linux/include/linux/crypto.h
<<
>>
Prefs
   1/*
   2 * Scatterlist Cryptographic API.
   3 *
   4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
   5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
   6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
   7 *
   8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
   9 * and Nettle, by Niels Möller.
  10 * 
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the Free
  13 * Software Foundation; either version 2 of the License, or (at your option) 
  14 * any later version.
  15 *
  16 */
  17#ifndef _LINUX_CRYPTO_H
  18#define _LINUX_CRYPTO_H
  19
  20#include <linux/atomic.h>
  21#include <linux/kernel.h>
  22#include <linux/list.h>
  23#include <linux/bug.h>
  24#include <linux/slab.h>
  25#include <linux/string.h>
  26#include <linux/uaccess.h>
  27#include <linux/completion.h>
  28
  29/*
  30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
  31 * arbitrary modules to be loaded. Loading from userspace may still need the
  32 * unprefixed names, so retains those aliases as well.
  33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
  34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
  35 * expands twice on the same line. Instead, use a separate base name for the
  36 * alias.
  37 */
  38#define MODULE_ALIAS_CRYPTO(name)       \
  39                __MODULE_INFO(alias, alias_userspace, name);    \
  40                __MODULE_INFO(alias, alias_crypto, "crypto-" name)
  41
  42/*
  43 * Algorithm masks and types.
  44 */
  45#define CRYPTO_ALG_TYPE_MASK            0x0000000f
  46#define CRYPTO_ALG_TYPE_CIPHER          0x00000001
  47#define CRYPTO_ALG_TYPE_COMPRESS        0x00000002
  48#define CRYPTO_ALG_TYPE_AEAD            0x00000003
  49#define CRYPTO_ALG_TYPE_BLKCIPHER       0x00000004
  50#define CRYPTO_ALG_TYPE_ABLKCIPHER      0x00000005
  51#define CRYPTO_ALG_TYPE_SKCIPHER        0x00000005
  52#define CRYPTO_ALG_TYPE_GIVCIPHER       0x00000006
  53#define CRYPTO_ALG_TYPE_KPP             0x00000008
  54#define CRYPTO_ALG_TYPE_ACOMPRESS       0x0000000a
  55#define CRYPTO_ALG_TYPE_SCOMPRESS       0x0000000b
  56#define CRYPTO_ALG_TYPE_RNG             0x0000000c
  57#define CRYPTO_ALG_TYPE_AKCIPHER        0x0000000d
  58#define CRYPTO_ALG_TYPE_DIGEST          0x0000000e
  59#define CRYPTO_ALG_TYPE_HASH            0x0000000e
  60#define CRYPTO_ALG_TYPE_SHASH           0x0000000e
  61#define CRYPTO_ALG_TYPE_AHASH           0x0000000f
  62
  63#define CRYPTO_ALG_TYPE_HASH_MASK       0x0000000e
  64#define CRYPTO_ALG_TYPE_AHASH_MASK      0x0000000e
  65#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK  0x0000000c
  66#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK  0x0000000e
  67
  68#define CRYPTO_ALG_LARVAL               0x00000010
  69#define CRYPTO_ALG_DEAD                 0x00000020
  70#define CRYPTO_ALG_DYING                0x00000040
  71#define CRYPTO_ALG_ASYNC                0x00000080
  72
  73/*
  74 * Set this bit if and only if the algorithm requires another algorithm of
  75 * the same type to handle corner cases.
  76 */
  77#define CRYPTO_ALG_NEED_FALLBACK        0x00000100
  78
  79/*
  80 * This bit is set for symmetric key ciphers that have already been wrapped
  81 * with a generic IV generator to prevent them from being wrapped again.
  82 */
  83#define CRYPTO_ALG_GENIV                0x00000200
  84
  85/*
  86 * Set if the algorithm has passed automated run-time testing.  Note that
  87 * if there is no run-time testing for a given algorithm it is considered
  88 * to have passed.
  89 */
  90
  91#define CRYPTO_ALG_TESTED               0x00000400
  92
  93/*
  94 * Set if the algorithm is an instance that is built from templates.
  95 */
  96#define CRYPTO_ALG_INSTANCE             0x00000800
  97
  98/* Set this bit if the algorithm provided is hardware accelerated but
  99 * not available to userspace via instruction set or so.
 100 */
 101#define CRYPTO_ALG_KERN_DRIVER_ONLY     0x00001000
 102
 103/*
 104 * Mark a cipher as a service implementation only usable by another
 105 * cipher and never by a normal user of the kernel crypto API
 106 */
 107#define CRYPTO_ALG_INTERNAL             0x00002000
 108
 109/*
 110 * Set if the algorithm has a ->setkey() method but can be used without
 111 * calling it first, i.e. there is a default key.
 112 */
 113#define CRYPTO_ALG_OPTIONAL_KEY         0x00004000
 114
 115/*
 116 * Transform masks and values (for crt_flags).
 117 */
 118#define CRYPTO_TFM_NEED_KEY             0x00000001
 119
 120#define CRYPTO_TFM_REQ_MASK             0x000fff00
 121#define CRYPTO_TFM_RES_MASK             0xfff00000
 122
 123#define CRYPTO_TFM_REQ_WEAK_KEY         0x00000100
 124#define CRYPTO_TFM_REQ_MAY_SLEEP        0x00000200
 125#define CRYPTO_TFM_REQ_MAY_BACKLOG      0x00000400
 126#define CRYPTO_TFM_RES_WEAK_KEY         0x00100000
 127#define CRYPTO_TFM_RES_BAD_KEY_LEN      0x00200000
 128#define CRYPTO_TFM_RES_BAD_KEY_SCHED    0x00400000
 129#define CRYPTO_TFM_RES_BAD_BLOCK_LEN    0x00800000
 130#define CRYPTO_TFM_RES_BAD_FLAGS        0x01000000
 131
 132/*
 133 * Miscellaneous stuff.
 134 */
 135#define CRYPTO_MAX_ALG_NAME             128
 136
 137/*
 138 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
 139 * declaration) is used to ensure that the crypto_tfm context structure is
 140 * aligned correctly for the given architecture so that there are no alignment
 141 * faults for C data types.  In particular, this is required on platforms such
 142 * as arm where pointers are 32-bit aligned but there are data types such as
 143 * u64 which require 64-bit alignment.
 144 */
 145#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
 146
 147#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
 148
 149struct scatterlist;
 150struct crypto_ablkcipher;
 151struct crypto_async_request;
 152struct crypto_blkcipher;
 153struct crypto_tfm;
 154struct crypto_type;
 155struct skcipher_givcrypt_request;
 156
 157typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
 158
 159/**
 160 * DOC: Block Cipher Context Data Structures
 161 *
 162 * These data structures define the operating context for each block cipher
 163 * type.
