linux/include/linux/netdevice.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the Interfaces handler.
   7 *
   8 * Version:     @(#)dev.h       1.0.10  08/12/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
  14 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  15 *              Bjorn Ekwall. <bj0rn@blox.se>
  16 *              Pekka Riikonen <priikone@poseidon.pspt.fi>
  17 *
  18 *              This program is free software; you can redistribute it and/or
  19 *              modify it under the terms of the GNU General Public License
  20 *              as published by the Free Software Foundation; either version
  21 *              2 of the License, or (at your option) any later version.
  22 *
  23 *              Moved to /usr/include/linux for NET3
  24 */
  25#ifndef _LINUX_NETDEVICE_H
  26#define _LINUX_NETDEVICE_H
  27
  28#include <linux/timer.h>
  29#include <linux/bug.h>
  30#include <linux/delay.h>
  31#include <linux/atomic.h>
  32#include <linux/prefetch.h>
  33#include <asm/cache.h>
  34#include <asm/byteorder.h>
  35
  36#include <linux/percpu.h>
  37#include <linux/rculist.h>
  38#include <linux/workqueue.h>
  39#include <linux/dynamic_queue_limits.h>
  40
  41#include <linux/ethtool.h>
  42#include <net/net_namespace.h>
  43#ifdef CONFIG_DCB
  44#include <net/dcbnl.h>
  45#endif
  46#include <net/netprio_cgroup.h>
  47#include <net/xdp.h>
  48
  49#include <linux/netdev_features.h>
  50#include <linux/neighbour.h>
  51#include <uapi/linux/netdevice.h>
  52#include <uapi/linux/if_bonding.h>
  53#include <uapi/linux/pkt_cls.h>
  54#include <linux/hashtable.h>
  55
  56struct netpoll_info;
  57struct device;
  58struct phy_device;
  59struct dsa_port;
  60
  61/* 802.11 specific */
  62struct wireless_dev;
  63/* 802.15.4 specific */
  64struct wpan_dev;
  65struct mpls_dev;
  66/* UDP Tunnel offloads */
  67struct udp_tunnel_info;
  68struct bpf_prog;
  69struct xdp_buff;
  70
  71void netdev_set_default_ethtool_ops(struct net_device *dev,
  72                                    const struct ethtool_ops *ops);
  73
  74/* Backlog congestion levels */
  75#define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
  76#define NET_RX_DROP             1       /* packet dropped */
  77
  78/*
  79 * Transmit return codes: transmit return codes originate from three different
  80 * namespaces:
  81 *
  82 * - qdisc return codes
  83 * - driver transmit return codes
  84 * - errno values
  85 *
  86 * Drivers are allowed to return any one of those in their hard_start_xmit()
  87 * function. Real network devices commonly used with qdiscs should only return
  88 * the driver transmit return codes though - when qdiscs are used, the actual
  89 * transmission happens asynchronously, so the value is not propagated to
  90 * higher layers. Virtual network devices transmit synchronously; in this case
  91 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
  92 * others are propagated to higher layers.
  93 */
  94
  95/* qdisc ->enqueue() return codes. */
  96#define NET_XMIT_SUCCESS        0x00
  97#define NET_XMIT_DROP           0x01    /* skb dropped                  */
  98#define NET_XMIT_CN             0x02    /* congestion notification      */
  99#define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 100
 101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 102 * indicates that the device will soon be dropping packets, or already drops
 103 * some packets of the same priority; prompting us to send less aggressively. */
 104#define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 105#define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 106
 107/* Driver transmit return codes */
 108#define NETDEV_TX_MASK          0xf0
 109
 110enum netdev_tx {
 111        __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
 112        NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
 113        NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
 114};
 115typedef enum netdev_tx netdev_tx_t;
 116
 117/*
 118 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
 119 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
 120 */
 121static inline bool dev_xmit_complete(int rc)
 122{
 123        /*
 124         * Positive cases with an skb consumed by a driver:
 125         * - successful transmission (rc == NETDEV_TX_OK)
 126         * - error while transmitting (rc < 0)
 127         * - error while queueing to a different device (rc & NET_XMIT_MASK)
 128         */
 129        if (likely(rc < NET_XMIT_MASK))
 130                return true;
 131
 132        return false;
 133}
 134
 135/*
 136 *      Compute the worst-case header length according to the protocols
 137 *      used.
 138 */
 139
 140#if defined(CONFIG_HYPERV_NET)
 141# define LL_MAX_HEADER 128
 142#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
 143# if defined(CONFIG_MAC80211_MESH)
 144#  define LL_MAX_HEADER 128
 145# else
 146#  define LL_MAX_HEADER 96
 147# endif
 148#else
 149# define LL_MAX_HEADER 32
 150#endif
 151
 152#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
 153    !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
 154#define MAX_HEADER LL_MAX_HEADER
 155#else
 156#define MAX_HEADER (LL_MAX_HEADER + 48)
 157#endif
 158
 159/*
 160 *      Old network device statistics. Fields are native words
 161 *      (unsigned long) so they can be read and written atomically.
 162 */
 163
 164struct net_device_stats {
 165        unsigned long   rx_packets;
 166        unsigned long   tx_packets;
 167        unsigned long   rx_bytes;
 168        unsigned long   tx_bytes;
 169        unsigned long   rx_errors;
 170        unsigned long   tx_errors;
 171        unsigned long   rx_dropped;
 172        unsigned long   tx_dropped;
 173        unsigned long   multicast;
 174        unsigned long   collisions;
 175        unsigned long   rx_length_errors;
 176        unsigned long   rx_over_errors;
 177        unsigned long   rx_crc_errors;
 178        unsigned long   rx_frame_errors;
 179        unsigned long   rx_fifo_errors;
 180        unsigned long   rx_missed_errors;
 181        unsigned long   tx_aborted_errors;
 182        unsigned long   tx_carrier_errors;
 183        unsigned long   tx_fifo_errors;
 184        unsigned long   tx_heartbeat_errors;
 185        unsigned long   tx_window_errors;
 186        unsigned long   rx_compressed;
 187        unsigned long   tx_compressed;
 188};
 189
 190
 191#include <linux/cache.h>
 192#include <linux/skbuff.h>
 193
 194#ifdef CONFIG_RPS
 195#include <linux/static_key.h>
 196extern struct static_key rps_needed;
 197extern struct static_key rfs_needed;
 198#endif
 199
 200struct neighbour;
 201struct neigh_parms;
 202struct sk_buff;
 203
 204struct netdev_hw_addr {
 205        struct list_head        list;
 206        unsigned char           addr[MAX_ADDR_LEN];
 207        unsigned char           type;
 208#define NETDEV_HW_ADDR_T_LAN            1
 209#define NETDEV_HW_ADDR_T_SAN            2
 210#define NETDEV_HW_ADDR_T_SLAVE          3
 211#define NETDEV_HW_ADDR_T_UNICAST        4
 212#define NETDEV_HW_ADDR_T_MULTICAST      5
 213        bool                    global_use;
 214        int                     sync_cnt;
 215        int                     refcount;
 216        int                     synced;
 217        struct rcu_head         rcu_head;
 218};
 219
 220struct netdev_hw_addr_list {
 221        struct list_head        list;
 222        int                     count;
 223};
 224
 225#define netdev_hw_addr_list_count(l) ((l)->count)
 226#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
 227#define netdev_hw_addr_list_for_each(ha, l) \
 228        list_for_each_entry(ha, &(l)->list, list)
 229
 230#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
 231#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
 232#define netdev_for_each_uc_addr(ha, dev) \
 233        netdev_hw_addr_list_for_each(ha, &(dev)->uc)
 234
 235#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
 236#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
 237#define netdev_for_each_mc_addr(ha, dev) \
 238        netdev_hw_addr_list_for_each(ha, &(dev)->mc)
 239
 240struct hh_cache {
 241        unsigned int    hh_len;
 242        seqlock_t       hh_lock;
 243
 244        /* cached hardware header; allow for machine alignment needs.        */
 245#define HH_DATA_MOD     16
 246#define HH_DATA_OFF(__len) \
 247        (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
 248#define HH_DATA_ALIGN(__len) \
 249        (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
 250        unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
 251};
 252
 253/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
 254 * Alternative is:
 255 *   dev->hard_header_len ? (dev->hard_header_len +
 256 *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
 257 *
 258 * We could use other alignment values, but we must maintain the
 259 * relationship HH alignment <= LL alignment.
 260 */
 261#define LL_RESERVED_SPACE(dev) \
 262        ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 263#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
 264        ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
 265
 266struct header_ops {
 267        int     (*create) (struct sk_buff *skb, struct net_device *dev,
 268                           unsigned short type, const void *daddr,
 269                           const void *saddr, unsigned int len);
 270        int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
 271        int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
 272        void    (*cache_update)(struct hh_cache *hh,
 273                                const struct net_device *dev,
 274                                const unsigned char *haddr);
 275        bool    (*validate)(const char *ll_header, unsigned int len);
 276};
 277
 278/* These flag bits are private to the generic network queueing
 279 * layer; they may not be explicitly referenced by any other
 280 * code.
 281 */
 282
 283enum netdev_state_t {
 284        __LINK_STATE_START,
 285        __LINK_STATE_PRESENT,
 286        __LINK_STATE_NOCARRIER,
 287        __LINK_STATE_LINKWATCH_PENDING,
 288        __LINK_STATE_DORMANT,
 289};
 290
 291
 292/*
 293 * This structure holds boot-time configured netdevice settings. They
 294 * are then used in the device probing.
 295 */
 296struct netdev_boot_setup {
 297        char name[IFNAMSIZ];
 298        struct ifmap map;
 299};
 300#define NETDEV_BOOT_SETUP_MAX 8
 301
 302int __init netdev_boot_setup(char *str);
 303
 304/*
 305 * Structure for NAPI scheduling similar to tasklet but with weighting
 306 */
 307struct napi_struct {
 308        /* The poll_list must only be managed by the entity which
 309         * changes the state of the NAPI_STATE_SCHED bit.  This means
 310         * whoever atomically sets that bit can add this napi_struct
 311         * to the per-CPU poll_list, and whoever clears that bit
 312         * can remove from the list right before clearing the bit.
 313         */
 314        struct list_head        poll_list;
 315
 316        unsigned long           state;
 317        int                     weight;
 318        unsigned int            gro_count;
 319        int                     (*poll)(struct napi_struct *, int);
 320#ifdef CONFIG_NETPOLL
 321        int                     poll_owner;
 322#endif
 323        struct net_device       *dev;
 324        struct sk_buff          *gro_list;
 325        struct sk_buff          *skb;
 326        struct hrtimer          timer;
 327        struct list_head        dev_list;
 328        struct hlist_node       napi_hash_node;
 329        unsigned int            napi_id;
 330};
 331
 332enum {
 333        NAPI_STATE_SCHED,       /* Poll is scheduled */
 334        NAPI_STATE_MISSED,      /* reschedule a napi */
 335        NAPI_STATE_DISABLE,     /* Disable pending */
 336        NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
 337        NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
 338        NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
 339        NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
 340};
 341
 342enum {
 343        NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
 344        NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
 345        NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
 346        NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
 347        NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
 348        NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
 349        NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
 350};
 351
 352enum gro_result {
 353        GRO_MERGED,
 354        GRO_MERGED_FREE,
 355        GRO_HELD,
 356        GRO_NORMAL,
 357        GRO_DROP,
 358        GRO_CONSUMED,
 359};
 360typedef enum gro_result gro_result_t;
 361
 362/*
 363 * enum rx_handler_result - Possible return values for rx_handlers.
 364 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
 365 * further.
 366 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
 367 * case skb->dev was changed by rx_handler.
 368 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
 369 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
 370 *
 371 * rx_handlers are functions called from inside __netif_receive_skb(), to do
 372 * special processing of the skb, prior to delivery to protocol handlers.
 373 *
 374 * Currently, a net_device can only have a single rx_handler registered. Trying
 375 * to register a second rx_handler will return -EBUSY.
 376 *
 377 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
 378 * To unregister a rx_handler on a net_device, use
 379 * netdev_rx_handler_unregister().
 380 *
 381 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
 382 * do with the skb.
 383 *
 384 * If the rx_handler consumed the skb in some way, it should return
 385 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
 386 * the skb to be delivered in some other way.
 387 *
 388 * If the rx_handler changed skb->dev, to divert the skb to another
 389 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
 390 * new device will be called if it exists.
 391 *
 392 * If the rx_handler decides the skb should be ignored, it should return
 393 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
 394 * are registered on exact device (ptype->dev == skb->dev).
 395 *
 396 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
 397 * delivered, it should return RX_HANDLER_PASS.
 398 *
 399 * A device without a registered rx_handler will behave as if rx_handler
 400 * returned RX_HANDLER_PASS.
 401 */
 402
 403enum rx_handler_result {
 404        RX_HANDLER_CONSUMED,
 405        RX_HANDLER_ANOTHER,
 406        RX_HANDLER_EXACT,
 407        RX_HANDLER_PASS,
 408};
 409typedef enum rx_handler_result rx_handler_result_t;
 410typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
 411
 412void __napi_schedule(struct napi_struct *n);
 413void __napi_schedule_irqoff(struct napi_struct *n);
 414
 415static inline bool napi_disable_pending(struct napi_struct *n)
 416{
 417        return test_bit(NAPI_STATE_DISABLE, &n->state);
 418}
 419
 420bool napi_schedule_prep(struct napi_struct *n);
 421
 422/**
 423 *      napi_schedule - schedule NAPI poll
 424 *      @n: NAPI context
 425 *
 426 * Schedule NAPI poll routine to be called if it is not already
 427 * running.
 428 */
 429static inline void napi_schedule(struct napi_struct *n)
 430{
 431        if (napi_schedule_prep(n))
 432                __napi_schedule(n);
 433}
 434
 435/**
 436 *      napi_schedule_irqoff - schedule NAPI poll
 437 *      @n: NAPI context
 438 *
 439 * Variant of napi_schedule(), assuming hard irqs are masked.
 440 */
 441static inline void napi_schedule_irqoff(struct napi_struct *n)
 442{
 443        if (napi_schedule_prep(n))
 444                __napi_schedule_irqoff(n);
 445}
 446
 447/* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
 448static inline bool napi_reschedule(struct napi_struct *napi)
 449{
 450        if (napi_schedule_prep(napi)) {
 451                __napi_schedule(napi);
 452                return true;
 453        }
 454        return false;
 455}
 456
 457bool napi_complete_done(struct napi_struct *n, int work_done);
 458/**
 459 *      napi_complete - NAPI processing complete
 460 *      @n: NAPI context
 461 *
 462 * Mark NAPI processing as complete.
 463 * Consider using napi_complete_done() instead.
 464 * Return false if device should avoid rearming interrupts.
 465 */
 466static inline bool napi_complete(struct napi_struct *n)
 467{
 468        return napi_complete_done(n, 0);
 469}
 470
 471/**
 472 *      napi_hash_del - remove a NAPI from global table
 473 *      @napi: NAPI context
 474 *
 475 * Warning: caller must observe RCU grace period
 476 * before freeing memory containing @napi, if
 477 * this function returns true.
 478 * Note: core networking stack automatically calls it
 479 * from netif_napi_del().
 480 * Drivers might want to call this helper to combine all
 481 * the needed RCU grace periods into a single one.
 482 */
 483bool napi_hash_del(struct napi_struct *napi);
 484
 485/**
 486 *      napi_disable - prevent NAPI from scheduling
 487 *      @n: NAPI context
 488 *
 489 * Stop NAPI from being scheduled on this context.
 490 * Waits till any outstanding processing completes.
 491 */
 492void napi_disable(struct napi_struct *n);
 493
 494/**
 495 *      napi_enable - enable NAPI scheduling
 496 *      @n: NAPI context
 497 *
 498 * Resume NAPI from being scheduled on this context.
 499 * Must be paired with napi_disable.
 500 */
 501static inline void napi_enable(struct napi_struct *n)
 502{
 503        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
 504        smp_mb__before_atomic();
 505        clear_bit(NAPI_STATE_SCHED, &n->state);
 506        clear_bit(NAPI_STATE_NPSVC, &n->state);
 507}
 508
 509/**
 510 *      napi_synchronize - wait until NAPI is not running
 511 *      @n: NAPI context
 512 *
 513 * Wait until NAPI is done being scheduled on this context.
 514 * Waits till any outstanding processing completes but
 515 * does not disable future activations.
 516 */
 517static inline void napi_synchronize(const struct napi_struct *n)
 518{
 519        if (IS_ENABLED(CONFIG_SMP))
 520                while (test_bit(NAPI_STATE_SCHED, &n->state))
 521                        msleep(1);
 522        else
 523                barrier();
 524}
 525
 526enum netdev_queue_state_t {
 527        __QUEUE_STATE_DRV_XOFF,
 528        __QUEUE_STATE_STACK_XOFF,
 529        __QUEUE_STATE_FROZEN,
 530};
 531
 532#define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
 533#define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
 534#define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
 535
 536#define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
 537#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
 538                                        QUEUE_STATE_FROZEN)
 539#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
 540                                        QUEUE_STATE_FROZEN)
 541
 542/*
 543 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
 544 * netif_tx_* functions below are used to manipulate this flag.  The
 545 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
 546 * queue independently.  The netif_xmit_*stopped functions below are called
 547 * to check if the queue has been stopped by the driver or stack (either
 548 * of the XOFF bits are set in the state).  Drivers should not need to call
 549 * netif_xmit*stopped functions, they should only be using netif_tx_*.
 550 */
 551
 552struct netdev_queue {
 553/*
 554 * read-mostly part
 555 */
 556        struct net_device       *dev;
 557        struct Qdisc __rcu      *qdisc;
 558        struct Qdisc            *qdisc_sleeping;
 559#ifdef CONFIG_SYSFS
 560        struct kobject          kobj;
 561#endif
 562#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 563        int                     numa_node;
 564#endif
 565        unsigned long           tx_maxrate;
 566        /*
 567         * Number of TX timeouts for this queue
 568         * (/sys/class/net/DEV/Q/trans_timeout)
 569         */
 570        unsigned long           trans_timeout;
 571/*
 572 * write-mostly part
 573 */
 574        spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
 575        int                     xmit_lock_owner;
 576        /*
 577         * Time (in jiffies) of last Tx
 578         */
 579        unsigned long           trans_start;
 580
 581        unsigned long           state;
 582
 583#ifdef CONFIG_BQL
 584        struct dql              dql;
 585#endif
 586} ____cacheline_aligned_in_smp;
 587
 588static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
 589{
 590#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 591        return q->numa_node;
 592#else
 593        return NUMA_NO_NODE;
 594#endif
 595}
 596
 597static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
 598{
 599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
 600        q->numa_node = node;
 601#endif
 602}
 603
 604#ifdef CONFIG_RPS
 605/*
 606 * This structure holds an RPS map which can be of variable length.  The
 607 * map is an array of CPUs.
