linux/fs/xfs/xfs_extfree_item.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_bit.h"
  24#include "xfs_mount.h"
  25#include "xfs_trans.h"
  26#include "xfs_trans_priv.h"
  27#include "xfs_buf_item.h"
  28#include "xfs_extfree_item.h"
  29#include "xfs_log.h"
  30#include "xfs_btree.h"
  31#include "xfs_rmap.h"
  32
  33
  34kmem_zone_t     *xfs_efi_zone;
  35kmem_zone_t     *xfs_efd_zone;
  36
  37static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
  38{
  39        return container_of(lip, struct xfs_efi_log_item, efi_item);
  40}
  41
  42void
  43xfs_efi_item_free(
  44        struct xfs_efi_log_item *efip)
  45{
  46        kmem_free(efip->efi_item.li_lv_shadow);
  47        if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
  48                kmem_free(efip);
  49        else
  50                kmem_zone_free(xfs_efi_zone, efip);
  51}
  52
  53/*
  54 * This returns the number of iovecs needed to log the given efi item.
  55 * We only need 1 iovec for an efi item.  It just logs the efi_log_format
  56 * structure.
  57 */
  58static inline int
  59xfs_efi_item_sizeof(
  60        struct xfs_efi_log_item *efip)
  61{
  62        return sizeof(struct xfs_efi_log_format) +
  63               (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
  64}
  65
  66STATIC void
  67xfs_efi_item_size(
  68        struct xfs_log_item     *lip,
  69        int                     *nvecs,
  70        int                     *nbytes)
  71{
  72        *nvecs += 1;
  73        *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
  74}
  75
  76/*
  77 * This is called to fill in the vector of log iovecs for the
  78 * given efi log item. We use only 1 iovec, and we point that
  79 * at the efi_log_format structure embedded in the efi item.
  80 * It is at this point that we assert that all of the extent
  81 * slots in the efi item have been filled.
  82 */
  83STATIC void
  84xfs_efi_item_format(
  85        struct xfs_log_item     *lip,
  86        struct xfs_log_vec      *lv)
  87{
  88        struct xfs_efi_log_item *efip = EFI_ITEM(lip);
  89        struct xfs_log_iovec    *vecp = NULL;
  90
  91        ASSERT(atomic_read(&efip->efi_next_extent) ==
  92                                efip->efi_format.efi_nextents);
  93
  94        efip->efi_format.efi_type = XFS_LI_EFI;
  95        efip->efi_format.efi_size = 1;
  96
  97        xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
  98                        &efip->efi_format,
  99                        xfs_efi_item_sizeof(efip));
 100}
 101
 102
 103/*
 104 * Pinning has no meaning for an efi item, so just return.
 105 */
 106STATIC void
 107xfs_efi_item_pin(
 108        struct xfs_log_item     *lip)
 109{
 110}
 111
 112/*
 113 * The unpin operation is the last place an EFI is manipulated in the log. It is
 114 * either inserted in the AIL or aborted in the event of a log I/O error. In
 115 * either case, the EFI transaction has been successfully committed to make it
 116 * this far. Therefore, we expect whoever committed the EFI to either construct
 117 * and commit the EFD or drop the EFD's reference in the event of error. Simply
 118 * drop the log's EFI reference now that the log is done with it.
 119 */
 120STATIC void
 121xfs_efi_item_unpin(
 122        struct xfs_log_item     *lip,
 123        int                     remove)
 124{
 125        struct xfs_efi_log_item *efip = EFI_ITEM(lip);
 126        xfs_efi_release(efip);
 127}
 128
 129/*
 130 * Efi items have no locking or pushing.  However, since EFIs are pulled from
 131 * the AIL when their corresponding EFDs are committed to disk, their situation
 132 * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
 133 * will eventually flush the log.  This should help in getting the EFI out of
 134 * the AIL.
 135 */
 136STATIC uint
 137xfs_efi_item_push(
 138        struct xfs_log_item     *lip,
 139        struct list_head        *buffer_list)
 140{
 141        return XFS_ITEM_PINNED;
 142}
 143
 144/*
 145 * The EFI has been either committed or aborted if the transaction has been
 146 * cancelled. If the transaction was cancelled, an EFD isn't going to be
 147 * constructed and thus we free the EFI here directly.
