalloc(zbr->len, GFP_NOFS);
1998        if (!node)
1999                return -ENOMEM;
2000
2001        err = ubifs_tnc_read_node(c, zbr, node);
2002        if (err) {
2003                ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2004                          zbr->lnum, zbr->offs, err);
2005                goto out_free;
2006        }
2007
2008        /* If this is an inode node, add it to RB-tree of inodes */
2009        if (type == UBIFS_INO_KEY) {
2010                fscki = add_inode(c, priv, node);
2011                if (IS_ERR(fscki)) {
2012                        err = PTR_ERR(fscki);
2013                        ubifs_err(c, "error %d while adding inode node", err);
2014                        goto out_dump;
2015                }
2016                goto out;
2017        }
2018
2019        if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2020            type != UBIFS_DATA_KEY) {
2021                ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2022                          type, zbr->lnum, zbr->offs);
2023                err = -EINVAL;
2024                goto out_free;
2025        }
2026
2027        ch = node;
2028        if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2029                ubifs_err(c, "too high sequence number, max. is %llu",
2030                          c->max_sqnum);
2031                err = -EINVAL;
2032                goto out_dump;
2033        }
2034
2035        if (type == UBIFS_DATA_KEY) {
2036                long long blk_offs;
2037                struct ubifs_data_node *dn = node;
2038
2039                ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2040
2041                /*
2042                 * Search the inode node this data node belongs to and insert
2043                 * it to the RB-tree of inodes.
2044                 */
2045                inum = key_inum_flash(c, &dn->key);
2046                fscki = read_add_inode(c, priv, inum);
2047                if (IS_ERR(fscki)) {
2048                        err = PTR_ERR(fscki);
2049                        ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2050                                  err, (unsigned long)inum);
2051                        goto out_dump;
2052                }
2053
2054                /* Make sure the data node is within inode size */
2055                blk_offs = key_block_flash(c, &dn->key);
2056                blk_offs <<= UBIFS_BLOCK_SHIFT;
2057                blk_offs += le32_to_cpu(dn->size);
2058                if (blk_offs > fscki->size) {
2059                        ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2060                                  zbr->lnum, zbr->offs, fscki->size);
2061                        err = -EINVAL;
2062                        goto out_dump;
2063                }
2064        } else {
2065                int nlen;
2066                struct ubifs_dent_node *dent = node;
2067                struct fsck_inode *fscki1;
2068
2069                ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2070
2071                err = ubifs_validate_entry(c, dent);
2072                if (err)
2073                        goto out_dump;
2074
2075                /*
2076                 * Search the inode node this entry refers to and the parent
2077                 * inode node and insert them to the RB-tree of inodes.
2078                 */
2079                inum = le64_to_cpu(dent->inum);
2080                fscki = read_add_inode(c, priv, inum);
2081                if (IS_ERR(fscki)) {
2082                        err = PTR_ERR(fscki);
2083                        ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2084                                  err, (unsigned long)inum);
2085                        goto out_dump;
2086                }
2087
2088                /* Count how many direntries or xentries refers this inode */
2089                fscki->references += 1;
2090
2091                inum = key_inum_flash(c, &dent->key);
2092                fscki1 = read_add_inode(c, priv, inum);
2093                if (IS_ERR(fscki1)) {
2094                        err = PTR_ERR(fscki1);
2095                        ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2096                                  err, (unsigned long)inum);
2097                        goto out_dump;
2098                }
2099
2100                nlen = le16_to_cpu(dent->nlen);
2101                if (type == UBIFS_XENT_KEY) {
2102                        fscki1->calc_xcnt += 1;
2103                        fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2104                        fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2105                        fscki1->calc_xnms += nlen;
2106                } else {
2107                        fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2108                        if (dent->type == UBIFS_ITYPE_DIR)
2109                                fscki1->calc_cnt += 1;
2110                }
2111        }
2112
2113out:
2114        kfree(node);
2115        return 0;
2116
2117out_dump:
2118        ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2119        ubifs_dump_node(c, node);
2120out_free:
2121        kfree(node);
2122        return err;
2123}
2124
2125/**
2126 * free_inodes - free RB-tree of inodes.
2127 * @fsckd: FS checking information
2128 */
2129static void free_inodes(struct fsck_data *fsckd)
2130{
2131        struct fsck_inode *fscki, *n;
2132
2133        rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2134                kfree(fscki);
2135}
2136
2137/**
2138 * check_inodes - checks all inodes.