 608 */
 609struct rps_map {
 610        unsigned int len;
 611        struct rcu_head rcu;
 612        u16 cpus[0];
 613};
 614#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
 615
 616/*
 617 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
 618 * tail pointer for that CPU's input queue at the time of last enqueue, and
 619 * a hardware filter index.
 620 */
 621struct rps_dev_flow {
 622        u16 cpu;
 623        u16 filter;
 624        unsigned int last_qtail;
 625};
 626#define RPS_NO_FILTER 0xffff
 627
 628/*
 629 * The rps_dev_flow_table structure contains a table of flow mappings.
 630 */
 631struct rps_dev_flow_table {
 632        unsigned int mask;
 633        struct rcu_head rcu;
 634        struct rps_dev_flow flows[0];
 635};
 636#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
 637    ((_num) * sizeof(struct rps_dev_flow)))
 638
 639/*
 640 * The rps_sock_flow_table contains mappings of flows to the last CPU
 641 * on which they were processed by the application (set in recvmsg).
 642 * Each entry is a 32bit value. Upper part is the high-order bits
 643 * of flow hash, lower part is CPU number.
 644 * rps_cpu_mask is used to partition the space, depending on number of
 645 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
 646 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
 647 * meaning we use 32-6=26 bits for the hash.
 648 */
 649struct rps_sock_flow_table {
 650        u32     mask;
 651
 652        u32     ents[0] ____cacheline_aligned_in_smp;
 653};
 654#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
 655
 656#define RPS_NO_CPU 0xffff
 657
 658extern u32 rps_cpu_mask;
 659extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
 660
 661static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
 662                                        u32 hash)
 663{
 664        if (table && hash) {
 665                unsigned int index = hash & table->mask;
 666                u32 val = hash & ~rps_cpu_mask;
 667
 668                /* We only give a hint, preemption can change CPU under us */
 669                val |= raw_smp_processor_id();
 670
 671                if (table->ents[index] != val)
 672                        table->ents[index] = val;
 673        }
 674}
 675
 676#ifdef CONFIG_RFS_ACCEL
 677bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
 678                         u16 filter_id);
 679#endif
 680#endif /* CONFIG_RPS */
 681
 682/* This structure contains an instance of an RX queue. */
 683struct netdev_rx_queue {
 684#ifdef CONFIG_RPS
 685        struct rps_map __rcu            *rps_map;
 686        struct rps_dev_flow_table __rcu *rps_flow_table;
 687#endif
 688        struct kobject                  kobj;
 689        struct net_device               *dev;
 690        struct xdp_rxq_info             xdp_rxq;
 691} ____cacheline_aligned_in_smp;
 692
 693/*
 694 * RX queue sysfs structures and functions.
 695 */
 696struct rx_queue_attribute {
 697        struct attribute attr;
 698        ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
 699        ssize_t (*store)(struct netdev_rx_queue *queue,
 700                         const char *buf, size_t len);
 701};
 702
 703#ifdef CONFIG_XPS
 704/*
 705 * This structure holds an XPS map which can be of variable length.  The
 706 * map is an array of queues.
 707 */
 708struct xps_map {
 709        unsigned int len;
 710        unsigned int alloc_len;
 711        struct rcu_head rcu;
 712        u16 queues[0];
 713};
 714#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
 715#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
 716       - sizeof(struct xps_map)) / sizeof(u16))
 717
 718/*
 719 * This structure holds all XPS maps for device.  Maps are indexed by CPU.
 720 */
 721struct xps_dev_maps {
 722        struct rcu_head rcu;
 723        struct xps_map __rcu *cpu_map[0];
 724};
 725#define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +          \
 726        (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
 727#endif /* CONFIG_XPS */
 728
 729#define TC_MAX_QUEUE    16
 730#define TC_BITMASK      15
 731/* HW offloaded queuing disciplines txq count and offset maps */
 732struct netdev_tc_txq {
 733        u16 count;
 734        u16 offset;
 735};
 736
 737#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
 738/*
 739 * This structure is to hold information about the device
 740 * configured to run FCoE protocol stack.
 741 */
 742struct netdev_fcoe_hbainfo {
 743        char    manufacturer[64];
 744        char    serial_number[64];
 745        char    hardware_version[64];
 746        char    driver_version[64];
 747        char    optionrom_version[64];
 748        char    firmware_version[64];
 749        char    model[256];
 750        char    model_description[256];
 751};
 752#endif
 753
 754#define MAX_PHYS_ITEM_ID_LEN 32
 755
 756/* This structure holds a unique identifier to identify some
 757 * physical item (port for example) used by a netdevice.
 758 */
 759struct netdev_phys_item_id {
 760        unsigned char id[MAX_PHYS_ITEM_ID_LEN];
 761        unsigned char id_len;
 762};
 763
 764static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
 765                                            struct netdev_phys_item_id *b)
 766{
 767        return a->id_len == b->id_len &&
 768               memcmp(a->id, b->id, a->id_len) == 0;
 769}
 770
 771typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
 772                                       struct sk_buff *skb);
 773
 774enum tc_setup_type {
 775        TC_SETUP_QDISC_MQPRIO,
 776        TC_SETUP_CLSU32,
 777        TC_SETUP_CLSFLOWER,
 778        TC_SETUP_CLSMATCHALL,
 779        TC_SETUP_CLSBPF,
 780        TC_SETUP_BLOCK,
 781        TC_SETUP_QDISC_CBS,
 782        TC_SETUP_QDISC_RED,
 783        TC_SETUP_QDISC_PRIO,
 784};
 785
 786/* These structures hold the attributes of bpf state that are being passed
 787 * to the netdevice through the bpf op.
 788 */
 789enum bpf_netdev_command {
 790        /* Set or clear a bpf program used in the earliest stages of packet
 791         * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
 792         * is responsible for calling bpf_prog_put on any old progs that are
 793         * stored. In case of error, the callee need not release the new prog
 794         * reference, but on success it takes ownership and must bpf_prog_put
 795         * when it is no longer used.
 796         */
 797        XDP_SETUP_PROG,
 798        XDP_SETUP_PROG_HW,
 799        /* Check if a bpf program is set on the device.  The callee should
 800         * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
 801         * is equivalent to XDP_ATTACHED_DRV.
 802         */
 803        XDP_QUERY_PROG,
 804        /* BPF program for offload callbacks, invoked at program load time. */
 805        BPF_OFFLOAD_VERIFIER_PREP,
 806        BPF_OFFLOAD_TRANSLATE,
 807        BPF_OFFLOAD_DESTROY,
 808        BPF_OFFLOAD_MAP_ALLOC,
 809        BPF_OFFLOAD_MAP_FREE,
 810};
 811
 812struct bpf_prog_offload_ops;
 813struct netlink_ext_ack;
 814
 815struct netdev_bpf {
 816        enum bpf_netdev_command command;
 817        union {
 818                /* XDP_SETUP_PROG */
 819                struct {
 820                        u32 flags;
 821                        struct bpf_prog *prog;
 822                        struct netlink_ext_ack *extack;
 823                };
 824                /* XDP_QUERY_PROG */
 825                struct {
 826                        u8 prog_attached;
 827                        u32 prog_id;
 828                        /* flags with which program was installed */
 829                        u32 prog_flags;
 830                };
 831                /* BPF_OFFLOAD_VERIFIER_PREP */
 832                struct {
 833                        struct bpf_prog *prog;
 834                        const struct bpf_prog_offload_ops *ops; /* callee set */
 835                } verifier;
 836                /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
 837                struct {
 838                        struct bpf_prog *prog;
 839                } offload;
 840                /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
 841                struct {
 842                        struct bpf_offloaded_map *offmap;
 843                };
 844        };
 845};
 846
 847#ifdef CONFIG_XFRM_OFFLOAD
 848struct xfrmdev_ops {
 849        int     (*xdo_dev_state_add) (struct xfrm_state *x);
 850        void    (*xdo_dev_state_delete) (struct xfrm_state *x);
 851        void    (*xdo_dev_state_free) (struct xfrm_state *x);
 852        bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
 853                                       struct xfrm_state *x);
 854        void    (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
 855};
 856#endif
 857
 858struct dev_ifalias {
 859        struct rcu_head rcuhead;
 860        char ifalias[];
 861};
 862
 863/*
 864 * This structure defines the management hooks for network devices.
 865 * The following hooks can be defined; unless noted otherwise, they are
 866 * optional and can be filled with a null pointer.
 867 *
 868 * int (*ndo_init)(struct net_device *dev);
 869 *     This function is called once when a network device is registered.
 870 *     The network device can use this for any late stage initialization
 871 *     or semantic validation. It can fail with an error code which will
 872 *     be propagated back to register_netdev.
 873 *
 874 * void (*ndo_uninit)(struct net_device *dev);
 875 *     This function is called when device is unregistered or when registration
 876 *     fails. It is not called if init fails.
 877 *
 878 * int (*ndo_open)(struct net_device *dev);
 879 *     This function is called when a network device transitions to the up
 880 *     state.
 881 *
 882 * int (*ndo_stop)(struct net_device *dev);
 883 *     This function is called when a network device transitions to the down
 884 *     state.
 885 *
 886 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
 887 *                               struct net_device *dev);
 888 *      Called when a packet needs to be transmitted.
 889 *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
 890 *      the queue before that can happen; it's for obsolete devices and weird
 891 *      corner cases, but the stack really does a non-trivial amount
 892 *      of useless work if you return NETDEV_TX_BUSY.
 893 *      Required; cannot be NULL.
 894 *
 895 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
 896 *                                         struct net_device *dev
 897 *                                         netdev_features_t features);
 898 *      Called by core transmit path to determine if device is capable of
 899 *      performing offload operations on a given packet. This is to give
 900 *      the device an opportunity to implement any restrictions that cannot
 901 *      be otherwise expressed by feature flags. The check is called with
 902 *      the set of features that the stack has calculated and it returns
 903 *      those the driver believes to be appropriate.
 904 *
 905 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
 906 *                         void *accel_priv, select_queue_fallback_t fallback);
 907 *      Called to decide which queue to use when device supports multiple
 908 *      transmit queues.
 909 *
 910 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
 911 *      This function is called to allow device receiver to make
 912 *      changes to configuration when multicast or promiscuous is enabled.
 913 *
 914 * void (*ndo_set_rx_mode)(struct net_device *dev);
 915 *      This function is called device changes address list filtering.
 916 *      If driver handles unicast address filtering, it should set
 917 *      IFF_UNICAST_FLT in its priv_flags.
 918 *
 919 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
 920 *      This function  is called when the Media Access Control address
 921 *      needs to be changed. If this interface is not defined, the
 922 *      MAC address can not be changed.
 923 *
 924 * int (*ndo_validate_addr)(struct net_device *dev);
 925 *      Test if Media Access Control address is valid for the device.
 926 *
 927 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
 928 *      Called when a user requests an ioctl which can't be handled by
 929 *      the generic interface code. If not defined ioctls return
 930 *      not supported error code.
 931 *
 932 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
 933 *      Used to set network devices bus interface parameters. This interface
 934 *      is retained for legacy reasons; new devices should use the bus
 935 *      interface (PCI) for low level management.
 936 *
 937 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
 938 *      Called when a user wants to change the Maximum Transfer Unit
 939 *      of a device.
 940 *
 941 * void (*ndo_tx_timeout)(struct net_device *dev);
 942 *      Callback used when the transmitter has not made any progress
 943 *      for dev->watchdog ticks.
 944 *
 945 * void (*ndo_get_stats64)(struct net_device *dev,
 946 *                         struct rtnl_link_stats64 *storage);
 947 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
 948 *      Called when a user wants to get the network device usage
 949 *      statistics. Drivers must do one of the following:
 950 *      1. Define @ndo_get_stats64 to fill in a zero-initialised
 951 *         rtnl_link_stats64 structure passed by the caller.
 952 *      2. Define @ndo_get_stats to update a net_device_stats structure
 953 *         (which should normally be dev->stats) and return a pointer to
 954 *         it. The structure may be changed asynchronously only if each
 955 *         field is written atomically.
 956 *      3. Update dev->stats asynchronously and atomically, and define
 957 *         neither operation.
 958 *
 959 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
 960 *      Return true if this device supports offload stats of this attr_id.
 961 *
 962 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
 963 *      void *attr_data)
 964 *      Get statistics for offload operations by attr_id. Write it into the
 965 *      attr_data pointer.
 966 *
 967 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
 968 *      If device supports VLAN filtering this function is called when a
 969 *      VLAN id is registered.
 970 *
 971 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
 972 *      If device supports VLAN filtering this function is called when a
 973 *      VLAN id is unregistered.
 974 *
 975 * void (*ndo_poll_controller)(struct net_device *dev);
 976 *
 977 *      SR-IOV management functions.
 978 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
 979 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
 980 *                        u8 qos, __be16 proto);
 981 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
 982 *                        int max_tx_rate);
 983 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
 984 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
 985 * int (*ndo_get_vf_config)(struct net_device *dev,
 986 *                          int vf, struct ifla_vf_info *ivf);
 987 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
 988 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
 989 *                        struct nlattr *port[]);
 990 *
 991 *      Enable or disable the VF ability to query its RSS Redirection Table and
 992 *      Hash Key. This is needed since on some devices VF share this information
 993 *      with PF and querying it may introduce a theoretical security risk.
 994 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
 995 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
 996 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
 997 *                     void *type_data);
 998 *      Called to setup any 'tc' scheduler, classifier or action on @dev.
 999 *      This is always called from the stack with the rtnl lock held and netif
1000 *      tx queues stopped. This allows the netdevice to perform queue
1001 *      management safely.
1002 *
1003 *      Fiber Channel over Ethernet (FCoE) offload functions.
1004 * int (*ndo_fcoe_enable)(struct net_device *dev);
1005 *      Called when the FCoE protocol stack wants to start using LLD for FCoE
1006 *      so the underlying device can perform whatever needed configuration or
1007 *      initialization to support acceleration of FCoE traffic.
1008 *
1009 * int (*ndo_fcoe_disable)(struct net_device *dev);
1010 *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
1011 *      so the underlying device can perform whatever needed clean-ups to
1012 *      stop supporting acceleration of FCoE traffic.
1013 *
1014 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1015 *                           struct scatterlist *sgl, unsigned int sgc);
1016 *      Called when the FCoE Initiator wants to initialize an I/O that
1017 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1018 *      perform necessary setup and returns 1 to indicate the device is set up
1019 *      successfully to perform DDP on this I/O, otherwise this returns 0.
1020 *
1021 * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1022 *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
1023 *      indicated by the FC exchange id 'xid', so the underlying device can
1024 *      clean up and reuse resources for later DDP requests.
1025 *
1026 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1027 *                            struct scatterlist *sgl, unsigned int sgc);
1028 *      Called when the FCoE Target wants to initialize an I/O that
1029 *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1030 *      perform necessary setup and returns 1 to indicate the device is set up
1031 *      successfully to perform DDP on this I/O, otherwise this returns 0.
1032 *
1033 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1034 *                             struct netdev_fcoe_hbainfo *hbainfo);
1035 *      Called when the FCoE Protocol stack wants information on the underlying
1036 *      device. This information is utilized by the FCoE protocol stack to
1037 *      register attributes with Fiber Channel management service as per the
1038 *      FC-GS Fabric Device Management Information(FDMI) specification.
1039 *
1040 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1041 *      Called when the underlying device wants to override default World Wide
1042 *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1043 *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1044 *      protocol stack to use.
1045 *
1046 *      RFS acceleration.
1047 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1048 *                          u16 rxq_index, u32 flow_id);
1049 *      Set hardware filter for RFS.  rxq_index is the target queue index;
1050 *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1051 *      Return the filter ID on success, or a negative error code.
1052 *
1053 *      Slave management functions (for bridge, bonding, etc).
1054 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1055 *      Called to make another netdev an underling.
1056 *
1057 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1058 *      Called to release previously enslaved netdev.
1059 *
1060 *      Feature/offload setting functions.
1061 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1062 *              netdev_features_t features);
1063 *      Adjusts the requested feature flags according to device-specific
1064 *      constraints, and returns the resulting flags. Must not modify
1065 *      the device state.
1066 *
1067 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1068 *      Called to update device configuration to new features. Passed
1069 *      feature set might be less than what was returned by ndo_fix_features()).
1070 *      Must return >0 or -errno if it changed dev->features itself.
1071 *
1072 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1073 *                    struct net_device *dev,
1074 *                    const unsigned char *addr, u16 vid, u16 flags)
1075 *      Adds an FDB entry to dev for addr.
1076 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1077 *                    struct net_device *dev,
1078 *                    const unsigned char *addr, u16 vid)
1079 *      Deletes the FDB entry from dev coresponding to addr.
1080 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1081 *                     struct net_device *dev, struct net_device *filter_dev,
1082 *                     int *idx)
1083 *      Used to add FDB entries to dump requests. Implementers should add
1084 *      entries to skb and update idx with the number of entries.
1085 *
1086 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1087 *                           u16 flags)
1088 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1089 *                           struct net_device *dev, u32 filter_mask,
1090 *                           int nlflags)
1091 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1092 *                           u16 flags);
1093 *
1094 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1095 *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1096 *      which do not represent real hardware may define this to allow their
1097 *      userspace components to manage their virtual carrier state. Devices
1098 *      that determine carrier state from physical hardware properties (eg
1099 *      network cables) or protocol-dependent mechanisms (eg
1100 *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1101 *
1102 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1103 *                             struct netdev_phys_item_id *ppid);
1104 *      Called to get ID of physical port of this device. If driver does
1105 *      not implement this, it is assumed that the hw is not able to have
1106 *      multiple net devices on single physical port.
1107 *
1108 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1109 *                            struct udp_tunnel_info *ti);
1110 *      Called by UDP tunnel to notify a driver about the UDP port and socket
1111 *      address family that a UDP tunnel is listnening to. It is called only
1112 *      when a new port starts listening. The operation is protected by the
1113 *      RTNL.
