linux/fs/ubifs/tnc_commit.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/* This file implements TNC functions for committing */
  24
  25#include <linux/random.h>
  26#include "ubifs.h"
  27
  28/**
  29 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
  30 * @c: UBIFS file-system description object
  31 * @idx: buffer in which to place new index node
  32 * @znode: znode from which to make new index node
  33 * @lnum: LEB number where new index node will be written
  34 * @offs: offset where new index node will be written
  35 * @len: length of new index node
  36 */
  37static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
  38                         struct ubifs_znode *znode, int lnum, int offs, int len)
  39{
  40        struct ubifs_znode *zp;
  41        int i, err;
  42
  43        /* Make index node */
  44        idx->ch.node_type = UBIFS_IDX_NODE;
  45        idx->child_cnt = cpu_to_le16(znode->child_cnt);
  46        idx->level = cpu_to_le16(znode->level);
  47        for (i = 0; i < znode->child_cnt; i++) {
  48                struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
  49                struct ubifs_zbranch *zbr = &znode->zbranch[i];
  50
  51                key_write_idx(c, &zbr->key, &br->key);
  52                br->lnum = cpu_to_le32(zbr->lnum);
  53                br->offs = cpu_to_le32(zbr->offs);
  54                br->len = cpu_to_le32(zbr->len);
  55                if (!zbr->lnum || !zbr->len) {
  56                        ubifs_err(c, "bad ref in znode");
  57                        ubifs_dump_znode(c, znode);
  58                        if (zbr->znode)
  59                                ubifs_dump_znode(c, zbr->znode);
  60
  61                        return -EINVAL;
  62                }
  63        }
  64        ubifs_prepare_node(c, idx, len, 0);
  65
  66        znode->lnum = lnum;
  67        znode->offs = offs;
  68        znode->len = len;
  69
  70        err = insert_old_idx_znode(c, znode);
  71
  72        /* Update the parent */
  73        zp = znode->parent;
  74        if (zp) {
  75                struct ubifs_zbranch *zbr;
  76
  77                zbr = &zp->zbranch[znode->iip];
  78                zbr->lnum = lnum;
  79                zbr->offs = offs;
  80                zbr->len = len;
  81        } else {
  82                c->zroot.lnum = lnum;
  83                c->zroot.offs = offs;
  84                c->zroot.len = len;
  85        }
  86        c->calc_idx_sz += ALIGN(len, 8);
  87
  88        atomic_long_dec(&c->dirty_zn_cnt);
  89
  90        ubifs_assert(ubifs_zn_dirty(znode));
  91        ubifs_assert(ubifs_zn_cow(znode));
  92
  93        /*
  94         * Note, unlike 'write_index()' we do not add memory barriers here
  95         * because this function is called with @c->tnc_mutex locked.
  96         */
  97        __clear_bit(DIRTY_ZNODE, &znode->flags);
  98        __clear_bit(COW_ZNODE, &znode->flags);
  99
 100        return err;
 101}
 102
 103/**
 104 * fill_gap - make index nodes in gaps in dirty index LEBs.
 105 * @c: UBIFS file-system description object
 106 * @lnum: LEB number that gap appears in
 107 * @gap_start: offset of start of gap
 108 * @gap_end: offset of end of gap
 109 * @dirt: adds dirty space to this
 110 *
 111 * This function returns the number of index nodes written into the gap.
 112 */
 113static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
 114                    int *dirt)
 115{
 116        int len, gap_remains, gap_pos, written, pad_len;
 117
 118        ubifs_assert((gap_start & 7) == 0);
 119        ubifs_assert((gap_end & 7) == 0);
 120        ubifs_assert(gap_end >= gap_start);
 121
 122        gap_remains = gap_end - gap_start;
 123        if (!gap_remains)
 124                return 0;
 125        gap_pos = gap_start;
 126        written = 0;
 127        while (c->enext) {
 128                len = ubifs_idx_node_sz(c, c->enext->child_cnt);
 129                if (len < gap_remains) {
 130                        struct ubifs_znode *znode = c->enext;
 131                        const int alen = ALIGN(len, 8);
 132                        int err;
 133
 134                        ubifs_assert(alen <= gap_remains);
 135                        err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
 136                                            lnum, gap_pos, len);
 137                        if (err)
 138                                return err;
 139                        gap_remains -= alen;
 140                        gap_pos += alen;
 141                        c->enext = znode->cnext;
 142                        if (c->enext == c->cnext)
 143                                c->enext = NULL;
 144                        written += 1;
 145                } else
 146                        break;
 147        }
 148        if (gap_end == c->leb_size) {
 149                c->ileb_len = ALIGN(gap_pos, c->min_io_size);
 150                /* Pad to end of min_io_size */
 151                pad_len = c->ileb_len - gap_pos;
 152        } else
 153                /* Pad to end of gap */
 154                pad_len = gap_remains;
 155        dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
 156               lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
 157        ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
 158        *dirt += pad_len;
 159        return written;
 160}
 161
 162/**
 163 * find_old_idx - find an index node obsoleted since the last commit start.