2139 * @c: UBIFS file-system description object
2140 * @fsckd: FS checking information
2141 *
2142 * This is a helper function for 'dbg_check_filesystem()' which walks the
2143 * RB-tree of inodes after the index scan has been finished, and checks that
2144 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2145 * %-EINVAL if not, and a negative error code in case of failure.
2146 */
2147static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2148{
2149        int n, err;
2150        union ubifs_key key;
2151        struct ubifs_znode *znode;
2152        struct ubifs_zbranch *zbr;
2153        struct ubifs_ino_node *ino;
2154        struct fsck_inode *fscki;
2155        struct rb_node *this = rb_first(&fsckd->inodes);
2156
2157        while (this) {
2158                fscki = rb_entry(this, struct fsck_inode, rb);
2159                this = rb_next(this);
2160
2161                if (S_ISDIR(fscki->mode)) {
2162                        /*
2163                         * Directories have to have exactly one reference (they
2164                         * cannot have hardlinks), although root inode is an
2165                         * exception.
2166                         */
2167                        if (fscki->inum != UBIFS_ROOT_INO &&
2168                            fscki->references != 1) {
2169                                ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2170                                          (unsigned long)fscki->inum,
2171                                          fscki->references);
2172                                goto out_dump;
2173                        }
2174                        if (fscki->inum == UBIFS_ROOT_INO &&
2175                            fscki->references != 0) {
2176                                ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2177                                          (unsigned long)fscki->inum,
2178                                          fscki->references);
2179                                goto out_dump;
2180                        }
2181                        if (fscki->calc_sz != fscki->size) {
2182                                ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2183                                          (unsigned long)fscki->inum,
2184                                          fscki->size, fscki->calc_sz);
2185                                goto out_dump;
2186                        }
2187                        if (fscki->calc_cnt != fscki->nlink) {
2188                                ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2189                                          (unsigned long)fscki->inum,
2190                                          fscki->nlink, fscki->calc_cnt);
2191                                goto out_dump;
2192                        }
2193                } else {
2194                        if (fscki->references != fscki->nlink) {
2195                                ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2196                                          (unsigned long)fscki->inum,
2197                                          fscki->nlink, fscki->references);
2198                                goto out_dump;
2199                        }
2200                }
2201                if (fscki->xattr_sz != fscki->calc_xsz) {
2202                        ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2203                                  (unsigned long)fscki->inum, fscki->xattr_sz,
2204                                  fscki->calc_xsz);
2205                        goto out_dump;
2206                }
2207                if (fscki->xattr_cnt != fscki->calc_xcnt) {
2208                        ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2209                                  (unsigned long)fscki->inum,
2210                                  fscki->xattr_cnt, fscki->calc_xcnt);
2211                        goto out_dump;
2212                }
2213                if (fscki->xattr_nms != fscki->calc_xnms) {
2214                        ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2215                                  (unsigned long)fscki->inum, fscki->xattr_nms,
2216                                  fscki->calc_xnms);
2217                        goto out_dump;
2218                }
2219        }
2220
2221        return 0;
2222
2223out_dump:
2224        /* Read the bad inode and dump it */
2225        ino_key_init(c, &key, fscki->inum);
2226        err = ubifs_lookup_level0(c, &key, &znode, &n);
2227        if (!err) {
2228                ubifs_err(c, "inode %lu not found in index",
2229                          (unsigned long)fscki->inum);
2230                return -ENOENT;
2231        } else if (err < 0) {
2232                ubifs_err(c, "error %d while looking up inode %lu",
2233                          err, (unsigned long)fscki->inum);
2234                return err;
2235        }
2236
2237        zbr = &znode->zbranch[n];
2238        ino = kmalloc(zbr->len, GFP_NOFS);
2239        if (!ino)
2240                return -ENOMEM;
2241
2242        err = ubifs_tnc_read_node(c, zbr, ino);
2243        if (err) {
2244                ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2245                          zbr->lnum, zbr->offs, err);
2246                kfree(ino);
2247                return err;
2248        }
2249
2250        ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2251                  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2252        ubifs_dump_node(c, ino);
2253        kfree(ino);
2254        return -EINVAL;
2255}
2256
2257/**
2258 * dbg_check_filesystem - check the file-system.
2259 * @c: UBIFS file-system description object
2260 *
2261 * This function checks the file system, namely:
2262 * o makes sure that all leaf nodes exist and their CRCs are correct;
2263 * o makes sure inode nlink, size, xattr size/count are correct (for all
2264 *   inodes).
2265 *
2266 * The function reads whole indexing tree and all nodes, so it is pretty
2267 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2268 * not, and a negative error code in case of failure.