1114 *
1115 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1116 *                            struct udp_tunnel_info *ti);
1117 *      Called by UDP tunnel to notify the driver about a UDP port and socket
1118 *      address family that the UDP tunnel is not listening to anymore. The
1119 *      operation is protected by the RTNL.
1120 *
1121 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1122 *                               struct net_device *dev)
1123 *      Called by upper layer devices to accelerate switching or other
1124 *      station functionality into hardware. 'pdev is the lowerdev
1125 *      to use for the offload and 'dev' is the net device that will
1126 *      back the offload. Returns a pointer to the private structure
1127 *      the upper layer will maintain.
1128 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1129 *      Called by upper layer device to delete the station created
1130 *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1131 *      the station and priv is the structure returned by the add
1132 *      operation.
1133 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1134 *                           int queue_index, u32 maxrate);
1135 *      Called when a user wants to set a max-rate limitation of specific
1136 *      TX queue.
1137 * int (*ndo_get_iflink)(const struct net_device *dev);
1138 *      Called to get the iflink value of this device.
1139 * void (*ndo_change_proto_down)(struct net_device *dev,
1140 *                               bool proto_down);
1141 *      This function is used to pass protocol port error state information
1142 *      to the switch driver. The switch driver can react to the proto_down
1143 *      by doing a phys down on the associated switch port.
1144 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1145 *      This function is used to get egress tunnel information for given skb.
1146 *      This is useful for retrieving outer tunnel header parameters while
1147 *      sampling packet.
1148 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1149 *      This function is used to specify the headroom that the skb must
1150 *      consider when allocation skb during packet reception. Setting
1151 *      appropriate rx headroom value allows avoiding skb head copy on
1152 *      forward. Setting a negative value resets the rx headroom to the
1153 *      default value.
1154 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1155 *      This function is used to set or query state related to XDP on the
1156 *      netdevice and manage BPF offload. See definition of
1157 *      enum bpf_netdev_command for details.
1158 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1159 *      This function is used to submit a XDP packet for transmit on a
1160 *      netdevice.
1161 * void (*ndo_xdp_flush)(struct net_device *dev);
1162 *      This function is used to inform the driver to flush a particular
1163 *      xdp tx queue. Must be called on same CPU as xdp_xmit.
1164 */
1165struct net_device_ops {
1166        int                     (*ndo_init)(struct net_device *dev);
1167        void                    (*ndo_uninit)(struct net_device *dev);
1168        int                     (*ndo_open)(struct net_device *dev);
1169        int                     (*ndo_stop)(struct net_device *dev);
1170        netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1171                                                  struct net_device *dev);
1172        netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1173                                                      struct net_device *dev,
1174                                                      netdev_features_t features);
1175        u16                     (*ndo_select_queue)(struct net_device *dev,
1176                                                    struct sk_buff *skb,
1177                                                    void *accel_priv,
1178                                                    select_queue_fallback_t fallback);
1179        void                    (*ndo_change_rx_flags)(struct net_device *dev,
1180                                                       int flags);
1181        void                    (*ndo_set_rx_mode)(struct net_device *dev);
1182        int                     (*ndo_set_mac_address)(struct net_device *dev,
1183                                                       void *addr);
1184        int                     (*ndo_validate_addr)(struct net_device *dev);
1185        int                     (*ndo_do_ioctl)(struct net_device *dev,
1186                                                struct ifreq *ifr, int cmd);
1187        int                     (*ndo_set_config)(struct net_device *dev,
1188                                                  struct ifmap *map);
1189        int                     (*ndo_change_mtu)(struct net_device *dev,
1190                                                  int new_mtu);
1191        int                     (*ndo_neigh_setup)(struct net_device *dev,
1192                                                   struct neigh_parms *);
1193        void                    (*ndo_tx_timeout) (struct net_device *dev);
1194
1195        void                    (*ndo_get_stats64)(struct net_device *dev,
1196                                                   struct rtnl_link_stats64 *storage);
1197        bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1198        int                     (*ndo_get_offload_stats)(int attr_id,
1199                                                         const struct net_device *dev,
1200                                                         void *attr_data);
1201        struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1202
1203        int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1204                                                       __be16 proto, u16 vid);
1205        int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1206                                                        __be16 proto, u16 vid);
1207#ifdef CONFIG_NET_POLL_CONTROLLER
1208        void                    (*ndo_poll_controller)(struct net_device *dev);
1209        int                     (*ndo_netpoll_setup)(struct net_device *dev,
1210                                                     struct netpoll_info *info);
1211        void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1212#endif
1213        int                     (*ndo_set_vf_mac)(struct net_device *dev,
1214                                                  int queue, u8 *mac);
1215        int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1216                                                   int queue, u16 vlan,
1217                                                   u8 qos, __be16 proto);
1218        int                     (*ndo_set_vf_rate)(struct net_device *dev,
1219                                                   int vf, int min_tx_rate,
1220                                                   int max_tx_rate);
1221        int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1222                                                       int vf, bool setting);
1223        int                     (*ndo_set_vf_trust)(struct net_device *dev,
1224                                                    int vf, bool setting);
1225        int                     (*ndo_get_vf_config)(struct net_device *dev,
1226                                                     int vf,
1227                                                     struct ifla_vf_info *ivf);
1228        int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1229                                                         int vf, int link_state);
1230        int                     (*ndo_get_vf_stats)(struct net_device *dev,
1231                                                    int vf,
1232                                                    struct ifla_vf_stats
1233                                                    *vf_stats);
1234        int                     (*ndo_set_vf_port)(struct net_device *dev,
1235                                                   int vf,
1236                                                   struct nlattr *port[]);
1237        int                     (*ndo_get_vf_port)(struct net_device *dev,
1238                                                   int vf, struct sk_buff *skb);
1239        int                     (*ndo_set_vf_guid)(struct net_device *dev,
1240                                                   int vf, u64 guid,
1241                                                   int guid_type);
1242        int                     (*ndo_set_vf_rss_query_en)(
1243                                                   struct net_device *dev,
1244                                                   int vf, bool setting);
1245        int                     (*ndo_setup_tc)(struct net_device *dev,
1246                                                enum tc_setup_type type,
1247                                                void *type_data);
1248#if IS_ENABLED(CONFIG_FCOE)
1249        int                     (*ndo_fcoe_enable)(struct net_device *dev);
1250        int                     (*ndo_fcoe_disable)(struct net_device *dev);
1251        int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1252                                                      u16 xid,
1253                                                      struct scatterlist *sgl,
1254                                                      unsigned int sgc);
1255        int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1256                                                     u16 xid);
1257        int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1258                                                       u16 xid,
1259                                                       struct scatterlist *sgl,
1260                                                       unsigned int sgc);
1261        int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1262                                                        struct netdev_fcoe_hbainfo *hbainfo);
1263#endif
1264
1265#if IS_ENABLED(CONFIG_LIBFCOE)
1266#define NETDEV_FCOE_WWNN 0
1267#define NETDEV_FCOE_WWPN 1
1268        int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1269                                                    u64 *wwn, int type);
1270#endif
1271
1272#ifdef CONFIG_RFS_ACCEL
1273        int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1274                                                     const struct sk_buff *skb,
1275                                                     u16 rxq_index,
1276                                                     u32 flow_id);
1277#endif
1278        int                     (*ndo_add_slave)(struct net_device *dev,
1279                                                 struct net_device *slave_dev,
1280                                                 struct netlink_ext_ack *extack);
1281        int                     (*ndo_del_slave)(struct net_device *dev,
1282                                                 struct net_device *slave_dev);
1283        netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1284                                                    netdev_features_t features);
1285        int                     (*ndo_set_features)(struct net_device *dev,
1286                                                    netdev_features_t features);
1287        int                     (*ndo_neigh_construct)(struct net_device *dev,
1288                                                       struct neighbour *n);
1289        void                    (*ndo_neigh_destroy)(struct net_device *dev,
1290                                                     struct neighbour *n);
1291
1292        int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1293                                               struct nlattr *tb[],
1294                                               struct net_device *dev,
1295                                               const unsigned char *addr,
1296                                               u16 vid,
1297                                               u16 flags);
1298        int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1299                                               struct nlattr *tb[],
1300                                               struct net_device *dev,
1301                                               const unsigned char *addr,
1302                                               u16 vid);
1303        int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1304                                                struct netlink_callback *cb,
1305                                                struct net_device *dev,
1306                                                struct net_device *filter_dev,
1307                                                int *idx);
1308
1309        int                     (*ndo_bridge_setlink)(struct net_device *dev,
1310                                                      struct nlmsghdr *nlh,
1311                                                      u16 flags);
1312        int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1313                                                      u32 pid, u32 seq,
1314                                                      struct net_device *dev,
1315                                                      u32 filter_mask,
1316                                                      int nlflags);
1317        int                     (*ndo_bridge_dellink)(struct net_device *dev,
1318                                                      struct nlmsghdr *nlh,
1319                                                      u16 flags);
1320        int                     (*ndo_change_carrier)(struct net_device *dev,
1321                                                      bool new_carrier);
1322        int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1323                                                        struct netdev_phys_item_id *ppid);
1324        int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1325                                                          char *name, size_t len);
1326        void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1327                                                      struct udp_tunnel_info *ti);
1328        void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1329                                                      struct udp_tunnel_info *ti);
1330        void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1331                                                        struct net_device *dev);
1332        void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1333                                                        void *priv);
1334
1335        int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1336        int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1337                                                      int queue_index,
1338                                                      u32 maxrate);
1339        int                     (*ndo_get_iflink)(const struct net_device *dev);
1340        int                     (*ndo_change_proto_down)(struct net_device *dev,
1341                                                         bool proto_down);
1342        int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1343                                                       struct sk_buff *skb);
1344        void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1345                                                       int needed_headroom);
1346        int                     (*ndo_bpf)(struct net_device *dev,
1347                                           struct netdev_bpf *bpf);
1348        int                     (*ndo_xdp_xmit)(struct net_device *dev,
1349                                                struct xdp_buff *xdp);
1350        void                    (*ndo_xdp_flush)(struct net_device *dev);
1351};
1352
1353/**
1354 * enum net_device_priv_flags - &struct net_device priv_flags
1355 *
1356 * These are the &struct net_device, they are only set internally
1357 * by drivers and used in the kernel. These flags are invisible to
1358 * userspace; this means that the order of these flags can change
1359 * during any kernel release.
1360 *
1361 * You should have a pretty good reason to be extending these flags.
1362 *
1363 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1364 * @IFF_EBRIDGE: Ethernet bridging device
1365 * @IFF_BONDING: bonding master or slave
1366 * @IFF_ISATAP: ISATAP interface (RFC4214)
1367 * @IFF_WAN_HDLC: WAN HDLC device
1368 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1369 *      release skb->dst
1370 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1371 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1372 * @IFF_MACVLAN_PORT: device used as macvlan port
1373 * @IFF_BRIDGE_PORT: device used as bridge port
1374 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1375 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1376 * @IFF_UNICAST_FLT: Supports unicast filtering
1377 * @IFF_TEAM_PORT: device used as team port
1378 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1379 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1380 *      change when it's running
1381 * @IFF_MACVLAN: Macvlan device
1382 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1383 *      underlying stacked devices
1384 * @IFF_IPVLAN_MASTER: IPvlan master device
1385 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1386 * @IFF_L3MDEV_MASTER: device is an L3 master device
1387 * @IFF_NO_QUEUE: device can run without qdisc attached
1388 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1389 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1390 * @IFF_TEAM: device is a team device
1391 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1392 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1393 *      entity (i.e. the master device for bridged veth)
1394 * @IFF_MACSEC: device is a MACsec device
1395 */
1396enum netdev_priv_flags {
1397        IFF_802_1Q_VLAN                 = 1<<0,
1398        IFF_EBRIDGE                     = 1<<1,
1399        IFF_BONDING                     = 1<<2,
1400        IFF_ISATAP                      = 1<<3,
1401        IFF_WAN_HDLC                    = 1<<4,
1402        IFF_XMIT_DST_RELEASE            = 1<<5,
1403        IFF_DONT_BRIDGE                 = 1<<6,
1404        IFF_DISABLE_NETPOLL             = 1<<7,
1405        IFF_MACVLAN_PORT                = 1<<8,
1406        IFF_BRIDGE_PORT                 = 1<<9,
1407        IFF_OVS_DATAPATH                = 1<<10,
1408        IFF_TX_SKB_SHARING              = 1<<11,
1409        IFF_UNICAST_FLT                 = 1<<12,
1410        IFF_TEAM_PORT                   = 1<<13,
1411        IFF_SUPP_NOFCS                  = 1<<14,
1412        IFF_LIVE_ADDR_CHANGE            = 1<<15,
1413        IFF_MACVLAN                     = 1<<16,
1414        IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1415        IFF_IPVLAN_MASTER               = 1<<18,
1416        IFF_IPVLAN_SLAVE                = 1<<19,
1417        IFF_L3MDEV_MASTER               = 1<<20,
1418        IFF_NO_QUEUE                    = 1<<21,
1419        IFF_OPENVSWITCH                 = 1<<22,
1420        IFF_L3MDEV_SLAVE                = 1<<23,
1421        IFF_TEAM                        = 1<<24,
1422        IFF_RXFH_CONFIGURED             = 1<<25,
1423        IFF_PHONY_HEADROOM              = 1<<26,
1424        IFF_MACSEC                      = 1<<27,
1425};
1426
1427#define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1428#define IFF_EBRIDGE                     IFF_EBRIDGE
1429#define IFF_BONDING                     IFF_BONDING
1430#define IFF_ISATAP                      IFF_ISATAP
1431#define IFF_WAN_HDLC                    IFF_WAN_HDLC
1432#define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1433#define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1434#define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1435#define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1436#define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1437#define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1438#define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1439#define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1440#define IFF_TEAM_PORT                   IFF_TEAM_PORT
1441#define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1442#define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1443#define IFF_MACVLAN                     IFF_MACVLAN
1444#define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1445#define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1446#define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1447#define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1448#define IFF_NO_QUEUE                    IFF_NO_QUEUE
1449#define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1450#define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1451#define IFF_TEAM                        IFF_TEAM
1452#define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1453#define IFF_MACSEC                      IFF_MACSEC
1454
1455/**
1456 *      struct net_device - The DEVICE structure.
1457 *
1458 *      Actually, this whole structure is a big mistake.  It mixes I/O
1459 *      data with strictly "high-level" data, and it has to know about
1460 *      almost every data structure used in the INET module.
1461 *
1462 *      @name:  This is the first field of the "visible" part of this structure
1463 *              (i.e. as seen by users in the "Space.c" file).  It is the name
1464 *              of the interface.
1465 *
1466 *      @name_hlist:    Device name hash chain, please keep it close to name[]
1467 *      @ifalias:       SNMP alias
1468 *      @mem_end:       Shared memory end
1469 *      @mem_start:     Shared memory start
1470 *      @base_addr:     Device I/O address
1471 *      @irq:           Device IRQ number
1472 *
1473 *      @state:         Generic network queuing layer state, see netdev_state_t
1474 *      @dev_list:      The global list of network devices
1475 *      @napi_list:     List entry used for polling NAPI devices
1476 *      @unreg_list:    List entry  when we are unregistering the
1477 *                      device; see the function unregister_netdev
1478 *      @close_list:    List entry used when we are closing the device
1479 *      @ptype_all:     Device-specific packet handlers for all protocols
1480 *      @ptype_specific: Device-specific, protocol-specific packet handlers
1481 *
1482 *      @adj_list:      Directly linked devices, like slaves for bonding
1483 *      @features:      Currently active device features
1484 *      @hw_features:   User-changeable features
1485 *
1486 *      @wanted_features:       User-requested features
1487 *      @vlan_features:         Mask of features inheritable by VLAN devices
1488 *
1489 *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1490 *                              This field indicates what encapsulation
1491 *                              offloads the hardware is capable of doing,
1492 *                              and drivers will need to set them appropriately.
1493 *
1494 *      @mpls_features: Mask of features inheritable by MPLS
1495 *
1496 *      @ifindex:       interface index
1497 *      @group:         The group the device belongs to
1498 *
1499 *      @stats:         Statistics struct, which was left as a legacy, use
1500 *                      rtnl_link_stats64 instead
1501 *
1502 *      @rx_dropped:    Dropped packets by core network,
1503 *                      do not use this in drivers
1504 *      @tx_dropped:    Dropped packets by core network,
1505 *                      do not use this in drivers
1506 *      @rx_nohandler:  nohandler dropped packets by core network on
1507 *                      inactive devices, do not use this in drivers
1508 *      @carrier_up_count:      Number of times the carrier has been up
1509 *      @carrier_down_count:    Number of times the carrier has been down
1510 *
1511 *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1512 *                              instead of ioctl,
1513 *                              see <net/iw_handler.h> for details.
1514 *      @wireless_data: Instance data managed by the core of wireless extensions
1515 *
1516 *      @netdev_ops:    Includes several pointers to callbacks,
1517 *                      if one wants to override the ndo_*() functions
1518 *      @ethtool_ops:   Management operations
1519 *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1520 *                      discovery handling. Necessary for e.g. 6LoWPAN.
1521 *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1522 *                      of Layer 2 headers.
1523 *
1524 *      @flags:         Interface flags (a la BSD)
1525 *      @priv_flags:    Like 'flags' but invisible to userspace,
1526 *                      see if.h for the definitions
1527 *      @gflags:        Global flags ( kept as legacy )
1528 *      @padded:        How much padding added by alloc_netdev()
1529 *      @operstate:     RFC2863 operstate
1530 *      @link_mode:     Mapping policy to operstate
1531 *      @if_port:       Selectable AUI, TP, ...
1532 *      @dma:           DMA channel
1533 *      @mtu:           Interface MTU value
1534 *      @min_mtu:       Interface Minimum MTU value
1535 *      @max_mtu:       Interface Maximum MTU value
1536 *      @type:          Interface hardware type
1537 *      @hard_header_len: Maximum hardware header length.