 164 * @c: UBIFS file-system description object
 165 * @lnum: LEB number of obsoleted index node
 166 * @offs: offset of obsoleted index node
 167 *
 168 * Returns %1 if found and %0 otherwise.
 169 */
 170static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
 171{
 172        struct ubifs_old_idx *o;
 173        struct rb_node *p;
 174
 175        p = c->old_idx.rb_node;
 176        while (p) {
 177                o = rb_entry(p, struct ubifs_old_idx, rb);
 178                if (lnum < o->lnum)
 179                        p = p->rb_left;
 180                else if (lnum > o->lnum)
 181                        p = p->rb_right;
 182                else if (offs < o->offs)
 183                        p = p->rb_left;
 184                else if (offs > o->offs)
 185                        p = p->rb_right;
 186                else
 187                        return 1;
 188        }
 189        return 0;
 190}
 191
 192/**
 193 * is_idx_node_in_use - determine if an index node can be overwritten.
 194 * @c: UBIFS file-system description object
 195 * @key: key of index node
 196 * @level: index node level
 197 * @lnum: LEB number of index node
 198 * @offs: offset of index node
 199 *
 200 * If @key / @lnum / @offs identify an index node that was not part of the old
 201 * index, then this function returns %0 (obsolete).  Else if the index node was
 202 * part of the old index but is now dirty %1 is returned, else if it is clean %2
 203 * is returned. A negative error code is returned on failure.
 204 */
 205static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
 206                              int level, int lnum, int offs)
 207{
 208        int ret;
 209
 210        ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
 211        if (ret < 0)
 212                return ret; /* Error code */
 213        if (ret == 0)
 214                if (find_old_idx(c, lnum, offs))
 215                        return 1;
 216        return ret;
 217}
 218
 219/**
 220 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
 221 * @c: UBIFS file-system description object
 222 * @p: return LEB number here
 223 *
 224 * This function lays out new index nodes for dirty znodes using in-the-gaps
 225 * method of TNC commit.
 226 * This function merely puts the next znode into the next gap, making no attempt
 227 * to try to maximise the number of znodes that fit.
 228 * This function returns the number of index nodes written into the gaps, or a
 229 * negative error code on failure.
 230 */
 231static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
 232{
 233        struct ubifs_scan_leb *sleb;
 234        struct ubifs_scan_node *snod;
 235        int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
 236
 237        tot_written = 0;
 238        /* Get an index LEB with lots of obsolete index nodes */
 239        lnum = ubifs_find_dirty_idx_leb(c);
 240        if (lnum < 0)
 241                /*
 242                 * There also may be dirt in the index head that could be
 243                 * filled, however we do not check there at present.
 244                 */
 245                return lnum; /* Error code */
 246        *p = lnum;
 247        dbg_gc("LEB %d", lnum);
 248        /*
 249         * Scan the index LEB.  We use the generic scan for this even though
 250         * it is more comprehensive and less efficient than is needed for this
 251         * purpose.
