linux/fs/ubifs/gc.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements garbage collection. The procedure for garbage collection
  25 * is different depending on whether a LEB as an index LEB (contains index
  26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
  27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
  28 * nodes to the journal, at which point the garbage-collected LEB is free to be
  29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
  30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
  31 * to be reused. Garbage collection will cause the number of dirty index nodes
  32 * to grow, however sufficient space is reserved for the index to ensure the
  33 * commit will never run out of space.
  34 *
  35 * Notes about dead watermark. At current UBIFS implementation we assume that
  36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
  37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
  38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
  39 * Garbage Collector has to synchronize the GC head's write buffer before
  40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
  41 * actually reclaim even very small pieces of dirty space by garbage collecting
  42 * enough dirty LEBs, but we do not bother doing this at this implementation.
  43 *
  44 * Notes about dark watermark. The results of GC work depends on how big are
  45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
  46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
  47 * have to waste large pieces of free space at the end of LEB B, because nodes
  48 * from LEB A would not fit. And the worst situation is when all nodes are of
  49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
  50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
  51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
  52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
  53 * good, and GC takes extra care when moving them.
  54 */
  55
  56#include <linux/slab.h>
  57#include <linux/pagemap.h>
  58#include <linux/list_sort.h>
  59#include "ubifs.h"
  60
  61/*
  62 * GC may need to move more than one LEB to make progress. The below constants
  63 * define "soft" and "hard" limits on the number of LEBs the garbage collector
  64 * may move.
  65 */
  66#define SOFT_LEBS_LIMIT 4
  67#define HARD_LEBS_LIMIT 32
  68
  69/**
  70 * switch_gc_head - switch the garbage collection journal head.
  71 * @c: UBIFS file-system description object
  72 * @buf: buffer to write
  73 * @len: length of the buffer to write
  74 * @lnum: LEB number written is returned here
  75 * @offs: offset written is returned here
  76 *
  77 * This function switch the GC head to the next LEB which is reserved in
  78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
  79 * and other negative error code in case of failures.
  80 */
  81static int switch_gc_head(struct ubifs_info *c)
  82{
  83        int err, gc_lnum = c->gc_lnum;
  84        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  85
  86        ubifs_assert(gc_lnum != -1);
  87        dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
  88               wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
  89               c->leb_size - wbuf->offs - wbuf->used);
  90
  91        err = ubifs_wbuf_sync_nolock(wbuf);
  92        if (err)
  93                return err;
  94
  95        /*
  96         * The GC write-buffer was synchronized, we may safely unmap
  97         * 'c->gc_lnum'.
  98         */
  99        err = ubifs_leb_unmap(c, gc_lnum);
 100        if (err)
 101                return err;
 102
 103        err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
 104        if (err)
 105                return err;
 106
 107        c->gc_lnum = -1;
 108        err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
 109        return err;
 110}
 111
 112/**
 113 * data_nodes_cmp - compare 2 data nodes.
 114 * @priv: UBIFS file-system description object
 115 * @a: first data node
 116 * @b: second data node
 117 *
 118 * This function compares data nodes @a and @b. Returns %1 if @a has greater
 119 * inode or block number, and %-1 otherwise.
 120 */
 121static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
 122{
 123        ino_t inuma, inumb;
 124        struct ubifs_info *c = priv;
 125        struct ubifs_scan_node *sa, *sb;
 126
 127        cond_resched();
 128        if (a == b)
 129                return 0;
 130
 131        sa = list_entry(a, struct ubifs_scan_node, list);
 132        sb = list_entry(b, struct ubifs_scan_node, list);
 133
 134        ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
 135        ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
 136        ubifs_assert(sa->type == UBIFS_DATA_NODE);
 137        ubifs_assert(sb->type == UBIFS_DATA_NODE);
 138
 139        inuma = key_inum(c, &sa->key);
 140        inumb = key_inum(c, &sb->key);
 141
 142        if (inuma == inumb) {
 143                unsigned int blka = key_block(c, &sa->key);
 144                unsigned int blkb = key_block(c, &sb->key);
 145
 146                if (blka <= blkb)
 147                        return -1;
 148        } else if (inuma <= inumb)
 149                return -1;
 150
 151        return 1;
 152}
 153
 154/*
 155 * nondata_nodes_cmp - compare 2 non-data nodes.