 148 */
 149STATIC void
 150xfs_efi_item_unlock(
 151        struct xfs_log_item     *lip)
 152{
 153        if (lip->li_flags & XFS_LI_ABORTED)
 154                xfs_efi_item_free(EFI_ITEM(lip));
 155}
 156
 157/*
 158 * The EFI is logged only once and cannot be moved in the log, so simply return
 159 * the lsn at which it's been logged.
 160 */
 161STATIC xfs_lsn_t
 162xfs_efi_item_committed(
 163        struct xfs_log_item     *lip,
 164        xfs_lsn_t               lsn)
 165{
 166        return lsn;
 167}
 168
 169/*
 170 * The EFI dependency tracking op doesn't do squat.  It can't because
 171 * it doesn't know where the free extent is coming from.  The dependency
 172 * tracking has to be handled by the "enclosing" metadata object.  For
 173 * example, for inodes, the inode is locked throughout the extent freeing
 174 * so the dependency should be recorded there.
 175 */
 176STATIC void
 177xfs_efi_item_committing(
 178        struct xfs_log_item     *lip,
 179        xfs_lsn_t               lsn)
 180{
 181}
 182
 183/*
 184 * This is the ops vector shared by all efi log items.
 185 */
 186static const struct xfs_item_ops xfs_efi_item_ops = {
 187        .iop_size       = xfs_efi_item_size,
 188        .iop_format     = xfs_efi_item_format,
 189        .iop_pin        = xfs_efi_item_pin,
 190        .iop_unpin      = xfs_efi_item_unpin,
 191        .iop_unlock     = xfs_efi_item_unlock,
 192        .iop_committed  = xfs_efi_item_committed,
 193        .iop_push       = xfs_efi_item_push,
 194        .iop_committing = xfs_efi_item_committing
 195};
 196
 197
 198/*
 199 * Allocate and initialize an efi item with the given number of extents.
 200 */
 201struct xfs_efi_log_item *
 202xfs_efi_init(
 203        struct xfs_mount        *mp,
 204        uint                    nextents)
 205
 206{
 207        struct xfs_efi_log_item *efip;
 208        uint                    size;
 209
 210        ASSERT(nextents > 0);
 211        if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
 212                size = (uint)(sizeof(xfs_efi_log_item_t) +
 213                        ((nextents - 1) * sizeof(xfs_extent_t)));
 214                efip = kmem_zalloc(size, KM_SLEEP);
 215        } else {
 216                efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
 217        }
 218
 219        xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
 220        efip->efi_format.efi_nextents = nextents;
 221        efip->efi_format.efi_id = (uintptr_t)(void *)efip;
 222        atomic_set(&efip->efi_next_extent, 0);
 223        atomic_set(&efip->efi_refcount, 2);
 224
 225        return efip;
 226}
 227
 228/*
 229 * Copy an EFI format buffer from the given buf, and into the destination
 230 * EFI format structure.
 231 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
 232 * one of which will be the native format for this kernel.
 233 * It will handle the conversion of formats if necessary.
 234 */
 235int
 236xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
 237{
 238        xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
 239        uint i;
 240        uint len = sizeof(xfs_efi_log_format_t) + 
 241                (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);  
 242        uint len32 = sizeof(xfs_efi_log_format_32_t) + 
 243                (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);  
 244        uint len64 = sizeof(xfs_efi_log_format_64_t) + 
 245                (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);  
 246
 247        if (buf->i_len == len) {
 248                memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
 249                return 0;
 250        } else if (buf->i_len == len32) {
 251                xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
 252
 253                dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
 254                dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
 255                dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
 256                dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
 257                for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 258                        dst_efi_fmt->efi_extents[i].ext_start =
 259                                src_efi_fmt_32->efi_extents[i].ext_start;
 260                        dst_efi_fmt->efi_extents[i].ext_len =
 261                                src_efi_fmt_32->efi_extents[i].ext_len;
 262                }
 263                return 0;
 264        } else if (buf->i_len == len64) {
 265                xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
 266
 267                dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
 268                dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
 269                dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
 270                dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
 271                for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 272                        dst_efi_fmt->efi_extents[i].ext_start =
 273                                src_efi_fmt_64->efi_extents[i].ext_start;
 274                        dst_efi_fmt->efi_extents[i].ext_len =
 275                                src_efi_fmt_64->efi_extents[i].ext_len;
 276                }
 277                return 0;
 278        }
 279        return -EFSCORRUPTED;
 280}
 281
 282/*
 283 * Freeing the efi requires that we remove it from the AIL if it has already
 284 * been placed there. However, the EFI may not yet have been placed in the AIL
 285 * when called by xfs_efi_release() from EFD processing due to the ordering of
 286 * committed vs unpin operations in bulk insert operations. Hence the reference
 287 * count to ensure only the last caller frees the EFI.