 252         */
 253        sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
 254        c->ileb_len = 0;
 255        if (IS_ERR(sleb))
 256                return PTR_ERR(sleb);
 257        gap_start = 0;
 258        list_for_each_entry(snod, &sleb->nodes, list) {
 259                struct ubifs_idx_node *idx;
 260                int in_use, level;
 261
 262                ubifs_assert(snod->type == UBIFS_IDX_NODE);
 263                idx = snod->node;
 264                key_read(c, ubifs_idx_key(c, idx), &snod->key);
 265                level = le16_to_cpu(idx->level);
 266                /* Determine if the index node is in use (not obsolete) */
 267                in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
 268                                            snod->offs);
 269                if (in_use < 0) {
 270                        ubifs_scan_destroy(sleb);
 271                        return in_use; /* Error code */
 272                }
 273                if (in_use) {
 274                        if (in_use == 1)
 275                                dirt += ALIGN(snod->len, 8);
 276                        /*
 277                         * The obsolete index nodes form gaps that can be
 278                         * overwritten.  This gap has ended because we have
 279                         * found an index node that is still in use
 280                         * i.e. not obsolete
 281                         */
 282                        gap_end = snod->offs;
 283                        /* Try to fill gap */
 284                        written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
 285                        if (written < 0) {
 286                                ubifs_scan_destroy(sleb);
 287                                return written; /* Error code */
 288                        }
 289                        tot_written += written;
 290                        gap_start = ALIGN(snod->offs + snod->len, 8);
 291                }
 292        }
 293        ubifs_scan_destroy(sleb);
 294        c->ileb_len = c->leb_size;
 295        gap_end = c->leb_size;
 296        /* Try to fill gap */
 297        written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
 298        if (written < 0)
 299                return written; /* Error code */
 300        tot_written += written;
 301        if (tot_written == 0) {
 302                struct ubifs_lprops lp;
 303
 304                dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
 305                err = ubifs_read_one_lp(c, lnum, &lp);
 306                if (err)
 307                        return err;
 308                if (lp.free == c->leb_size) {
 309                        /*
 310                         * We must have snatched this LEB from the idx_gc list
 311                         * so we need to correct the free and dirty space.
 312                         */
 313                        err = ubifs_change_one_lp(c, lnum,
 314                                                  c->leb_size - c->ileb_len,
 315                                                  dirt, 0, 0, 0);
 316                        if (err)
 317                                return err;
 318                }
 319                return 0;
 320        }
 321        err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
 322                                  0, 0, 0);
 323        if (err)
 324                return err;
 325        err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
 326        if (err)
 327                return err;
 328        dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
 329        return tot_written;
 330}
 331
 332/**
 333 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
 334 * @c: UBIFS file-system description object
 335 * @cnt: number of znodes to commit
 336 *
 337 * This function returns the number of empty LEBs needed to commit @cnt znodes
 338 * to the current index head.  The number is not exact and may be more than
 339 * needed.
 340 */
 341static int get_leb_cnt(struct ubifs_info *c, int cnt)
 342{
 343        int d;
 344
 345        /* Assume maximum index node size (i.e. overestimate space needed) */
 346        cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
 347        if (cnt < 0)
 348                cnt = 0;
 349        d = c->leb_size / c->max_idx_node_sz;
 350        return DIV_ROUND_UP(cnt, d);
 351}
 352
 353/**
 354 * layout_in_gaps - in-the-gaps method of committing TNC.
 355 * @c: UBIFS file-system description object
 356 * @cnt: number of dirty znodes to commit.
 357 *
 358 * This function lays out new index nodes for dirty znodes using in-the-gaps
 359 * method of TNC commit.
 360 *
 361 * This function returns %0 on success and a negative error code on failure.
 362 */
 363static int layout_in_gaps(struct ubifs_info *c, int cnt)
 364{
 365        int err, leb_needed_cnt, written, *p;
 366
 367        dbg_gc("%d znodes to write", cnt);
 368
 369        c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS);
 370        if (!c->gap_lebs)
 371                return -ENOMEM;
 372
 373        p = c->gap_lebs;
 374        do {
 375                ubifs_assert(p < c->gap_lebs + c->lst.idx_lebs);
 376                written = layout_leb_in_gaps(c, p);
 377                if (written < 0) {
 378                        err = written;
 379                        if (err != -ENOSPC) {
 380                                kfree(c->gap_lebs);
 381                                c->gap_lebs = NULL;
 382                                return err;
 383                        }
 384                        if (!dbg_is_chk_index(c)) {
 385                                /*
 386                                 * Do not print scary warnings if the debugging
 387                                 * option which forces in-the-gaps is enabled.
 388                                 */
 389                                ubifs_warn(c, "out of space");
 390                                ubifs_dump_budg(c, &c->bi);
 391                                ubifs_dump_lprops(c);
 392                        }
 393                        /* Try to commit anyway */
 394                        break;
 395                }
 396                p++;
 397                cnt -= written;
 398                leb_needed_cnt = get_leb_cnt(c, cnt);
 399                dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
 400                       leb_needed_cnt, c->ileb_cnt);
 401        } while (leb_needed_cnt > c->ileb_cnt);
 402
 403        *p = -1;
 404        return 0;
 405}
 406
 407/**
 408 * layout_in_empty_space - layout index nodes in empty space.