 156 * @priv: UBIFS file-system description object
 157 * @a: first node
 158 * @a: second node
 159 *
 160 * This function compares nodes @a and @b. It makes sure that inode nodes go
 161 * first and sorted by length in descending order. Directory entry nodes go
 162 * after inode nodes and are sorted in ascending hash valuer order.
 163 */
 164static int nondata_nodes_cmp(void *priv, struct list_head *a,
 165                             struct list_head *b)
 166{
 167        ino_t inuma, inumb;
 168        struct ubifs_info *c = priv;
 169        struct ubifs_scan_node *sa, *sb;
 170
 171        cond_resched();
 172        if (a == b)
 173                return 0;
 174
 175        sa = list_entry(a, struct ubifs_scan_node, list);
 176        sb = list_entry(b, struct ubifs_scan_node, list);
 177
 178        ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
 179                     key_type(c, &sb->key) != UBIFS_DATA_KEY);
 180        ubifs_assert(sa->type != UBIFS_DATA_NODE &&
 181                     sb->type != UBIFS_DATA_NODE);
 182
 183        /* Inodes go before directory entries */
 184        if (sa->type == UBIFS_INO_NODE) {
 185                if (sb->type == UBIFS_INO_NODE)
 186                        return sb->len - sa->len;
 187                return -1;
 188        }
 189        if (sb->type == UBIFS_INO_NODE)
 190                return 1;
 191
 192        ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
 193                     key_type(c, &sa->key) == UBIFS_XENT_KEY);
 194        ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
 195                     key_type(c, &sb->key) == UBIFS_XENT_KEY);
 196        ubifs_assert(sa->type == UBIFS_DENT_NODE ||
 197                     sa->type == UBIFS_XENT_NODE);
 198        ubifs_assert(sb->type == UBIFS_DENT_NODE ||
 199                     sb->type == UBIFS_XENT_NODE);
 200
 201        inuma = key_inum(c, &sa->key);
 202        inumb = key_inum(c, &sb->key);
 203
 204        if (inuma == inumb) {
 205                uint32_t hasha = key_hash(c, &sa->key);
 206                uint32_t hashb = key_hash(c, &sb->key);
 207
 208                if (hasha <= hashb)
 209                        return -1;
 210        } else if (inuma <= inumb)
 211                return -1;
 212
 213        return 1;
 214}
 215
 216/**
 217 * sort_nodes - sort nodes for GC.
 218 * @c: UBIFS file-system description object
 219 * @sleb: describes nodes to sort and contains the result on exit
 220 * @nondata: contains non-data nodes on exit
 221 * @min: minimum node size is returned here
 222 *
 223 * This function sorts the list of inodes to garbage collect. First of all, it
 224 * kills obsolete nodes and separates data and non-data nodes to the
 225 * @sleb->nodes and @nondata lists correspondingly.
 226 *
 227 * Data nodes are then sorted in block number order - this is important for
 228 * bulk-read; data nodes with lower inode number go before data nodes with
 229 * higher inode number, and data nodes with lower block number go before data
 230 * nodes with higher block number;
 231 *
 232 * Non-data nodes are sorted as follows.
 233 *   o First go inode nodes - they are sorted in descending length order.
 234 *   o Then go directory entry nodes - they are sorted in hash order, which
 235 *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
 236 *     inode number go before direntry nodes with higher parent inode number,
 237 *     and direntry nodes with lower name hash values go before direntry nodes
 238 *     with higher name hash values.
 239 *
 240 * This function returns zero in case of success and a negative error code in
 241 * case of failure.
