linux/include/net/tcp.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the TCP module.
   7 *
   8 * Version:     @(#)tcp.h       1.0.5   05/23/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *
  13 *              This program is free software; you can redistribute it and/or
  14 *              modify it under the terms of the GNU General Public License
  15 *              as published by the Free Software Foundation; either version
  16 *              2 of the License, or (at your option) any later version.
  17 */
  18#ifndef _TCP_H
  19#define _TCP_H
  20
  21#define FASTRETRANS_DEBUG 1
  22
  23#include <linux/list.h>
  24#include <linux/tcp.h>
  25#include <linux/bug.h>
  26#include <linux/slab.h>
  27#include <linux/cache.h>
  28#include <linux/percpu.h>
  29#include <linux/skbuff.h>
  30#include <linux/cryptohash.h>
  31#include <linux/kref.h>
  32#include <linux/ktime.h>
  33
  34#include <net/inet_connection_sock.h>
  35#include <net/inet_timewait_sock.h>
  36#include <net/inet_hashtables.h>
  37#include <net/checksum.h>
  38#include <net/request_sock.h>
  39#include <net/sock.h>
  40#include <net/snmp.h>
  41#include <net/ip.h>
  42#include <net/tcp_states.h>
  43#include <net/inet_ecn.h>
  44#include <net/dst.h>
  45
  46#include <linux/seq_file.h>
  47#include <linux/memcontrol.h>
  48#include <linux/bpf-cgroup.h>
  49
  50extern struct inet_hashinfo tcp_hashinfo;
  51
  52extern struct percpu_counter tcp_orphan_count;
  53void tcp_time_wait(struct sock *sk, int state, int timeo);
  54
  55#define MAX_TCP_HEADER  (128 + MAX_HEADER)
  56#define MAX_TCP_OPTION_SPACE 40
  57
  58/*
  59 * Never offer a window over 32767 without using window scaling. Some
  60 * poor stacks do signed 16bit maths!
  61 */
  62#define MAX_TCP_WINDOW          32767U
  63
  64/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  65#define TCP_MIN_MSS             88U
  66
  67/* The least MTU to use for probing */
  68#define TCP_BASE_MSS            1024
  69
  70/* probing interval, default to 10 minutes as per RFC4821 */
  71#define TCP_PROBE_INTERVAL      600
  72
  73/* Specify interval when tcp mtu probing will stop */
  74#define TCP_PROBE_THRESHOLD     8
  75
  76/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  77#define TCP_FASTRETRANS_THRESH 3
  78
  79/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  80#define TCP_MAX_QUICKACKS       16U
  81
  82/* Maximal number of window scale according to RFC1323 */
  83#define TCP_MAX_WSCALE          14U
  84
  85/* urg_data states */
  86#define TCP_URG_VALID   0x0100
  87#define TCP_URG_NOTYET  0x0200
  88#define TCP_URG_READ    0x0400
  89
  90#define TCP_RETR1       3       /*
  91                                 * This is how many retries it does before it
  92                                 * tries to figure out if the gateway is
  93                                 * down. Minimal RFC value is 3; it corresponds
  94                                 * to ~3sec-8min depending on RTO.
  95                                 */
  96
  97#define TCP_RETR2       15      /*
  98                                 * This should take at least
  99                                 * 90 minutes to time out.
 100                                 * RFC1122 says that the limit is 100 sec.
 101                                 * 15 is ~13-30min depending on RTO.
 102                                 */
 103
 104#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 105                                 * when active opening a connection.
 106                                 * RFC1122 says the minimum retry MUST
 107                                 * be at least 180secs.  Nevertheless
 108                                 * this value is corresponding to
 109                                 * 63secs of retransmission with the
 110                                 * current initial RTO.
 111                                 */
 112
 113#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 114                                 * when passive opening a connection.
 115                                 * This is corresponding to 31secs of
 116                                 * retransmission with the current
 117                                 * initial RTO.
 118                                 */
 119
 120#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 121                                  * state, about 60 seconds     */
 122#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 123                                 /* BSD style FIN_WAIT2 deadlock breaker.
 124                                  * It used to be 3min, new value is 60sec,
 125                                  * to combine FIN-WAIT-2 timeout with
 126                                  * TIME-WAIT timer.
 127                                  */
 128
 129#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 130#if HZ >= 100
 131#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 132#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 133#else
 134#define TCP_DELACK_MIN  4U
 135#define TCP_ATO_MIN     4U
 136#endif
 137#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 138#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 139#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 140#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 141#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 142                                                 * used as a fallback RTO for the
 143                                                 * initial data transmission if no
 144                                                 * valid RTT sample has been acquired,
 145                                                 * most likely due to retrans in 3WHS.
 146                                                 */
 147
 148#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 149                                                         * for local resources.
 150                                                         */
 151#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 152#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 153#define TCP_KEEPALIVE_INTVL     (75*HZ)
 154
 155#define MAX_TCP_KEEPIDLE        32767
 156#define MAX_TCP_KEEPINTVL       32767
 157#define MAX_TCP_KEEPCNT         127
 158#define MAX_TCP_SYNCNT          127
 159
 160#define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
 161
 162#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
 163#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 164                                         * after this time. It should be equal
 165                                         * (or greater than) TCP_TIMEWAIT_LEN
 166                                         * to provide reliability equal to one
 167                                         * provided by timewait state.
 168                                         */
 169#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 170                                         * timestamps. It must be less than
 171                                         * minimal timewait lifetime.