 164 */
 165
 166struct crypto_async_request {
 167        struct list_head list;
 168        crypto_completion_t complete;
 169        void *data;
 170        struct crypto_tfm *tfm;
 171
 172        u32 flags;
 173};
 174
 175struct ablkcipher_request {
 176        struct crypto_async_request base;
 177
 178        unsigned int nbytes;
 179
 180        void *info;
 181
 182        struct scatterlist *src;
 183        struct scatterlist *dst;
 184
 185        void *__ctx[] CRYPTO_MINALIGN_ATTR;
 186};
 187
 188struct blkcipher_desc {
 189        struct crypto_blkcipher *tfm;
 190        void *info;
 191        u32 flags;
 192};
 193
 194struct cipher_desc {
 195        struct crypto_tfm *tfm;
 196        void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 197        unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
 198                             const u8 *src, unsigned int nbytes);
 199        void *info;
 200};
 201
 202/**
 203 * DOC: Block Cipher Algorithm Definitions
 204 *
 205 * These data structures define modular crypto algorithm implementations,
 206 * managed via crypto_register_alg() and crypto_unregister_alg().
 207 */
 208
 209/**
 210 * struct ablkcipher_alg - asynchronous block cipher definition
 211 * @min_keysize: Minimum key size supported by the transformation. This is the
 212 *               smallest key length supported by this transformation algorithm.
 213 *               This must be set to one of the pre-defined values as this is
 214 *               not hardware specific. Possible values for this field can be
 215 *               found via git grep "_MIN_KEY_SIZE" include/crypto/
 216 * @max_keysize: Maximum key size supported by the transformation. This is the
 217 *               largest key length supported by this transformation algorithm.
 218 *               This must be set to one of the pre-defined values as this is
 219 *               not hardware specific. Possible values for this field can be
 220 *               found via git grep "_MAX_KEY_SIZE" include/crypto/
 221 * @setkey: Set key for the transformation. This function is used to either
 222 *          program a supplied key into the hardware or store the key in the
 223 *          transformation context for programming it later. Note that this
 224 *          function does modify the transformation context. This function can
 225 *          be called multiple times during the existence of the transformation
 226 *          object, so one must make sure the key is properly reprogrammed into
 227 *          the hardware. This function is also responsible for checking the key
 228 *          length for validity. In case a software fallback was put in place in
 229 *          the @cra_init call, this function might need to use the fallback if
 230 *          the algorithm doesn't support all of the key sizes.
 231 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
 232 *           the supplied scatterlist containing the blocks of data. The crypto
 233 *           API consumer is responsible for aligning the entries of the
 234 *           scatterlist properly and making sure the chunks are correctly
 235 *           sized. In case a software fallback was put in place in the
 236 *           @cra_init call, this function might need to use the fallback if
 237 *           the algorithm doesn't support all of the key sizes. In case the
 238 *           key was stored in transformation context, the key might need to be
 239 *           re-programmed into the hardware in this function. This function
 240 *           shall not modify the transformation context, as this function may
 241 *           be called in parallel with the same transformation object.
 242 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
 243 *           and the conditions are exactly the same.
 244 * @givencrypt: Update the IV for encryption. With this function, a cipher
 245 *              implementation may provide the function on how to update the IV
 246 *              for encryption.
 247 * @givdecrypt: Update the IV for decryption. This is the reverse of
 248 *              @givencrypt .
 249 * @geniv: The transformation implementation may use an "IV generator" provided
 250 *         by the kernel crypto API. Several use cases have a predefined
 251 *         approach how IVs are to be updated. For such use cases, the kernel
 252 *         crypto API provides ready-to-use implementations that can be
 253 *         referenced with this variable.
 254 * @ivsize: IV size applicable for transformation. The consumer must provide an
 255 *          IV of exactly that size to perform the encrypt or decrypt operation.
 256 *
 257 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
 258 * mandatory and must be filled.
 259 */
 260struct ablkcipher_alg {
 261        int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
 262                      unsigned int keylen);
 263        int (*encrypt)(struct ablkcipher_request *req);
 264        int (*decrypt)(struct ablkcipher_request *req);
 265        int (*givencrypt)(struct skcipher_givcrypt_request *req);
 266        int (*givdecrypt)(struct skcipher_givcrypt_request *req);
 267
 268        const char *geniv;
 269
 270        unsigned int min_keysize;
 271        unsigned int max_keysize;
 272        unsigned int ivsize;
 273};
 274
 275/**
 276 * struct blkcipher_alg - synchronous block cipher definition
 277 * @min_keysize: see struct ablkcipher_alg
 278 * @max_keysize: see struct ablkcipher_alg
 279 * @setkey: see struct ablkcipher_alg
 280 * @encrypt: see struct ablkcipher_alg
 281 * @decrypt: see struct ablkcipher_alg
 282 * @geniv: see struct ablkcipher_alg
 283 * @ivsize: see struct ablkcipher_alg
 284 *
 285 * All fields except @geniv and @ivsize are mandatory and must be filled.
 286 */
 287struct blkcipher_alg {
 288        int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
 289                      unsigned int keylen);
 290        int (*encrypt)(struct blkcipher_desc *desc,
 291                       struct scatterlist *dst, struct scatterlist *src,
 292                       unsigned int nbytes);
 293        int (*decrypt)(struct blkcipher_desc *desc,
 294                       struct scatterlist *dst, struct scatterlist *src,
 295                       unsigned int nbytes);
 296
 297        const char *geniv;
 298
 299        unsigned int min_keysize;
 300        unsigned int max_keysize;
 301        unsigned int ivsize;
 302};
 303
 304/**
 305 * struct cipher_alg - single-block symmetric ciphers definition
 306 * @cia_min_keysize: Minimum key size supported by the transformation. This is
 307 *                   the smallest key length supported by this transformation
 308 *                   algorithm. This must be set to one of the pre-defined
 309 *                   values as this is not hardware specific. Possible values
 310 *                   for this field can be found via git grep "_MIN_KEY_SIZE"
 311 *                   include/crypto/
 312 * @cia_max_keysize: Maximum key size supported by the transformation. This is
 313 *                  the largest key length supported by this transformation
 314 *                  algorithm. This must be set to one of the pre-defined values
 315 *                  as this is not hardware specific. Possible values for this
 316 *                  field can be found via git grep "_MAX_KEY_SIZE"
 317 *                  include/crypto/
 318 * @cia_setkey: Set key for the transformation. This function is used to either
 319 *              program a supplied key into the hardware or store the key in the
 320 *              transformation context for programming it later. Note that this
 321 *              function does modify the transformation context. This function
 322 *              can be called multiple times during the existence of the
 323 *              transformation object, so one must make sure the key is properly
 324 *              reprogrammed into the hardware. This function is also
 325 *              responsible for checking the key length for validity.
 326 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
 327 *               single block of data, which must be @cra_blocksize big. This
 328 *               always operates on a full @cra_blocksize and it is not possible
 329 *               to encrypt a block of smaller size. The supplied buffers must
 330 *               therefore also be at least of @cra_blocksize size. Both the
 331 *               input and output buffers are always aligned to @cra_alignmask.