2269 */
2270int dbg_check_filesystem(struct ubifs_info *c)
2271{
2272        int err;
2273        struct fsck_data fsckd;
2274
2275        if (!dbg_is_chk_fs(c))
2276                return 0;
2277
2278        fsckd.inodes = RB_ROOT;
2279        err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2280        if (err)
2281                goto out_free;
2282
2283        err = check_inodes(c, &fsckd);
2284        if (err)
2285                goto out_free;
2286
2287        free_inodes(&fsckd);
2288        return 0;
2289
2290out_free:
2291        ubifs_err(c, "file-system check failed with error %d", err);
2292        dump_stack();
2293        free_inodes(&fsckd);
2294        return err;
2295}
2296
2297/**
2298 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2299 * @c: UBIFS file-system description object
2300 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2301 *
2302 * This function returns zero if the list of data nodes is sorted correctly,
2303 * and %-EINVAL if not.
2304 */
2305int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2306{
2307        struct list_head *cur;
2308        struct ubifs_scan_node *sa, *sb;
2309
2310        if (!dbg_is_chk_gen(c))
2311                return 0;
2312
2313        for (cur = head->next; cur->next != head; cur = cur->next) {
2314                ino_t inuma, inumb;
2315                uint32_t blka, blkb;
2316
2317                cond_resched();
2318                sa = container_of(cur, struct ubifs_scan_node, list);
2319                sb = container_of(cur->next, struct ubifs_scan_node, list);
2320
2321                if (sa->type != UBIFS_DATA_NODE) {
2322                        ubifs_err(c, "bad node type %d", sa->type);
2323                        ubifs_dump_node(c, sa->node);
2324                        return -EINVAL;
2325                }
2326                if (sb->type != UBIFS_DATA_NODE) {
2327                        ubifs_err(c, "bad node type %d", sb->type);
2328                        ubifs_dump_node(c, sb->node);
2329                        return -EINVAL;
2330                }
2331
2332                inuma = key_inum(c, &sa->key);
2333                inumb = key_inum(c, &sb->key);
2334
2335                if (inuma < inumb)
2336                        continue;
2337                if (inuma > inumb) {
2338                        ubifs_err(c, "larger inum %lu goes before inum %lu",
2339                                  (unsigned long)inuma, (unsigned long)inumb);
2340                        goto error_dump;
2341                }
2342
2343                blka = key_block(c, &sa->key);
2344                blkb = key_block(c, &sb->key);
2345
2346                if (blka > blkb) {
2347                        ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2348                        goto error_dump;
2349                }
2350                if (blka == blkb) {
2351                        ubifs_err(c, "two data nodes for the same block");
2352                        goto error_dump;
2353                }
2354        }
2355
2356        return 0;
2357
2358error_dump:
2359        ubifs_dump_node(c, sa->node);
2360        ubifs_dump_node(c, sb->node);
2361        return -EINVAL;
2362}
2363
2364/**
2365 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2366 * @c: UBIFS file-system description object
2367 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2368 *
2369 * This function returns zero if the list of non-data nodes is sorted correctly,
2370 * and %-EINVAL if not.
2371 */
2372int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2373{
2374        struct list_head *cur;
2375        struct ubifs_scan_node *sa, *sb;
2376
2377        if (!dbg_is_chk_gen(c))
2378                return 0;
2379
2380        for (cur = head->next; cur->next != head; cur = cur->next) {
2381                ino_t inuma, inumb;
2382                uint32_t hasha, hashb;
2383
2384                cond_resched();
2385                sa = container_of(cur, struct ubifs_scan_node, list);
2386                sb = container_of(cur->next, struct ubifs_scan_node, list);
2387
2388                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2389                    sa->type != UBIFS_XENT_NODE) {
2390                        ubifs_err(c, "bad node type %d", sa->type);
2391                        ubifs_dump_node(c, sa->node);
2392                        return -EINVAL;
2393                }
2394                if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2395                    sb->type != UBIFS_XENT_NODE) {
2396                        ubifs_err(c, "bad node type %d", sb->type);
2397                        ubifs_dump_node(c, sb->node);
2398                        return -EINVAL;
2399                }
2400
2401                if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2402                        ubifs_err(c, "non-inode node goes before inode node");
2403                        goto error_dump;
2404                }
2405
2406                if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2407                        continue;
2408
2409                if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2410                        /* Inode nodes are sorted in descending size order */
2411                        if (sa->len < sb->len) {
2412                                ubifs_err(c, "smaller inode node goes first");
2413                                goto error_dump;
2414                        }
2415                        continue;
2416                }
2417
2418                /*
2419                 * This is either a dentry or xentry, which should be sorted in
2420                 * ascending (parent ino, hash) order.