1538 *      @min_header_len:  Minimum hardware header length
1539 *
1540 *      @needed_headroom: Extra headroom the hardware may need, but not in all
1541 *                        cases can this be guaranteed
1542 *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1543 *                        cases can this be guaranteed. Some cases also use
1544 *                        LL_MAX_HEADER instead to allocate the skb
1545 *
1546 *      interface address info:
1547 *
1548 *      @perm_addr:             Permanent hw address
1549 *      @addr_assign_type:      Hw address assignment type
1550 *      @addr_len:              Hardware address length
1551 *      @neigh_priv_len:        Used in neigh_alloc()
1552 *      @dev_id:                Used to differentiate devices that share
1553 *                              the same link layer address
1554 *      @dev_port:              Used to differentiate devices that share
1555 *                              the same function
1556 *      @addr_list_lock:        XXX: need comments on this one
1557 *      @uc_promisc:            Counter that indicates promiscuous mode
1558 *                              has been enabled due to the need to listen to
1559 *                              additional unicast addresses in a device that
1560 *                              does not implement ndo_set_rx_mode()
1561 *      @uc:                    unicast mac addresses
1562 *      @mc:                    multicast mac addresses
1563 *      @dev_addrs:             list of device hw addresses
1564 *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1565 *      @promiscuity:           Number of times the NIC is told to work in
1566 *                              promiscuous mode; if it becomes 0 the NIC will
1567 *                              exit promiscuous mode
1568 *      @allmulti:              Counter, enables or disables allmulticast mode
1569 *
1570 *      @vlan_info:     VLAN info
1571 *      @dsa_ptr:       dsa specific data
1572 *      @tipc_ptr:      TIPC specific data
1573 *      @atalk_ptr:     AppleTalk link
1574 *      @ip_ptr:        IPv4 specific data
1575 *      @dn_ptr:        DECnet specific data
1576 *      @ip6_ptr:       IPv6 specific data
1577 *      @ax25_ptr:      AX.25 specific data
1578 *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1579 *
1580 *      @dev_addr:      Hw address (before bcast,
1581 *                      because most packets are unicast)
1582 *
1583 *      @_rx:                   Array of RX queues
1584 *      @num_rx_queues:         Number of RX queues
1585 *                              allocated at register_netdev() time
1586 *      @real_num_rx_queues:    Number of RX queues currently active in device
1587 *
1588 *      @rx_handler:            handler for received packets
1589 *      @rx_handler_data:       XXX: need comments on this one
1590 *      @miniq_ingress:         ingress/clsact qdisc specific data for
1591 *                              ingress processing
1592 *      @ingress_queue:         XXX: need comments on this one
1593 *      @broadcast:             hw bcast address
1594 *
1595 *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1596 *                      indexed by RX queue number. Assigned by driver.
1597 *                      This must only be set if the ndo_rx_flow_steer
1598 *                      operation is defined
1599 *      @index_hlist:           Device index hash chain
1600 *
1601 *      @_tx:                   Array of TX queues
1602 *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1603 *      @real_num_tx_queues:    Number of TX queues currently active in device
1604 *      @qdisc:                 Root qdisc from userspace point of view
1605 *      @tx_queue_len:          Max frames per queue allowed
1606 *      @tx_global_lock:        XXX: need comments on this one
1607 *
1608 *      @xps_maps:      XXX: need comments on this one
1609 *      @miniq_egress:          clsact qdisc specific data for
1610 *                              egress processing
1611 *      @watchdog_timeo:        Represents the timeout that is used by
1612 *                              the watchdog (see dev_watchdog())
1613 *      @watchdog_timer:        List of timers
1614 *
1615 *      @pcpu_refcnt:           Number of references to this device
1616 *      @todo_list:             Delayed register/unregister
1617 *      @link_watch_list:       XXX: need comments on this one
1618 *
1619 *      @reg_state:             Register/unregister state machine
1620 *      @dismantle:             Device is going to be freed
1621 *      @rtnl_link_state:       This enum represents the phases of creating
1622 *                              a new link
1623 *
1624 *      @needs_free_netdev:     Should unregister perform free_netdev?
1625 *      @priv_destructor:       Called from unregister
1626 *      @npinfo:                XXX: need comments on this one
1627 *      @nd_net:                Network namespace this network device is inside
1628 *
1629 *      @ml_priv:       Mid-layer private
1630 *      @lstats:        Loopback statistics
1631 *      @tstats:        Tunnel statistics
1632 *      @dstats:        Dummy statistics
1633 *      @vstats:        Virtual ethernet statistics
1634 *
1635 *      @garp_port:     GARP
1636 *      @mrp_port:      MRP
1637 *
1638 *      @dev:           Class/net/name entry
1639 *      @sysfs_groups:  Space for optional device, statistics and wireless
1640 *                      sysfs groups
1641 *
1642 *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1643 *      @rtnl_link_ops: Rtnl_link_ops
1644 *
1645 *      @gso_max_size:  Maximum size of generic segmentation offload
1646 *      @gso_max_segs:  Maximum number of segments that can be passed to the
1647 *                      NIC for GSO
1648 *
1649 *      @dcbnl_ops:     Data Center Bridging netlink ops
1650 *      @num_tc:        Number of traffic classes in the net device
1651 *      @tc_to_txq:     XXX: need comments on this one
1652 *      @prio_tc_map:   XXX: need comments on this one
1653 *
1654 *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1655 *
1656 *      @priomap:       XXX: need comments on this one
1657 *      @phydev:        Physical device may attach itself
1658 *                      for hardware timestamping
1659 *
1660 *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1661 *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1662 *
1663 *      @proto_down:    protocol port state information can be sent to the
1664 *                      switch driver and used to set the phys state of the
1665 *                      switch port.
1666 *
1667 *      FIXME: cleanup struct net_device such that network protocol info
1668 *      moves out.
1669 */
1670
1671struct net_device {
1672        char                    name[IFNAMSIZ];
1673        struct hlist_node       name_hlist;
1674        struct dev_ifalias      __rcu *ifalias;
1675        /*
1676         *      I/O specific fields
1677         *      FIXME: Merge these and struct ifmap into one
1678         */
1679        unsigned long           mem_end;
1680        unsigned long           mem_start;
1681        unsigned long           base_addr;
1682        int                     irq;
1683
1684        /*
1685         *      Some hardware also needs these fields (state,dev_list,
1686         *      napi_list,unreg_list,close_list) but they are not
1687         *      part of the usual set specified in Space.c.
1688         */
1689
1690        unsigned long           state;
1691
1692        struct list_head        dev_list;
1693        struct list_head        napi_list;
1694        struct list_head        unreg_list;
1695        struct list_head        close_list;
1696        struct list_head        ptype_all;
1697        struct list_head        ptype_specific;
1698
1699        struct {
1700                struct list_head upper;
1701                struct list_head lower;
1702        } adj_list;
1703
1704        netdev_features_t       features;
1705        netdev_features_t       hw_features;
1706        netdev_features_t       wanted_features;
1707        netdev_features_t       vlan_features;
1708        netdev_features_t       hw_enc_features;
1709        netdev_features_t       mpls_features;
1710        netdev_features_t       gso_partial_features;
1711
1712        int                     ifindex;
1713        int                     group;
1714
1715        struct net_device_stats stats;
1716
1717        atomic_long_t           rx_dropped;
1718        atomic_long_t           tx_dropped;
1719        atomic_long_t           rx_nohandler;
1720
1721        /* Stats to monitor link on/off, flapping */
1722        atomic_t                carrier_up_count;
1723        atomic_t                carrier_down_count;
1724
1725#ifdef CONFIG_WIRELESS_EXT
1726        const struct iw_handler_def *wireless_handlers;
1727        struct iw_public_data   *wireless_data;
1728#endif
1729        const struct net_device_ops *netdev_ops;
1730        const struct ethtool_ops *ethtool_ops;
1731#ifdef CONFIG_NET_SWITCHDEV
1732        const struct switchdev_ops *switchdev_ops;
1733#endif
1734#ifdef CONFIG_NET_L3_MASTER_DEV
1735        const struct l3mdev_ops *l3mdev_ops;
1736#endif
1737#if IS_ENABLED(CONFIG_IPV6)
1738        const struct ndisc_ops *ndisc_ops;
1739#endif
1740
1741#ifdef CONFIG_XFRM_OFFLOAD
1742        const struct xfrmdev_ops *xfrmdev_ops;
1743#endif
1744
1745        const struct header_ops *header_ops;
1746
1747        unsigned int            flags;
1748        unsigned int            priv_flags;
1749
1750        unsigned short          gflags;
1751        unsigned short          padded;
1752
1753        unsigned char           operstate;
1754        unsigned char           link_mode;
1755
1756        unsigned char           if_port;
1757        unsigned char           dma;
1758
1759        unsigned int            mtu;
1760        unsigned int            min_mtu;
1761        unsigned int            max_mtu;
1762        unsigned short          type;
1763        unsigned short          hard_header_len;
1764        unsigned char           min_header_len;
1765
1766        unsigned short          needed_headroom;
1767        unsigned short          needed_tailroom;
1768
1769        /* Interface address info. */
1770        unsigned char           perm_addr[MAX_ADDR_LEN];
1771        unsigned char           addr_assign_type;
1772        unsigned char           addr_len;
1773        unsigned short          neigh_priv_len;
1774        unsigned short          dev_id;
1775        unsigned short          dev_port;
1776        spinlock_t              addr_list_lock;
1777        unsigned char           name_assign_type;
1778        bool                    uc_promisc;
1779        struct netdev_hw_addr_list      uc;
1780        struct netdev_hw_addr_list      mc;
1781        struct netdev_hw_addr_list      dev_addrs;
1782
1783#ifdef CONFIG_SYSFS
1784        struct kset             *queues_kset;
1785#endif
1786        unsigned int            promiscuity;
1787        unsigned int            allmulti;
1788
1789
1790        /* Protocol-specific pointers */
1791
1792#if IS_ENABLED(CONFIG_VLAN_8021Q)
1793        struct vlan_info __rcu  *vlan_info;
1794#endif
1795#if IS_ENABLED(CONFIG_NET_DSA)
1796        struct dsa_port         *dsa_ptr;
1797#endif
1798#if IS_ENABLED(CONFIG_TIPC)
1799        struct tipc_bearer __rcu *tipc_ptr;
1800#endif
1801        void                    *atalk_ptr;
1802        struct in_device __rcu  *ip_ptr;
1803        struct dn_dev __rcu     *dn_ptr;
1804        struct inet6_dev __rcu  *ip6_ptr;
1805        void                    *ax25_ptr;
1806        struct wireless_dev     *ieee80211_ptr;
1807        struct wpan_dev         *ieee802154_ptr;
1808#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1809        struct mpls_dev __rcu   *mpls_ptr;
1810#endif
1811
1812/*
1813 * Cache lines mostly used on receive path (including eth_type_trans())
1814 */
1815        /* Interface address info used in eth_type_trans() */
1816        unsigned char           *dev_addr;
1817
1818        struct netdev_rx_queue  *_rx;
1819        unsigned int            num_rx_queues;
1820        unsigned int            real_num_rx_queues;
1821
1822        struct bpf_prog __rcu   *xdp_prog;
1823        unsigned long           gro_flush_timeout;
1824        rx_handler_func_t __rcu *rx_handler;
1825        void __rcu              *rx_handler_data;
1826
1827#ifdef CONFIG_NET_CLS_ACT
1828        struct mini_Qdisc __rcu *miniq_ingress;
1829#endif
1830        struct netdev_queue __rcu *ingress_queue;
1831#ifdef CONFIG_NETFILTER_INGRESS
1832        struct nf_hook_entries __rcu *nf_hooks_ingress;
1833#endif
1834
1835        unsigned char           broadcast[MAX_ADDR_LEN];
1836#ifdef CONFIG_RFS_ACCEL
1837        struct cpu_rmap         *rx_cpu_rmap;
1838#endif
1839        struct hlist_node       index_hlist;
1840
1841/*
1842 * Cache lines mostly used on transmit path
1843 */
1844        struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1845        unsigned int            num_tx_queues;
1846        unsigned int            real_num_tx_queues;
1847        struct Qdisc            *qdisc;
1848#ifdef CONFIG_NET_SCHED
1849        DECLARE_HASHTABLE       (qdisc_hash, 4);
1850#endif
1851        unsigned int            tx_queue_len;
1852        spinlock_t              tx_global_lock;
1853        int                     watchdog_timeo;
1854
1855#ifdef CONFIG_XPS
1856        struct xps_dev_maps __rcu *xps_maps;
1857#endif
1858#ifdef CONFIG_NET_CLS_ACT
1859        struct mini_Qdisc __rcu *miniq_egress;
1860#endif
1861
1862        /* These may be needed for future network-power-down code. */
1863        struct timer_list       watchdog_timer;
1864
1865        int __percpu            *pcpu_refcnt;
1866        struct list_head        todo_list;
1867
1868        struct list_head        link_watch_list;
1869
1870        enum { NETREG_UNINITIALIZED=0,
1871               NETREG_REGISTERED,       /* completed register_netdevice */
1872               NETREG_UNREGISTERING,    /* called unregister_netdevice */
1873               NETREG_UNREGISTERED,     /* completed unregister todo */
1874               NETREG_RELEASED,         /* called free_netdev */
1875               NETREG_DUMMY,            /* dummy device for NAPI poll */
1876        } reg_state:8;
1877
1878        bool dismantle;
1879
1880        enum {
1881                RTNL_LINK_INITIALIZED,
1882                RTNL_LINK_INITIALIZING,
1883        } rtnl_link_state:16;
1884
1885        bool needs_free_netdev;
1886        void (*priv_destructor)(struct net_device *dev);
1887
1888#ifdef CONFIG_NETPOLL
1889        struct netpoll_info __rcu       *npinfo;
1890#endif
1891
1892        possible_net_t                  nd_net;
1893
1894        /* mid-layer private */
1895        union {
1896                void                                    *ml_priv;
1897                struct pcpu_lstats __percpu             *lstats;
1898                struct pcpu_sw_netstats __percpu        *tstats;
1899                struct pcpu_dstats __percpu             *dstats;
1900                struct pcpu_vstats __percpu             *vstats;
1901        };
1902
1903#if IS_ENABLED(CONFIG_GARP)
1904        struct garp_port __rcu  *garp_port;
1905#endif
1906#if IS_ENABLED(CONFIG_MRP)
1907        struct mrp_port __rcu   *mrp_port;
1908#endif
1909
1910        struct device           dev;
1911        const struct attribute_group *sysfs_groups[4];
1912        const struct attribute_group *sysfs_rx_queue_group;
1913
1914        const struct rtnl_link_ops *rtnl_link_ops;
1915
1916        /* for setting kernel sock attribute on TCP connection setup */
1917#define GSO_MAX_SIZE            65536
1918        unsigned int            gso_max_size;
1919#define GSO_MAX_SEGS            65535
1920        u16                     gso_max_segs;
1921
1922#ifdef CONFIG_DCB
1923        const struct dcbnl_rtnl_ops *dcbnl_ops;
1924#endif
1925        u8                      num_tc;
1926        struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1927        u8                      prio_tc_map[TC_BITMASK + 1];
1928
1929#if IS_ENABLED(CONFIG_FCOE)
1930        unsigned int            fcoe_ddp_xid;
1931#endif
1932#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1933        struct netprio_map __rcu *priomap;
1934#endif
1935        struct phy_device       *phydev;
1936        struct lock_class_key   *qdisc_tx_busylock;
1937        struct lock_class_key   *qdisc_running_key;
1938        bool                    proto_down;
1939};
1940#define to_net_dev(d) container_of(d, struct net_device, dev)
1941
1942static inline bool netif_elide_gro(const struct net_device *dev)
1943{
1944        if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1945                return true;
1946        return false;
1947}
1948
1949#define NETDEV_ALIGN            32
1950
1951static inline
1952int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1953{
1954        return dev->prio_tc_map[prio & TC_BITMASK];
1955}
1956
1957static inline
1958int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1959{
1960        if (tc >= dev->num_tc)
1961                return -EINVAL;
1962
1963        dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1964        return 0;
1965}
1966
1967int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1968void netdev_reset_tc(struct net_device *dev);
1969int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1970int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1971
1972static inline
1973int netdev_get_num_tc(struct net_device *dev)
1974{
1975        return dev->num_tc;
1976}
1977
1978static inline
1979struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1980                                         unsigned int index)
1981{
1982        return &dev->_tx[index];
1983}
1984
1985static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1986                                                    const struct sk_buff *skb)
1987{
1988        return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1989}
1990
1991static inline void netdev_for_each_tx_queue(struct net_device *dev,
1992                                            void (*f)(struct net_device *,
1993                                                      struct netdev_queue *,
1994                                                      void *),
1995                                            void *arg)
1996{
1997        unsigned int i;
1998
1999        for (i = 0; i < dev->num_tx_queues; i++)
2000                f(dev, &dev->_tx[i], arg);
2001}
2002
2003#define netdev_lockdep_set_classes(dev)                         \
2004{                                                               \
2005        static struct lock_class_key qdisc_tx_busylock_key;     \
2006        static struct lock_class_key qdisc_running_key;         \
2007        static struct lock_class_key qdisc_xmit_lock_key;       \
2008        static struct lock_class_key dev_addr_list_lock_key;    \
2009        unsigned int i;                                         \
2010                                                                \
2011        (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
2012        (dev)->qdisc_running_key = &qdisc_running_key;          \
2013        lockdep_set_class(&(dev)->addr_list_lock,               \
2014                          &dev_addr_list_lock_key);             \
2015        for (i = 0; i < (dev)->num_tx_queues; i++)              \
2016                lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
2017                                  &qdisc_xmit_lock_key);        \
2018}
2019
2020struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2021                                    struct sk_buff *skb,
2022                                    void *accel_priv);
2023
2024/* returns the headroom that the master device needs to take in account
2025 * when forwarding to this dev
2026 */
2027static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2028{
2029        return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2030}
2031
2032static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2033{
2034        if (dev->netdev_ops->ndo_set_rx_headroom)
2035                dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2036}
2037
2038/* set the device rx headroom to the dev's default */
2039static inline void netdev_reset_rx_headroom(struct net_device *dev)
2040{
2041        netdev_set_rx_headroom(dev, -1);
2042}
2043
2044/*
2045 * Net namespace inlines
2046 */
2047static inline
2048struct net *dev_net(const struct net_device *dev)
2049{
2050        return read_pnet(&dev->nd_net);
2051}
2052
2053static inline
2054void dev_net_set(struct net_device *dev, struct net *net)
2055{
2056        write_pnet(&dev->nd_net, net);
2057}
2058
2059/**
2060 *      netdev_priv - access network device private data
2061 *      @dev: network device
2062 *
2063 * Get network device private data
2064 */
2065static inline void *netdev_priv(const struct net_device *dev)
2066{
2067        return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2068}
2069
2070/* Set the sysfs physical device reference for the network logical device
2071 * if set prior to registration will cause a symlink during initialization.