 332 *               In case either of the input or output buffer supplied by user
 333 *               of the crypto API is not aligned to @cra_alignmask, the crypto
 334 *               API will re-align the buffers. The re-alignment means that a
 335 *               new buffer will be allocated, the data will be copied into the
 336 *               new buffer, then the processing will happen on the new buffer,
 337 *               then the data will be copied back into the original buffer and
 338 *               finally the new buffer will be freed. In case a software
 339 *               fallback was put in place in the @cra_init call, this function
 340 *               might need to use the fallback if the algorithm doesn't support
 341 *               all of the key sizes. In case the key was stored in
 342 *               transformation context, the key might need to be re-programmed
 343 *               into the hardware in this function. This function shall not
 344 *               modify the transformation context, as this function may be
 345 *               called in parallel with the same transformation object.
 346 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
 347 *               @cia_encrypt, and the conditions are exactly the same.
 348 *
 349 * All fields are mandatory and must be filled.
 350 */
 351struct cipher_alg {
 352        unsigned int cia_min_keysize;
 353        unsigned int cia_max_keysize;
 354        int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
 355                          unsigned int keylen);
 356        void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 357        void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 358};
 359
 360struct compress_alg {
 361        int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
 362                            unsigned int slen, u8 *dst, unsigned int *dlen);
 363        int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
 364                              unsigned int slen, u8 *dst, unsigned int *dlen);
 365};
 366
 367
 368#define cra_ablkcipher  cra_u.ablkcipher
 369#define cra_blkcipher   cra_u.blkcipher
 370#define cra_cipher      cra_u.cipher
 371#define cra_compress    cra_u.compress
 372
 373/**
 374 * struct crypto_alg - definition of a cryptograpic cipher algorithm
 375 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
 376 *             CRYPTO_ALG_* flags for the flags which go in here. Those are
 377 *             used for fine-tuning the description of the transformation
 378 *             algorithm.
 379 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
 380 *                 of the smallest possible unit which can be transformed with
 381 *                 this algorithm. The users must respect this value.
 382 *                 In case of HASH transformation, it is possible for a smaller
 383 *                 block than @cra_blocksize to be passed to the crypto API for
 384 *                 transformation, in case of any other transformation type, an
 385 *                 error will be returned upon any attempt to transform smaller
 386 *                 than @cra_blocksize chunks.
 387 * @cra_ctxsize: Size of the operational context of the transformation. This
 388 *               value informs the kernel crypto API about the memory size
 389 *               needed to be allocated for the transformation context.
 390 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
 391 *                 buffer containing the input data for the algorithm must be
 392 *                 aligned to this alignment mask. The data buffer for the
 393 *                 output data must be aligned to this alignment mask. Note that
 394 *                 the Crypto API will do the re-alignment in software, but
 395 *                 only under special conditions and there is a performance hit.
 396 *                 The re-alignment happens at these occasions for different
 397 *                 @cra_u types: cipher -- For both input data and output data
 398 *                 buffer; ahash -- For output hash destination buf; shash --
 399 *                 For output hash destination buf.
 400 *                 This is needed on hardware which is flawed by design and
 401 *                 cannot pick data from arbitrary addresses.
 402 * @cra_priority: Priority of this transformation implementation. In case
 403 *                multiple transformations with same @cra_name are available to
 404 *                the Crypto API, the kernel will use the one with highest
 405 *                @cra_priority.
 406 * @cra_name: Generic name (usable by multiple implementations) of the
 407 *            transformation algorithm. This is the name of the transformation
 408 *            itself. This field is used by the kernel when looking up the
 409 *            providers of particular transformation.
 410 * @cra_driver_name: Unique name of the transformation provider. This is the
 411 *                   name of the provider of the transformation. This can be any
 412 *                   arbitrary value, but in the usual case, this contains the
 413 *                   name of the chip or provider and the name of the
 414 *                   transformation algorithm.
 415 * @cra_type: Type of the cryptographic transformation. This is a pointer to
 416 *            struct crypto_type, which implements callbacks common for all
 417 *            transformation types. There are multiple options:
 418 *            &crypto_blkcipher_type, &crypto_ablkcipher_type,
 419 *            &crypto_ahash_type, &crypto_rng_type.
 420 *            This field might be empty. In that case, there are no common
 421 *            callbacks. This is the case for: cipher, compress, shash.
 422 * @cra_u: Callbacks implementing the transformation. This is a union of
 423 *         multiple structures. Depending on the type of transformation selected
 424 *         by @cra_type and @cra_flags above, the associated structure must be
 425 *         filled with callbacks. This field might be empty. This is the case
 426 *         for ahash, shash.
 427 * @cra_init: Initialize the cryptographic transformation object. This function
 428 *            is used to initialize the cryptographic transformation object.
 429 *            This function is called only once at the instantiation time, right
 430 *            after the transformation context was allocated. In case the
 431 *            cryptographic hardware has some special requirements which need to
 432 *            be handled by software, this function shall check for the precise
 433 *            requirement of the transformation and put any software fallbacks
 434 *            in place.
 435 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
 436 *            counterpart to @cra_init, used to remove various changes set in
 437 *            @cra_init.
 438 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
 439 * @cra_list: internally used
 440 * @cra_users: internally used
 441 * @cra_refcnt: internally used
 442 * @cra_destroy: internally used
 443 *
 444 * The struct crypto_alg describes a generic Crypto API algorithm and is common
 445 * for all of the transformations. Any variable not documented here shall not
 446 * be used by a cipher implementation as it is internal to the Crypto API.
 447 */
 448struct crypto_alg {
 449        struct list_head cra_list;
 450        struct list_head cra_users;
 451
 452        u32 cra_flags;
 453        unsigned int cra_blocksize;
 454        unsigned int cra_ctxsize;
 455        unsigned int cra_alignmask;
 456
 457        int cra_priority;
 458        refcount_t cra_refcnt;
 459
 460        char cra_name[CRYPTO_MAX_ALG_NAME];
 461        char cra_driver_name[CRYPTO_MAX_ALG_NAME];
 462
 463        const struct crypto_type *cra_type;
 464
 465        union {
 466                struct ablkcipher_alg ablkcipher;
 467                struct blkcipher_alg blkcipher;
 468                struct cipher_alg cipher;
 469                struct compress_alg compress;
 470        } cra_u;
 471
 472        int (*cra_init)(struct crypto_tfm *tfm);
 473        void (*cra_exit)(struct crypto_tfm *tfm);
 474        void (*cra_destroy)(struct crypto_alg *alg);
 475        
 476        struct module *cra_module;
 477} CRYPTO_MINALIGN_ATTR;
 478
 479/*
 480 * A helper struct for waiting for completion of async crypto ops
 481 */
 482struct crypto_wait {
 483        struct completion completion;
 484        int err;
 485};
 486
 487/*
 488 * Macro for declaring a crypto op async wait object on stack
 489 */
 490#define DECLARE_CRYPTO_WAIT(_wait) \
 491        struct crypto_wait _wait = { \
 492                COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
 493
 494/*
 495 * Async ops completion helper functioons
 496 */
 497void crypto_req_done(struct crypto_async_request *req, int err);
 498
 499static inline int crypto_wait_req(int err, struct crypto_wait *wait)
 500{
 501        switch (err) {
 502        case -EINPROGRESS:
 503        case -EBUSY:
 504                wait_for_completion(&wait->completion);
 505                reinit_completion(&wait->completion);
 506                err = wait->err;
 507                break;
 508        };
 509
 510        return err;
 511}
 512
 513static inline void crypto_init_wait(struct crypto_wait *wait)
 514{
 515        init_completion(&wait->completion);
 516}
 517
 518/*
 519 * Algorithm registration interface.