 288 */
 289void
 290xfs_efi_release(
 291        struct xfs_efi_log_item *efip)
 292{
 293        ASSERT(atomic_read(&efip->efi_refcount) > 0);
 294        if (atomic_dec_and_test(&efip->efi_refcount)) {
 295                xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
 296                xfs_efi_item_free(efip);
 297        }
 298}
 299
 300static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
 301{
 302        return container_of(lip, struct xfs_efd_log_item, efd_item);
 303}
 304
 305STATIC void
 306xfs_efd_item_free(struct xfs_efd_log_item *efdp)
 307{
 308        kmem_free(efdp->efd_item.li_lv_shadow);
 309        if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
 310                kmem_free(efdp);
 311        else
 312                kmem_zone_free(xfs_efd_zone, efdp);
 313}
 314
 315/*
 316 * This returns the number of iovecs needed to log the given efd item.
 317 * We only need 1 iovec for an efd item.  It just logs the efd_log_format
 318 * structure.
 319 */
 320static inline int
 321xfs_efd_item_sizeof(
 322        struct xfs_efd_log_item *efdp)
 323{
 324        return sizeof(xfs_efd_log_format_t) +
 325               (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
 326}
 327
 328STATIC void
 329xfs_efd_item_size(
 330        struct xfs_log_item     *lip,
 331        int                     *nvecs,
 332        int                     *nbytes)
 333{
 334        *nvecs += 1;
 335        *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
 336}
 337
 338/*
 339 * This is called to fill in the vector of log iovecs for the
 340 * given efd log item. We use only 1 iovec, and we point that
 341 * at the efd_log_format structure embedded in the efd item.
 342 * It is at this point that we assert that all of the extent
 343 * slots in the efd item have been filled.
 344 */
 345STATIC void
 346xfs_efd_item_format(
 347        struct xfs_log_item     *lip,
 348        struct xfs_log_vec      *lv)
 349{
 350        struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
 351        struct xfs_log_iovec    *vecp = NULL;
 352
 353        ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 354
 355        efdp->efd_format.efd_type = XFS_LI_EFD;
 356        efdp->efd_format.efd_size = 1;
 357
 358        xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
 359                        &efdp->efd_format,
 360                        xfs_efd_item_sizeof(efdp));
 361}
 362
 363/*
 364 * Pinning has no meaning for an efd item, so just return.
 365 */
 366STATIC void
 367xfs_efd_item_pin(
 368        struct xfs_log_item     *lip)
 369{
 370}
 371
 372/*
 373 * Since pinning has no meaning for an efd item, unpinning does
 374 * not either.
 375 */
 376STATIC void
 377xfs_efd_item_unpin(
 378        struct xfs_log_item     *lip,
 379        int                     remove)
 380{
 381}
 382
 383/*
 384 * There isn't much you can do to push on an efd item.  It is simply stuck
 385 * waiting for the log to be flushed to disk.
 386 */
 387STATIC uint
 388xfs_efd_item_push(
 389        struct xfs_log_item     *lip,
 390        struct list_head        *buffer_list)
 391{
 392        return XFS_ITEM_PINNED;
 393}
 394
 395/*
 396 * The EFD is either committed or aborted if the transaction is cancelled. If
 397 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
 398 */
 399STATIC void
 400xfs_efd_item_unlock(
 401        struct xfs_log_item     *lip)
 402{
 403        struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
 404
 405        if (lip->li_flags & XFS_LI_ABORTED) {
 406                xfs_efi_release(efdp->efd_efip);
 407                xfs_efd_item_free(efdp);
 408        }
 409}
 410
 411/*
 412 * When the efd item is committed to disk, all we need to do is delete our
 413 * reference to our partner efi item and then free ourselves. Since we're
 414 * freeing ourselves we must return -1 to keep the transaction code from further
 415 * referencing this item.
 416 */
 417STATIC xfs_lsn_t
 418xfs_efd_item_committed(
 419        struct xfs_log_item     *lip,
 420        xfs_lsn_t               lsn)
 421{
 422        struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
 423
 424        /*
 425         * Drop the EFI reference regardless of whether the EFD has been
 426         * aborted. Once the EFD transaction is constructed, it is the sole
 427         * responsibility of the EFD to release the EFI (even if the EFI is
 428         * aborted due to log I/O error).