2072 */
2073#define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2074
2075/* Set the sysfs device type for the network logical device to allow
2076 * fine-grained identification of different network device types. For
2077 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2078 */
2079#define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2080
2081/* Default NAPI poll() weight
2082 * Device drivers are strongly advised to not use bigger value
2083 */
2084#define NAPI_POLL_WEIGHT 64
2085
2086/**
2087 *      netif_napi_add - initialize a NAPI context
2088 *      @dev:  network device
2089 *      @napi: NAPI context
2090 *      @poll: polling function
2091 *      @weight: default weight
2092 *
2093 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2094 * *any* of the other NAPI-related functions.
2095 */
2096void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2097                    int (*poll)(struct napi_struct *, int), int weight);
2098
2099/**
2100 *      netif_tx_napi_add - initialize a NAPI context
2101 *      @dev:  network device
2102 *      @napi: NAPI context
2103 *      @poll: polling function
2104 *      @weight: default weight
2105 *
2106 * This variant of netif_napi_add() should be used from drivers using NAPI
2107 * to exclusively poll a TX queue.
2108 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2109 */
2110static inline void netif_tx_napi_add(struct net_device *dev,
2111                                     struct napi_struct *napi,
2112                                     int (*poll)(struct napi_struct *, int),
2113                                     int weight)
2114{
2115        set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2116        netif_napi_add(dev, napi, poll, weight);
2117}
2118
2119/**
2120 *  netif_napi_del - remove a NAPI context
2121 *  @napi: NAPI context
2122 *
2123 *  netif_napi_del() removes a NAPI context from the network device NAPI list
2124 */
2125void netif_napi_del(struct napi_struct *napi);
2126
2127struct napi_gro_cb {
2128        /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2129        void    *frag0;
2130
2131        /* Length of frag0. */
2132        unsigned int frag0_len;
2133
2134        /* This indicates where we are processing relative to skb->data. */
2135        int     data_offset;
2136
2137        /* This is non-zero if the packet cannot be merged with the new skb. */
2138        u16     flush;
2139
2140        /* Save the IP ID here and check when we get to the transport layer */
2141        u16     flush_id;
2142
2143        /* Number of segments aggregated. */
2144        u16     count;
2145
2146        /* Start offset for remote checksum offload */
2147        u16     gro_remcsum_start;
2148
2149        /* jiffies when first packet was created/queued */
2150        unsigned long age;
2151
2152        /* Used in ipv6_gro_receive() and foo-over-udp */
2153        u16     proto;
2154
2155        /* This is non-zero if the packet may be of the same flow. */
2156        u8      same_flow:1;
2157
2158        /* Used in tunnel GRO receive */
2159        u8      encap_mark:1;
2160
2161        /* GRO checksum is valid */
2162        u8      csum_valid:1;
2163
2164        /* Number of checksums via CHECKSUM_UNNECESSARY */
2165        u8      csum_cnt:3;
2166
2167        /* Free the skb? */
2168        u8      free:2;
2169#define NAPI_GRO_FREE             1
2170#define NAPI_GRO_FREE_STOLEN_HEAD 2
2171
2172        /* Used in foo-over-udp, set in udp[46]_gro_receive */
2173        u8      is_ipv6:1;
2174
2175        /* Used in GRE, set in fou/gue_gro_receive */
2176        u8      is_fou:1;
2177
2178        /* Used to determine if flush_id can be ignored */
2179        u8      is_atomic:1;
2180
2181        /* Number of gro_receive callbacks this packet already went through */
2182        u8 recursion_counter:4;
2183
2184        /* 1 bit hole */
2185
2186        /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2187        __wsum  csum;
2188
2189        /* used in skb_gro_receive() slow path */
2190        struct sk_buff *last;
2191};
2192
2193#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2194
2195#define GRO_RECURSION_LIMIT 15
2196static inline int gro_recursion_inc_test(struct sk_buff *skb)
2197{
2198        return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2199}
2200
2201typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2202static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2203                                                struct sk_buff **head,
2204                                                struct sk_buff *skb)
2205{
2206        if (unlikely(gro_recursion_inc_test(skb))) {
2207                NAPI_GRO_CB(skb)->flush |= 1;
2208                return NULL;
2209        }
2210
2211        return cb(head, skb);
2212}
2213
2214typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2215                                             struct sk_buff *);
2216static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2217                                                   struct sock *sk,
2218                                                   struct sk_buff **head,
2219                                                   struct sk_buff *skb)
2220{
2221        if (unlikely(gro_recursion_inc_test(skb))) {
2222                NAPI_GRO_CB(skb)->flush |= 1;
2223                return NULL;
2224        }
2225
2226        return cb(sk, head, skb);
2227}
2228
2229struct packet_type {
2230        __be16                  type;   /* This is really htons(ether_type). */
2231        struct net_device       *dev;   /* NULL is wildcarded here           */
2232        int                     (*func) (struct sk_buff *,
2233                                         struct net_device *,
2234                                         struct packet_type *,
2235                                         struct net_device *);
2236        bool                    (*id_match)(struct packet_type *ptype,
2237                                            struct sock *sk);
2238        void                    *af_packet_priv;
2239        struct list_head        list;
2240};
2241
2242struct offload_callbacks {
2243        struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2244                                                netdev_features_t features);
2245        struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2246                                                 struct sk_buff *skb);
2247        int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2248};
2249
2250struct packet_offload {
2251        __be16                   type;  /* This is really htons(ether_type). */
2252        u16                      priority;
2253        struct offload_callbacks callbacks;
2254        struct list_head         list;
2255};
2256
2257/* often modified stats are per-CPU, other are shared (netdev->stats) */
2258struct pcpu_sw_netstats {
2259        u64     rx_packets;
2260        u64     rx_bytes;
2261        u64     tx_packets;
2262        u64     tx_bytes;
2263        struct u64_stats_sync   syncp;
2264};
2265
2266#define __netdev_alloc_pcpu_stats(type, gfp)                            \
2267({                                                                      \
2268        typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2269        if (pcpu_stats) {                                               \
2270                int __cpu;                                              \
2271                for_each_possible_cpu(__cpu) {                          \
2272                        typeof(type) *stat;                             \
2273                        stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2274                        u64_stats_init(&stat->syncp);                   \
2275                }                                                       \
2276        }                                                               \
2277        pcpu_stats;                                                     \
2278})
2279
2280#define netdev_alloc_pcpu_stats(type)                                   \
2281        __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2282
2283enum netdev_lag_tx_type {
2284        NETDEV_LAG_TX_TYPE_UNKNOWN,
2285        NETDEV_LAG_TX_TYPE_RANDOM,
2286        NETDEV_LAG_TX_TYPE_BROADCAST,
2287        NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2288        NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2289        NETDEV_LAG_TX_TYPE_HASH,
2290};
2291
2292struct netdev_lag_upper_info {
2293        enum netdev_lag_tx_type tx_type;
2294};
2295
2296struct netdev_lag_lower_state_info {
2297        u8 link_up : 1,
2298           tx_enabled : 1;
2299};
2300
2301#include <linux/notifier.h>
2302
2303/* netdevice notifier chain. Please remember to update the rtnetlink
2304 * notification exclusion list in rtnetlink_event() when adding new
2305 * types.
2306 */
2307#define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2308#define NETDEV_DOWN     0x0002
2309#define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2310                                   detected a hardware crash and restarted
2311                                   - we can use this eg to kick tcp sessions
2312                                   once done */
2313#define NETDEV_CHANGE   0x0004  /* Notify device state change */
2314#define NETDEV_REGISTER 0x0005
2315#define NETDEV_UNREGISTER       0x0006
2316#define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2317#define NETDEV_CHANGEADDR       0x0008
2318#define NETDEV_GOING_DOWN       0x0009
2319#define NETDEV_CHANGENAME       0x000A
2320#define NETDEV_FEAT_CHANGE      0x000B
2321#define NETDEV_BONDING_FAILOVER 0x000C
2322#define NETDEV_PRE_UP           0x000D
2323#define NETDEV_PRE_TYPE_CHANGE  0x000E
2324#define NETDEV_POST_TYPE_CHANGE 0x000F
2325#define NETDEV_POST_INIT        0x0010
2326#define NETDEV_UNREGISTER_FINAL 0x0011
2327#define NETDEV_RELEASE          0x0012
2328#define NETDEV_NOTIFY_PEERS     0x0013
2329#define NETDEV_JOIN             0x0014
2330#define NETDEV_CHANGEUPPER      0x0015
2331#define NETDEV_RESEND_IGMP      0x0016
2332#define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2333#define NETDEV_CHANGEINFODATA   0x0018
2334#define NETDEV_BONDING_INFO     0x0019
2335#define NETDEV_PRECHANGEUPPER   0x001A
2336#define NETDEV_CHANGELOWERSTATE 0x001B
2337#define NETDEV_UDP_TUNNEL_PUSH_INFO     0x001C
2338#define NETDEV_UDP_TUNNEL_DROP_INFO     0x001D
2339#define NETDEV_CHANGE_TX_QUEUE_LEN      0x001E
2340
2341int register_netdevice_notifier(struct notifier_block *nb);
2342int unregister_netdevice_notifier(struct notifier_block *nb);
2343
2344struct netdev_notifier_info {
2345        struct net_device       *dev;
2346        struct netlink_ext_ack  *extack;
2347};
2348
2349struct netdev_notifier_change_info {
2350        struct netdev_notifier_info info; /* must be first */
2351        unsigned int flags_changed;
2352};
2353
2354struct netdev_notifier_changeupper_info {
2355        struct netdev_notifier_info info; /* must be first */
2356        struct net_device *upper_dev; /* new upper dev */
2357        bool master; /* is upper dev master */
2358        bool linking; /* is the notification for link or unlink */
2359        void *upper_info; /* upper dev info */
2360};
2361
2362struct netdev_notifier_changelowerstate_info {
2363        struct netdev_notifier_info info; /* must be first */
2364        void *lower_state_info; /* is lower dev state */
2365};
2366
2367static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2368                                             struct net_device *dev)
2369{
2370        info->dev = dev;
2371        info->extack = NULL;
2372}
2373
2374static inline struct net_device *
2375netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2376{
2377        return info->dev;
2378}
2379
2380static inline struct netlink_ext_ack *
2381netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2382{
2383        return info->extack;
2384}
2385
2386int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2387
2388
2389extern rwlock_t                         dev_base_lock;          /* Device list lock */
2390
2391#define for_each_netdev(net, d)         \
2392                list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2393#define for_each_netdev_reverse(net, d) \
2394                list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2395#define for_each_netdev_rcu(net, d)             \
2396                list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2397#define for_each_netdev_safe(net, d, n) \
2398                list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2399#define for_each_netdev_continue(net, d)                \
2400                list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2401#define for_each_netdev_continue_rcu(net, d)            \
2402        list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2403#define for_each_netdev_in_bond_rcu(bond, slave)        \
2404                for_each_netdev_rcu(&init_net, slave)   \
2405                        if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2406#define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2407
2408static inline struct net_device *next_net_device(struct net_device *dev)
2409{
2410        struct list_head *lh;
2411        struct net *net;
2412
2413        net = dev_net(dev);
2414        lh = dev->dev_list.next;
2415        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2416}
2417
2418static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2419{
2420        struct list_head *lh;
2421        struct net *net;
2422
2423        net = dev_net(dev);
2424        lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2425        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2426}
2427
2428static inline struct net_device *first_net_device(struct net *net)
2429{
2430        return list_empty(&net->dev_base_head) ? NULL :
2431                net_device_entry(net->dev_base_head.next);
2432}
2433
2434static inline struct net_device *first_net_device_rcu(struct net *net)
2435{
2436        struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2437
2438        return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2439}
2440
2441int netdev_boot_setup_check(struct net_device *dev);
2442unsigned long netdev_boot_base(const char *prefix, int unit);
2443struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2444                                       const char *hwaddr);
2445struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2446struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2447void dev_add_pack(struct packet_type *pt);
2448void dev_remove_pack(struct packet_type *pt);
2449void __dev_remove_pack(struct packet_type *pt);
2450void dev_add_offload(struct packet_offload *po);
2451void dev_remove_offload(struct packet_offload *po);
2452
2453int dev_get_iflink(const struct net_device *dev);
2454int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2455struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2456                                      unsigned short mask);
2457struct net_device *dev_get_by_name(struct net *net, const char *name);
2458struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2459struct net_device *__dev_get_by_name(struct net *net, const char *name);
2460int dev_alloc_name(struct net_device *dev, const char *name);
2461int dev_open(struct net_device *dev);
2462void dev_close(struct net_device *dev);
2463void dev_close_many(struct list_head *head, bool unlink);
2464void dev_disable_lro(struct net_device *dev);
2465int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2466int dev_queue_xmit(struct sk_buff *skb);
2467int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2468int register_netdevice(struct net_device *dev);
2469void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2470void unregister_netdevice_many(struct list_head *head);
2471static inline void unregister_netdevice(struct net_device *dev)
2472{
2473        unregister_netdevice_queue(dev, NULL);
2474}
2475
2476int netdev_refcnt_read(const struct net_device *dev);
2477void free_netdev(struct net_device *dev);
2478void netdev_freemem(struct net_device *dev);
2479void synchronize_net(void);
2480int init_dummy_netdev(struct net_device *dev);
2481
2482DECLARE_PER_CPU(int, xmit_recursion);
2483#define XMIT_RECURSION_LIMIT    10
2484
2485static inline int dev_recursion_level(void)
2486{
2487        return this_cpu_read(xmit_recursion);
2488}
2489
2490struct net_device *dev_get_by_index(struct net *net, int ifindex);
2491struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2492struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2493struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2494int netdev_get_name(struct net *net, char *name, int ifindex);
2495int dev_restart(struct net_device *dev);
2496int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2497
2498static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2499{
2500        return NAPI_GRO_CB(skb)->data_offset;
2501}
2502
2503static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2504{
2505        return skb->len - NAPI_GRO_CB(skb)->data_offset;
2506}
2507
2508static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2509{
2510        NAPI_GRO_CB(skb)->data_offset += len;
2511}
2512
2513static inline void *skb_gro_header_fast(struct sk_buff *skb,
2514                                        unsigned int offset)
2515{
2516        return NAPI_GRO_CB(skb)->frag0 + offset;
2517}
2518
2519static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2520{
2521        return NAPI_GRO_CB(skb)->frag0_len < hlen;
2522}
2523
2524static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2525{
2526        NAPI_GRO_CB(skb)->frag0 = NULL;
2527        NAPI_GRO_CB(skb)->frag0_len = 0;
2528}
2529
2530static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2531                                        unsigned int offset)
2532{
2533        if (!pskb_may_pull(skb, hlen))
2534                return NULL;
2535
2536        skb_gro_frag0_invalidate(skb);
2537        return skb->data + offset;
2538}
2539
2540static inline void *skb_gro_network_header(struct sk_buff *skb)
2541{
2542        return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2543               skb_network_offset(skb);
2544}
2545
2546static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2547                                        const void *start, unsigned int len)
2548{
2549        if (NAPI_GRO_CB(skb)->csum_valid)
2550                NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2551                                                  csum_partial(start, len, 0));
2552}
2553
2554/* GRO checksum functions. These are logical equivalents of the normal
2555 * checksum functions (in skbuff.h) except that they operate on the GRO
2556 * offsets and fields in sk_buff.
2557 */
2558
2559__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2560
2561static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2562{
2563        return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2564}
2565
2566static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2567                                                      bool zero_okay,
2568                                                      __sum16 check)
2569{
2570        return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2571                skb_checksum_start_offset(skb) <
2572                 skb_gro_offset(skb)) &&
2573                !skb_at_gro_remcsum_start(skb) &&
2574                NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2575                (!zero_okay || check));
2576}
2577
2578static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2579                                                           __wsum psum)
2580{
2581        if (NAPI_GRO_CB(skb)->csum_valid &&
2582            !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2583                return 0;
2584
2585        NAPI_GRO_CB(skb)->csum = psum;
2586
2587        return __skb_gro_checksum_complete(skb);
2588}
2589
2590static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2591{
2592        if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2593                /* Consume a checksum from CHECKSUM_UNNECESSARY */
2594                NAPI_GRO_CB(skb)->csum_cnt--;
2595        } else {
2596                /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2597                 * verified a new top level checksum or an encapsulated one
2598                 * during GRO. This saves work if we fallback to normal path.