 520 */
 521int crypto_register_alg(struct crypto_alg *alg);
 522int crypto_unregister_alg(struct crypto_alg *alg);
 523int crypto_register_algs(struct crypto_alg *algs, int count);
 524int crypto_unregister_algs(struct crypto_alg *algs, int count);
 525
 526/*
 527 * Algorithm query interface.
 528 */
 529int crypto_has_alg(const char *name, u32 type, u32 mask);
 530
 531/*
 532 * Transforms: user-instantiated objects which encapsulate algorithms
 533 * and core processing logic.  Managed via crypto_alloc_*() and
 534 * crypto_free_*(), as well as the various helpers below.
 535 */
 536
 537struct ablkcipher_tfm {
 538        int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
 539                      unsigned int keylen);
 540        int (*encrypt)(struct ablkcipher_request *req);
 541        int (*decrypt)(struct ablkcipher_request *req);
 542
 543        struct crypto_ablkcipher *base;
 544
 545        unsigned int ivsize;
 546        unsigned int reqsize;
 547};
 548
 549struct blkcipher_tfm {
 550        void *iv;
 551        int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
 552                      unsigned int keylen);
 553        int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
 554                       struct scatterlist *src, unsigned int nbytes);
 555        int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
 556                       struct scatterlist *src, unsigned int nbytes);
 557};
 558
 559struct cipher_tfm {
 560        int (*cit_setkey)(struct crypto_tfm *tfm,
 561                          const u8 *key, unsigned int keylen);
 562        void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 563        void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
 564};
 565
 566struct compress_tfm {
 567        int (*cot_compress)(struct crypto_tfm *tfm,
 568                            const u8 *src, unsigned int slen,
 569                            u8 *dst, unsigned int *dlen);
 570        int (*cot_decompress)(struct crypto_tfm *tfm,
 571                              const u8 *src, unsigned int slen,
 572                              u8 *dst, unsigned int *dlen);
 573};
 574
 575#define crt_ablkcipher  crt_u.ablkcipher
 576#define crt_blkcipher   crt_u.blkcipher
 577#define crt_cipher      crt_u.cipher
 578#define crt_compress    crt_u.compress
 579
 580struct crypto_tfm {
 581
 582        u32 crt_flags;
 583        
 584        union {
 585                struct ablkcipher_tfm ablkcipher;
 586                struct blkcipher_tfm blkcipher;
 587                struct cipher_tfm cipher;
 588                struct compress_tfm compress;
 589        } crt_u;
 590
 591        void (*exit)(struct crypto_tfm *tfm);
 592        
 593        struct crypto_alg *__crt_alg;
 594
 595        void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
 596};
 597
 598struct crypto_ablkcipher {
 599        struct crypto_tfm base;
 600};
 601
 602struct crypto_blkcipher {
 603        struct crypto_tfm base;
 604};
 605
 606struct crypto_cipher {
 607        struct crypto_tfm base;
 608};
 609
 610struct crypto_comp {
 611        struct crypto_tfm base;
 612};
 613
 614enum {
 615        CRYPTOA_UNSPEC,
 616        CRYPTOA_ALG,
 617        CRYPTOA_TYPE,
 618        CRYPTOA_U32,
 619        __CRYPTOA_MAX,
 620};
 621
 622#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
 623
 624/* Maximum number of (rtattr) parameters for each template. */
 625#define CRYPTO_MAX_ATTRS 32
 626
 627struct crypto_attr_alg {
 628        char name[CRYPTO_MAX_ALG_NAME];
 629};
 630
 631struct crypto_attr_type {
 632        u32 type;
 633        u32 mask;
 634};
 635
 636struct crypto_attr_u32 {
 637        u32 num;
 638};
 639
 640/* 
 641 * Transform user interface.
 642 */
 643 
 644struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
 645void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
 646
 647static inline void crypto_free_tfm(struct crypto_tfm *tfm)
 648{
 649        return crypto_destroy_tfm(tfm, tfm);
 650}
 651
 652int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
 653
 654/*
 655 * Transform helpers which query the underlying algorithm.
 656 */
 657static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
 658{
 659        return tfm->__crt_alg->cra_name;
 660}
 661
 662static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
 663{
 664        return tfm->__crt_alg->cra_driver_name;
 665}
 666
 667static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
 668{
 669        return tfm->__crt_alg->cra_priority;
 670}
 671
 672static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
 673{
 674        return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
 675}
 676
 677static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
 678{
 679        return tfm->__crt_alg->cra_blocksize;
 680}
 681
 682static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
 683{
 684        return tfm->__crt_alg->cra_alignmask;
 685}
 686
 687static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
 688{
 689        return tfm->crt_flags;
 690}
 691
 692static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
 693{
 694        tfm->crt_flags |= flags;
 695}
 696
 697static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
 698{
 699        tfm->crt_flags &= ~flags;
 700}
 701
 702static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
 703{
 704        return tfm->__crt_ctx;
 705}
 706
 707static inline unsigned int crypto_tfm_ctx_alignment(void)
 708{
 709        struct crypto_tfm *tfm;
 710        return __alignof__(tfm->__crt_ctx);
 711}
 712
 713/*
 714 * API wrappers.
 715 */
 716static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
 717        struct crypto_tfm *tfm)
 718{
 719        return (struct crypto_ablkcipher *)tfm;
 720}
 721
 722static inline u32 crypto_skcipher_type(u32 type)
 723{
 724        type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
 725        type |= CRYPTO_ALG_TYPE_BLKCIPHER;
 726        return type;
 727}
 728
 729static inline u32 crypto_skcipher_mask(u32 mask)
 730{
 731        mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
 732        mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
 733        return mask;
 734}
 735
 736/**
 737 * DOC: Asynchronous Block Cipher API
 738 *
 739 * Asynchronous block cipher API is used with the ciphers of type
 740 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
 741 *
 742 * Asynchronous cipher operations imply that the function invocation for a
 743 * cipher request returns immediately before the completion of the operation.