 409 * @c: UBIFS file-system description object
 410 *
 411 * This function lays out new index nodes for dirty znodes using empty LEBs.
 412 *
 413 * This function returns %0 on success and a negative error code on failure.
 414 */
 415static int layout_in_empty_space(struct ubifs_info *c)
 416{
 417        struct ubifs_znode *znode, *cnext, *zp;
 418        int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
 419        int wlen, blen, err;
 420
 421        cnext = c->enext;
 422        if (!cnext)
 423                return 0;
 424
 425        lnum = c->ihead_lnum;
 426        buf_offs = c->ihead_offs;
 427
 428        buf_len = ubifs_idx_node_sz(c, c->fanout);
 429        buf_len = ALIGN(buf_len, c->min_io_size);
 430        used = 0;
 431        avail = buf_len;
 432
 433        /* Ensure there is enough room for first write */
 434        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 435        if (buf_offs + next_len > c->leb_size)
 436                lnum = -1;
 437
 438        while (1) {
 439                znode = cnext;
 440
 441                len = ubifs_idx_node_sz(c, znode->child_cnt);
 442
 443                /* Determine the index node position */
 444                if (lnum == -1) {
 445                        if (c->ileb_nxt >= c->ileb_cnt) {
 446                                ubifs_err(c, "out of space");
 447                                return -ENOSPC;
 448                        }
 449                        lnum = c->ilebs[c->ileb_nxt++];
 450                        buf_offs = 0;
 451                        used = 0;
 452                        avail = buf_len;
 453                }
 454
 455                offs = buf_offs + used;
 456
 457                znode->lnum = lnum;
 458                znode->offs = offs;
 459                znode->len = len;
 460
 461                /* Update the parent */
 462                zp = znode->parent;
 463                if (zp) {
 464                        struct ubifs_zbranch *zbr;
 465                        int i;
 466
 467                        i = znode->iip;
 468                        zbr = &zp->zbranch[i];
 469                        zbr->lnum = lnum;
 470                        zbr->offs = offs;
 471                        zbr->len = len;
 472                } else {
 473                        c->zroot.lnum = lnum;
 474                        c->zroot.offs = offs;
 475                        c->zroot.len = len;
 476                }
 477                c->calc_idx_sz += ALIGN(len, 8);
 478
 479                /*
 480                 * Once lprops is updated, we can decrease the dirty znode count
 481                 * but it is easier to just do it here.
 482                 */
 483                atomic_long_dec(&c->dirty_zn_cnt);
 484
 485                /*
 486                 * Calculate the next index node length to see if there is
 487                 * enough room for it
 488                 */
 489                cnext = znode->cnext;
 490                if (cnext == c->cnext)
 491                        next_len = 0;
 492                else
 493                        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 494
 495                /* Update buffer positions */
 496                wlen = used + len;
 497                used += ALIGN(len, 8);
 498                avail -= ALIGN(len, 8);
 499
 500                if (next_len != 0 &&
 501                    buf_offs + used + next_len <= c->leb_size &&
 502                    avail > 0)
 503                        continue;
 504
 505                if (avail <= 0 && next_len &&
 506                    buf_offs + used + next_len <= c->leb_size)
 507                        blen = buf_len;
 508                else
 509                        blen = ALIGN(wlen, c->min_io_size);
 510
 511                /* The buffer is full or there are no more znodes to do */
 512                buf_offs += blen;
 513                if (next_len) {
 514                        if (buf_offs + next_len > c->leb_size) {
 515                                err = ubifs_update_one_lp(c, lnum,
 516                                        c->leb_size - buf_offs, blen - used,
 517                                        0, 0);
 518                                if (err)
 519                                        return err;
 520                                lnum = -1;
 521                        }
 522                        used -= blen;
 523                        if (used < 0)
 524                                used = 0;
 525                        avail = buf_len - used;
 526                        continue;
 527                }
 528                err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
 529                                          blen - used, 0, 0);
 530                if (err)
 531                        return err;
 532                break;
 533        }
 534
 535        c->dbg->new_ihead_lnum = lnum;
 536        c->dbg->new_ihead_offs = buf_offs;
 537
 538        return 0;
 539}
 540
 541/**
 542 * layout_commit - determine positions of index nodes to commit.