 242 */
 243static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 244                      struct list_head *nondata, int *min)
 245{
 246        int err;
 247        struct ubifs_scan_node *snod, *tmp;
 248
 249        *min = INT_MAX;
 250
 251        /* Separate data nodes and non-data nodes */
 252        list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 253                ubifs_assert(snod->type == UBIFS_INO_NODE  ||
 254                             snod->type == UBIFS_DATA_NODE ||
 255                             snod->type == UBIFS_DENT_NODE ||
 256                             snod->type == UBIFS_XENT_NODE ||
 257                             snod->type == UBIFS_TRUN_NODE);
 258
 259                if (snod->type != UBIFS_INO_NODE  &&
 260                    snod->type != UBIFS_DATA_NODE &&
 261                    snod->type != UBIFS_DENT_NODE &&
 262                    snod->type != UBIFS_XENT_NODE) {
 263                        /* Probably truncation node, zap it */
 264                        list_del(&snod->list);
 265                        kfree(snod);
 266                        continue;
 267                }
 268
 269                ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
 270                             key_type(c, &snod->key) == UBIFS_INO_KEY  ||
 271                             key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 272                             key_type(c, &snod->key) == UBIFS_XENT_KEY);
 273
 274                err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
 275                                         snod->offs, 0);
 276                if (err < 0)
 277                        return err;
 278
 279                if (!err) {
 280                        /* The node is obsolete, remove it from the list */
 281                        list_del(&snod->list);
 282                        kfree(snod);
 283                        continue;
 284                }
 285
 286                if (snod->len < *min)
 287                        *min = snod->len;
 288
 289                if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
 290                        list_move_tail(&snod->list, nondata);
 291        }
 292
 293        /* Sort data and non-data nodes */
 294        list_sort(c, &sleb->nodes, &data_nodes_cmp);
 295        list_sort(c, nondata, &nondata_nodes_cmp);
 296
 297        err = dbg_check_data_nodes_order(c, &sleb->nodes);
 298        if (err)
 299                return err;
 300        err = dbg_check_nondata_nodes_order(c, nondata);
 301        if (err)
 302                return err;
 303        return 0;
 304}
 305
 306/**
 307 * move_node - move a node.
 308 * @c: UBIFS file-system description object
 309 * @sleb: describes the LEB to move nodes from
 310 * @snod: the mode to move
 311 * @wbuf: write-buffer to move node to
 312 *
 313 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
 314 * destroys @snod. Returns zero in case of success and a negative error code in
 315 * case of failure.
 316 */
 317static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 318                     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
 319{
 320        int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
 321
 322        cond_resched();
 323        err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
 324        if (err)
 325                return err;
 326
 327        err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
 328                                snod->offs, new_lnum, new_offs,
 329                                snod->len);
 330        list_del(&snod->list);
 331        kfree(snod);
 332        return err;
 333}
 334
 335/**
 336 * move_nodes - move nodes.
 337 * @c: UBIFS file-system description object
 338 * @sleb: describes the LEB to move nodes from
 339 *
 340 * This function moves valid nodes from data LEB described by @sleb to the GC
 341 * journal head. This function returns zero in case of success, %-EAGAIN if
 342 * commit is required, and other negative error codes in case of other
 343 * failures.
 344 */
 345static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
 346{
 347        int err, min;
 348        LIST_HEAD(nondata);
 349        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 350
 351        if (wbuf->lnum == -1) {
 352                /*
 353                 * The GC journal head is not set, because it is the first GC
 354                 * invocation since mount.
 355                 */
 356                err = switch_gc_head(c);
 357                if (err)
 358                        return err;
 359        }
 360
 361        err = sort_nodes(c, sleb, &nondata, &min);
 362        if (err)
 363                goto out;
 364
 365        /* Write nodes to their new location. Use the first-fit strategy */
 366        while (1) {
 367                int avail;
 368                struct ubifs_scan_node *snod, *tmp;
 369
 370                /* Move data nodes */
 371                list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 372                        avail = c->leb_size - wbuf->offs - wbuf->used;
 373                        if  (snod->len > avail)
 374                                /*
 375                                 * Do not skip data nodes in order to optimize
 376                                 * bulk-read.