2599                 */
2600                __skb_incr_checksum_unnecessary(skb);
2601        }
2602}
2603
2604#define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2605                                    compute_pseudo)                     \
2606({                                                                      \
2607        __sum16 __ret = 0;                                              \
2608        if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2609                __ret = __skb_gro_checksum_validate_complete(skb,       \
2610                                compute_pseudo(skb, proto));            \
2611        if (!__ret)                                                     \
2612                skb_gro_incr_csum_unnecessary(skb);                     \
2613        __ret;                                                          \
2614})
2615
2616#define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2617        __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2618
2619#define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2620                                             compute_pseudo)            \
2621        __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2622
2623#define skb_gro_checksum_simple_validate(skb)                           \
2624        __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2625
2626static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2627{
2628        return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2629                !NAPI_GRO_CB(skb)->csum_valid);
2630}
2631
2632static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2633                                              __sum16 check, __wsum pseudo)
2634{
2635        NAPI_GRO_CB(skb)->csum = ~pseudo;
2636        NAPI_GRO_CB(skb)->csum_valid = 1;
2637}
2638
2639#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2640do {                                                                    \
2641        if (__skb_gro_checksum_convert_check(skb))                      \
2642                __skb_gro_checksum_convert(skb, check,                  \
2643                                           compute_pseudo(skb, proto)); \
2644} while (0)
2645
2646struct gro_remcsum {
2647        int offset;
2648        __wsum delta;
2649};
2650
2651static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2652{
2653        grc->offset = 0;
2654        grc->delta = 0;
2655}
2656
2657static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2658                                            unsigned int off, size_t hdrlen,
2659                                            int start, int offset,
2660                                            struct gro_remcsum *grc,
2661                                            bool nopartial)
2662{
2663        __wsum delta;
2664        size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2665
2666        BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2667
2668        if (!nopartial) {
2669                NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2670                return ptr;
2671        }
2672
2673        ptr = skb_gro_header_fast(skb, off);
2674        if (skb_gro_header_hard(skb, off + plen)) {
2675                ptr = skb_gro_header_slow(skb, off + plen, off);
2676                if (!ptr)
2677                        return NULL;
2678        }
2679
2680        delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2681                               start, offset);
2682
2683        /* Adjust skb->csum since we changed the packet */
2684        NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2685
2686        grc->offset = off + hdrlen + offset;
2687        grc->delta = delta;
2688
2689        return ptr;
2690}
2691
2692static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2693                                           struct gro_remcsum *grc)
2694{
2695        void *ptr;
2696        size_t plen = grc->offset + sizeof(u16);
2697
2698        if (!grc->delta)
2699                return;
2700
2701        ptr = skb_gro_header_fast(skb, grc->offset);
2702        if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2703                ptr = skb_gro_header_slow(skb, plen, grc->offset);
2704                if (!ptr)
2705                        return;
2706        }
2707
2708        remcsum_unadjust((__sum16 *)ptr, grc->delta);
2709}
2710
2711#ifdef CONFIG_XFRM_OFFLOAD
2712static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2713{
2714        if (PTR_ERR(pp) != -EINPROGRESS)
2715                NAPI_GRO_CB(skb)->flush |= flush;
2716}
2717#else
2718static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2719{
2720        NAPI_GRO_CB(skb)->flush |= flush;
2721}
2722#endif
2723
2724static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2725                                  unsigned short type,
2726                                  const void *daddr, const void *saddr,
2727                                  unsigned int len)
2728{
2729        if (!dev->header_ops || !dev->header_ops->create)
2730                return 0;
2731
2732        return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2733}
2734
2735static inline int dev_parse_header(const struct sk_buff *skb,
2736                                   unsigned char *haddr)
2737{
2738        const struct net_device *dev = skb->dev;
2739
2740        if (!dev->header_ops || !dev->header_ops->parse)
2741                return 0;
2742        return dev->header_ops->parse(skb, haddr);
2743}
2744
2745/* ll_header must have at least hard_header_len allocated */
2746static inline bool dev_validate_header(const struct net_device *dev,
2747                                       char *ll_header, int len)
2748{
2749        if (likely(len >= dev->hard_header_len))
2750                return true;
2751        if (len < dev->min_header_len)
2752                return false;
2753
2754        if (capable(CAP_SYS_RAWIO)) {
2755                memset(ll_header + len, 0, dev->hard_header_len - len);
2756                return true;
2757        }
2758
2759        if (dev->header_ops && dev->header_ops->validate)
2760                return dev->header_ops->validate(ll_header, len);
2761
2762        return false;
2763}
2764
2765typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2766                           int len, int size);
2767int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2768static inline int unregister_gifconf(unsigned int family)
2769{
2770        return register_gifconf(family, NULL);
2771}
2772
2773#ifdef CONFIG_NET_FLOW_LIMIT
2774#define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2775struct sd_flow_limit {
2776        u64                     count;
2777        unsigned int            num_buckets;
2778        unsigned int            history_head;
2779        u16                     history[FLOW_LIMIT_HISTORY];
2780        u8                      buckets[];
2781};
2782
2783extern int netdev_flow_limit_table_len;
2784#endif /* CONFIG_NET_FLOW_LIMIT */
2785
2786/*
2787 * Incoming packets are placed on per-CPU queues
2788 */
2789struct softnet_data {
2790        struct list_head        poll_list;
2791        struct sk_buff_head     process_queue;
2792
2793        /* stats */
2794        unsigned int            processed;
2795        unsigned int            time_squeeze;
2796        unsigned int            received_rps;
2797#ifdef CONFIG_RPS
2798        struct softnet_data     *rps_ipi_list;
2799#endif
2800#ifdef CONFIG_NET_FLOW_LIMIT
2801        struct sd_flow_limit __rcu *flow_limit;
2802#endif
2803        struct Qdisc            *output_queue;
2804        struct Qdisc            **output_queue_tailp;
2805        struct sk_buff          *completion_queue;
2806#ifdef CONFIG_XFRM_OFFLOAD
2807        struct sk_buff_head     xfrm_backlog;
2808#endif
2809#ifdef CONFIG_RPS
2810        /* input_queue_head should be written by cpu owning this struct,
2811         * and only read by other cpus. Worth using a cache line.
2812         */
2813        unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2814
2815        /* Elements below can be accessed between CPUs for RPS/RFS */
2816        call_single_data_t      csd ____cacheline_aligned_in_smp;
2817        struct softnet_data     *rps_ipi_next;
2818        unsigned int            cpu;
2819        unsigned int            input_queue_tail;
2820#endif
2821        unsigned int            dropped;
2822        struct sk_buff_head     input_pkt_queue;
2823        struct napi_struct      backlog;
2824
2825};
2826
2827static inline void input_queue_head_incr(struct softnet_data *sd)
2828{
2829#ifdef CONFIG_RPS
2830        sd->input_queue_head++;
2831#endif
2832}
2833
2834static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2835                                              unsigned int *qtail)
2836{
2837#ifdef CONFIG_RPS
2838        *qtail = ++sd->input_queue_tail;
2839#endif
2840}
2841
2842DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2843
2844void __netif_schedule(struct Qdisc *q);
2845void netif_schedule_queue(struct netdev_queue *txq);
2846
2847static inline void netif_tx_schedule_all(struct net_device *dev)
2848{
2849        unsigned int i;
2850
2851        for (i = 0; i < dev->num_tx_queues; i++)
2852                netif_schedule_queue(netdev_get_tx_queue(dev, i));
2853}
2854
2855static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2856{
2857        clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2858}
2859
2860/**
2861 *      netif_start_queue - allow transmit
2862 *      @dev: network device
2863 *
2864 *      Allow upper layers to call the device hard_start_xmit routine.
2865 */
2866static inline void netif_start_queue(struct net_device *dev)
2867{
2868        netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2869}
2870
2871static inline void netif_tx_start_all_queues(struct net_device *dev)
2872{
2873        unsigned int i;
2874
2875        for (i = 0; i < dev->num_tx_queues; i++) {
2876                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2877                netif_tx_start_queue(txq);
2878        }
2879}
2880
2881void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2882
2883/**
2884 *      netif_wake_queue - restart transmit
2885 *      @dev: network device
2886 *
2887 *      Allow upper layers to call the device hard_start_xmit routine.
2888 *      Used for flow control when transmit resources are available.
2889 */
2890static inline void netif_wake_queue(struct net_device *dev)
2891{
2892        netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2893}
2894
2895static inline void netif_tx_wake_all_queues(struct net_device *dev)
2896{
2897        unsigned int i;
2898
2899        for (i = 0; i < dev->num_tx_queues; i++) {
2900                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2901                netif_tx_wake_queue(txq);
2902        }
2903}
2904
2905static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2906{
2907        set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2908}
2909
2910/**
2911 *      netif_stop_queue - stop transmitted packets
2912 *      @dev: network device
2913 *
2914 *      Stop upper layers calling the device hard_start_xmit routine.
2915 *      Used for flow control when transmit resources are unavailable.
2916 */
2917static inline void netif_stop_queue(struct net_device *dev)
2918{
2919        netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2920}
2921
2922void netif_tx_stop_all_queues(struct net_device *dev);
2923
2924static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2925{
2926        return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2927}
2928
2929/**
2930 *      netif_queue_stopped - test if transmit queue is flowblocked
2931 *      @dev: network device
2932 *
2933 *      Test if transmit queue on device is currently unable to send.
2934 */
2935static inline bool netif_queue_stopped(const struct net_device *dev)
2936{
2937        return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2938}
2939
2940static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2941{
2942        return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2943}
2944
2945static inline bool
2946netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2947{
2948        return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2949}
2950
2951static inline bool
2952netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2953{
2954        return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2955}
2956
2957/**
2958 *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2959 *      @dev_queue: pointer to transmit queue
2960 *
2961 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2962 * to give appropriate hint to the CPU.
2963 */
2964static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2965{
2966#ifdef CONFIG_BQL
2967        prefetchw(&dev_queue->dql.num_queued);
2968#endif
2969}
2970
2971/**
2972 *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2973 *      @dev_queue: pointer to transmit queue
2974 *
2975 * BQL enabled drivers might use this helper in their TX completion path,
2976 * to give appropriate hint to the CPU.
2977 */
2978static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2979{
2980#ifdef CONFIG_BQL
2981        prefetchw(&dev_queue->dql.limit);
2982#endif
2983}
2984
2985static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2986                                        unsigned int bytes)
2987{
2988#ifdef CONFIG_BQL
2989        dql_queued(&dev_queue->dql, bytes);
2990
2991        if (likely(dql_avail(&dev_queue->dql) >= 0))
2992                return;
2993
2994        set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2995
2996        /*
2997         * The XOFF flag must be set before checking the dql_avail below,
2998         * because in netdev_tx_completed_queue we update the dql_completed
2999         * before checking the XOFF flag.
3000         */
3001        smp_mb();
3002
3003        /* check again in case another CPU has just made room avail */
3004        if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3005                clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3006#endif
3007}
3008
3009/**
3010 *      netdev_sent_queue - report the number of bytes queued to hardware
3011 *      @dev: network device
3012 *      @bytes: number of bytes queued to the hardware device queue
3013 *
3014 *      Report the number of bytes queued for sending/completion to the network
3015 *      device hardware queue. @bytes should be a good approximation and should
3016 *      exactly match netdev_completed_queue() @bytes
3017 */
3018static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3019{
3020        netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3021}
3022
3023static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3024                                             unsigned int pkts, unsigned int bytes)
3025{
3026#ifdef CONFIG_BQL
3027        if (unlikely(!bytes))
3028                return;
3029
3030        dql_completed(&dev_queue->dql, bytes);
3031
3032        /*
3033         * Without the memory barrier there is a small possiblity that
3034         * netdev_tx_sent_queue will miss the update and cause the queue to
3035         * be stopped forever
3036         */
3037        smp_mb();
3038
3039        if (dql_avail(&dev_queue->dql) < 0)
3040                return;
3041
3042        if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3043                netif_schedule_queue(dev_queue);
3044#endif
3045}
3046
3047/**
3048 *      netdev_completed_queue - report bytes and packets completed by device
3049 *      @dev: network device
3050 *      @pkts: actual number of packets sent over the medium
3051 *      @bytes: actual number of bytes sent over the medium
3052 *
3053 *      Report the number of bytes and packets transmitted by the network device
3054 *      hardware queue over the physical medium, @bytes must exactly match the
3055 *      @bytes amount passed to netdev_sent_queue()
3056 */
3057static inline void netdev_completed_queue(struct net_device *dev,
3058                                          unsigned int pkts, unsigned int bytes)
3059{
3060        netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3061}
3062
3063static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3064{
3065#ifdef CONFIG_BQL
3066        clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3067        dql_reset(&q->dql);
3068#endif
3069}
3070
3071/**
3072 *      netdev_reset_queue - reset the packets and bytes count of a network device
3073 *      @dev_queue: network device
3074 *
3075 *      Reset the bytes and packet count of a network device and clear the
3076 *      software flow control OFF bit for this network device
3077 */
3078static inline void netdev_reset_queue(struct net_device *dev_queue)
3079{
3080        netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3081}
3082
3083/**
3084 *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3085 *      @dev: network device
3086 *      @queue_index: given tx queue index
3087 *
3088 *      Returns 0 if given tx queue index >= number of device tx queues,
3089 *      otherwise returns the originally passed tx queue index.
3090 */
3091static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3092{
3093        if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3094                net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3095                                     dev->name, queue_index,
3096                                     dev->real_num_tx_queues);
3097                return 0;
3098        }
3099
3100        return queue_index;
3101}
3102
3103/**
3104 *      netif_running - test if up
3105 *      @dev: network device
3106 *
3107 *      Test if the device has been brought up.
3108 */
3109static inline bool netif_running(const struct net_device *dev)
3110{
3111        return test_bit(__LINK_STATE_START, &dev->state);
3112}
3113
3114/*
3115 * Routines to manage the subqueues on a device.  We only need start,
3116 * stop, and a check if it's stopped.  All other device management is
3117 * done at the overall netdevice level.
3118 * Also test the device if we're multiqueue.
3119 */
3120
3121/**
3122 *      netif_start_subqueue - allow sending packets on subqueue
3123 *      @dev: network device
3124 *      @queue_index: sub queue index
3125 *
3126 * Start individual transmit queue of a device with multiple transmit queues.
3127 */
3128static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3129{
3130        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3131
3132        netif_tx_start_queue(txq);
3133}
3134
3135/**
3136 *      netif_stop_subqueue - stop sending packets on subqueue
3137 *      @dev: network device
3138 *      @queue_index: sub queue index
3139 *
3140 * Stop individual transmit queue of a device with multiple transmit queues.
3141 */
3142static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3143{
3144        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3145        netif_tx_stop_queue(txq);
3146}
3147
3148/**
3149 *      netif_subqueue_stopped - test status of subqueue
3150 *      @dev: network device
3151 *      @queue_index: sub queue index
3152 *
3153 * Check individual transmit queue of a device with multiple transmit queues.
3154 */
3155static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3156                                            u16 queue_index)
3157{
3158        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3159
3160        return netif_tx_queue_stopped(txq);
3161}
3162
3163static inline bool netif_subqueue_stopped(const struct net_device *dev,
3164                                          struct sk_buff *skb)
3165{
3166        return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3167}
3168
3169/**
3170 *      netif_wake_subqueue - allow sending packets on subqueue
3171 *      @dev: network device
3172 *      @queue_index: sub queue index
3173 *
3174 * Resume individual transmit queue of a device with multiple transmit queues.
3175 */
3176static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3177{
3178        struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3179
3180        netif_tx_wake_queue(txq);
3181}
3182
3183#ifdef CONFIG_XPS
3184int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3185                        u16 index);
3186#else
3187static inline int netif_set_xps_queue(struct net_device *dev,
3188                                      const struct cpumask *mask,
3189                                      u16 index)
3190{
3191        return 0;
3192}
3193#endif
3194
3195u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3196                  unsigned int num_tx_queues);
3197
3198/*
3199 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3200 * as a distribution range limit for the returned value.
3201 */
3202static inline u16 skb_tx_hash(const struct net_device *dev,
3203                              struct sk_buff *skb)
3204{
3205        return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3206}
3207
3208/**
3209 *      netif_is_multiqueue - test if device has multiple transmit queues
3210 *      @dev: network device
3211 *
3212 * Check if device has multiple transmit queues
3213 */
3214static inline bool netif_is_multiqueue(const struct net_device *dev)
3215{
3216        return dev->num_tx_queues > 1;
3217}
3218
3219int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3220
3221#ifdef CONFIG_SYSFS
3222int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3223#else
3224static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3225                                                unsigned int rxq)
3226{
3227        return 0;
3228}
3229#endif
3230
3231static inline struct netdev_rx_queue *
3232__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3233{
3234        return dev->_rx + rxq;
3235}
3236
3237#ifdef CONFIG_SYSFS
3238static inline unsigned int get_netdev_rx_queue_index(
3239                struct netdev_rx_queue *queue)
3240{
3241        struct net_device *dev = queue->dev;
3242        int index = queue - dev->_rx;
3243
3244        BUG_ON(index >= dev->num_rx_queues);
3245        return index;
3246}
3247#endif
3248
3249#define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3250int netif_get_num_default_rss_queues(void);
3251
3252enum skb_free_reason {
3253        SKB_REASON_CONSUMED,
3254        SKB_REASON_DROPPED,
3255};
3256
3257void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3258void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3259
3260/*
3261 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3262 * interrupt context or with hardware interrupts being disabled.
3263 * (in_irq() || irqs_disabled())
3264 *
3265 * We provide four helpers that can be used in following contexts :
3266 *
3267 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3268 *  replacing kfree_skb(skb)
3269 *
3270 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3271 *  Typically used in place of consume_skb(skb) in TX completion path
3272 *
3273 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3274 *  replacing kfree_skb(skb)
3275 *
3276 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3277 *  and consumed a packet. Used in place of consume_skb(skb)
3278 */
3279static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3280{
3281        __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3282}
3283
3284static inline void dev_consume_skb_irq(struct sk_buff *skb)
3285{
3286        __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3287}
3288
3289static inline void dev_kfree_skb_any(struct sk_buff *skb)
3290{
3291        __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3292}
3293
3294static inline void dev_consume_skb_any(struct sk_buff *skb)
3295{
3296        __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3297}
3298
3299void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3300int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3301int netif_rx(struct sk_buff *skb);
3302int netif_rx_ni(struct sk_buff *skb);
3303int netif_receive_skb(struct sk_buff *skb);
3304int netif_receive_skb_core(struct sk_buff *skb);
3305gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3306void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3307struct sk_buff *napi_get_frags(struct napi_struct *napi);
3308gro_result_t napi_gro_frags(struct napi_struct *napi);
3309struct packet_offload *gro_find_receive_by_type(__be16 type);
3310struct packet_offload *gro_find_complete_by_type(__be16 type);
3311
3312static inline void napi_free_frags(struct napi_struct *napi)
3313{
3314        kfree_skb(napi->skb);
3315        napi->skb = NULL;
3316}
3317
3318bool netdev_is_rx_handler_busy(struct net_device *dev);
3319int netdev_rx_handler_register(struct net_device *dev,
3320                               rx_handler_func_t *rx_handler,
3321                               void *rx_handler_data);
3322void netdev_rx_handler_unregister(struct net_device *dev);
3323
3324bool dev_valid_name(const char *name);
3325int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3326                bool *need_copyout);
3327int dev_ifconf(struct net *net, struct ifconf *, int);
3328int dev_ethtool(struct net *net, struct ifreq *);
3329unsigned int dev_get_flags(const struct net_device *);
3330int __dev_change_flags(struct net_device *, unsigned int flags);
3331int dev_change_flags(struct net_device *, unsigned int);
3332void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3333                        unsigned int gchanges);
3334int dev_change_name(struct net_device *, const char *);
3335int dev_set_alias(struct net_device *, const char *, size_t);
3336int dev_get_alias(const struct net_device *, char *, size_t);
3337int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3338int __dev_set_mtu(struct net_device *, int);
3339int dev_set_mtu(struct net_device *, int);
3340int dev_change_tx_queue_len(struct net_device *, unsigned long);
3341void dev_set_group(struct net_device *, int);
3342int dev_set_mac_address(struct net_device *, struct sockaddr *);
3343int dev_change_carrier(struct net_device *, bool new_carrier);
3344int dev_get_phys_port_id(struct net_device *dev,
3345                         struct netdev_phys_item_id *ppid);
3346int dev_get_phys_port_name(struct net_device *dev,
3347                           char *name, size_t len);
3348int dev_change_proto_down(struct net_device *dev, bool proto_down);
3349struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3350struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3351                                    struct netdev_queue *txq, int *ret);
3352
3353typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3354int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3355                      int fd, u32 flags);
3356void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3357                     struct netdev_bpf *xdp);
3358
3359int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3360int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3361bool is_skb_forwardable(const struct net_device *dev,
3362                        const struct sk_buff *skb);
3363
3364static __always_inline int ____dev_forward_skb(struct net_device *dev,
3365                                               struct sk_buff *skb)
3366{
3367        if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3368            unlikely(!is_skb_forwardable(dev, skb))) {
3369                atomic_long_inc(&dev->rx_dropped);
3370                kfree_skb(skb);
3371                return NET_RX_DROP;
3372        }
3373
3374        skb_scrub_packet(skb, true);
3375        skb->priority = 0;
3376        return 0;
3377}
3378
3379void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3380
3381extern int              netdev_budget;
3382extern unsigned int     netdev_budget_usecs;
3383
3384/* Called by rtnetlink.c:rtnl_unlock() */
3385void netdev_run_todo(void);
3386
3387/**
3388 *      dev_put - release reference to device
3389 *      @dev: network device
3390 *
3391 * Release reference to device to allow it to be freed.