 172                                         */
 173/*
 174 *      TCP option
 175 */
 176
 177#define TCPOPT_NOP              1       /* Padding */
 178#define TCPOPT_EOL              0       /* End of options */
 179#define TCPOPT_MSS              2       /* Segment size negotiating */
 180#define TCPOPT_WINDOW           3       /* Window scaling */
 181#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 182#define TCPOPT_SACK             5       /* SACK Block */
 183#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 184#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 185#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 186#define TCPOPT_EXP              254     /* Experimental */
 187/* Magic number to be after the option value for sharing TCP
 188 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 189 */
 190#define TCPOPT_FASTOPEN_MAGIC   0xF989
 191#define TCPOPT_SMC_MAGIC        0xE2D4C3D9
 192
 193/*
 194 *     TCP option lengths
 195 */
 196
 197#define TCPOLEN_MSS            4
 198#define TCPOLEN_WINDOW         3
 199#define TCPOLEN_SACK_PERM      2
 200#define TCPOLEN_TIMESTAMP      10
 201#define TCPOLEN_MD5SIG         18
 202#define TCPOLEN_FASTOPEN_BASE  2
 203#define TCPOLEN_EXP_FASTOPEN_BASE  4
 204#define TCPOLEN_EXP_SMC_BASE   6
 205
 206/* But this is what stacks really send out. */
 207#define TCPOLEN_TSTAMP_ALIGNED          12
 208#define TCPOLEN_WSCALE_ALIGNED          4
 209#define TCPOLEN_SACKPERM_ALIGNED        4
 210#define TCPOLEN_SACK_BASE               2
 211#define TCPOLEN_SACK_BASE_ALIGNED       4
 212#define TCPOLEN_SACK_PERBLOCK           8
 213#define TCPOLEN_MD5SIG_ALIGNED          20
 214#define TCPOLEN_MSS_ALIGNED             4
 215#define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
 216
 217/* Flags in tp->nonagle */
 218#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 219#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 220#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 221
 222/* TCP thin-stream limits */
 223#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 224
 225/* TCP initial congestion window as per rfc6928 */
 226#define TCP_INIT_CWND           10
 227
 228/* Bit Flags for sysctl_tcp_fastopen */
 229#define TFO_CLIENT_ENABLE       1
 230#define TFO_SERVER_ENABLE       2
 231#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 232
 233/* Accept SYN data w/o any cookie option */
 234#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 235
 236/* Force enable TFO on all listeners, i.e., not requiring the
 237 * TCP_FASTOPEN socket option.
 238 */
 239#define TFO_SERVER_WO_SOCKOPT1  0x400
 240
 241
 242/* sysctl variables for tcp */
 243extern int sysctl_tcp_max_orphans;
 244extern long sysctl_tcp_mem[3];
 245
 246#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 247#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 248
 249extern atomic_long_t tcp_memory_allocated;
 250extern struct percpu_counter tcp_sockets_allocated;
 251extern unsigned long tcp_memory_pressure;
 252
 253/* optimized version of sk_under_memory_pressure() for TCP sockets */
 254static inline bool tcp_under_memory_pressure(const struct sock *sk)
 255{
 256        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 257            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 258                return true;
 259
 260        return tcp_memory_pressure;
 261}
 262/*
 263 * The next routines deal with comparing 32 bit unsigned ints
 264 * and worry about wraparound (automatic with unsigned arithmetic).
 265 */
 266
 267static inline bool before(__u32 seq1, __u32 seq2)
 268{
 269        return (__s32)(seq1-seq2) < 0;
 270}
 271#define after(seq2, seq1)       before(seq1, seq2)
 272
 273/* is s2<=s1<=s3 ? */
 274static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 275{
 276        return seq3 - seq2 >= seq1 - seq2;
 277}
 278
 279static inline bool tcp_out_of_memory(struct sock *sk)
 280{
 281        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 282            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 283                return true;
 284        return false;
 285}
 286
 287void sk_forced_mem_schedule(struct sock *sk, int size);
 288
 289static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 290{
 291        struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 292        int orphans = percpu_counter_read_positive(ocp);
 293
 294        if (orphans << shift > sysctl_tcp_max_orphans) {
 295                orphans = percpu_counter_sum_positive(ocp);
 296                if (orphans << shift > sysctl_tcp_max_orphans)
 297                        return true;
 298        }
 299        return false;
 300}
 301
 302bool tcp_check_oom(struct sock *sk, int shift);
 303
 304
 305extern struct proto tcp_prot;
 306
 307#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 308#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 309#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 310#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 311
 312void tcp_tasklet_init(void);
 313
 314void tcp_v4_err(struct sk_buff *skb, u32);
 315
 316void tcp_shutdown(struct sock *sk, int how);
 317
 318int tcp_v4_early_demux(struct sk_buff *skb);
 319int tcp_v4_rcv(struct sk_buff *skb);
 320
 321int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 322int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 323int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 324int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 325                 int flags);
 326int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 327                        size_t size, int flags);
 328ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 329                 size_t size, int flags);
 330void tcp_release_cb(struct sock *sk);
 331void tcp_wfree(struct sk_buff *skb);
 332void tcp_write_timer_handler(struct sock *sk);
 333void tcp_delack_timer_handler(struct sock *sk);
 334int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 335int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 336void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
 337                         const struct tcphdr *th);
 338void tcp_rcv_space_adjust(struct sock *sk);
 339int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 340void tcp_twsk_destructor(struct sock *sk);
 341ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 342                        struct pipe_inode_info *pipe, size_t len,
 343                        unsigned int flags);
 344
 345static inline void tcp_dec_quickack_mode(struct sock *sk,
 346                                         const unsigned int pkts)
 347{
 348        struct inet_connection_sock *icsk = inet_csk(sk);
 349
 350        if (icsk->icsk_ack.quick) {
 351                if (pkts >= icsk->icsk_ack.quick) {
 352                        icsk->icsk_ack.quick = 0;
 353                        /* Leaving quickack mode we deflate ATO. */
 354                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 355                } else
 356                        icsk->icsk_ack.quick -= pkts;
 357        }
 358}
 359
 360#define TCP_ECN_OK              1
 361#define TCP_ECN_QUEUE_CWR       2
 362#define TCP_ECN_DEMAND_CWR      4
 363#define TCP_ECN_SEEN            8
 364
 365enum tcp_tw_status {
 366        TCP_TW_SUCCESS = 0,
 367        TCP_TW_RST = 1,
 368        TCP_TW_ACK = 2,
 369        TCP_TW_SYN = 3
 370};
 371
 372
 373enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 374                                              struct sk_buff *skb,
 375                                              const struct tcphdr *th);
 376struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 377                           struct request_sock *req, bool fastopen);
 378int tcp_child_process(struct sock *parent, struct sock *child,
 379                      struct sk_buff *skb);
 380void tcp_enter_loss(struct sock *sk);
 381void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 382void tcp_clear_retrans(struct tcp_sock *tp);
 383void tcp_update_metrics(struct sock *sk);
 384void tcp_init_metrics(struct sock *sk);
 385void tcp_metrics_init(void);
 386bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 387void tcp_close(struct sock *sk, long timeout);
 388void tcp_init_sock(struct sock *sk);