 377                                 */
 378                                break;
 379
 380                        err = move_node(c, sleb, snod, wbuf);
 381                        if (err)
 382                                goto out;
 383                }
 384
 385                /* Move non-data nodes */
 386                list_for_each_entry_safe(snod, tmp, &nondata, list) {
 387                        avail = c->leb_size - wbuf->offs - wbuf->used;
 388                        if (avail < min)
 389                                break;
 390
 391                        if  (snod->len > avail) {
 392                                /*
 393                                 * Keep going only if this is an inode with
 394                                 * some data. Otherwise stop and switch the GC
 395                                 * head. IOW, we assume that data-less inode
 396                                 * nodes and direntry nodes are roughly of the
 397                                 * same size.
 398                                 */
 399                                if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 400                                    snod->len == UBIFS_INO_NODE_SZ)
 401                                        break;
 402                                continue;
 403                        }
 404
 405                        err = move_node(c, sleb, snod, wbuf);
 406                        if (err)
 407                                goto out;
 408                }
 409
 410                if (list_empty(&sleb->nodes) && list_empty(&nondata))
 411                        break;
 412
 413                /*
 414                 * Waste the rest of the space in the LEB and switch to the
 415                 * next LEB.
 416                 */
 417                err = switch_gc_head(c);
 418                if (err)
 419                        goto out;
 420        }
 421
 422        return 0;
 423
 424out:
 425        list_splice_tail(&nondata, &sleb->nodes);
 426        return err;
 427}
 428
 429/**
 430 * gc_sync_wbufs - sync write-buffers for GC.
 431 * @c: UBIFS file-system description object
 432 *
 433 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
 434 * be in a write-buffer instead. That is, a node could be written to a
 435 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
 436 * erased before the write-buffer is sync'd and then there is an unclean
 437 * unmount, then an existing node is lost. To avoid this, we sync all
 438 * write-buffers.
 439 *
 440 * This function returns %0 on success or a negative error code on failure.
 441 */
 442static int gc_sync_wbufs(struct ubifs_info *c)
 443{
 444        int err, i;
 445
 446        for (i = 0; i < c->jhead_cnt; i++) {
 447                if (i == GCHD)
 448                        continue;
 449                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 450                if (err)
 451                        return err;
 452        }
 453        return 0;
 454}
 455
 456/**
 457 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
 458 * @c: UBIFS file-system description object
 459 * @lp: describes the LEB to garbage collect
 460 *
 461 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
 462 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
 463 * required, and other negative error codes in case of failures.
 464 */
 465int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
 466{
 467        struct ubifs_scan_leb *sleb;
 468        struct ubifs_scan_node *snod;
 469        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 470        int err = 0, lnum = lp->lnum;
 471
 472        ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
 473                     c->need_recovery);
 474        ubifs_assert(c->gc_lnum != lnum);
 475        ubifs_assert(wbuf->lnum != lnum);
 476
 477        if (lp->free + lp->dirty == c->leb_size) {
 478                /* Special case - a free LEB  */
 479                dbg_gc("LEB %d is free, return it", lp->lnum);
 480                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 481
 482                if (lp->free != c->leb_size) {
 483                        /*
 484                         * Write buffers must be sync'd before unmapping
 485                         * freeable LEBs, because one of them may contain data
 486                         * which obsoletes something in 'lp->pnum'.
 487                         */
 488                        err = gc_sync_wbufs(c);
 489                        if (err)
 490                                return err;
 491                        err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
 492                                                  0, 0, 0, 0);
 493                        if (err)
 494                                return err;
 495                }
 496                err = ubifs_leb_unmap(c, lp->lnum);
 497                if (err)
 498                        return err;
 499
 500                if (c->gc_lnum == -1) {
 501                        c->gc_lnum = lnum;
 502                        return LEB_RETAINED;
 503                }
 504
 505                return LEB_FREED;
 506        }
 507
 508        /*
 509         * We scan the entire LEB even though we only really need to scan up to
 510         * (c->leb_size - lp->free).