3392 */
3393static inline void dev_put(struct net_device *dev)
3394{
3395        this_cpu_dec(*dev->pcpu_refcnt);
3396}
3397
3398/**
3399 *      dev_hold - get reference to device
3400 *      @dev: network device
3401 *
3402 * Hold reference to device to keep it from being freed.
3403 */
3404static inline void dev_hold(struct net_device *dev)
3405{
3406        this_cpu_inc(*dev->pcpu_refcnt);
3407}
3408
3409/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3410 * and _off may be called from IRQ context, but it is caller
3411 * who is responsible for serialization of these calls.
3412 *
3413 * The name carrier is inappropriate, these functions should really be
3414 * called netif_lowerlayer_*() because they represent the state of any
3415 * kind of lower layer not just hardware media.
3416 */
3417
3418void linkwatch_init_dev(struct net_device *dev);
3419void linkwatch_fire_event(struct net_device *dev);
3420void linkwatch_forget_dev(struct net_device *dev);
3421
3422/**
3423 *      netif_carrier_ok - test if carrier present
3424 *      @dev: network device
3425 *
3426 * Check if carrier is present on device
3427 */
3428static inline bool netif_carrier_ok(const struct net_device *dev)
3429{
3430        return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3431}
3432
3433unsigned long dev_trans_start(struct net_device *dev);
3434
3435void __netdev_watchdog_up(struct net_device *dev);
3436
3437void netif_carrier_on(struct net_device *dev);
3438
3439void netif_carrier_off(struct net_device *dev);
3440
3441/**
3442 *      netif_dormant_on - mark device as dormant.
3443 *      @dev: network device
3444 *
3445 * Mark device as dormant (as per RFC2863).
3446 *
3447 * The dormant state indicates that the relevant interface is not
3448 * actually in a condition to pass packets (i.e., it is not 'up') but is
3449 * in a "pending" state, waiting for some external event.  For "on-
3450 * demand" interfaces, this new state identifies the situation where the
3451 * interface is waiting for events to place it in the up state.
3452 */
3453static inline void netif_dormant_on(struct net_device *dev)
3454{
3455        if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3456                linkwatch_fire_event(dev);
3457}
3458
3459/**
3460 *      netif_dormant_off - set device as not dormant.
3461 *      @dev: network device
3462 *
3463 * Device is not in dormant state.
3464 */
3465static inline void netif_dormant_off(struct net_device *dev)
3466{
3467        if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3468                linkwatch_fire_event(dev);
3469}
3470
3471/**
3472 *      netif_dormant - test if device is dormant
3473 *      @dev: network device
3474 *
3475 * Check if device is dormant.
3476 */
3477static inline bool netif_dormant(const struct net_device *dev)
3478{
3479        return test_bit(__LINK_STATE_DORMANT, &dev->state);
3480}
3481
3482
3483/**
3484 *      netif_oper_up - test if device is operational
3485 *      @dev: network device
3486 *
3487 * Check if carrier is operational
3488 */
3489static inline bool netif_oper_up(const struct net_device *dev)
3490{
3491        return (dev->operstate == IF_OPER_UP ||
3492                dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3493}
3494
3495/**
3496 *      netif_device_present - is device available or removed
3497 *      @dev: network device
3498 *
3499 * Check if device has not been removed from system.
3500 */
3501static inline bool netif_device_present(struct net_device *dev)
3502{
3503        return test_bit(__LINK_STATE_PRESENT, &dev->state);
3504}
3505
3506void netif_device_detach(struct net_device *dev);
3507
3508void netif_device_attach(struct net_device *dev);
3509
3510/*
3511 * Network interface message level settings
3512 */
3513
3514enum {
3515        NETIF_MSG_DRV           = 0x0001,
3516        NETIF_MSG_PROBE         = 0x0002,
3517        NETIF_MSG_LINK          = 0x0004,
3518        NETIF_MSG_TIMER         = 0x0008,
3519        NETIF_MSG_IFDOWN        = 0x0010,
3520        NETIF_MSG_IFUP          = 0x0020,
3521        NETIF_MSG_RX_ERR        = 0x0040,
3522        NETIF_MSG_TX_ERR        = 0x0080,
3523        NETIF_MSG_TX_QUEUED     = 0x0100,
3524        NETIF_MSG_INTR          = 0x0200,
3525        NETIF_MSG_TX_DONE       = 0x0400,
3526        NETIF_MSG_RX_STATUS     = 0x0800,
3527        NETIF_MSG_PKTDATA       = 0x1000,
3528        NETIF_MSG_HW            = 0x2000,
3529        NETIF_MSG_WOL           = 0x4000,
3530};
3531
3532#define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3533#define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3534#define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3535#define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3536#define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3537#define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3538#define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3539#define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3540#define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3541#define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3542#define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3543#define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3544#define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3545#define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3546#define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3547
3548static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3549{
3550        /* use default */
3551        if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3552                return default_msg_enable_bits;
3553        if (debug_value == 0)   /* no output */
3554                return 0;
3555        /* set low N bits */
3556        return (1 << debug_value) - 1;
3557}
3558
3559static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3560{
3561        spin_lock(&txq->_xmit_lock);
3562        txq->xmit_lock_owner = cpu;
3563}
3564
3565static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3566{
3567        __acquire(&txq->_xmit_lock);
3568        return true;
3569}
3570
3571static inline void __netif_tx_release(struct netdev_queue *txq)
3572{
3573        __release(&txq->_xmit_lock);
3574}
3575
3576static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3577{
3578        spin_lock_bh(&txq->_xmit_lock);
3579        txq->xmit_lock_owner = smp_processor_id();
3580}
3581
3582static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3583{
3584        bool ok = spin_trylock(&txq->_xmit_lock);
3585        if (likely(ok))
3586                txq->xmit_lock_owner = smp_processor_id();
3587        return ok;
3588}
3589
3590static inline void __netif_tx_unlock(struct netdev_queue *txq)
3591{
3592        txq->xmit_lock_owner = -1;
3593        spin_unlock(&txq->_xmit_lock);
3594}
3595
3596static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3597{
3598        txq->xmit_lock_owner = -1;
3599        spin_unlock_bh(&txq->_xmit_lock);
3600}
3601
3602static inline void txq_trans_update(struct netdev_queue *txq)
3603{
3604        if (txq->xmit_lock_owner != -1)
3605                txq->trans_start = jiffies;
3606}
3607
3608/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3609static inline void netif_trans_update(struct net_device *dev)
3610{
3611        struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3612
3613        if (txq->trans_start != jiffies)
3614                txq->trans_start = jiffies;
3615}
3616
3617/**
3618 *      netif_tx_lock - grab network device transmit lock
3619 *      @dev: network device
3620 *
3621 * Get network device transmit lock
3622 */
3623static inline void netif_tx_lock(struct net_device *dev)
3624{
3625        unsigned int i;
3626        int cpu;
3627
3628        spin_lock(&dev->tx_global_lock);
3629        cpu = smp_processor_id();
3630        for (i = 0; i < dev->num_tx_queues; i++) {
3631                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3632
3633                /* We are the only thread of execution doing a
3634                 * freeze, but we have to grab the _xmit_lock in
3635                 * order to synchronize with threads which are in
3636                 * the ->hard_start_xmit() handler and already
3637                 * checked the frozen bit.
3638                 */
3639                __netif_tx_lock(txq, cpu);
3640                set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3641                __netif_tx_unlock(txq);
3642        }
3643}
3644
3645static inline void netif_tx_lock_bh(struct net_device *dev)
3646{
3647        local_bh_disable();
3648        netif_tx_lock(dev);
3649}
3650
3651static inline void netif_tx_unlock(struct net_device *dev)
3652{
3653        unsigned int i;
3654
3655        for (i = 0; i < dev->num_tx_queues; i++) {
3656                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3657
3658                /* No need to grab the _xmit_lock here.  If the
3659                 * queue is not stopped for another reason, we
3660                 * force a schedule.
3661                 */
3662                clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3663                netif_schedule_queue(txq);
3664        }
3665        spin_unlock(&dev->tx_global_lock);
3666}
3667
3668static inline void netif_tx_unlock_bh(struct net_device *dev)
3669{
3670        netif_tx_unlock(dev);
3671        local_bh_enable();
3672}
3673
3674#define HARD_TX_LOCK(dev, txq, cpu) {                   \
3675        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3676                __netif_tx_lock(txq, cpu);              \
3677        } else {                                        \
3678                __netif_tx_acquire(txq);                \
3679        }                                               \
3680}
3681
3682#define HARD_TX_TRYLOCK(dev, txq)                       \
3683        (((dev->features & NETIF_F_LLTX) == 0) ?        \
3684                __netif_tx_trylock(txq) :               \
3685                __netif_tx_acquire(txq))
3686
3687#define HARD_TX_UNLOCK(dev, txq) {                      \
3688        if ((dev->features & NETIF_F_LLTX) == 0) {      \
3689                __netif_tx_unlock(txq);                 \
3690        } else {                                        \
3691                __netif_tx_release(txq);                \
3692        }                                               \
3693}
3694
3695static inline void netif_tx_disable(struct net_device *dev)
3696{
3697        unsigned int i;
3698        int cpu;
3699
3700        local_bh_disable();
3701        cpu = smp_processor_id();
3702        for (i = 0; i < dev->num_tx_queues; i++) {
3703                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3704
3705                __netif_tx_lock(txq, cpu);
3706                netif_tx_stop_queue(txq);
3707                __netif_tx_unlock(txq);
3708        }
3709        local_bh_enable();
3710}
3711
3712static inline void netif_addr_lock(struct net_device *dev)
3713{
3714        spin_lock(&dev->addr_list_lock);
3715}
3716
3717static inline void netif_addr_lock_nested(struct net_device *dev)
3718{
3719        int subclass = SINGLE_DEPTH_NESTING;
3720
3721        if (dev->netdev_ops->ndo_get_lock_subclass)
3722                subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3723
3724        spin_lock_nested(&dev->addr_list_lock, subclass);
3725}
3726
3727static inline void netif_addr_lock_bh(struct net_device *dev)
3728{
3729        spin_lock_bh(&dev->addr_list_lock);
3730}
3731
3732static inline void netif_addr_unlock(struct net_device *dev)
3733{
3734        spin_unlock(&dev->addr_list_lock);
3735}
3736
3737static inline void netif_addr_unlock_bh(struct net_device *dev)
3738{
3739        spin_unlock_bh(&dev->addr_list_lock);
3740}
3741
3742/*
3743 * dev_addrs walker. Should be used only for read access. Call with
3744 * rcu_read_lock held.
3745 */
3746#define for_each_dev_addr(dev, ha) \
3747                list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3748
3749/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3750
3751void ether_setup(struct net_device *dev);
3752
3753/* Support for loadable net-drivers */
3754struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3755                                    unsigned char name_assign_type,
3756                                    void (*setup)(struct net_device *),
3757                                    unsigned int txqs, unsigned int rxqs);
3758int dev_get_valid_name(struct net *net, struct net_device *dev,
3759                       const char *name);
3760
3761#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3762        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3763
3764#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3765        alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3766                         count)
3767
3768int register_netdev(struct net_device *dev);
3769void unregister_netdev(struct net_device *dev);
3770
3771/* General hardware address lists handling functions */
3772int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3773                   struct netdev_hw_addr_list *from_list, int addr_len);
3774void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3775                      struct netdev_hw_addr_list *from_list, int addr_len);
3776int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3777                       struct net_device *dev,
3778                       int (*sync)(struct net_device *, const unsigned char *),
3779                       int (*unsync)(struct net_device *,
3780                                     const unsigned char *));
3781void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3782                          struct net_device *dev,
3783                          int (*unsync)(struct net_device *,
3784                                        const unsigned char *));
3785void __hw_addr_init(struct netdev_hw_addr_list *list);
3786
3787/* Functions used for device addresses handling */
3788int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3789                 unsigned char addr_type);
3790int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3791                 unsigned char addr_type);
3792void dev_addr_flush(struct net_device *dev);
3793int dev_addr_init(struct net_device *dev);
3794
3795/* Functions used for unicast addresses handling */
3796int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3797int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3798int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3799int dev_uc_sync(struct net_device *to, struct net_device *from);
3800int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3801void dev_uc_unsync(struct net_device *to, struct net_device *from);
3802void dev_uc_flush(struct net_device *dev);
3803void dev_uc_init(struct net_device *dev);
3804
3805/**
3806 *  __dev_uc_sync - Synchonize device's unicast list
3807 *  @dev:  device to sync
3808 *  @sync: function to call if address should be added
3809 *  @unsync: function to call if address should be removed
3810 *
3811 *  Add newly added addresses to the interface, and release
3812 *  addresses that have been deleted.
3813 */
3814static inline int __dev_uc_sync(struct net_device *dev,
3815                                int (*sync)(struct net_device *,
3816                                            const unsigned char *),
3817                                int (*unsync)(struct net_device *,
3818                                              const unsigned char *))
3819{
3820        return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3821}
3822
3823/**
3824 *  __dev_uc_unsync - Remove synchronized addresses from device
3825 *  @dev:  device to sync
3826 *  @unsync: function to call if address should be removed
3827 *
3828 *  Remove all addresses that were added to the device by dev_uc_sync().
3829 */
3830static inline void __dev_uc_unsync(struct net_device *dev,
3831                                   int (*unsync)(struct net_device *,
3832                                                 const unsigned char *))
3833{
3834        __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3835}
3836
3837/* Functions used for multicast addresses handling */
3838int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3839int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3840int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3841int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3842int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3843int dev_mc_sync(struct net_device *to, struct net_device *from);
3844int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3845void dev_mc_unsync(struct net_device *to, struct net_device *from);
3846void dev_mc_flush(struct net_device *dev);
3847void dev_mc_init(struct net_device *dev);
3848
3849/**
3850 *  __dev_mc_sync - Synchonize device's multicast list
3851 *  @dev:  device to sync
3852 *  @sync: function to call if address should be added
3853 *  @unsync: function to call if address should be removed
3854 *
3855 *  Add newly added addresses to the interface, and release
3856 *  addresses that have been deleted.
3857 */
3858static inline int __dev_mc_sync(struct net_device *dev,
3859                                int (*sync)(struct net_device *,
3860                                            const unsigned char *),
3861                                int (*unsync)(struct net_device *,
3862                                              const unsigned char *))
3863{
3864        return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3865}
3866
3867/**
3868 *  __dev_mc_unsync - Remove synchronized addresses from device
3869 *  @dev:  device to sync
3870 *  @unsync: function to call if address should be removed
3871 *
3872 *  Remove all addresses that were added to the device by dev_mc_sync().