 543 * @c: UBIFS file-system description object
 544 * @no_space: indicates that insufficient empty LEBs were allocated
 545 * @cnt: number of znodes to commit
 546 *
 547 * Calculate and update the positions of index nodes to commit.  If there were
 548 * an insufficient number of empty LEBs allocated, then index nodes are placed
 549 * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
 550 * this purpose, an obsolete index node is one that was not in the index as at
 551 * the end of the last commit.  To write "in-the-gaps" requires that those index
 552 * LEBs are updated atomically in-place.
 553 */
 554static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
 555{
 556        int err;
 557
 558        if (no_space) {
 559                err = layout_in_gaps(c, cnt);
 560                if (err)
 561                        return err;
 562        }
 563        err = layout_in_empty_space(c);
 564        return err;
 565}
 566
 567/**
 568 * find_first_dirty - find first dirty znode.
 569 * @znode: znode to begin searching from
 570 */
 571static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
 572{
 573        int i, cont;
 574
 575        if (!znode)
 576                return NULL;
 577
 578        while (1) {
 579                if (znode->level == 0) {
 580                        if (ubifs_zn_dirty(znode))
 581                                return znode;
 582                        return NULL;
 583                }
 584                cont = 0;
 585                for (i = 0; i < znode->child_cnt; i++) {
 586                        struct ubifs_zbranch *zbr = &znode->zbranch[i];
 587
 588                        if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
 589                                znode = zbr->znode;
 590                                cont = 1;
 591                                break;
 592                        }
 593                }
 594                if (!cont) {
 595                        if (ubifs_zn_dirty(znode))
 596                                return znode;
 597                        return NULL;
 598                }
 599        }
 600}
 601
 602/**
 603 * find_next_dirty - find next dirty znode.
 604 * @znode: znode to begin searching from
 605 */
 606static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
 607{
 608        int n = znode->iip + 1;
 609
 610        znode = znode->parent;
 611        if (!znode)
 612                return NULL;
 613        for (; n < znode->child_cnt; n++) {
 614                struct ubifs_zbranch *zbr = &znode->zbranch[n];
 615
 616                if (zbr->znode && ubifs_zn_dirty(zbr->znode))
 617                        return find_first_dirty(zbr->znode);
 618        }
 619        return znode;
 620}
 621
 622/**
 623 * get_znodes_to_commit - create list of dirty znodes to commit.
 624 * @c: UBIFS file-system description object
 625 *
 626 * This function returns the number of znodes to commit.
 627 */
 628static int get_znodes_to_commit(struct ubifs_info *c)
 629{
 630        struct ubifs_znode *znode, *cnext;
 631        int cnt = 0;
 632
 633        c->cnext = find_first_dirty(c->zroot.znode);
 634        znode = c->enext = c->cnext;
 635        if (!znode) {
 636                dbg_cmt("no znodes to commit");
 637                return 0;
 638        }
 639        cnt += 1;
 640        while (1) {
 641                ubifs_assert(!ubifs_zn_cow(znode));
 642                __set_bit(COW_ZNODE, &znode->flags);
 643                znode->alt = 0;
 644                cnext = find_next_dirty(znode);
 645                if (!cnext) {
 646                        znode->cnext = c->cnext;
 647                        break;
 648                }
 649                znode->cnext = cnext;
 650                znode = cnext;
 651                cnt += 1;
 652        }
 653        dbg_cmt("committing %d znodes", cnt);
 654        ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt));
 655        return cnt;
 656}
 657
 658/**
 659 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
 660 * @c: UBIFS file-system description object
 661 * @cnt: number of znodes to commit
 662 *
 663 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
 664 * empty LEBs.  %0 is returned on success, otherwise a negative error code
 665 * is returned.
 666 */
 667static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
 668{
 669        int i, leb_cnt, lnum;
 670
 671        c->ileb_cnt = 0;
 672        c->ileb_nxt = 0;
 673        leb_cnt = get_leb_cnt(c, cnt);
 674        dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
 675        if (!leb_cnt)
 676                return 0;
 677        c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS);
 678        if (!c->ilebs)
 679                return -ENOMEM;
 680        for (i = 0; i < leb_cnt; i++) {
 681                lnum = ubifs_find_free_leb_for_idx(c);
 682                if (lnum < 0)
 683                        return lnum;
 684                c->ilebs[c->ileb_cnt++] = lnum;
 685                dbg_cmt("LEB %d", lnum);
 686        }
 687        if (dbg_is_chk_index(c) && !(prandom_u32() & 7))
 688                return -ENOSPC;
 689        return 0;
 690}
 691
 692/**
 693 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
 694 * @c: UBIFS file-system description object
 695 *
 696 * It is possible that we allocate more empty LEBs for the commit than we need.