 389void tcp_init_transfer(struct sock *sk, int bpf_op);
 390__poll_t tcp_poll(struct file *file, struct socket *sock,
 391                      struct poll_table_struct *wait);
 392int tcp_getsockopt(struct sock *sk, int level, int optname,
 393                   char __user *optval, int __user *optlen);
 394int tcp_setsockopt(struct sock *sk, int level, int optname,
 395                   char __user *optval, unsigned int optlen);
 396int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 397                          char __user *optval, int __user *optlen);
 398int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 399                          char __user *optval, unsigned int optlen);
 400void tcp_set_keepalive(struct sock *sk, int val);
 401void tcp_syn_ack_timeout(const struct request_sock *req);
 402int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 403                int flags, int *addr_len);
 404void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 405                       struct tcp_options_received *opt_rx,
 406                       int estab, struct tcp_fastopen_cookie *foc);
 407const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 408
 409/*
 410 *      TCP v4 functions exported for the inet6 API
 411 */
 412
 413void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 414void tcp_v4_mtu_reduced(struct sock *sk);
 415void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 416int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 417struct sock *tcp_create_openreq_child(const struct sock *sk,
 418                                      struct request_sock *req,
 419                                      struct sk_buff *skb);
 420void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 421struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 422                                  struct request_sock *req,
 423                                  struct dst_entry *dst,
 424                                  struct request_sock *req_unhash,
 425                                  bool *own_req);
 426int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 427int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 428int tcp_connect(struct sock *sk);
 429enum tcp_synack_type {
 430        TCP_SYNACK_NORMAL,
 431        TCP_SYNACK_FASTOPEN,
 432        TCP_SYNACK_COOKIE,
 433};
 434struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 435                                struct request_sock *req,
 436                                struct tcp_fastopen_cookie *foc,
 437                                enum tcp_synack_type synack_type);
 438int tcp_disconnect(struct sock *sk, int flags);
 439
 440void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 441int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 442void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 443
 444/* From syncookies.c */
 445struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 446                                 struct request_sock *req,
 447                                 struct dst_entry *dst, u32 tsoff);
 448int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 449                      u32 cookie);
 450struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 451#ifdef CONFIG_SYN_COOKIES
 452
 453/* Syncookies use a monotonic timer which increments every 60 seconds.
 454 * This counter is used both as a hash input and partially encoded into
 455 * the cookie value.  A cookie is only validated further if the delta
 456 * between the current counter value and the encoded one is less than this,
 457 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 458 * the counter advances immediately after a cookie is generated).
 459 */
 460#define MAX_SYNCOOKIE_AGE       2
 461#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 462#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 463
 464/* syncookies: remember time of last synqueue overflow
 465 * But do not dirty this field too often (once per second is enough)
 466 * It is racy as we do not hold a lock, but race is very minor.
 467 */
 468static inline void tcp_synq_overflow(const struct sock *sk)
 469{
 470        unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 471        unsigned long now = jiffies;
 472
 473        if (time_after(now, last_overflow + HZ))
 474                tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 475}
 476
 477/* syncookies: no recent synqueue overflow on this listening socket? */
 478static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 479{
 480        unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 481
 482        return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
 483}
 484
 485static inline u32 tcp_cookie_time(void)
 486{
 487        u64 val = get_jiffies_64();
 488
 489        do_div(val, TCP_SYNCOOKIE_PERIOD);
 490        return val;
 491}
 492
 493u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 494                              u16 *mssp);
 495__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 496u64 cookie_init_timestamp(struct request_sock *req);
 497bool cookie_timestamp_decode(const struct net *net,
 498                             struct tcp_options_received *opt);
 499bool cookie_ecn_ok(const struct tcp_options_received *opt,
 500                   const struct net *net, const struct dst_entry *dst);
 501
 502/* From net/ipv6/syncookies.c */
 503int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 504                      u32 cookie);
 505struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 506
 507u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 508                              const struct tcphdr *th, u16 *mssp);
 509__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 510#endif
 511/* tcp_output.c */
 512
 513u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
 514                     int min_tso_segs);
 515void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 516                               int nonagle);
 517int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 518int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 519void tcp_retransmit_timer(struct sock *sk);
 520void tcp_xmit_retransmit_queue(struct sock *);
 521void tcp_simple_retransmit(struct sock *);
 522void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 523int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 524enum tcp_queue {
 525        TCP_FRAG_IN_WRITE_QUEUE,
 526        TCP_FRAG_IN_RTX_QUEUE,
 527};
 528int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 529                 struct sk_buff *skb, u32 len,
 530                 unsigned int mss_now, gfp_t gfp);
 531
 532void tcp_send_probe0(struct sock *);
 533void tcp_send_partial(struct sock *);
 534int tcp_write_wakeup(struct sock *, int mib);
 535void tcp_send_fin(struct sock *sk);
 536void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 537int tcp_send_synack(struct sock *);
 538void tcp_push_one(struct sock *, unsigned int mss_now);
 539void tcp_send_ack(struct sock *sk);
 540void tcp_send_delayed_ack(struct sock *sk);
 541void tcp_send_loss_probe(struct sock *sk);
 542bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 543void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 544                             const struct sk_buff *next_skb);
 545
 546/* tcp_input.c */
 547void tcp_rearm_rto(struct sock *sk);
 548void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 549void tcp_reset(struct sock *sk);
 550void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 551void tcp_fin(struct sock *sk);
 552
 553/* tcp_timer.c */
 554void tcp_init_xmit_timers(struct sock *);
 555static inline void tcp_clear_xmit_timers(struct sock *sk)
 556{
 557        hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
 558        inet_csk_clear_xmit_timers(sk);
 559}
 560
 561unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 562unsigned int tcp_current_mss(struct sock *sk);
 563
 564/* Bound MSS / TSO packet size with the half of the window */
 565static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 566{
 567        int cutoff;
 568
 569        /* When peer uses tiny windows, there is no use in packetizing
 570         * to sub-MSS pieces for the sake of SWS or making sure there
 571         * are enough packets in the pipe for fast recovery.