 429         */
 430        xfs_efi_release(efdp->efd_efip);
 431        xfs_efd_item_free(efdp);
 432
 433        return (xfs_lsn_t)-1;
 434}
 435
 436/*
 437 * The EFD dependency tracking op doesn't do squat.  It can't because
 438 * it doesn't know where the free extent is coming from.  The dependency
 439 * tracking has to be handled by the "enclosing" metadata object.  For
 440 * example, for inodes, the inode is locked throughout the extent freeing
 441 * so the dependency should be recorded there.
 442 */
 443STATIC void
 444xfs_efd_item_committing(
 445        struct xfs_log_item     *lip,
 446        xfs_lsn_t               lsn)
 447{
 448}
 449
 450/*
 451 * This is the ops vector shared by all efd log items.
 452 */
 453static const struct xfs_item_ops xfs_efd_item_ops = {
 454        .iop_size       = xfs_efd_item_size,
 455        .iop_format     = xfs_efd_item_format,
 456        .iop_pin        = xfs_efd_item_pin,
 457        .iop_unpin      = xfs_efd_item_unpin,
 458        .iop_unlock     = xfs_efd_item_unlock,
 459        .iop_committed  = xfs_efd_item_committed,
 460        .iop_push       = xfs_efd_item_push,
 461        .iop_committing = xfs_efd_item_committing
 462};
 463
 464/*
 465 * Allocate and initialize an efd item with the given number of extents.
 466 */
 467struct xfs_efd_log_item *
 468xfs_efd_init(
 469        struct xfs_mount        *mp,
 470        struct xfs_efi_log_item *efip,
 471        uint                    nextents)
 472
 473{
 474        struct xfs_efd_log_item *efdp;
 475        uint                    size;
 476
 477        ASSERT(nextents > 0);
 478        if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
 479                size = (uint)(sizeof(xfs_efd_log_item_t) +
 480                        ((nextents - 1) * sizeof(xfs_extent_t)));
 481                efdp = kmem_zalloc(size, KM_SLEEP);
 482        } else {
 483                efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
 484        }
 485
 486        xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
 487        efdp->efd_efip = efip;
 488        efdp->efd_format.efd_nextents = nextents;
 489        efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
 490
 491        return efdp;
 492}
 493
 494/*
 495 * Process an extent free intent item that was recovered from
 496 * the log.  We need to free the extents that it describes.
 497 */
 498int
 499xfs_efi_recover(
 500        struct xfs_mount        *mp,
 501        struct xfs_efi_log_item *efip)
 502{
 503        struct xfs_efd_log_item *efdp;
 504        struct xfs_trans        *tp;
 505        int                     i;
 506        int                     error = 0;
 507        xfs_extent_t            *extp;
 508        xfs_fsblock_t           startblock_fsb;
 509        struct xfs_owner_info   oinfo;
 510
 511        ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
 512
 513        /*
 514         * First check the validity of the extents described by the
 515         * EFI.  If any are bad, then assume that all are bad and
 516         * just toss the EFI.
 517         */
 518        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 519                extp = &efip->efi_format.efi_extents[i];
 520                startblock_fsb = XFS_BB_TO_FSB(mp,
 521                                   XFS_FSB_TO_DADDR(mp, extp->ext_start));
 522                if (startblock_fsb == 0 ||
 523                    extp->ext_len == 0 ||
 524                    startblock_fsb >= mp->m_sb.sb_dblocks ||
 525                    extp->ext_len >= mp->m_sb.sb_agblocks) {
 526                        /*
 527                         * This will pull the EFI from the AIL and
 528                         * free the memory associated with it.
 529                         */
 530                        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
 531                        xfs_efi_release(efip);
 532                        return -EIO;
 533                }
 534        }
 535
 536        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
 537        if (error)
 538                return error;
 539        efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
 540
 541        xfs_rmap_any_owner_update(&oinfo);
 542        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 543                extp = &efip->efi_format.efi_extents[i];
 544                error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
 545                                              extp->ext_len, &oinfo);
 546                if (error)
 547                        goto abort_error;
 548
 549        }
 550
 551        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
 552        error = xfs_trans_commit(tp);
 553        return error;
 554
 555abort_error:
 556        xfs_trans_cancel(tp);
 557        return error;
 558}
 559