 697 * This functions frees the surplus.
 698 *
 699 * This function returns %0 on success and a negative error code on failure.
 700 */
 701static int free_unused_idx_lebs(struct ubifs_info *c)
 702{
 703        int i, err = 0, lnum, er;
 704
 705        for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
 706                lnum = c->ilebs[i];
 707                dbg_cmt("LEB %d", lnum);
 708                er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
 709                                         LPROPS_INDEX | LPROPS_TAKEN, 0);
 710                if (!err)
 711                        err = er;
 712        }
 713        return err;
 714}
 715
 716/**
 717 * free_idx_lebs - free unused LEBs after commit end.
 718 * @c: UBIFS file-system description object
 719 *
 720 * This function returns %0 on success and a negative error code on failure.
 721 */
 722static int free_idx_lebs(struct ubifs_info *c)
 723{
 724        int err;
 725
 726        err = free_unused_idx_lebs(c);
 727        kfree(c->ilebs);
 728        c->ilebs = NULL;
 729        return err;
 730}
 731
 732/**
 733 * ubifs_tnc_start_commit - start TNC commit.
 734 * @c: UBIFS file-system description object
 735 * @zroot: new index root position is returned here
 736 *
 737 * This function prepares the list of indexing nodes to commit and lays out
 738 * their positions on flash. If there is not enough free space it uses the
 739 * in-gap commit method. Returns zero in case of success and a negative error
 740 * code in case of failure.
 741 */
 742int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
 743{
 744        int err = 0, cnt;
 745
 746        mutex_lock(&c->tnc_mutex);
 747        err = dbg_check_tnc(c, 1);
 748        if (err)
 749                goto out;
 750        cnt = get_znodes_to_commit(c);
 751        if (cnt != 0) {
 752                int no_space = 0;
 753
 754                err = alloc_idx_lebs(c, cnt);
 755                if (err == -ENOSPC)
 756                        no_space = 1;
 757                else if (err)
 758                        goto out_free;
 759                err = layout_commit(c, no_space, cnt);
 760                if (err)
 761                        goto out_free;
 762                ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
 763                err = free_unused_idx_lebs(c);
 764                if (err)
 765                        goto out;
 766        }
 767        destroy_old_idx(c);
 768        memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
 769
 770        err = ubifs_save_dirty_idx_lnums(c);
 771        if (err)
 772                goto out;
 773
 774        spin_lock(&c->space_lock);
 775        /*
 776         * Although we have not finished committing yet, update size of the
 777         * committed index ('c->bi.old_idx_sz') and zero out the index growth
 778         * budget. It is OK to do this now, because we've reserved all the
 779         * space which is needed to commit the index, and it is save for the
 780         * budgeting subsystem to assume the index is already committed,
 781         * even though it is not.
 782         */
 783        ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
 784        c->bi.old_idx_sz = c->calc_idx_sz;
 785        c->bi.uncommitted_idx = 0;
 786        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 787        spin_unlock(&c->space_lock);
 788        mutex_unlock(&c->tnc_mutex);
 789
 790        dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
 791        dbg_cmt("size of index %llu", c->calc_idx_sz);
 792        return err;
 793
 794out_free:
 795        free_idx_lebs(c);
 796out:
 797        mutex_unlock(&c->tnc_mutex);
 798        return err;
 799}
 800
 801/**
 802 * write_index - write index nodes.
 803 * @c: UBIFS file-system description object
 804 *
 805 * This function writes the index nodes whose positions were laid out in the
 806 * layout_in_empty_space function.
 807 */
 808static int write_index(struct ubifs_info *c)
 809{
 810        struct ubifs_idx_node *idx;
 811        struct ubifs_znode *znode, *cnext;
 812        int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
 813        int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
 814
 815        cnext = c->enext;
 816        if (!cnext)
 817                return 0;
 818
 819        /*
 820         * Always write index nodes to the index head so that index nodes and
 821         * other types of nodes are never mixed in the same erase block.