3873 */
3874static inline void __dev_mc_unsync(struct net_device *dev,
3875                                   int (*unsync)(struct net_device *,
3876                                                 const unsigned char *))
3877{
3878        __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3879}
3880
3881/* Functions used for secondary unicast and multicast support */
3882void dev_set_rx_mode(struct net_device *dev);
3883void __dev_set_rx_mode(struct net_device *dev);
3884int dev_set_promiscuity(struct net_device *dev, int inc);
3885int dev_set_allmulti(struct net_device *dev, int inc);
3886void netdev_state_change(struct net_device *dev);
3887void netdev_notify_peers(struct net_device *dev);
3888void netdev_features_change(struct net_device *dev);
3889/* Load a device via the kmod */
3890void dev_load(struct net *net, const char *name);
3891struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3892                                        struct rtnl_link_stats64 *storage);
3893void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3894                             const struct net_device_stats *netdev_stats);
3895
3896extern int              netdev_max_backlog;
3897extern int              netdev_tstamp_prequeue;
3898extern int              weight_p;
3899extern int              dev_weight_rx_bias;
3900extern int              dev_weight_tx_bias;
3901extern int              dev_rx_weight;
3902extern int              dev_tx_weight;
3903
3904bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3905struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3906                                                     struct list_head **iter);
3907struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3908                                                     struct list_head **iter);
3909
3910/* iterate through upper list, must be called under RCU read lock */
3911#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3912        for (iter = &(dev)->adj_list.upper, \
3913             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3914             updev; \
3915             updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3916
3917int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3918                                  int (*fn)(struct net_device *upper_dev,
3919                                            void *data),
3920                                  void *data);
3921
3922bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3923                                  struct net_device *upper_dev);
3924
3925bool netdev_has_any_upper_dev(struct net_device *dev);
3926
3927void *netdev_lower_get_next_private(struct net_device *dev,
3928                                    struct list_head **iter);
3929void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3930                                        struct list_head **iter);
3931
3932#define netdev_for_each_lower_private(dev, priv, iter) \
3933        for (iter = (dev)->adj_list.lower.next, \
3934             priv = netdev_lower_get_next_private(dev, &(iter)); \
3935             priv; \
3936             priv = netdev_lower_get_next_private(dev, &(iter)))
3937
3938#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3939        for (iter = &(dev)->adj_list.lower, \
3940             priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3941             priv; \
3942             priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3943
3944void *netdev_lower_get_next(struct net_device *dev,
3945                                struct list_head **iter);
3946
3947#define netdev_for_each_lower_dev(dev, ldev, iter) \
3948        for (iter = (dev)->adj_list.lower.next, \
3949             ldev = netdev_lower_get_next(dev, &(iter)); \
3950             ldev; \
3951             ldev = netdev_lower_get_next(dev, &(iter)))
3952
3953struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3954                                             struct list_head **iter);
3955struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3956                                                 struct list_head **iter);
3957
3958int netdev_walk_all_lower_dev(struct net_device *dev,
3959                              int (*fn)(struct net_device *lower_dev,
3960                                        void *data),
3961                              void *data);
3962int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3963                                  int (*fn)(struct net_device *lower_dev,
3964                                            void *data),
3965                                  void *data);
3966
3967void *netdev_adjacent_get_private(struct list_head *adj_list);
3968void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3969struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3970struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3971int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
3972                          struct netlink_ext_ack *extack);
3973int netdev_master_upper_dev_link(struct net_device *dev,
3974                                 struct net_device *upper_dev,
3975                                 void *upper_priv, void *upper_info,
3976                                 struct netlink_ext_ack *extack);
3977void netdev_upper_dev_unlink(struct net_device *dev,
3978                             struct net_device *upper_dev);
3979void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3980void *netdev_lower_dev_get_private(struct net_device *dev,
3981                                   struct net_device *lower_dev);
3982void netdev_lower_state_changed(struct net_device *lower_dev,
3983                                void *lower_state_info);
3984
3985/* RSS keys are 40 or 52 bytes long */
3986#define NETDEV_RSS_KEY_LEN 52
3987extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3988void netdev_rss_key_fill(void *buffer, size_t len);
3989
3990int dev_get_nest_level(struct net_device *dev);
3991int skb_checksum_help(struct sk_buff *skb);
3992int skb_crc32c_csum_help(struct sk_buff *skb);
3993int skb_csum_hwoffload_help(struct sk_buff *skb,
3994                            const netdev_features_t features);
3995
3996struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3997                                  netdev_features_t features, bool tx_path);
3998struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3999                                    netdev_features_t features);
4000
4001struct netdev_bonding_info {
4002        ifslave slave;
4003        ifbond  master;
4004};
4005
4006struct netdev_notifier_bonding_info {
4007        struct netdev_notifier_info info; /* must be first */
4008        struct netdev_bonding_info  bonding_info;
4009};
4010
4011void netdev_bonding_info_change(struct net_device *dev,
4012                                struct netdev_bonding_info *bonding_info);
4013
4014static inline
4015struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4016{
4017        return __skb_gso_segment(skb, features, true);
4018}
4019__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4020
4021static inline bool can_checksum_protocol(netdev_features_t features,
4022                                         __be16 protocol)
4023{
4024        if (protocol == htons(ETH_P_FCOE))
4025                return !!(features & NETIF_F_FCOE_CRC);
4026
4027        /* Assume this is an IP checksum (not SCTP CRC) */
4028
4029        if (features & NETIF_F_HW_CSUM) {
4030                /* Can checksum everything */
4031                return true;
4032        }
4033
4034        switch (protocol) {
4035        case htons(ETH_P_IP):
4036                return !!(features & NETIF_F_IP_CSUM);
4037        case htons(ETH_P_IPV6):
4038                return !!(features & NETIF_F_IPV6_CSUM);
4039        default:
4040                return false;
4041        }
4042}
4043
4044#ifdef CONFIG_BUG
4045void netdev_rx_csum_fault(struct net_device *dev);
4046#else
4047static inline void netdev_rx_csum_fault(struct net_device *dev)
4048{
4049}
4050#endif
4051/* rx skb timestamps */
4052void net_enable_timestamp(void);
4053void net_disable_timestamp(void);
4054
4055#ifdef CONFIG_PROC_FS
4056int __init dev_proc_init(void);
4057#else
4058#define dev_proc_init() 0
4059#endif
4060
4061static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4062                                              struct sk_buff *skb, struct net_device *dev,
4063                                              bool more)
4064{
4065        skb->xmit_more = more ? 1 : 0;
4066        return ops->ndo_start_xmit(skb, dev);
4067}
4068
4069static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4070                                            struct netdev_queue *txq, bool more)
4071{
4072        const struct net_device_ops *ops = dev->netdev_ops;
4073        int rc;
4074
4075        rc = __netdev_start_xmit(ops, skb, dev, more);
4076        if (rc == NETDEV_TX_OK)
4077                txq_trans_update(txq);
4078
4079        return rc;
4080}
4081
4082int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4083                                const void *ns);
4084void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4085                                 const void *ns);
4086
4087static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4088{
4089        return netdev_class_create_file_ns(class_attr, NULL);
4090}
4091
4092static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4093{
4094        netdev_class_remove_file_ns(class_attr, NULL);
4095}
4096
4097extern const struct kobj_ns_type_operations net_ns_type_operations;
4098
4099const char *netdev_drivername(const struct net_device *dev);
4100
4101void linkwatch_run_queue(void);
4102
4103static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4104                                                          netdev_features_t f2)
4105{
4106        if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4107                if (f1 & NETIF_F_HW_CSUM)
4108                        f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4109                else
4110                        f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4111        }
4112
4113        return f1 & f2;
4114}
4115
4116static inline netdev_features_t netdev_get_wanted_features(
4117        struct net_device *dev)
4118{
4119        return (dev->features & ~dev->hw_features) | dev->wanted_features;
4120}
4121netdev_features_t netdev_increment_features(netdev_features_t all,
4122        netdev_features_t one, netdev_features_t mask);
4123
4124/* Allow TSO being used on stacked device :
4125 * Performing the GSO segmentation before last device
4126 * is a performance improvement.
4127 */
4128static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4129                                                        netdev_features_t mask)
4130{
4131        return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4132}
4133
4134int __netdev_update_features(struct net_device *dev);
4135void netdev_update_features(struct net_device *dev);
4136void netdev_change_features(struct net_device *dev);
4137
4138void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4139                                        struct net_device *dev);
4140
4141netdev_features_t passthru_features_check(struct sk_buff *skb,
4142                                          struct net_device *dev,
4143                                          netdev_features_t features);
4144netdev_features_t netif_skb_features(struct sk_buff *skb);
4145
4146static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4147{
4148        netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4149
4150        /* check flags correspondence */
4151        BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4152        BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4153        BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4154        BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4155        BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4156        BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4157        BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4158        BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4159        BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4160        BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4161        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4162        BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4163        BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4164        BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4165        BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4166        BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4167        BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4168
4169        return (features & feature) == feature;
4170}
4171
4172static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4173{
4174        return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4175               (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4176}
4177
4178static inline bool netif_needs_gso(struct sk_buff *skb,
4179                                   netdev_features_t features)
4180{
4181        return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4182                unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4183                         (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4184}
4185
4186static inline void netif_set_gso_max_size(struct net_device *dev,
4187                                          unsigned int size)
4188{
4189        dev->gso_max_size = size;
4190}
4191
4192static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4193                                        int pulled_hlen, u16 mac_offset,
4194                                        int mac_len)
4195{
4196        skb->protocol = protocol;
4197        skb->encapsulation = 1;
4198        skb_push(skb, pulled_hlen);
4199        skb_reset_transport_header(skb);
4200        skb->mac_header = mac_offset;
4201        skb->network_header = skb->mac_header + mac_len;
4202        skb->mac_len = mac_len;
4203}
4204
4205static inline bool netif_is_macsec(const struct net_device *dev)
4206{
4207        return dev->priv_flags & IFF_MACSEC;
4208}
4209
4210static inline bool netif_is_macvlan(const struct net_device *dev)
4211{
4212        return dev->priv_flags & IFF_MACVLAN;
4213}
4214
4215static inline bool netif_is_macvlan_port(const struct net_device *dev)
4216{
4217        return dev->priv_flags & IFF_MACVLAN_PORT;
4218}
4219
4220static inline bool netif_is_ipvlan(const struct net_device *dev)
4221{
4222        return dev->priv_flags & IFF_IPVLAN_SLAVE;
4223}
4224
4225static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4226{
4227        return dev->priv_flags & IFF_IPVLAN_MASTER;
4228}
4229
4230static inline bool netif_is_bond_master(const struct net_device *dev)
4231{
4232        return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4233}
4234
4235static inline bool netif_is_bond_slave(const struct net_device *dev)
4236{
4237        return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4238}
4239
4240static inline bool netif_supports_nofcs(struct net_device *dev)
4241{
4242        return dev->priv_flags & IFF_SUPP_NOFCS;
4243}
4244
4245static inline bool netif_is_l3_master(const struct net_device *dev)
4246{
4247        return dev->priv_flags & IFF_L3MDEV_MASTER;
4248}
4249
4250static inline bool netif_is_l3_slave(const struct net_device *dev)
4251{
4252        return dev->priv_flags & IFF_L3MDEV_SLAVE;
4253}
4254
4255static inline bool netif_is_bridge_master(const struct net_device *dev)
4256{
4257        return dev->priv_flags & IFF_EBRIDGE;
4258}
4259
4260static inline bool netif_is_bridge_port(const struct net_device *dev)
4261{
4262        return dev->priv_flags & IFF_BRIDGE_PORT;
4263}
4264
4265static inline bool netif_is_ovs_master(const struct net_device *dev)
4266{
4267        return dev->priv_flags & IFF_OPENVSWITCH;
4268}
4269
4270static inline bool netif_is_ovs_port(const struct net_device *dev)
4271{
4272        return dev->priv_flags & IFF_OVS_DATAPATH;
4273}
4274
4275static inline bool netif_is_team_master(const struct net_device *dev)
4276{
4277        return dev->priv_flags & IFF_TEAM;
4278}
4279
4280static inline bool netif_is_team_port(const struct net_device *dev)
4281{
4282        return dev->priv_flags & IFF_TEAM_PORT;
4283}
4284
4285static inline bool netif_is_lag_master(const struct net_device *dev)
4286{
4287        return netif_is_bond_master(dev) || netif_is_team_master(dev);
4288}
4289
4290static inline bool netif_is_lag_port(const struct net_device *dev)
4291{
4292        return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4293}
4294
4295static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4296{
4297        return dev->priv_flags & IFF_RXFH_CONFIGURED;
4298}
4299
4300/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4301static inline void netif_keep_dst(struct net_device *dev)
4302{
4303        dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4304}
4305
4306/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4307static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4308{
4309        /* TODO: reserve and use an additional IFF bit, if we get more users */
4310        return dev->priv_flags & IFF_MACSEC;
4311}
4312
4313extern struct pernet_operations __net_initdata loopback_net_ops;
4314
4315/* Logging, debugging and troubleshooting/diagnostic helpers. */
4316
4317/* netdev_printk helpers, similar to dev_printk */
4318
4319static inline const char *netdev_name(const struct net_device *dev)
4320{
4321        if (!dev->name[0] || strchr(dev->name, '%'))
4322                return "(unnamed net_device)";
4323        return dev->name;
4324}
4325
4326static inline bool netdev_unregistering(const struct net_device *dev)
4327{
4328        return dev->reg_state == NETREG_UNREGISTERING;
4329}
4330
4331static inline const char *netdev_reg_state(const struct net_device *dev)
4332{
4333        switch (dev->reg_state) {
4334        case NETREG_UNINITIALIZED: return " (uninitialized)";
4335        case NETREG_REGISTERED: return "";
4336        case NETREG_UNREGISTERING: return " (unregistering)";
4337        case NETREG_UNREGISTERED: return " (unregistered)";
4338        case NETREG_RELEASED: return " (released)";
4339        case NETREG_DUMMY: return " (dummy)";
4340        }
4341
4342        WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4343        return " (unknown)";
4344}
4345
4346__printf(3, 4)
4347void netdev_printk(const char *level, const struct net_device *dev,
4348                   const char *format, ...);
4349__printf(2, 3)
4350void netdev_emerg(const struct net_device *dev, const char *format, ...);
4351__printf(2, 3)
4352void netdev_alert(const struct net_device *dev, const char *format, ...);
4353__printf(2, 3)
4354void netdev_crit(const struct net_device *dev, const char *format, ...);
4355__printf(2, 3)
4356void netdev_err(const struct net_device *dev, const char *format, ...);
4357__printf(2, 3)
4358void netdev_warn(const struct net_device *dev, const char *format, ...);
4359__printf(2, 3)
4360void netdev_notice(const struct net_device *dev, const char *format, ...);
4361__printf(2, 3)
4362void netdev_info(const struct net_device *dev, const char *format, ...);
4363
4364#define netdev_level_once(level, dev, fmt, ...)                 \
4365do {                                                            \
4366        static bool __print_once __read_mostly;                 \
4367                                                                \
4368        if (!__print_once) {                                    \
4369                __print_once = true;                            \
4370                netdev_printk(level, dev, fmt, ##__VA_ARGS__);  \
4371        }                                                       \
4372} while (0)
4373
4374#define netdev_emerg_once(dev, fmt, ...) \
4375        netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4376#define netdev_alert_once(dev, fmt, ...) \
4377        netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4378#define netdev_crit_once(dev, fmt, ...) \
4379        netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4380#define netdev_err_once(dev, fmt, ...) \
4381        netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4382#define netdev_warn_once(dev, fmt, ...) \
4383        netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4384#define netdev_notice_once(dev, fmt, ...) \
4385        netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4386#define netdev_info_once(dev, fmt, ...) \
4387        netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4388
4389#define MODULE_ALIAS_NETDEV(device) \
4390        MODULE_ALIAS("netdev-" device)
4391
4392#if defined(CONFIG_DYNAMIC_DEBUG)
4393#define netdev_dbg(__dev, format, args...)                      \
4394do {                                                            \
4395        dynamic_netdev_dbg(__dev, format, ##args);              \
4396} while (0)
4397#elif defined(DEBUG)
4398#define netdev_dbg(__dev, format, args...)                      \
4399        netdev_printk(KERN_DEBUG, __dev, format, ##args)
4400#else
4401#define netdev_dbg(__dev, format, args...)                      \
4402({                                                              \
4403        if (0)                                                  \
4404                netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4405})
4406#endif
4407
4408#if defined(VERBOSE_DEBUG)
4409#define netdev_vdbg     netdev_dbg
4410#else
4411
4412#define netdev_vdbg(dev, format, args...)                       \
4413({                                                              \
4414        if (0)                                                  \
4415                netdev_printk(KERN_DEBUG, dev, format, ##args); \
4416        0;                                                      \
4417})
4418#endif
4419
4420/*
4421 * netdev_WARN() acts like dev_printk(), but with the key difference
4422 * of using a WARN/WARN_ON to get the message out, including the
4423 * file/line information and a backtrace.
4424 */
4425#define netdev_WARN(dev, format, args...)                       \
4426        WARN(1, "netdevice: %s%s: " format, netdev_name(dev),   \
4427             netdev_reg_state(dev), ##args)
4428
4429#define netdev_WARN_ONCE(dev, format, args...)                          \
4430        WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),      \
4431                  netdev_reg_state(dev), ##args)
4432
4433/* netif printk helpers, similar to netdev_printk */
4434
4435#define netif_printk(priv, type, level, dev, fmt, args...)      \
4436do {                                                            \
4437        if (netif_msg_##type(priv))                             \
4438                netdev_printk(level, (dev), fmt, ##args);       \
4439} while (0)
4440
4441#define netif_level(level, priv, type, dev, fmt, args...)       \
4442do {                                                            \
4443        if (netif_msg_##type(priv))                             \
4444                netdev_##level(dev, fmt, ##args);               \
4445} while (0)
4446
4447#define netif_emerg(priv, type, dev, fmt, args...)              \
4448        netif_level(emerg, priv, type, dev, fmt, ##args)
4449#define netif_alert(priv, type, dev, fmt, args...)              \
4450        netif_level(alert, priv, type, dev, fmt, ##args)
4451#define netif_crit(priv, type, dev, fmt, args...)               \
4452        netif_level(crit, priv, type, dev, fmt, ##args)
4453#define netif_err(priv, type, dev, fmt, args...)                \
4454        netif_level(err, priv, type, dev, fmt, ##args)
4455#define netif_warn(priv, type, dev, fmt, args...)               \
4456        netif_level(warn, priv, type, dev, fmt, ##args)
4457#define netif_notice(priv, type, dev, fmt, args...)             \
4458        netif_level(notice, priv, type, dev, fmt, ##args)
4459#define netif_info(priv, type, dev, fmt, args...)               \
4460        netif_level(info, priv, type, dev, fmt, ##args)
4461
4462#if defined(CONFIG_DYNAMIC_DEBUG)
4463#define netif_dbg(priv, type, netdev, format, args...)          \
4464do {                                                            \
4465        if (netif_msg_##type(priv))                             \
4466                dynamic_netdev_dbg(netdev, format, ##args);     \
4467} while (0)
4468#elif defined(DEBUG)
4469#define netif_dbg(priv, type, dev, format, args...)             \
4470        netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4471#else
4472#define netif_dbg(priv, type, dev, format, args...)                     \
4473({                                                                      \
4474        if (0)                                                          \
4475                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4476        0;                                                              \
4477})
4478#endif
4479
4480/* if @cond then downgrade to debug, else print at @level */
4481#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4482        do {                                                              \
4483                if (cond)                                                 \
4484                        netif_dbg(priv, type, netdev, fmt, ##args);       \
4485                else                                                      \
4486                        netif_ ## level(priv, type, netdev, fmt, ##args); \
4487        } while (0)
4488
4489#if defined(VERBOSE_DEBUG)
4490#define netif_vdbg      netif_dbg
4491#else
4492#define netif_vdbg(priv, type, dev, format, args...)            \
4493({                                                              \
4494        if (0)                                                  \
4495                netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4496        0;                                                      \
4497})
4498#endif
4499
4500/*
4501 *      The list of packet types we will receive (as opposed to discard)
4502 *      and the routines to invoke.
4503 *
4504 *      Why 16. Because with 16 the only overlap we get on a hash of the
4505 *      low nibble of the protocol value is RARP/SNAP/X.25.
4506 *
4507 *              0800    IP
4508 *              0001    802.3
4509 *              0002    AX.25
4510 *              0004    802.2
4511 *              8035    RARP
4512 *              0005    SNAP
4513 *              0805    X.25
4514 *              0806    ARP
4515 *              8137    IPX
4516 *              0009    Localtalk
4517 *              86DD    IPv6
4518 */
4519#define PTYPE_HASH_SIZE (16)
4520#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4521
4522#endif  /* _LINUX_NETDEVICE_H */
4523