2421                 */
2422                inuma = key_inum(c, &sa->key);
2423                inumb = key_inum(c, &sb->key);
2424
2425                if (inuma < inumb)
2426                        continue;
2427                if (inuma > inumb) {
2428                        ubifs_err(c, "larger inum %lu goes before inum %lu",
2429                                  (unsigned long)inuma, (unsigned long)inumb);
2430                        goto error_dump;
2431                }
2432
2433                hasha = key_block(c, &sa->key);
2434                hashb = key_block(c, &sb->key);
2435
2436                if (hasha > hashb) {
2437                        ubifs_err(c, "larger hash %u goes before %u",
2438                                  hasha, hashb);
2439                        goto error_dump;
2440                }
2441        }
2442
2443        return 0;
2444
2445error_dump:
2446        ubifs_msg(c, "dumping first node");
2447        ubifs_dump_node(c, sa->node);
2448        ubifs_msg(c, "dumping second node");
2449        ubifs_dump_node(c, sb->node);
2450        return -EINVAL;
2451        return 0;
2452}
2453
2454static inline int chance(unsigned int n, unsigned int out_of)
2455{
2456        return !!((prandom_u32() % out_of) + 1 <= n);
2457
2458}
2459
2460static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2461{
2462        struct ubifs_debug_info *d = c->dbg;
2463
2464        ubifs_assert(dbg_is_tst_rcvry(c));
2465
2466        if (!d->pc_cnt) {
2467                /* First call - decide delay to the power cut */
2468                if (chance(1, 2)) {
2469                        unsigned long delay;
2470
2471                        if (chance(1, 2)) {
2472                                d->pc_delay = 1;
2473                                /* Fail within 1 minute */
2474                                delay = prandom_u32() % 60000;
2475                                d->pc_timeout = jiffies;
2476                                d->pc_timeout += msecs_to_jiffies(delay);
2477                                ubifs_warn(c, "failing after %lums", delay);
2478                        } else {
2479                                d->pc_delay = 2;
2480                                delay = prandom_u32() % 10000;
2481                                /* Fail within 10000 operations */
2482                                d->pc_cnt_max = delay;
2483                                ubifs_warn(c, "failing after %lu calls", delay);
2484                        }
2485                }
2486
2487                d->pc_cnt += 1;
2488        }
2489
2490        /* Determine if failure delay has expired */
2491        if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2492                        return 0;
2493        if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2494                        return 0;
2495
2496        if (lnum == UBIFS_SB_LNUM) {
2497                if (write && chance(1, 2))
2498                        return 0;
2499                if (chance(19, 20))
2500                        return 0;
2501                ubifs_warn(c, "failing in super block LEB %d", lnum);
2502        } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2503                if (chance(19, 20))
2504                        return 0;
2505                ubifs_warn(c, "failing in master LEB %d", lnum);
2506        } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2507                if (write && chance(99, 100))
2508                        return 0;
2509                if (chance(399, 400))
2510                        return 0;
2511                ubifs_warn(c, "failing in log LEB %d", lnum);
2512        } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2513                if (write && chance(7, 8))
2514                        return 0;
2515                if (chance(19, 20))
2516                        return 0;
2517                ubifs_warn(c, "failing in LPT LEB %d", lnum);
2518        } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2519                if (write && chance(1, 2))
2520                        return 0;
2521                if (chance(9, 10))
2522                        return 0;
2523                ubifs_warn(c, "failing in orphan LEB %d", lnum);
2524        } else if (lnum == c->ihead_lnum) {
2525                if (chance(99, 100))
2526                        return 0;
2527                ubifs_warn(c, "failing in index head LEB %d", lnum);
2528        } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2529                if (chance(9, 10))
2530                        return 0;
2531                ubifs_warn(c, "failing in GC head LEB %d", lnum);
2532        } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2533                   !ubifs_search_bud(c, lnum)) {
2534                if (chance(19, 20))
2535                        return 0;
2536                ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2537        } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2538                   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2539                if (chance(999, 1000))
2540                        return 0;
2541                ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2542        } else {
2543                if (chance(9999, 10000))
2544                        return 0;
2545                ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2546        }