 822         */
 823        lnum = c->ihead_lnum;
 824        buf_offs = c->ihead_offs;
 825
 826        /* Allocate commit buffer */
 827        buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
 828        used = 0;
 829        avail = buf_len;
 830
 831        /* Ensure there is enough room for first write */
 832        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 833        if (buf_offs + next_len > c->leb_size) {
 834                err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
 835                                          LPROPS_TAKEN);
 836                if (err)
 837                        return err;
 838                lnum = -1;
 839        }
 840
 841        while (1) {
 842                cond_resched();
 843
 844                znode = cnext;
 845                idx = c->cbuf + used;
 846
 847                /* Make index node */
 848                idx->ch.node_type = UBIFS_IDX_NODE;
 849                idx->child_cnt = cpu_to_le16(znode->child_cnt);
 850                idx->level = cpu_to_le16(znode->level);
 851                for (i = 0; i < znode->child_cnt; i++) {
 852                        struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
 853                        struct ubifs_zbranch *zbr = &znode->zbranch[i];
 854
 855                        key_write_idx(c, &zbr->key, &br->key);
 856                        br->lnum = cpu_to_le32(zbr->lnum);
 857                        br->offs = cpu_to_le32(zbr->offs);
 858                        br->len = cpu_to_le32(zbr->len);
 859                        if (!zbr->lnum || !zbr->len) {
 860                                ubifs_err(c, "bad ref in znode");
 861                                ubifs_dump_znode(c, znode);
 862                                if (zbr->znode)
 863                                        ubifs_dump_znode(c, zbr->znode);
 864
 865                                return -EINVAL;
 866                        }
 867                }
 868                len = ubifs_idx_node_sz(c, znode->child_cnt);
 869                ubifs_prepare_node(c, idx, len, 0);
 870
 871                /* Determine the index node position */
 872                if (lnum == -1) {
 873                        lnum = c->ilebs[lnum_pos++];
 874                        buf_offs = 0;
 875                        used = 0;
 876                        avail = buf_len;
 877                }
 878                offs = buf_offs + used;
 879
 880                if (lnum != znode->lnum || offs != znode->offs ||
 881                    len != znode->len) {
 882                        ubifs_err(c, "inconsistent znode posn");
 883                        return -EINVAL;
 884                }
 885
 886                /* Grab some stuff from znode while we still can */
 887                cnext = znode->cnext;
 888
 889                ubifs_assert(ubifs_zn_dirty(znode));
 890                ubifs_assert(ubifs_zn_cow(znode));
 891
 892                /*
 893                 * It is important that other threads should see %DIRTY_ZNODE
 894                 * flag cleared before %COW_ZNODE. Specifically, it matters in
 895                 * the 'dirty_cow_znode()' function. This is the reason for the
 896                 * first barrier. Also, we want the bit changes to be seen to
 897                 * other threads ASAP, to avoid unnecesarry copying, which is
 898                 * the reason for the second barrier.
 899                 */
 900                clear_bit(DIRTY_ZNODE, &znode->flags);
 901                smp_mb__before_atomic();
 902                clear_bit(COW_ZNODE, &znode->flags);
 903                smp_mb__after_atomic();
 904
 905                /*
 906                 * We have marked the znode as clean but have not updated the
 907                 * @c->clean_zn_cnt counter. If this znode becomes dirty again
 908                 * before 'free_obsolete_znodes()' is called, then
 909                 * @c->clean_zn_cnt will be decremented before it gets
 910                 * incremented (resulting in 2 decrements for the same znode).
 911                 * This means that @c->clean_zn_cnt may become negative for a
 912                 * while.
 913                 *
 914                 * Q: why we cannot increment @c->clean_zn_cnt?
 915                 * A: because we do not have the @c->tnc_mutex locked, and the
 916                 *    following code would be racy and buggy:
 917                 *
 918                 *    if (!ubifs_zn_obsolete(znode)) {
 919                 *            atomic_long_inc(&c->clean_zn_cnt);
 920                 *            atomic_long_inc(&ubifs_clean_zn_cnt);
 921                 *    }
 922                 *
 923                 *    Thus, we just delay the @c->clean_zn_cnt update until we
 924                 *    have the mutex locked.