 572         *
 573         * On the other hand, for extremely large MSS devices, handling
 574         * smaller than MSS windows in this way does make sense.
 575         */
 576        if (tp->max_window > TCP_MSS_DEFAULT)
 577                cutoff = (tp->max_window >> 1);
 578        else
 579                cutoff = tp->max_window;
 580
 581        if (cutoff && pktsize > cutoff)
 582                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 583        else
 584                return pktsize;
 585}
 586
 587/* tcp.c */
 588void tcp_get_info(struct sock *, struct tcp_info *);
 589
 590/* Read 'sendfile()'-style from a TCP socket */
 591int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 592                  sk_read_actor_t recv_actor);
 593
 594void tcp_initialize_rcv_mss(struct sock *sk);
 595
 596int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 597int tcp_mss_to_mtu(struct sock *sk, int mss);
 598void tcp_mtup_init(struct sock *sk);
 599void tcp_init_buffer_space(struct sock *sk);
 600
 601static inline void tcp_bound_rto(const struct sock *sk)
 602{
 603        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 604                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 605}
 606
 607static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 608{
 609        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 610}
 611
 612static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 613{
 614        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 615                               ntohl(TCP_FLAG_ACK) |
 616                               snd_wnd);
 617}
 618
 619static inline void tcp_fast_path_on(struct tcp_sock *tp)
 620{
 621        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 622}
 623
 624static inline void tcp_fast_path_check(struct sock *sk)
 625{
 626        struct tcp_sock *tp = tcp_sk(sk);
 627
 628        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 629            tp->rcv_wnd &&
 630            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 631            !tp->urg_data)
 632                tcp_fast_path_on(tp);
 633}
 634
 635/* Compute the actual rto_min value */
 636static inline u32 tcp_rto_min(struct sock *sk)
 637{
 638        const struct dst_entry *dst = __sk_dst_get(sk);
 639        u32 rto_min = TCP_RTO_MIN;
 640
 641        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 642                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 643        return rto_min;
 644}
 645
 646static inline u32 tcp_rto_min_us(struct sock *sk)
 647{
 648        return jiffies_to_usecs(tcp_rto_min(sk));
 649}
 650
 651static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 652{
 653        return dst_metric_locked(dst, RTAX_CC_ALGO);
 654}
 655
 656/* Minimum RTT in usec. ~0 means not available. */
 657static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 658{
 659        return minmax_get(&tp->rtt_min);
 660}
 661
 662/* Compute the actual receive window we are currently advertising.
 663 * Rcv_nxt can be after the window if our peer push more data
 664 * than the offered window.
 665 */
 666static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 667{
 668        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 669
 670        if (win < 0)
 671                win = 0;
 672        return (u32) win;
 673}
 674
 675/* Choose a new window, without checks for shrinking, and without
 676 * scaling applied to the result.  The caller does these things
 677 * if necessary.  This is a "raw" window selection.
 678 */
 679u32 __tcp_select_window(struct sock *sk);
 680
 681void tcp_send_window_probe(struct sock *sk);
 682
 683/* TCP uses 32bit jiffies to save some space.
 684 * Note that this is different from tcp_time_stamp, which
 685 * historically has been the same until linux-4.13.
 686 */
 687#define tcp_jiffies32 ((u32)jiffies)
 688
 689/*
 690 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 691 * It is no longer tied to jiffies, but to 1 ms clock.
 692 * Note: double check if you want to use tcp_jiffies32 instead of this.
 693 */
 694#define TCP_TS_HZ       1000
 695
 696static inline u64 tcp_clock_ns(void)
 697{
 698        return local_clock();
 699}
 700
 701static inline u64 tcp_clock_us(void)
 702{
 703        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 704}
 705
 706/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 707static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 708{
 709        return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 710}
 711
 712/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 713static inline u32 tcp_time_stamp_raw(void)
 714{
 715        return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
 716}
 717
 718
 719/* Refresh 1us clock of a TCP socket,
 720 * ensuring monotically increasing values.
 721 */
 722static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
 723{
 724        u64 val = tcp_clock_us();
 725
 726        if (val > tp->tcp_mstamp)
 727                tp->tcp_mstamp = val;
 728}
 729
 730static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 731{
 732        return max_t(s64, t1 - t0, 0);
 733}
 734
 735static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 736{
 737        return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 738}
 739
 740
 741#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 742
 743#define TCPHDR_FIN 0x01
 744#define TCPHDR_SYN 0x02
 745#define TCPHDR_RST 0x04
 746#define TCPHDR_PSH 0x08
 747#define TCPHDR_ACK 0x10
 748#define TCPHDR_URG 0x20
 749#define TCPHDR_ECE 0x40
 750#define TCPHDR_CWR 0x80
 751
 752#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 753
 754/* This is what the send packet queuing engine uses to pass
 755 * TCP per-packet control information to the transmission code.
 756 * We also store the host-order sequence numbers in here too.
 757 * This is 44 bytes if IPV6 is enabled.