 744 * The cipher request is scheduled as a separate kernel thread and therefore
 745 * load-balanced on the different CPUs via the process scheduler. To allow
 746 * the kernel crypto API to inform the caller about the completion of a cipher
 747 * request, the caller must provide a callback function. That function is
 748 * invoked with the cipher handle when the request completes.
 749 *
 750 * To support the asynchronous operation, additional information than just the
 751 * cipher handle must be supplied to the kernel crypto API. That additional
 752 * information is given by filling in the ablkcipher_request data structure.
 753 *
 754 * For the asynchronous block cipher API, the state is maintained with the tfm
 755 * cipher handle. A single tfm can be used across multiple calls and in
 756 * parallel. For asynchronous block cipher calls, context data supplied and
 757 * only used by the caller can be referenced the request data structure in
 758 * addition to the IV used for the cipher request. The maintenance of such
 759 * state information would be important for a crypto driver implementer to
 760 * have, because when calling the callback function upon completion of the
 761 * cipher operation, that callback function may need some information about
 762 * which operation just finished if it invoked multiple in parallel. This
 763 * state information is unused by the kernel crypto API.
 764 */
 765
 766static inline struct crypto_tfm *crypto_ablkcipher_tfm(
 767        struct crypto_ablkcipher *tfm)
 768{
 769        return &tfm->base;
 770}
 771
 772/**
 773 * crypto_free_ablkcipher() - zeroize and free cipher handle
 774 * @tfm: cipher handle to be freed
 775 */
 776static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
 777{
 778        crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
 779}
 780
 781/**
 782 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
 783 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 784 *            ablkcipher
 785 * @type: specifies the type of the cipher
 786 * @mask: specifies the mask for the cipher
 787 *
 788 * Return: true when the ablkcipher is known to the kernel crypto API; false
 789 *         otherwise
 790 */
 791static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
 792                                        u32 mask)
 793{
 794        return crypto_has_alg(alg_name, crypto_skcipher_type(type),
 795                              crypto_skcipher_mask(mask));
 796}
 797
 798static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
 799        struct crypto_ablkcipher *tfm)
 800{
 801        return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
 802}
 803
 804/**
 805 * crypto_ablkcipher_ivsize() - obtain IV size
 806 * @tfm: cipher handle
 807 *
 808 * The size of the IV for the ablkcipher referenced by the cipher handle is
 809 * returned. This IV size may be zero if the cipher does not need an IV.
 810 *
 811 * Return: IV size in bytes
 812 */
 813static inline unsigned int crypto_ablkcipher_ivsize(
 814        struct crypto_ablkcipher *tfm)
 815{
 816        return crypto_ablkcipher_crt(tfm)->ivsize;
 817}
 818
 819/**
 820 * crypto_ablkcipher_blocksize() - obtain block size of cipher
 821 * @tfm: cipher handle
 822 *
 823 * The block size for the ablkcipher referenced with the cipher handle is
 824 * returned. The caller may use that information to allocate appropriate
 825 * memory for the data returned by the encryption or decryption operation
 826 *
 827 * Return: block size of cipher
 828 */
 829static inline unsigned int crypto_ablkcipher_blocksize(
 830        struct crypto_ablkcipher *tfm)
 831{
 832        return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
 833}
 834
 835static inline unsigned int crypto_ablkcipher_alignmask(
 836        struct crypto_ablkcipher *tfm)
 837{
 838        return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
 839}
 840
 841static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
 842{
 843        return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
 844}
 845
 846static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
 847                                               u32 flags)
 848{
 849        crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
 850}
 851
 852static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
 853                                                 u32 flags)
 854{
 855        crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
 856}
 857
 858/**
 859 * crypto_ablkcipher_setkey() - set key for cipher
 860 * @tfm: cipher handle
 861 * @key: buffer holding the key
 862 * @keylen: length of the key in bytes
 863 *
 864 * The caller provided key is set for the ablkcipher referenced by the cipher
 865 * handle.
 866 *
 867 * Note, the key length determines the cipher type. Many block ciphers implement
 868 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 869 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 870 * is performed.
 871 *
 872 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 873 */
 874static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
 875                                           const u8 *key, unsigned int keylen)
 876{
 877        struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
 878
 879        return crt->setkey(crt->base, key, keylen);
 880}
 881
 882/**
 883 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
 884 * @req: ablkcipher_request out of which the cipher handle is to be obtained
 885 *
 886 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
 887 * data structure.
 888 *
 889 * Return: crypto_ablkcipher handle
 890 */
 891static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
 892        struct ablkcipher_request *req)
 893{
 894        return __crypto_ablkcipher_cast(req->base.tfm);
 895}
 896
 897/**
 898 * crypto_ablkcipher_encrypt() - encrypt plaintext
 899 * @req: reference to the ablkcipher_request handle that holds all information
 900 *       needed to perform the cipher operation
 901 *
 902 * Encrypt plaintext data using the ablkcipher_request handle. That data
 903 * structure and how it is filled with data is discussed with the
 904 * ablkcipher_request_* functions.
 905 *
 906 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 907 */
 908static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
 909{
 910        struct ablkcipher_tfm *crt =
 911                crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
 912        return crt->encrypt(req);
 913}
 914
 915/**
 916 * crypto_ablkcipher_decrypt() - decrypt ciphertext
 917 * @req: reference to the ablkcipher_request handle that holds all information
 918 *       needed to perform the cipher operation
 919 *
 920 * Decrypt ciphertext data using the ablkcipher_request handle. That data
 921 * structure and how it is filled with data is discussed with the
 922 * ablkcipher_request_* functions.
 923 *
 924 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 925 */
 926static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
 927{
 928        struct ablkcipher_tfm *crt =
 929                crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
 930        return crt->decrypt(req);
 931}
 932
 933/**
 934 * DOC: Asynchronous Cipher Request Handle
 935 *
 936 * The ablkcipher_request data structure contains all pointers to data
 937 * required for the asynchronous cipher operation. This includes the cipher
 938 * handle (which can be used by multiple ablkcipher_request instances), pointer
 939 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 940 * as a handle to the ablkcipher_request_* API calls in a similar way as
 941 * ablkcipher handle to the crypto_ablkcipher_* API calls.
 942 */
 943
 944/**
 945 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
 946 * @tfm: cipher handle
 947 *
 948 * Return: number of bytes
 949 */
 950static inline unsigned int crypto_ablkcipher_reqsize(
 951        struct crypto_ablkcipher *tfm)
 952{
 953        return crypto_ablkcipher_crt(tfm)->reqsize;
 954}
 955
 956/**
 957 * ablkcipher_request_set_tfm() - update cipher handle reference in request
 958 * @req: request handle to be modified
 959 * @tfm: cipher handle that shall be added to the request handle
 960 *
 961 * Allow the caller to replace the existing ablkcipher handle in the request
 962 * data structure with a different one.