 925                 */
 926
 927                /* Do not access znode from this point on */
 928
 929                /* Update buffer positions */
 930                wlen = used + len;
 931                used += ALIGN(len, 8);
 932                avail -= ALIGN(len, 8);
 933
 934                /*
 935                 * Calculate the next index node length to see if there is
 936                 * enough room for it
 937                 */
 938                if (cnext == c->cnext)
 939                        next_len = 0;
 940                else
 941                        next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
 942
 943                nxt_offs = buf_offs + used + next_len;
 944                if (next_len && nxt_offs <= c->leb_size) {
 945                        if (avail > 0)
 946                                continue;
 947                        else
 948                                blen = buf_len;
 949                } else {
 950                        wlen = ALIGN(wlen, 8);
 951                        blen = ALIGN(wlen, c->min_io_size);
 952                        ubifs_pad(c, c->cbuf + wlen, blen - wlen);
 953                }
 954
 955                /* The buffer is full or there are no more znodes to do */
 956                err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
 957                if (err)
 958                        return err;
 959                buf_offs += blen;
 960                if (next_len) {
 961                        if (nxt_offs > c->leb_size) {
 962                                err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
 963                                                          0, LPROPS_TAKEN);
 964                                if (err)
 965                                        return err;
 966                                lnum = -1;
 967                        }
 968                        used -= blen;
 969                        if (used < 0)
 970                                used = 0;
 971                        avail = buf_len - used;
 972                        memmove(c->cbuf, c->cbuf + blen, used);
 973                        continue;
 974                }
 975                break;
 976        }
 977
 978        if (lnum != c->dbg->new_ihead_lnum ||
 979            buf_offs != c->dbg->new_ihead_offs) {
 980                ubifs_err(c, "inconsistent ihead");
 981                return -EINVAL;
 982        }
 983
 984        c->ihead_lnum = lnum;
 985        c->ihead_offs = buf_offs;
 986
 987        return 0;
 988}
 989
 990/**
 991 * free_obsolete_znodes - free obsolete znodes.
 992 * @c: UBIFS file-system description object
 993 *
 994 * At the end of commit end, obsolete znodes are freed.
 995 */
 996static void free_obsolete_znodes(struct ubifs_info *c)
 997{
 998        struct ubifs_znode *znode, *cnext;
 999
1000        cnext = c->cnext;
1001        do {
1002                znode = cnext;
1003                cnext = znode->cnext;
1004                if (ubifs_zn_obsolete(znode))
1005                        kfree(znode);
1006                else {
1007                        znode->cnext = NULL;
1008                        atomic_long_inc(&c->clean_zn_cnt);
1009                        atomic_long_inc(&ubifs_clean_zn_cnt);
1010                }
1011        } while (cnext != c->cnext);
1012}
1013
1014/**
1015 * return_gap_lebs - return LEBs used by the in-gap commit method.
1016 * @c: UBIFS file-system description object
1017 *
1018 * This function clears the "taken" flag for the LEBs which were used by the
1019 * "commit in-the-gaps" method.
1020 */
1021static int return_gap_lebs(struct ubifs_info *c)
1022{
1023        int *p, err;
1024
1025        if (!c->gap_lebs)
1026                return 0;
1027
1028        dbg_cmt("");
1029        for (p = c->gap_lebs; *p != -1; p++) {
1030                err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1031                                          LPROPS_TAKEN, 0);
1032                if (err)
1033                        return err;
1034        }
1035
1036        kfree(c->gap_lebs);
1037        c->gap_lebs = NULL;
1038        return 0;
1039}
1040
1041/**
1042 * ubifs_tnc_end_commit - update the TNC for commit end.
1043 * @c: UBIFS file-system description object
1044 *
1045 * Write the dirty znodes.
1046 */
1047int ubifs_tnc_end_commit(struct ubifs_info *c)
1048{
1049        int err;
1050
1051        if (!c->cnext)
1052                return 0;
1053
1054        err = return_gap_lebs(c);
1055        if (err)
1056                return err;
1057
1058        err = write_index(c);
1059        if (err)
1060                return err;
1061
1062        mutex_lock(&c->tnc_mutex);
1063
1064        dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1065
1066        free_obsolete_znodes(c);
1067
1068        c->cnext = NULL;
1069        kfree(c->ilebs);
1070        c->ilebs = NULL;
1071
1072        mutex_unlock(&c->tnc_mutex);
1073
1074        return 0;
1075}
1076