 758 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 759 */
 760struct tcp_skb_cb {
 761        __u32           seq;            /* Starting sequence number     */
 762        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 763        union {
 764                /* Note : tcp_tw_isn is used in input path only
 765                 *        (isn chosen by tcp_timewait_state_process())
 766                 *
 767                 *        tcp_gso_segs/size are used in write queue only,
 768                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 769                 */
 770                __u32           tcp_tw_isn;
 771                struct {
 772                        u16     tcp_gso_segs;
 773                        u16     tcp_gso_size;
 774                };
 775        };
 776        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 777
 778        __u8            sacked;         /* State flags for SACK.        */
 779#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 780#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 781#define TCPCB_LOST              0x04    /* SKB is lost                  */
 782#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 783#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp) */
 784#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 785#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 786                                TCPCB_REPAIRED)
 787
 788        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 789        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 790                        eor:1,          /* Is skb MSG_EOR marked? */
 791                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 792                        unused:5;
 793        __u32           ack_seq;        /* Sequence number ACK'd        */
 794        union {
 795                struct {
 796                        /* There is space for up to 24 bytes */
 797                        __u32 in_flight:30,/* Bytes in flight at transmit */
 798                              is_app_limited:1, /* cwnd not fully used? */
 799                              unused:1;
 800                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 801                        __u32 delivered;
 802                        /* start of send pipeline phase */
 803                        u64 first_tx_mstamp;
 804                        /* when we reached the "delivered" count */
 805                        u64 delivered_mstamp;
 806                } tx;   /* only used for outgoing skbs */
 807                union {
 808                        struct inet_skb_parm    h4;
 809#if IS_ENABLED(CONFIG_IPV6)
 810                        struct inet6_skb_parm   h6;
 811#endif
 812                } header;       /* For incoming skbs */
 813                struct {
 814                        __u32 key;
 815                        __u32 flags;
 816                        struct bpf_map *map;
 817                        void *data_end;
 818                } bpf;
 819        };
 820};
 821
 822#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 823
 824
 825#if IS_ENABLED(CONFIG_IPV6)
 826/* This is the variant of inet6_iif() that must be used by TCP,
 827 * as TCP moves IP6CB into a different location in skb->cb[]
 828 */
 829static inline int tcp_v6_iif(const struct sk_buff *skb)
 830{
 831        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 832
 833        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 834}
 835
 836/* TCP_SKB_CB reference means this can not be used from early demux */
 837static inline int tcp_v6_sdif(const struct sk_buff *skb)
 838{
 839#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 840        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 841                return TCP_SKB_CB(skb)->header.h6.iif;
 842#endif
 843        return 0;
 844}
 845#endif
 846
 847static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 848{
 849#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 850        if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 851            skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 852                return true;
 853#endif
 854        return false;
 855}
 856
 857/* TCP_SKB_CB reference means this can not be used from early demux */
 858static inline int tcp_v4_sdif(struct sk_buff *skb)
 859{
 860#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 861        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 862                return TCP_SKB_CB(skb)->header.h4.iif;
 863#endif
 864        return 0;
 865}
 866
 867/* Due to TSO, an SKB can be composed of multiple actual
 868 * packets.  To keep these tracked properly, we use this.
 869 */
 870static inline int tcp_skb_pcount(const struct sk_buff *skb)
 871{
 872        return TCP_SKB_CB(skb)->tcp_gso_segs;
 873}
 874
 875static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 876{
 877        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 878}
 879
 880static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 881{
 882        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 883}
 884
 885/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 886static inline int tcp_skb_mss(const struct sk_buff *skb)
 887{
 888        return TCP_SKB_CB(skb)->tcp_gso_size;
 889}
 890
 891static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 892{
 893        return likely(!TCP_SKB_CB(skb)->eor);
 894}
 895
 896/* Events passed to congestion control interface */
 897enum tcp_ca_event {
 898        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
 899        CA_EVENT_CWND_RESTART,  /* congestion window restart */
 900        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
 901        CA_EVENT_LOSS,          /* loss timeout */
 902        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
 903        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
 904        CA_EVENT_DELAYED_ACK,   /* Delayed ack is sent */
 905        CA_EVENT_NON_DELAYED_ACK,
 906};
 907
 908/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 909enum tcp_ca_ack_event_flags {
 910        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
 911        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
 912        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
 913};
 914
 915/*
 916 * Interface for adding new TCP congestion control handlers
 917 */
 918#define TCP_CA_NAME_MAX 16
 919#define TCP_CA_MAX      128
 920#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
 921
 922#define TCP_CA_UNSPEC   0
 923
 924/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 925#define TCP_CONG_NON_RESTRICTED 0x1
 926/* Requires ECN/ECT set on all packets */
 927#define TCP_CONG_NEEDS_ECN      0x2
 928
 929union tcp_cc_info;
 930
 931struct ack_sample {
 932        u32 pkts_acked;
 933        s32 rtt_us;
 934        u32 in_flight;
 935};
 936
 937/* A rate sample measures the number of (original/retransmitted) data
 938 * packets delivered "delivered" over an interval of time "interval_us".
 939 * The tcp_rate.c code fills in the rate sample, and congestion
 940 * control modules that define a cong_control function to run at the end
 941 * of ACK processing can optionally chose to consult this sample when
 942 * setting cwnd and pacing rate.
 943 * A sample is invalid if "delivered" or "interval_us" is negative.