 963 */
 964static inline void ablkcipher_request_set_tfm(
 965        struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
 966{
 967        req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
 968}
 969
 970static inline struct ablkcipher_request *ablkcipher_request_cast(
 971        struct crypto_async_request *req)
 972{
 973        return container_of(req, struct ablkcipher_request, base);
 974}
 975
 976/**
 977 * ablkcipher_request_alloc() - allocate request data structure
 978 * @tfm: cipher handle to be registered with the request
 979 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 980 *
 981 * Allocate the request data structure that must be used with the ablkcipher
 982 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
 983 * handle is registered in the request data structure.
 984 *
 985 * Return: allocated request handle in case of success, or NULL if out of memory
 986 */
 987static inline struct ablkcipher_request *ablkcipher_request_alloc(
 988        struct crypto_ablkcipher *tfm, gfp_t gfp)
 989{
 990        struct ablkcipher_request *req;
 991
 992        req = kmalloc(sizeof(struct ablkcipher_request) +
 993                      crypto_ablkcipher_reqsize(tfm), gfp);
 994
 995        if (likely(req))
 996                ablkcipher_request_set_tfm(req, tfm);
 997
 998        return req;
 999}
1000
1001/**
1002 * ablkcipher_request_free() - zeroize and free request data structure
1003 * @req: request data structure cipher handle to be freed
1004 */
1005static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1006{
1007        kzfree(req);
1008}
1009
1010/**
1011 * ablkcipher_request_set_callback() - set asynchronous callback function
1012 * @req: request handle
1013 * @flags: specify zero or an ORing of the flags
1014 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1015 *         increase the wait queue beyond the initial maximum size;
1016 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1017 * @compl: callback function pointer to be registered with the request handle
1018 * @data: The data pointer refers to memory that is not used by the kernel
1019 *        crypto API, but provided to the callback function for it to use. Here,
1020 *        the caller can provide a reference to memory the callback function can
1021 *        operate on. As the callback function is invoked asynchronously to the
1022 *        related functionality, it may need to access data structures of the
1023 *        related functionality which can be referenced using this pointer. The
1024 *        callback function can access the memory via the "data" field in the
1025 *        crypto_async_request data structure provided to the callback function.
1026 *
1027 * This function allows setting the callback function that is triggered once the
1028 * cipher operation completes.
1029 *
1030 * The callback function is registered with the ablkcipher_request handle and
1031 * must comply with the following template::
1032 *
1033 *      void callback_function(struct crypto_async_request *req, int error)
1034 */
1035static inline void ablkcipher_request_set_callback(
1036        struct ablkcipher_request *req,
1037        u32 flags, crypto_completion_t compl, void *data)
1038{
1039        req->base.complete = compl;
1040        req->base.data = data;
1041        req->base.flags = flags;
1042}
1043
1044/**
1045 * ablkcipher_request_set_crypt() - set data buffers
1046 * @req: request handle
1047 * @src: source scatter / gather list
1048 * @dst: destination scatter / gather list
1049 * @nbytes: number of bytes to process from @src
1050 * @iv: IV for the cipher operation which must comply with the IV size defined
1051 *      by crypto_ablkcipher_ivsize
1052 *
1053 * This function allows setting of the source data and destination data
1054 * scatter / gather lists.
1055 *
1056 * For encryption, the source is treated as the plaintext and the
1057 * destination is the ciphertext. For a decryption operation, the use is
1058 * reversed - the source is the ciphertext and the destination is the plaintext.
1059 */
1060static inline void ablkcipher_request_set_crypt(
1061        struct ablkcipher_request *req,
1062        struct scatterlist *src, struct scatterlist *dst,
1063        unsigned int nbytes, void *iv)
1064{
1065        req->src = src;
1066        req->dst = dst;
1067        req->nbytes = nbytes;
1068        req->info = iv;
1069}
1070
1071/**
1072 * DOC: Synchronous Block Cipher API
1073 *
1074 * The synchronous block cipher API is used with the ciphers of type
1075 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1076 *
1077 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1078 * used in multiple calls and in parallel, this info should not be changeable
1079 * (unless a lock is used). This applies, for example, to the symmetric key.
1080 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1081 * structure for synchronous blkcipher api. So, its the only state info that can
1082 * be kept for synchronous calls without using a big lock across a tfm.
1083 *
1084 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1085 * consisting of a template (a block chaining mode) and a single block cipher
1086 * primitive (e.g. AES).
1087 *
1088 * The plaintext data buffer and the ciphertext data buffer are pointed to
1089 * by using scatter/gather lists. The cipher operation is performed
1090 * on all segments of the provided scatter/gather lists.
1091 *
1092 * The kernel crypto API supports a cipher operation "in-place" which means that
1093 * the caller may provide the same scatter/gather list for the plaintext and
1094 * cipher text. After the completion of the cipher operation, the plaintext
1095 * data is replaced with the ciphertext data in case of an encryption and vice
1096 * versa for a decryption. The caller must ensure that the scatter/gather lists
1097 * for the output data point to sufficiently large buffers, i.e. multiples of
1098 * the block size of the cipher.
1099 */
1100
1101static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1102        struct crypto_tfm *tfm)
1103{
1104        return (struct crypto_blkcipher *)tfm;
1105}
1106
1107static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1108        struct crypto_tfm *tfm)
1109{
1110        BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1111        return __crypto_blkcipher_cast(tfm);
1112}
1113
1114/**
1115 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1116 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1117 *            blkcipher cipher
1118 * @type: specifies the type of the cipher
1119 * @mask: specifies the mask for the cipher
1120 *
1121 * Allocate a cipher handle for a block cipher. The returned struct
1122 * crypto_blkcipher is the cipher handle that is required for any subsequent
1123 * API invocation for that block cipher.
1124 *
1125 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1126 *         of an error, PTR_ERR() returns the error code.
1127 */
1128static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1129        const char *alg_name, u32 type, u32 mask)
1130{
1131        type &= ~CRYPTO_ALG_TYPE_MASK;
1132        type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1133        mask |= CRYPTO_ALG_TYPE_MASK;
1134
1135        return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1136}
1137
1138static inline struct crypto_tfm *crypto_blkcipher_tfm(
1139        struct crypto_blkcipher *tfm)
1140{
1141        return &tfm->base;
1142}
1143
1144/**
1145 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1146 * @tfm: cipher handle to be freed
1147 */
1148static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1149{
1150        crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1151}
1152
1153/**
1154 * crypto_has_blkcipher() - Search for the availability of a block cipher
1155 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1156 *            block cipher
1157 * @type: specifies the type of the cipher
1158 * @mask: specifies the mask for the cipher
1159 *
1160 * Return: true when the block cipher is known to the kernel crypto API; false
1161 *         otherwise
1162 */
1163static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1164{
1165        type &= ~CRYPTO_ALG_TYPE_MASK;
1166        type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1167        mask |= CRYPTO_ALG_TYPE_MASK;
1168
1169        return crypto_has_alg(alg_name, type, mask);
1170}
1171
1172/**
1173 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1174 * @tfm: cipher handle
1175 *
1176 * Return: The character string holding the name of the cipher
1177 */
1178static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1179{
1180        return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1181}
1182
1183static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1184        struct crypto_blkcipher *tfm)
1185{
1186        return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1187}
1188
1189static inline struct blkcipher_alg *crypto_blkcipher_alg(
1190        struct crypto_blkcipher *tfm)
1191{
1192        return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1193}
1194
1195/**
1196 * crypto_blkcipher_ivsize() - obtain IV size
1197 * @tfm: cipher handle
1198 *
1199 * The size of the IV for the block cipher referenced by the cipher handle is
1200 * returned. This IV size may be zero if the cipher does not need an IV.