2547
2548        d->pc_happened = 1;
2549        ubifs_warn(c, "========== Power cut emulated ==========");
2550        dump_stack();
2551        return 1;
2552}
2553
2554static int corrupt_data(const struct ubifs_info *c, const void *buf,
2555                        unsigned int len)
2556{
2557        unsigned int from, to, ffs = chance(1, 2);
2558        unsigned char *p = (void *)buf;
2559
2560        from = prandom_u32() % len;
2561        /* Corruption span max to end of write unit */
2562        to = min(len, ALIGN(from + 1, c->max_write_size));
2563
2564        ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2565                   ffs ? "0xFFs" : "random data");
2566
2567        if (ffs)
2568                memset(p + from, 0xFF, to - from);
2569        else
2570                prandom_bytes(p + from, to - from);
2571
2572        return to;
2573}
2574
2575int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2576                  int offs, int len)
2577{
2578        int err, failing;
2579
2580        if (dbg_is_power_cut(c))
2581                return -EROFS;
2582
2583        failing = power_cut_emulated(c, lnum, 1);
2584        if (failing) {
2585                len = corrupt_data(c, buf, len);
2586                ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2587                           len, lnum, offs);
2588        }
2589        err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2590        if (err)
2591                return err;
2592        if (failing)
2593                return -EROFS;
2594        return 0;
2595}
2596
2597int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2598                   int len)
2599{
2600        int err;
2601
2602        if (dbg_is_power_cut(c))
2603                return -EROFS;
2604        if (power_cut_emulated(c, lnum, 1))
2605                return -EROFS;
2606        err = ubi_leb_change(c->ubi, lnum, buf, len);
2607        if (err)
2608                return err;
2609        if (power_cut_emulated(c, lnum, 1))
2610                return -EROFS;
2611        return 0;
2612}
2613
2614int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2615{
2616        int err;
2617
2618        if (dbg_is_power_cut(c))
2619                return -EROFS;
2620        if (power_cut_emulated(c, lnum, 0))
2621                return -EROFS;
2622        err = ubi_leb_unmap(c->ubi, lnum);
2623        if (err)
2624                return err;
2625        if (power_cut_emulated(c, lnum, 0))
2626                return -EROFS;
2627        return 0;
2628}
2629
2630int dbg_leb_map(struct ubifs_info *c, int lnum)
2631{
2632        int err;
2633
2634        if (dbg_is_power_cut(c))
2635                return -EROFS;
2636        if (power_cut_emulated(c, lnum, 0))
2637                return -EROFS;
2638        err = ubi_leb_map(c->ubi, lnum);
2639        if (err)
2640                return err;
2641        if (power_cut_emulated(c, lnum, 0))
2642                return -EROFS;
2643        return 0;
2644}
2645
2646/*
2647 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2648 * contain the stuff specific to particular file-system mounts.
2649 */
2650static struct dentry *dfs_rootdir;
2651
2652static int dfs_file_open(struct inode *inode, struct file *file)
2653{
2654        file->private_data = inode->i_private;
2655        return nonseekable_open(inode, file);
2656}
2657
2658/**
2659 * provide_user_output - provide output to the user reading a debugfs file.
2660 * @val: boolean value for the answer
2661 * @u: the buffer to store the answer at
2662 * @count: size of the buffer
2663 * @ppos: position in the @u output buffer
2664 *
2665 * This is a simple helper function which stores @val boolean value in the user
2666 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2667 * bytes written to @u in case of success and a negative error code in case of
2668 * failure.
2669 */
2670static int provide_user_output(int val, char __user *u, size_t count,
2671                               loff_t *ppos)
2672{
2673        char buf[3];
2674
2675        if (val)
2676                buf[0] = '1';
2677        else
2678                buf[0] = '0';
2679        buf[1] = '\n';
2680        buf[2] = 0x00;
2681
2682        return simple_read_from_buffer(u, count, ppos, buf, 2);
2683}
2684
2685static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2686                             loff_t *ppos)
2687{
2688        struct dentry *dent = file->f_path.dentry;
2689        struct ubifs_info *c = file->private_data;
2690        struct ubifs_debug_info *d = c->dbg;
2691        int val;
2692
2693        if (dent == d->dfs_chk_gen)
2694                val = d->chk_gen;
2695        else if (dent == d->dfs_chk_index)
2696                val = d->chk_index;
2697        else if (dent == d->dfs_chk_orph)
2698                val = d->chk_orph;
2699        else if (dent == d->dfs_chk_lprops)
2700                val = d->chk_lprops;
2701        else if (dent == d->dfs_chk_fs)
2702                val = d->chk_fs;
2703        else if (dent == d->dfs_tst_rcvry)
2704                val = d->tst_rcvry;
2705        else if (dent == d->dfs_ro_error)
2706                val = c->ro_error;
2707        else
2708                return -EINVAL;
2709
2710        return provide_user_output(val, u, count, ppos);
2711}
2712
2713/**
2714 * interpret_user_input - interpret user debugfs file input.