 511         */
 512        sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
 513        if (IS_ERR(sleb))
 514                return PTR_ERR(sleb);
 515
 516        ubifs_assert(!list_empty(&sleb->nodes));
 517        snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 518
 519        if (snod->type == UBIFS_IDX_NODE) {
 520                struct ubifs_gced_idx_leb *idx_gc;
 521
 522                dbg_gc("indexing LEB %d (free %d, dirty %d)",
 523                       lnum, lp->free, lp->dirty);
 524                list_for_each_entry(snod, &sleb->nodes, list) {
 525                        struct ubifs_idx_node *idx = snod->node;
 526                        int level = le16_to_cpu(idx->level);
 527
 528                        ubifs_assert(snod->type == UBIFS_IDX_NODE);
 529                        key_read(c, ubifs_idx_key(c, idx), &snod->key);
 530                        err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
 531                                                   snod->offs);
 532                        if (err)
 533                                goto out;
 534                }
 535
 536                idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 537                if (!idx_gc) {
 538                        err = -ENOMEM;
 539                        goto out;
 540                }
 541
 542                idx_gc->lnum = lnum;
 543                idx_gc->unmap = 0;
 544                list_add(&idx_gc->list, &c->idx_gc);
 545
 546                /*
 547                 * Don't release the LEB until after the next commit, because
 548                 * it may contain data which is needed for recovery. So
 549                 * although we freed this LEB, it will become usable only after
 550                 * the commit.
 551                 */
 552                err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
 553                                          LPROPS_INDEX, 1);
 554                if (err)
 555                        goto out;
 556                err = LEB_FREED_IDX;
 557        } else {
 558                dbg_gc("data LEB %d (free %d, dirty %d)",
 559                       lnum, lp->free, lp->dirty);
 560
 561                err = move_nodes(c, sleb);
 562                if (err)
 563                        goto out_inc_seq;
 564
 565                err = gc_sync_wbufs(c);
 566                if (err)
 567                        goto out_inc_seq;
 568
 569                err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
 570                if (err)
 571                        goto out_inc_seq;
 572
 573                /* Allow for races with TNC */
 574                c->gced_lnum = lnum;
 575                smp_wmb();
 576                c->gc_seq += 1;
 577                smp_wmb();
 578
 579                if (c->gc_lnum == -1) {
 580                        c->gc_lnum = lnum;
 581                        err = LEB_RETAINED;
 582                } else {
 583                        err = ubifs_wbuf_sync_nolock(wbuf);
 584                        if (err)
 585                                goto out;
 586
 587                        err = ubifs_leb_unmap(c, lnum);
 588                        if (err)
 589                                goto out;
 590
 591                        err = LEB_FREED;
 592                }
 593        }
 594
 595out:
 596        ubifs_scan_destroy(sleb);
 597        return err;
 598
 599out_inc_seq:
 600        /* We may have moved at least some nodes so allow for races with TNC */
 601        c->gced_lnum = lnum;
 602        smp_wmb();
 603        c->gc_seq += 1;
 604        smp_wmb();
 605        goto out;
 606}
 607
 608/**
 609 * ubifs_garbage_collect - UBIFS garbage collector.
 610 * @c: UBIFS file-system description object
 611 * @anyway: do GC even if there are free LEBs
 612 *
 613 * This function does out-of-place garbage collection. The return codes are:
 614 *   o positive LEB number if the LEB has been freed and may be used;
 615 *   o %-EAGAIN if the caller has to run commit;
 616 *   o %-ENOSPC if GC failed to make any progress;
 617 *   o other negative error codes in case of other errors.
 618 *
 619 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
 620 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
 621 * commit may be required. But commit cannot be run from inside GC, because the
 622 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
 623 * And this error code means that the caller has to run commit, and re-run GC
 624 * if there is still no free space.
 625 *
 626 * There are many reasons why this function may return %-EAGAIN:
 627 * o the log is full and there is no space to write an LEB reference for
 628 *   @c->gc_lnum;
 629 * o the journal is too large and exceeds size limitations;
 630 * o GC moved indexing LEBs, but they can be used only after the commit;
 631 * o the shrinker fails to find clean znodes to free and requests the commit;
 632 * o etc.