 944 */
 945struct rate_sample {
 946        u64  prior_mstamp; /* starting timestamp for interval */
 947        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
 948        s32  delivered;         /* number of packets delivered over interval */
 949        long interval_us;       /* time for tp->delivered to incr "delivered" */
 950        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
 951        int  losses;            /* number of packets marked lost upon ACK */
 952        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
 953        u32  prior_in_flight;   /* in flight before this ACK */
 954        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
 955        bool is_retrans;        /* is sample from retransmission? */
 956        bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
 957};
 958
 959struct tcp_congestion_ops {
 960        struct list_head        list;
 961        u32 key;
 962        u32 flags;
 963
 964        /* initialize private data (optional) */
 965        void (*init)(struct sock *sk);
 966        /* cleanup private data  (optional) */
 967        void (*release)(struct sock *sk);
 968
 969        /* return slow start threshold (required) */
 970        u32 (*ssthresh)(struct sock *sk);
 971        /* do new cwnd calculation (required) */
 972        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
 973        /* call before changing ca_state (optional) */
 974        void (*set_state)(struct sock *sk, u8 new_state);
 975        /* call when cwnd event occurs (optional) */
 976        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
 977        /* call when ack arrives (optional) */
 978        void (*in_ack_event)(struct sock *sk, u32 flags);
 979        /* new value of cwnd after loss (required) */
 980        u32  (*undo_cwnd)(struct sock *sk);
 981        /* hook for packet ack accounting (optional) */
 982        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
 983        /* suggest number of segments for each skb to transmit (optional) */
 984        u32 (*tso_segs_goal)(struct sock *sk);
 985        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
 986        u32 (*sndbuf_expand)(struct sock *sk);
 987        /* call when packets are delivered to update cwnd and pacing rate,
 988         * after all the ca_state processing. (optional)
 989         */
 990        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
 991        /* get info for inet_diag (optional) */
 992        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
 993                           union tcp_cc_info *info);
 994
 995        char            name[TCP_CA_NAME_MAX];
 996        struct module   *owner;
 997};
 998
 999int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1000void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1001
1002void tcp_assign_congestion_control(struct sock *sk);
1003void tcp_init_congestion_control(struct sock *sk);
1004void tcp_cleanup_congestion_control(struct sock *sk);
1005int tcp_set_default_congestion_control(struct net *net, const char *name);
1006void tcp_get_default_congestion_control(struct net *net, char *name);
1007void tcp_get_available_congestion_control(char *buf, size_t len);
1008void tcp_get_allowed_congestion_control(char *buf, size_t len);
1009int tcp_set_allowed_congestion_control(char *allowed);
1010int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1011u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1012void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1013
1014u32 tcp_reno_ssthresh(struct sock *sk);
1015u32 tcp_reno_undo_cwnd(struct sock *sk);
1016void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1017extern struct tcp_congestion_ops tcp_reno;
1018
1019struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1020u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1021#ifdef CONFIG_INET
1022char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1023#else
1024static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1025{
1026        return NULL;
1027}
1028#endif
1029
1030static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1031{
1032        const struct inet_connection_sock *icsk = inet_csk(sk);
1033
1034        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1035}
1036
1037static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1038{
1039        struct inet_connection_sock *icsk = inet_csk(sk);
1040
1041        if (icsk->icsk_ca_ops->set_state)
1042                icsk->icsk_ca_ops->set_state(sk, ca_state);
1043        icsk->icsk_ca_state = ca_state;
1044}
1045
1046static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1047{
1048        const struct inet_connection_sock *icsk = inet_csk(sk);
1049
1050        if (icsk->icsk_ca_ops->cwnd_event)
1051                icsk->icsk_ca_ops->cwnd_event(sk, event);
1052}
1053
1054/* From tcp_rate.c */
1055void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1056void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1057                            struct rate_sample *rs);
1058void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1059                  bool is_sack_reneg, struct rate_sample *rs);
1060void tcp_rate_check_app_limited(struct sock *sk);
1061
1062/* These functions determine how the current flow behaves in respect of SACK
1063 * handling. SACK is negotiated with the peer, and therefore it can vary
1064 * between different flows.
1065 *
1066 * tcp_is_sack - SACK enabled
1067 * tcp_is_reno - No SACK
1068 */
1069static inline int tcp_is_sack(const struct tcp_sock *tp)
1070{
1071        return tp->rx_opt.sack_ok;
1072}
1073
1074static inline bool tcp_is_reno(const struct tcp_sock *tp)
1075{
1076        return !tcp_is_sack(tp);
1077}
1078
1079static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1080{
1081        return tp->sacked_out + tp->lost_out;
1082}
1083
1084/* This determines how many packets are "in the network" to the best
1085 * of our knowledge.  In many cases it is conservative, but where
1086 * detailed information is available from the receiver (via SACK
1087 * blocks etc.) we can make more aggressive calculations.
1088 *
1089 * Use this for decisions involving congestion control, use just
1090 * tp->packets_out to determine if the send queue is empty or not.
1091 *
1092 * Read this equation as:
1093 *
1094 *      "Packets sent once on transmission queue" MINUS
1095 *      "Packets left network, but not honestly ACKed yet" PLUS
1096 *      "Packets fast retransmitted"
1097 */
1098static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1099{
1100        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1101}
1102
1103#define TCP_INFINITE_SSTHRESH   0x7fffffff
1104
1105static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1106{
1107        return tp->snd_cwnd < tp->snd_ssthresh;
1108}
1109
1110static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1111{
1112        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1113}
1114
1115static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1116{
1117        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1118               (1 << inet_csk(sk)->icsk_ca_state);
1119}
1120
1121/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1122 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1123 * ssthresh.
1124 */
1125static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1126{
1127        const struct tcp_sock *tp = tcp_sk(sk);
1128
1129        if (tcp_in_cwnd_reduction(sk))
1130                return tp->snd_ssthresh;
1131        else
1132                return max(tp->snd_ssthresh,
1133                           ((tp->snd_cwnd >> 1) +
1134                            (tp->snd_cwnd >> 2)));
1135}
1136
1137/* Use define here intentionally to get WARN_ON location shown at the caller */
1138#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1139
1140void tcp_enter_cwr(struct sock *sk);
1141__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1142
1143/* The maximum number of MSS of available cwnd for which TSO defers
1144 * sending if not using sysctl_tcp_tso_win_divisor.
1145 */
1146static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1147{
1148        return 3;
1149}
1150
1151/* Returns end sequence number of the receiver's advertised window */
1152static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1153{
1154        return tp->snd_una + tp->snd_wnd;
1155}
1156
1157/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1158 * flexible approach. The RFC suggests cwnd should not be raised unless
1159 * it was fully used previously. And that's exactly what we do in
1160 * congestion avoidance mode. But in slow start we allow cwnd to grow
1161 * as long as the application has used half the cwnd.
1162 * Example :
1163 *    cwnd is 10 (IW10), but application sends 9 frames.
1164 *    We allow cwnd to reach 18 when all frames are ACKed.
1165 * This check is safe because it's as aggressive as slow start which already
1166 * risks 100% overshoot. The advantage is that we discourage application to
1167 * either send more filler packets or data to artificially blow up the cwnd
1168 * usage, and allow application-limited process to probe bw more aggressively.
1169 */
1170static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1171{
1172        const struct tcp_sock *tp = tcp_sk(sk);
1173
1174        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1175        if (tcp_in_slow_start(tp))
1176                return tp->snd_cwnd < 2 * tp->max_packets_out;
1177
1178        return tp->is_cwnd_limited;
1179}
1180
1181/* Something is really bad, we could not queue an additional packet,
1182 * because qdisc is full or receiver sent a 0 window.