2715 * @u: user-provided buffer with the input
2716 * @count: buffer size
2717 *
2718 * This is a helper function which interpret user input to a boolean UBIFS
2719 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2720 * in case of failure.
2721 */
2722static int interpret_user_input(const char __user *u, size_t count)
2723{
2724        size_t buf_size;
2725        char buf[8];
2726
2727        buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2728        if (copy_from_user(buf, u, buf_size))
2729                return -EFAULT;
2730
2731        if (buf[0] == '1')
2732                return 1;
2733        else if (buf[0] == '0')
2734                return 0;
2735
2736        return -EINVAL;
2737}
2738
2739static ssize_t dfs_file_write(struct file *file, const char __user *u,
2740                              size_t count, loff_t *ppos)
2741{
2742        struct ubifs_info *c = file->private_data;
2743        struct ubifs_debug_info *d = c->dbg;
2744        struct dentry *dent = file->f_path.dentry;
2745        int val;
2746
2747        /*
2748         * TODO: this is racy - the file-system might have already been
2749         * unmounted and we'd oops in this case. The plan is to fix it with
2750         * help of 'iterate_supers_type()' which we should have in v3.0: when
2751         * a debugfs opened, we rember FS's UUID in file->private_data. Then
2752         * whenever we access the FS via a debugfs file, we iterate all UBIFS
2753         * superblocks and fine the one with the same UUID, and take the
2754         * locking right.
2755         *
2756         * The other way to go suggested by Al Viro is to create a separate
2757         * 'ubifs-debug' file-system instead.
2758         */
2759        if (file->f_path.dentry == d->dfs_dump_lprops) {
2760                ubifs_dump_lprops(c);
2761                return count;
2762        }
2763        if (file->f_path.dentry == d->dfs_dump_budg) {
2764                ubifs_dump_budg(c, &c->bi);
2765                return count;
2766        }
2767        if (file->f_path.dentry == d->dfs_dump_tnc) {
2768                mutex_lock(&c->tnc_mutex);
2769                ubifs_dump_tnc(c);
2770                mutex_unlock(&c->tnc_mutex);
2771                return count;
2772        }
2773
2774        val = interpret_user_input(u, count);
2775        if (val < 0)
2776                return val;
2777
2778        if (dent == d->dfs_chk_gen)
2779                d->chk_gen = val;
2780        else if (dent == d->dfs_chk_index)
2781                d->chk_index = val;
2782        else if (dent == d->dfs_chk_orph)
2783                d->chk_orph = val;
2784        else if (dent == d->dfs_chk_lprops)
2785                d->chk_lprops = val;
2786        else if (dent == d->dfs_chk_fs)
2787                d->chk_fs = val;
2788        else if (dent == d->dfs_tst_rcvry)
2789                d->tst_rcvry = val;
2790        else if (dent == d->dfs_ro_error)
2791                c->ro_error = !!val;
2792        else
2793                return -EINVAL;
2794
2795        return count;
2796}
2797
2798static const struct file_operations dfs_fops = {
2799        .open = dfs_file_open,
2800        .read = dfs_file_read,
2801        .write = dfs_file_write,
2802        .owner = THIS_MODULE,
2803        .llseek = no_llseek,
2804};
2805
2806/**
2807 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2808 * @c: UBIFS file-system description object
2809 *
2810 * This function creates all debugfs files for this instance of UBIFS. Returns
2811 * zero in case of success and a negative error code in case of failure.
2812 *
2813 * Note, the only reason we have not merged this function with the
2814 * 'ubifs_debugging_init()' function is because it is better to initialize
2815 * debugfs interfaces at the very end of the mount process, and remove them at
2816 * the very beginning of the mount process.