 633 *
 634 * Note, if the file-system is close to be full, this function may return
 635 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
 636 * the function. E.g., this happens if the limits on the journal size are too
 637 * tough and GC writes too much to the journal before an LEB is freed. This
 638 * might also mean that the journal is too large, and the TNC becomes to big,
 639 * so that the shrinker is constantly called, finds not clean znodes to free,
 640 * and requests commit. Well, this may also happen if the journal is all right,
 641 * but another kernel process consumes too much memory. Anyway, infinite
 642 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
 643 */
 644int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
 645{
 646        int i, err, ret, min_space = c->dead_wm;
 647        struct ubifs_lprops lp;
 648        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 649
 650        ubifs_assert_cmt_locked(c);
 651        ubifs_assert(!c->ro_media && !c->ro_mount);
 652
 653        if (ubifs_gc_should_commit(c))
 654                return -EAGAIN;
 655
 656        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 657
 658        if (c->ro_error) {
 659                ret = -EROFS;
 660                goto out_unlock;
 661        }
 662
 663        /* We expect the write-buffer to be empty on entry */
 664        ubifs_assert(!wbuf->used);
 665
 666        for (i = 0; ; i++) {
 667                int space_before, space_after;
 668
 669                cond_resched();
 670
 671                /* Give the commit an opportunity to run */
 672                if (ubifs_gc_should_commit(c)) {
 673                        ret = -EAGAIN;
 674                        break;
 675                }
 676
 677                if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
 678                        /*
 679                         * We've done enough iterations. Indexing LEBs were
 680                         * moved and will be available after the commit.
 681                         */
 682                        dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
 683                        ubifs_commit_required(c);
 684                        ret = -EAGAIN;
 685                        break;
 686                }
 687
 688                if (i > HARD_LEBS_LIMIT) {
 689                        /*
 690                         * We've moved too many LEBs and have not made
 691                         * progress, give up.
 692                         */
 693                        dbg_gc("hard limit, -ENOSPC");
 694                        ret = -ENOSPC;
 695                        break;
 696                }
 697
 698                /*
 699                 * Empty and freeable LEBs can turn up while we waited for
 700                 * the wbuf lock, or while we have been running GC. In that
 701                 * case, we should just return one of those instead of
 702                 * continuing to GC dirty LEBs. Hence we request
 703                 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
 704                 */
 705                ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
 706                if (ret) {
 707                        if (ret == -ENOSPC)
 708                                dbg_gc("no more dirty LEBs");
 709                        break;
 710                }
 711
 712                dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
 713                       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
 714                       min_space);
 715
 716                space_before = c->leb_size - wbuf->offs - wbuf->used;
 717                if (wbuf->lnum == -1)
 718                        space_before = 0;
 719
 720                ret = ubifs_garbage_collect_leb(c, &lp);
 721                if (ret < 0) {
 722                        if (ret == -EAGAIN) {
 723                                /*
 724                                 * This is not error, so we have to return the
 725                                 * LEB to lprops. But if 'ubifs_return_leb()'
 726                                 * fails, its failure code is propagated to the
 727                                 * caller instead of the original '-EAGAIN'.
 728                                 */
 729                                err = ubifs_return_leb(c, lp.lnum);
 730                                if (err)
 731                                        ret = err;
 732                                break;
 733                        }
 734                        goto out;
 735                }
 736
 737                if (ret == LEB_FREED) {
 738                        /* An LEB has been freed and is ready for use */
 739                        dbg_gc("LEB %d freed, return", lp.lnum);
 740                        ret = lp.lnum;
 741                        break;
 742                }
 743
 744                if (ret == LEB_FREED_IDX) {
 745                        /*
 746                         * This was an indexing LEB and it cannot be
 747                         * immediately used. And instead of requesting the
 748                         * commit straight away, we try to garbage collect some
 749                         * more.