1183 * We do not want to add fuel to the fire, or abort too early,
1184 * so make sure the timer we arm now is at least 200ms in the future,
1185 * regardless of current icsk_rto value (as it could be ~2ms)
1186 */
1187static inline unsigned long tcp_probe0_base(const struct sock *sk)
1188{
1189        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1190}
1191
1192/* Variant of inet_csk_rto_backoff() used for zero window probes */
1193static inline unsigned long tcp_probe0_when(const struct sock *sk,
1194                                            unsigned long max_when)
1195{
1196        u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1197
1198        return (unsigned long)min_t(u64, when, max_when);
1199}
1200
1201static inline void tcp_check_probe_timer(struct sock *sk)
1202{
1203        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1204                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1205                                          tcp_probe0_base(sk), TCP_RTO_MAX);
1206}
1207
1208static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1209{
1210        tp->snd_wl1 = seq;
1211}
1212
1213static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1214{
1215        tp->snd_wl1 = seq;
1216}
1217
1218/*
1219 * Calculate(/check) TCP checksum
1220 */
1221static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1222                                   __be32 daddr, __wsum base)
1223{
1224        return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1225}
1226
1227static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1228{
1229        return __skb_checksum_complete(skb);
1230}
1231
1232static inline bool tcp_checksum_complete(struct sk_buff *skb)
1233{
1234        return !skb_csum_unnecessary(skb) &&
1235                __tcp_checksum_complete(skb);
1236}
1237
1238bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1239int tcp_filter(struct sock *sk, struct sk_buff *skb);
1240
1241#undef STATE_TRACE
1242
1243#ifdef STATE_TRACE
1244static const char *statename[]={
1245        "Unused","Established","Syn Sent","Syn Recv",
1246        "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1247        "Close Wait","Last ACK","Listen","Closing"
1248};
1249#endif
1250void tcp_set_state(struct sock *sk, int state);
1251
1252void tcp_done(struct sock *sk);
1253
1254int tcp_abort(struct sock *sk, int err);
1255
1256static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1257{
1258        rx_opt->dsack = 0;
1259        rx_opt->num_sacks = 0;
1260}
1261
1262u32 tcp_default_init_rwnd(u32 mss);
1263void tcp_cwnd_restart(struct sock *sk, s32 delta);
1264
1265static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1266{
1267        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1268        struct tcp_sock *tp = tcp_sk(sk);
1269        s32 delta;
1270
1271        if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1272            ca_ops->cong_control)
1273                return;
1274        delta = tcp_jiffies32 - tp->lsndtime;
1275        if (delta > inet_csk(sk)->icsk_rto)
1276                tcp_cwnd_restart(sk, delta);
1277}
1278
1279/* Determine a window scaling and initial window to offer. */
1280void tcp_select_initial_window(const struct sock *sk, int __space,
1281                               __u32 mss, __u32 *rcv_wnd,
1282                               __u32 *window_clamp, int wscale_ok,
1283                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1284
1285static inline int tcp_win_from_space(const struct sock *sk, int space)
1286{
1287        int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1288
1289        return tcp_adv_win_scale <= 0 ?
1290                (space>>(-tcp_adv_win_scale)) :
1291                space - (space>>tcp_adv_win_scale);
1292}
1293
1294/* Note: caller must be prepared to deal with negative returns */
1295static inline int tcp_space(const struct sock *sk)
1296{
1297        return tcp_win_from_space(sk, sk->sk_rcvbuf -
1298                                  atomic_read(&sk->sk_rmem_alloc));
1299}
1300
1301static inline int tcp_full_space(const struct sock *sk)
1302{
1303        return tcp_win_from_space(sk, sk->sk_rcvbuf);
1304}
1305
1306extern void tcp_openreq_init_rwin(struct request_sock *req,
1307                                  const struct sock *sk_listener,
1308                                  const struct dst_entry *dst);
1309
1310void tcp_enter_memory_pressure(struct sock *sk);
1311void tcp_leave_memory_pressure(struct sock *sk);
1312
1313static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1314{
1315        struct net *net = sock_net((struct sock *)tp);
1316
1317        return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1318}
1319
1320static inline int keepalive_time_when(const struct tcp_sock *tp)
1321{
1322        struct net *net = sock_net((struct sock *)tp);
1323
1324        return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1325}
1326
1327static inline int keepalive_probes(const struct tcp_sock *tp)
1328{
1329        struct net *net = sock_net((struct sock *)tp);
1330
1331        return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1332}
1333
1334static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1335{
1336        const struct inet_connection_sock *icsk = &tp->inet_conn;
1337
1338        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1339                          tcp_jiffies32 - tp->rcv_tstamp);
1340}
1341
1342static inline int tcp_fin_time(const struct sock *sk)
1343{
1344        int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1345        const int rto = inet_csk(sk)->icsk_rto;
1346
1347        if (fin_timeout < (rto << 2) - (rto >> 1))
1348                fin_timeout = (rto << 2) - (rto >> 1);
1349
1350        return fin_timeout;
1351}
1352
1353static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1354                                  int paws_win)
1355{
1356        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1357                return true;
1358        if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1359                return true;
1360        /*
1361         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1362         * then following tcp messages have valid values. Ignore 0 value,
1363         * or else 'negative' tsval might forbid us to accept their packets.
1364         */
1365        if (!rx_opt->ts_recent)
1366                return true;
1367        return false;
1368}
1369
1370static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1371                                   int rst)
1372{
1373        if (tcp_paws_check(rx_opt, 0))
1374                return false;
1375
1376        /* RST segments are not recommended to carry timestamp,
1377           and, if they do, it is recommended to ignore PAWS because
1378           "their cleanup function should take precedence over timestamps."
1379           Certainly, it is mistake. It is necessary to understand the reasons
1380           of this constraint to relax it: if peer reboots, clock may go
1381           out-of-sync and half-open connections will not be reset.
1382           Actually, the problem would be not existing if all
1383           the implementations followed draft about maintaining clock
1384           via reboots. Linux-2.2 DOES NOT!