2817 */
2818int dbg_debugfs_init_fs(struct ubifs_info *c)
2819{
2820        int err, n;
2821        const char *fname;
2822        struct dentry *dent;
2823        struct ubifs_debug_info *d = c->dbg;
2824
2825        if (!IS_ENABLED(CONFIG_DEBUG_FS))
2826                return 0;
2827
2828        n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2829                     c->vi.ubi_num, c->vi.vol_id);
2830        if (n == UBIFS_DFS_DIR_LEN) {
2831                /* The array size is too small */
2832                fname = UBIFS_DFS_DIR_NAME;
2833                dent = ERR_PTR(-EINVAL);
2834                goto out;
2835        }
2836
2837        fname = d->dfs_dir_name;
2838        dent = debugfs_create_dir(fname, dfs_rootdir);
2839        if (IS_ERR_OR_NULL(dent))
2840                goto out;
2841        d->dfs_dir = dent;
2842
2843        fname = "dump_lprops";
2844        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2845        if (IS_ERR_OR_NULL(dent))
2846                goto out_remove;
2847        d->dfs_dump_lprops = dent;
2848
2849        fname = "dump_budg";
2850        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2851        if (IS_ERR_OR_NULL(dent))
2852                goto out_remove;
2853        d->dfs_dump_budg = dent;
2854
2855        fname = "dump_tnc";
2856        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2857        if (IS_ERR_OR_NULL(dent))
2858                goto out_remove;
2859        d->dfs_dump_tnc = dent;
2860
2861        fname = "chk_general";
2862        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2863                                   &dfs_fops);
2864        if (IS_ERR_OR_NULL(dent))
2865                goto out_remove;
2866        d->dfs_chk_gen = dent;
2867
2868        fname = "chk_index";
2869        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2870                                   &dfs_fops);
2871        if (IS_ERR_OR_NULL(dent))
2872                goto out_remove;
2873        d->dfs_chk_index = dent;
2874
2875        fname = "chk_orphans";
2876        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2877                                   &dfs_fops);
2878        if (IS_ERR_OR_NULL(dent))
2879                goto out_remove;
2880        d->dfs_chk_orph = dent;
2881
2882        fname = "chk_lprops";
2883        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2884                                   &dfs_fops);
2885        if (IS_ERR_OR_NULL(dent))
2886                goto out_remove;
2887        d->dfs_chk_lprops = dent;
2888
2889        fname = "chk_fs";
2890        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2891                                   &dfs_fops);
2892        if (IS_ERR_OR_NULL(dent))
2893                goto out_remove;
2894        d->dfs_chk_fs = dent;
2895
2896        fname = "tst_recovery";
2897        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2898                                   &dfs_fops);
2899        if (IS_ERR_OR_NULL(dent))
2900                goto out_remove;
2901        d->dfs_tst_rcvry = dent;
2902
2903        fname = "ro_error";
2904        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2905                                   &dfs_fops);
2906        if (IS_ERR_OR_NULL(dent))
2907                goto out_remove;
2908        d->dfs_ro_error = dent;
2909
2910        return 0;
2911
2912out_remove:
2913        debugfs_remove_recursive(d->dfs_dir);
2914out:
2915        err = dent ? PTR_ERR(dent) : -ENODEV;
2916        ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2917                  fname, err);
2918        return err;
2919}
2920
2921/**
2922 * dbg_debugfs_exit_fs - remove all debugfs files.
2923 * @c: UBIFS file-system description object
2924 */
2925void dbg_debugfs_exit_fs(struct ubifs_info *c)
2926{
2927        if (IS_ENABLED(CONFIG_DEBUG_FS))
2928                debugfs_remove_recursive(c->dbg->dfs_dir);
2929}
2930
2931struct ubifs_global_debug_info ubifs_dbg;
2932
2933static struct dentry *dfs_chk_gen;
2934static struct dentry *dfs_chk_index;
2935static struct dentry *dfs_chk_orph;
2936static struct dentry *dfs_chk_lprops;
2937static struct dentry *dfs_chk_fs;
2938static struct dentry *dfs_tst_rcvry;
2939
2940static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2941                                    size_t count, loff_t *ppos)
2942{
2943        struct dentry *dent = file->f_path.dentry;
2944        int val;
2945
2946        if (dent == dfs_chk_gen)
2947                val = ubifs_dbg.chk_gen;
2948        else if (dent == dfs_chk_index)
2949                val = ubifs_dbg.chk_index;
2950        else if (dent == dfs_chk_orph)
2951                val = ubifs_dbg.chk_orph;
2952        else if (dent == dfs_chk_lprops)
2953                val = ubifs_dbg.chk_lprops;
2954        else if (dent == dfs_chk_fs)
2955                val = ubifs_dbg.chk_fs;
2956        else if (dent == dfs_tst_rcvry)
2957                val = ubifs_dbg.tst_rcvry;
2958        else
2959                return -EINVAL;
2960
2961        return provide_user_output(val, u, count, ppos);
2962}
2963
2964static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2965                                     size_t count, loff_t *ppos)
2966{
2967        struct dentry *dent = file->f_path.dentry;
2968        int val;
2969
2970        val = interpret_user_input(u, count);
2971        if (val < 0)
2972                return val;
2973
2974        if (dent == dfs_chk_gen)
2975                ubifs_dbg.chk_gen = val;
2976        else if (dent == dfs_chk_index)
2977                ubifs_dbg.chk_index = val;
2978        else if (dent == dfs_chk_orph)
2979                ubifs_dbg.chk_orph = val;
2980        else if (dent == dfs_chk_lprops)
2981                ubifs_dbg.chk_lprops = val;
2982        else if (dent == dfs_chk_fs)
2983                ubifs_dbg.chk_fs = val;
2984        else if (dent == dfs_tst_rcvry)
2985                ubifs_dbg.tst_rcvry = val;
2986        else
2987                return -EINVAL;
2988
2989        return count;
2990}
2991
2992static const struct file_operations dfs_global_fops = {
2993        .read = dfs_global_file_read,
2994        .write = dfs_global_file_write,
2995        .owner = THIS_MODULE,
2996        .llseek = no_llseek,
2997};
2998
2999/**
3000 * dbg_debugfs_init - initialize debugfs file-system.