1201 *
1202 * Return: IV size in bytes
1203 */
1204static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1205{
1206        return crypto_blkcipher_alg(tfm)->ivsize;
1207}
1208
1209/**
1210 * crypto_blkcipher_blocksize() - obtain block size of cipher
1211 * @tfm: cipher handle
1212 *
1213 * The block size for the block cipher referenced with the cipher handle is
1214 * returned. The caller may use that information to allocate appropriate
1215 * memory for the data returned by the encryption or decryption operation.
1216 *
1217 * Return: block size of cipher
1218 */
1219static inline unsigned int crypto_blkcipher_blocksize(
1220        struct crypto_blkcipher *tfm)
1221{
1222        return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1223}
1224
1225static inline unsigned int crypto_blkcipher_alignmask(
1226        struct crypto_blkcipher *tfm)
1227{
1228        return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1229}
1230
1231static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1232{
1233        return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1234}
1235
1236static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1237                                              u32 flags)
1238{
1239        crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1240}
1241
1242static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1243                                                u32 flags)
1244{
1245        crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1246}
1247
1248/**
1249 * crypto_blkcipher_setkey() - set key for cipher
1250 * @tfm: cipher handle
1251 * @key: buffer holding the key
1252 * @keylen: length of the key in bytes
1253 *
1254 * The caller provided key is set for the block cipher referenced by the cipher
1255 * handle.
1256 *
1257 * Note, the key length determines the cipher type. Many block ciphers implement
1258 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1259 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1260 * is performed.
1261 *
1262 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1263 */
1264static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1265                                          const u8 *key, unsigned int keylen)
1266{
1267        return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1268                                                 key, keylen);
1269}
1270
1271/**
1272 * crypto_blkcipher_encrypt() - encrypt plaintext
1273 * @desc: reference to the block cipher handle with meta data
1274 * @dst: scatter/gather list that is filled by the cipher operation with the
1275 *      ciphertext
1276 * @src: scatter/gather list that holds the plaintext
1277 * @nbytes: number of bytes of the plaintext to encrypt.
1278 *
1279 * Encrypt plaintext data using the IV set by the caller with a preceding
1280 * call of crypto_blkcipher_set_iv.
1281 *
1282 * The blkcipher_desc data structure must be filled by the caller and can
1283 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1284 * with the block cipher handle; desc.flags is filled with either
1285 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1286 *
1287 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1288 */
1289static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1290                                           struct scatterlist *dst,
1291                                           struct scatterlist *src,
1292                                           unsigned int nbytes)
1293{
1294        desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1295        return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1296}
1297
1298/**
1299 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1300 * @desc: reference to the block cipher handle with meta data
1301 * @dst: scatter/gather list that is filled by the cipher operation with the
1302 *      ciphertext
1303 * @src: scatter/gather list that holds the plaintext
1304 * @nbytes: number of bytes of the plaintext to encrypt.
1305 *
1306 * Encrypt plaintext data with the use of an IV that is solely used for this
1307 * cipher operation. Any previously set IV is not used.
1308 *
1309 * The blkcipher_desc data structure must be filled by the caller and can
1310 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1311 * with the block cipher handle; desc.info is filled with the IV to be used for
1312 * the current operation; desc.flags is filled with either
1313 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1314 *
1315 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1316 */
1317static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1318                                              struct scatterlist *dst,
1319                                              struct scatterlist *src,
1320                                              unsigned int nbytes)
1321{
1322        return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1323}
1324
1325/**
1326 * crypto_blkcipher_decrypt() - decrypt ciphertext
1327 * @desc: reference to the block cipher handle with meta data
1328 * @dst: scatter/gather list that is filled by the cipher operation with the
1329 *      plaintext
1330 * @src: scatter/gather list that holds the ciphertext
1331 * @nbytes: number of bytes of the ciphertext to decrypt.
1332 *
1333 * Decrypt ciphertext data using the IV set by the caller with a preceding
1334 * call of crypto_blkcipher_set_iv.
1335 *
1336 * The blkcipher_desc data structure must be filled by the caller as documented
1337 * for the crypto_blkcipher_encrypt call above.
1338 *
1339 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1340 *
1341 */
1342static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1343                                           struct scatterlist *dst,
1344                                           struct scatterlist *src,
1345                                           unsigned int nbytes)
1346{
1347        desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1348        return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1349}
1350
1351/**
1352 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1353 * @desc: reference to the block cipher handle with meta data
1354 * @dst: scatter/gather list that is filled by the cipher operation with the
1355 *      plaintext
1356 * @src: scatter/gather list that holds the ciphertext
1357 * @nbytes: number of bytes of the ciphertext to decrypt.
1358 *
1359 * Decrypt ciphertext data with the use of an IV that is solely used for this
1360 * cipher operation. Any previously set IV is not used.
1361 *
1362 * The blkcipher_desc data structure must be filled by the caller as documented
1363 * for the crypto_blkcipher_encrypt_iv call above.
1364 *
1365 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1366 */
1367static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1368                                              struct scatterlist *dst,
1369                                              struct scatterlist *src,
1370                                              unsigned int nbytes)
1371{
1372        return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1373}
1374
1375/**
1376 * crypto_blkcipher_set_iv() - set IV for cipher
1377 * @tfm: cipher handle
1378 * @src: buffer holding the IV
1379 * @len: length of the IV in bytes
1380 *
1381 * The caller provided IV is set for the block cipher referenced by the cipher
1382 * handle.
1383 */
1384static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1385                                           const u8 *src, unsigned int len)
1386{
1387        memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1388}
1389
1390/**
1391 * crypto_blkcipher_get_iv() - obtain IV from cipher
1392 * @tfm: cipher handle
1393 * @dst: buffer filled with the IV
1394 * @len: length of the buffer dst
1395 *
1396 * The caller can obtain the IV set for the block cipher referenced by the
1397 * cipher handle and store it into the user-provided buffer. If the buffer
1398 * has an insufficient space, the IV is truncated to fit the buffer.