 750                         */
 751                        dbg_gc("indexing LEB %d freed, continue", lp.lnum);
 752                        continue;
 753                }
 754
 755                ubifs_assert(ret == LEB_RETAINED);
 756                space_after = c->leb_size - wbuf->offs - wbuf->used;
 757                dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
 758                       space_after - space_before);
 759
 760                if (space_after > space_before) {
 761                        /* GC makes progress, keep working */
 762                        min_space >>= 1;
 763                        if (min_space < c->dead_wm)
 764                                min_space = c->dead_wm;
 765                        continue;
 766                }
 767
 768                dbg_gc("did not make progress");
 769
 770                /*
 771                 * GC moved an LEB bud have not done any progress. This means
 772                 * that the previous GC head LEB contained too few free space
 773                 * and the LEB which was GC'ed contained only large nodes which
 774                 * did not fit that space.
 775                 *
 776                 * We can do 2 things:
 777                 * 1. pick another LEB in a hope it'll contain a small node
 778                 *    which will fit the space we have at the end of current GC
 779                 *    head LEB, but there is no guarantee, so we try this out
 780                 *    unless we have already been working for too long;
 781                 * 2. request an LEB with more dirty space, which will force
 782                 *    'ubifs_find_dirty_leb()' to start scanning the lprops
 783                 *    table, instead of just picking one from the heap
 784                 *    (previously it already picked the dirtiest LEB).
 785                 */
 786                if (i < SOFT_LEBS_LIMIT) {
 787                        dbg_gc("try again");
 788                        continue;
 789                }
 790
 791                min_space <<= 1;
 792                if (min_space > c->dark_wm)
 793                        min_space = c->dark_wm;
 794                dbg_gc("set min. space to %d", min_space);
 795        }
 796
 797        if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
 798                dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
 799                ubifs_commit_required(c);
 800                ret = -EAGAIN;
 801        }
 802
 803        err = ubifs_wbuf_sync_nolock(wbuf);
 804        if (!err)
 805                err = ubifs_leb_unmap(c, c->gc_lnum);
 806        if (err) {
 807                ret = err;
 808                goto out;
 809        }
 810out_unlock:
 811        mutex_unlock(&wbuf->io_mutex);
 812        return ret;
 813
 814out:
 815        ubifs_assert(ret < 0);
 816        ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
 817        ubifs_wbuf_sync_nolock(wbuf);
 818        ubifs_ro_mode(c, ret);
 819        mutex_unlock(&wbuf->io_mutex);
 820        ubifs_return_leb(c, lp.lnum);
 821        return ret;
 822}
 823
 824/**
 825 * ubifs_gc_start_commit - garbage collection at start of commit.
 826 * @c: UBIFS file-system description object
 827 *
 828 * If a LEB has only dirty and free space, then we may safely unmap it and make
 829 * it free.  Note, we cannot do this with indexing LEBs because dirty space may
 830 * correspond index nodes that are required for recovery.  In that case, the
 831 * LEB cannot be unmapped until after the next commit.
 832 *
 833 * This function returns %0 upon success and a negative error code upon failure.
 834 */
 835int ubifs_gc_start_commit(struct ubifs_info *c)
 836{
 837        struct ubifs_gced_idx_leb *idx_gc;
 838        const struct ubifs_lprops *lp;
 839        int err = 0, flags;
 840
 841        ubifs_get_lprops(c);
 842
 843        /*
 844         * Unmap (non-index) freeable LEBs. Note that recovery requires that all
 845         * wbufs are sync'd before this, which is done in 'do_commit()'.