3001 *
3002 * UBIFS uses debugfs file-system to expose various debugging knobs to
3003 * user-space. This function creates "ubifs" directory in the debugfs
3004 * file-system. Returns zero in case of success and a negative error code in
3005 * case of failure.
3006 */
3007int dbg_debugfs_init(void)
3008{
3009        int err;
3010        const char *fname;
3011        struct dentry *dent;
3012
3013        if (!IS_ENABLED(CONFIG_DEBUG_FS))
3014                return 0;
3015
3016        fname = "ubifs";
3017        dent = debugfs_create_dir(fname, NULL);
3018        if (IS_ERR_OR_NULL(dent))
3019                goto out;
3020        dfs_rootdir = dent;
3021
3022        fname = "chk_general";
3023        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3024                                   &dfs_global_fops);
3025        if (IS_ERR_OR_NULL(dent))
3026                goto out_remove;
3027        dfs_chk_gen = dent;
3028
3029        fname = "chk_index";
3030        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3031                                   &dfs_global_fops);
3032        if (IS_ERR_OR_NULL(dent))
3033                goto out_remove;
3034        dfs_chk_index = dent;
3035
3036        fname = "chk_orphans";
3037        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3038                                   &dfs_global_fops);
3039        if (IS_ERR_OR_NULL(dent))
3040                goto out_remove;
3041        dfs_chk_orph = dent;
3042
3043        fname = "chk_lprops";
3044        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3045                                   &dfs_global_fops);
3046        if (IS_ERR_OR_NULL(dent))
3047                goto out_remove;
3048        dfs_chk_lprops = dent;
3049
3050        fname = "chk_fs";
3051        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3052                                   &dfs_global_fops);
3053        if (IS_ERR_OR_NULL(dent))
3054                goto out_remove;
3055        dfs_chk_fs = dent;
3056
3057        fname = "tst_recovery";
3058        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3059                                   &dfs_global_fops);
3060        if (IS_ERR_OR_NULL(dent))
3061                goto out_remove;
3062        dfs_tst_rcvry = dent;
3063
3064        return 0;
3065
3066out_remove:
3067        debugfs_remove_recursive(dfs_rootdir);
3068out:
3069        err = dent ? PTR_ERR(dent) : -ENODEV;
3070        pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3071               current->pid, fname, err);
3072        return err;
3073}
3074
3075/**
3076 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3077 */
3078void dbg_debugfs_exit(void)
3079{
3080        if (IS_ENABLED(CONFIG_DEBUG_FS))
3081                debugfs_remove_recursive(dfs_rootdir);
3082}
3083
3084/**
3085 * ubifs_debugging_init - initialize UBIFS debugging.
3086 * @c: UBIFS file-system description object
3087 *
3088 * This function initializes debugging-related data for the file system.
3089 * Returns zero in case of success and a negative error code in case of
3090 * failure.
3091 */
3092int ubifs_debugging_init(struct ubifs_info *c)
3093{
3094        c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3095        if (!c->dbg)
3096                return -ENOMEM;
3097
3098        return 0;
3099}
3100
3101/**
3102 * ubifs_debugging_exit - free debugging data.
3103 * @c: UBIFS file-system description object
3104 */
3105void ubifs_debugging_exit(struct ubifs_info *c)
3106{
3107        kfree(c->dbg);
3108}
3109