1399 */
1400static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1401                                           u8 *dst, unsigned int len)
1402{
1403        memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1404}
1405
1406/**
1407 * DOC: Single Block Cipher API
1408 *
1409 * The single block cipher API is used with the ciphers of type
1410 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1411 *
1412 * Using the single block cipher API calls, operations with the basic cipher
1413 * primitive can be implemented. These cipher primitives exclude any block
1414 * chaining operations including IV handling.
1415 *
1416 * The purpose of this single block cipher API is to support the implementation
1417 * of templates or other concepts that only need to perform the cipher operation
1418 * on one block at a time. Templates invoke the underlying cipher primitive
1419 * block-wise and process either the input or the output data of these cipher
1420 * operations.
1421 */
1422
1423static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1424{
1425        return (struct crypto_cipher *)tfm;
1426}
1427
1428static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1429{
1430        BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1431        return __crypto_cipher_cast(tfm);
1432}
1433
1434/**
1435 * crypto_alloc_cipher() - allocate single block cipher handle
1436 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1437 *           single block cipher
1438 * @type: specifies the type of the cipher
1439 * @mask: specifies the mask for the cipher
1440 *
1441 * Allocate a cipher handle for a single block cipher. The returned struct
1442 * crypto_cipher is the cipher handle that is required for any subsequent API
1443 * invocation for that single block cipher.
1444 *
1445 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1446 *         of an error, PTR_ERR() returns the error code.
1447 */
1448static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1449                                                        u32 type, u32 mask)
1450{
1451        type &= ~CRYPTO_ALG_TYPE_MASK;
1452        type |= CRYPTO_ALG_TYPE_CIPHER;
1453        mask |= CRYPTO_ALG_TYPE_MASK;
1454
1455        return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1456}
1457
1458static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1459{
1460        return &tfm->base;
1461}
1462
1463/**
1464 * crypto_free_cipher() - zeroize and free the single block cipher handle
1465 * @tfm: cipher handle to be freed
1466 */
1467static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1468{
1469        crypto_free_tfm(crypto_cipher_tfm(tfm));
1470}
1471
1472/**
1473 * crypto_has_cipher() - Search for the availability of a single block cipher
1474 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1475 *           single block cipher
1476 * @type: specifies the type of the cipher
1477 * @mask: specifies the mask for the cipher
1478 *
1479 * Return: true when the single block cipher is known to the kernel crypto API;
1480 *         false otherwise
1481 */
1482static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1483{
1484        type &= ~CRYPTO_ALG_TYPE_MASK;
1485        type |= CRYPTO_ALG_TYPE_CIPHER;
1486        mask |= CRYPTO_ALG_TYPE_MASK;
1487
1488        return crypto_has_alg(alg_name, type, mask);
1489}
1490
1491static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1492{
1493        return &crypto_cipher_tfm(tfm)->crt_cipher;
1494}
1495
1496/**
1497 * crypto_cipher_blocksize() - obtain block size for cipher
1498 * @tfm: cipher handle
1499 *
1500 * The block size for the single block cipher referenced with the cipher handle
1501 * tfm is returned. The caller may use that information to allocate appropriate
1502 * memory for the data returned by the encryption or decryption operation
1503 *
1504 * Return: block size of cipher
1505 */
1506static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1507{
1508        return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1509}
1510
1511static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1512{
1513        return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1514}
1515
1516static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1517{
1518        return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1519}
1520
1521static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1522                                           u32 flags)
1523{
1524        crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1525}
1526
1527static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1528                                             u32 flags)
1529{
1530        crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1531}
1532
1533/**
1534 * crypto_cipher_setkey() - set key for cipher
1535 * @tfm: cipher handle
1536 * @key: buffer holding the key
1537 * @keylen: length of the key in bytes
1538 *
1539 * The caller provided key is set for the single block cipher referenced by the
1540 * cipher handle.
1541 *
1542 * Note, the key length determines the cipher type. Many block ciphers implement
1543 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1544 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1545 * is performed.
1546 *
1547 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1548 */
1549static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1550                                       const u8 *key, unsigned int keylen)
1551{
1552        return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1553                                                  key, keylen);
1554}
1555
1556/**
1557 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1558 * @tfm: cipher handle
1559 * @dst: points to the buffer that will be filled with the ciphertext
1560 * @src: buffer holding the plaintext to be encrypted
1561 *
1562 * Invoke the encryption operation of one block. The caller must ensure that
1563 * the plaintext and ciphertext buffers are at least one block in size.
1564 */
1565static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1566                                             u8 *dst, const u8 *src)
1567{
1568        crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1569                                                dst, src);
1570}
1571
1572/**
1573 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1574 * @tfm: cipher handle
1575 * @dst: points to the buffer that will be filled with the plaintext
1576 * @src: buffer holding the ciphertext to be decrypted
1577 *
1578 * Invoke the decryption operation of one block. The caller must ensure that
1579 * the plaintext and ciphertext buffers are at least one block in size.
1580 */
1581static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1582                                             u8 *dst, const u8 *src)
1583{
1584        crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1585                                                dst, src);
1586}
1587
1588static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1589{
1590        return (struct crypto_comp *)tfm;
1591}
1592
1593static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1594{
1595        BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1596               CRYPTO_ALG_TYPE_MASK);
1597        return __crypto_comp_cast(tfm);
1598}
1599
1600static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1601                                                    u32 type, u32 mask)
1602{
1603        type &= ~CRYPTO_ALG_TYPE_MASK;
1604        type |= CRYPTO_ALG_TYPE_COMPRESS;
1605        mask |= CRYPTO_ALG_TYPE_MASK;
1606
1607        return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1608}
1609
1610static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1611{
1612        return &tfm->base;
1613}
1614
1615static inline void crypto_free_comp(struct crypto_comp *tfm)
1616{
1617        crypto_free_tfm(crypto_comp_tfm(tfm));
1618}
1619
1620static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1621{
1622        type &= ~CRYPTO_ALG_TYPE_MASK;
1623        type |= CRYPTO_ALG_TYPE_COMPRESS;
1624        mask |= CRYPTO_ALG_TYPE_MASK;
1625
1626        return crypto_has_alg(alg_name, type, mask);
1627}
1628
1629static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1630{
1631        return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1632}
1633
1634static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1635{
1636        return &crypto_comp_tfm(tfm)->crt_compress;
1637}
1638
1639static inline int crypto_comp_compress(struct crypto_comp *tfm,
1640                                       const u8 *src, unsigned int slen,
1641                                       u8 *dst, unsigned int *dlen)
1642{
1643        return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1644                                                  src, slen, dst, dlen);
1645}
1646
1647static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1648                                         const u8 *src, unsigned int slen,
1649                                         u8 *dst, unsigned int *dlen)
1650{
1651        return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1652                                                    src, slen, dst, dlen);
1653}
1654
1655#endif  /* _LINUX_CRYPTO_H */
1656
1657