 846         */
 847        while (1) {
 848                lp = ubifs_fast_find_freeable(c);
 849                if (!lp)
 850                        break;
 851                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 852                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 853                err = ubifs_leb_unmap(c, lp->lnum);
 854                if (err)
 855                        goto out;
 856                lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
 857                if (IS_ERR(lp)) {
 858                        err = PTR_ERR(lp);
 859                        goto out;
 860                }
 861                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 862                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 863        }
 864
 865        /* Mark GC'd index LEBs OK to unmap after this commit finishes */
 866        list_for_each_entry(idx_gc, &c->idx_gc, list)
 867                idx_gc->unmap = 1;
 868
 869        /* Record index freeable LEBs for unmapping after commit */
 870        while (1) {
 871                lp = ubifs_fast_find_frdi_idx(c);
 872                if (IS_ERR(lp)) {
 873                        err = PTR_ERR(lp);
 874                        goto out;
 875                }
 876                if (!lp)
 877                        break;
 878                idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 879                if (!idx_gc) {
 880                        err = -ENOMEM;
 881                        goto out;
 882                }
 883                ubifs_assert(!(lp->flags & LPROPS_TAKEN));
 884                ubifs_assert(lp->flags & LPROPS_INDEX);
 885                /* Don't release the LEB until after the next commit */
 886                flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
 887                lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
 888                if (IS_ERR(lp)) {
 889                        err = PTR_ERR(lp);
 890                        kfree(idx_gc);
 891                        goto out;
 892                }
 893                ubifs_assert(lp->flags & LPROPS_TAKEN);
 894                ubifs_assert(!(lp->flags & LPROPS_INDEX));
 895                idx_gc->lnum = lp->lnum;
 896                idx_gc->unmap = 1;
 897                list_add(&idx_gc->list, &c->idx_gc);
 898        }
 899out:
 900        ubifs_release_lprops(c);
 901        return err;
 902}
 903
 904/**
 905 * ubifs_gc_end_commit - garbage collection at end of commit.
 906 * @c: UBIFS file-system description object
 907 *
 908 * This function completes out-of-place garbage collection of index LEBs.
 909 */
 910int ubifs_gc_end_commit(struct ubifs_info *c)
 911{
 912        struct ubifs_gced_idx_leb *idx_gc, *tmp;
 913        struct ubifs_wbuf *wbuf;
 914        int err = 0;
 915
 916        wbuf = &c->jheads[GCHD].wbuf;
 917        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 918        list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
 919                if (idx_gc->unmap) {
 920                        dbg_gc("LEB %d", idx_gc->lnum);
 921                        err = ubifs_leb_unmap(c, idx_gc->lnum);
 922                        if (err)
 923                                goto out;
 924                        err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
 925                                          LPROPS_NC, 0, LPROPS_TAKEN, -1);
 926                        if (err)
 927                                goto out;
 928                        list_del(&idx_gc->list);
 929                        kfree(idx_gc);
 930                }
 931out:
 932        mutex_unlock(&wbuf->io_mutex);
 933        return err;
 934}
 935
 936/**
 937 * ubifs_destroy_idx_gc - destroy idx_gc list.
 938 * @c: UBIFS file-system description object
 939 *
 940 * This function destroys the @c->idx_gc list. It is called when unmounting
 941 * so locks are not needed. Returns zero in case of success and a negative
 942 * error code in case of failure.
 943 */
 944void ubifs_destroy_idx_gc(struct ubifs_info *c)
 945{
 946        while (!list_empty(&c->idx_gc)) {
 947                struct ubifs_gced_idx_leb *idx_gc;
 948
 949                idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
 950                                    list);
 951                c->idx_gc_cnt -= 1;
 952                list_del(&idx_gc->list);
 953                kfree(idx_gc);
 954        }
 955}
 956
 957/**
 958 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
 959 * @c: UBIFS file-system description object
 960 *
 961 * Called during start commit so locks are not needed.
 962 */
 963int ubifs_get_idx_gc_leb(struct ubifs_info *c)
 964{
 965        struct ubifs_gced_idx_leb *idx_gc;
 966        int lnum;
 967
 968        if (list_empty(&c->idx_gc))
 969                return -ENOSPC;
 970        idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
 971        lnum = idx_gc->lnum;
 972        /* c->idx_gc_cnt is updated by the caller when lprops are updated */
 973        list_del(&idx_gc->list);
 974        kfree(idx_gc);
 975        return lnum;
 976}
 977