1385
1386           However, we can relax time bounds for RST segments to MSL.
1387         */
1388        if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1389                return false;
1390        return true;
1391}
1392
1393bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1394                          int mib_idx, u32 *last_oow_ack_time);
1395
1396static inline void tcp_mib_init(struct net *net)
1397{
1398        /* See RFC 2012 */
1399        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1400        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1401        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1402        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1403}
1404
1405/* from STCP */
1406static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1407{
1408        tp->lost_skb_hint = NULL;
1409}
1410
1411static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1412{
1413        tcp_clear_retrans_hints_partial(tp);
1414        tp->retransmit_skb_hint = NULL;
1415}
1416
1417union tcp_md5_addr {
1418        struct in_addr  a4;
1419#if IS_ENABLED(CONFIG_IPV6)
1420        struct in6_addr a6;
1421#endif
1422};
1423
1424/* - key database */
1425struct tcp_md5sig_key {
1426        struct hlist_node       node;
1427        u8                      keylen;
1428        u8                      family; /* AF_INET or AF_INET6 */
1429        union tcp_md5_addr      addr;
1430        u8                      prefixlen;
1431        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1432        struct rcu_head         rcu;
1433};
1434
1435/* - sock block */
1436struct tcp_md5sig_info {
1437        struct hlist_head       head;
1438        struct rcu_head         rcu;
1439};
1440
1441/* - pseudo header */
1442struct tcp4_pseudohdr {
1443        __be32          saddr;
1444        __be32          daddr;
1445        __u8            pad;
1446        __u8            protocol;
1447        __be16          len;
1448};
1449
1450struct tcp6_pseudohdr {
1451        struct in6_addr saddr;
1452        struct in6_addr daddr;
1453        __be32          len;
1454        __be32          protocol;       /* including padding */
1455};
1456
1457union tcp_md5sum_block {
1458        struct tcp4_pseudohdr ip4;
1459#if IS_ENABLED(CONFIG_IPV6)
1460        struct tcp6_pseudohdr ip6;
1461#endif
1462};
1463
1464/* - pool: digest algorithm, hash description and scratch buffer */
1465struct tcp_md5sig_pool {
1466        struct ahash_request    *md5_req;
1467        void                    *scratch;
1468};
1469
1470/* - functions */
1471int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1472                        const struct sock *sk, const struct sk_buff *skb);
1473int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1474                   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1475                   gfp_t gfp);
1476int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1477                   int family, u8 prefixlen);
1478struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1479                                         const struct sock *addr_sk);
1480
1481#ifdef CONFIG_TCP_MD5SIG
1482struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1483                                         const union tcp_md5_addr *addr,
1484                                         int family);
1485#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1486#else
1487static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1488                                         const union tcp_md5_addr *addr,
1489                                         int family)
1490{
1491        return NULL;
1492}
1493#define tcp_twsk_md5_key(twsk)  NULL
1494#endif
1495
1496bool tcp_alloc_md5sig_pool(void);
1497
1498struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1499static inline void tcp_put_md5sig_pool(void)
1500{
1501        local_bh_enable();
1502}
1503
1504int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1505                          unsigned int header_len);
1506int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1507                     const struct tcp_md5sig_key *key);
1508
1509/* From tcp_fastopen.c */
1510void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1511                            struct tcp_fastopen_cookie *cookie);
1512void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1513                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1514                            u16 try_exp);
1515struct tcp_fastopen_request {
1516        /* Fast Open cookie. Size 0 means a cookie request */
1517        struct tcp_fastopen_cookie      cookie;
1518        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1519        size_t                          size;
1520        int                             copied; /* queued in tcp_connect() */
1521};
1522void tcp_free_fastopen_req(struct tcp_sock *tp);
1523void tcp_fastopen_destroy_cipher(struct sock *sk);
1524void tcp_fastopen_ctx_destroy(struct net *net);
1525int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1526                              void *key, unsigned int len);
1527void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1528struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1529                              struct request_sock *req,
1530                              struct tcp_fastopen_cookie *foc,
1531                              const struct dst_entry *dst);
1532void tcp_fastopen_init_key_once(struct net *net);
1533bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1534                             struct tcp_fastopen_cookie *cookie);
1535bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1536#define TCP_FASTOPEN_KEY_LENGTH 16
1537
1538/* Fastopen key context */
1539struct tcp_fastopen_context {
1540        struct crypto_cipher    *tfm;
1541        __u8                    key[TCP_FASTOPEN_KEY_LENGTH];
1542        struct rcu_head         rcu;
1543};
1544
1545extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1546void tcp_fastopen_active_disable(struct sock *sk);
1547bool tcp_fastopen_active_should_disable(struct sock *sk);
1548void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1549void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1550
1551/* Latencies incurred by various limits for a sender. They are
1552 * chronograph-like stats that are mutually exclusive.
1553 */
1554enum tcp_chrono {
1555        TCP_CHRONO_UNSPEC,
1556        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1557        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1558        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1559        __TCP_CHRONO_MAX,
1560};
1561
1562void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1563void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1564
1565/* This helper is needed, because skb->tcp_tsorted_anchor uses
1566 * the same memory storage than skb->destructor/_skb_refdst
1567 */
1568static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1569{
1570        skb->destructor = NULL;
1571        skb->_skb_refdst = 0UL;
1572}
1573
1574#define tcp_skb_tsorted_save(skb) {             \
1575        unsigned long _save = skb->_skb_refdst; \
1576        skb->_skb_refdst = 0UL;
1577
1578#define tcp_skb_tsorted_restore(skb)            \
1579        skb->_skb_refdst = _save;               \
1580}
1581
1582void tcp_write_queue_purge(struct sock *sk);
1583
1584static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1585{
1586        return skb_rb_first(&sk->tcp_rtx_queue);
1587}
1588
1589static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1590{
1591        return skb_peek(&sk->sk_write_queue);
1592}
1593
1594static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1595{
1596        return skb_peek_tail(&sk->sk_write_queue);
1597}
1598
1599#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1600        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1601
1602static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1603{
1604        return skb_peek(&sk->sk_write_queue);
1605}
1606
1607static inline bool tcp_skb_is_last(const struct sock *sk,
1608                                   const struct sk_buff *skb)
1609{
1610        return skb_queue_is_last(&sk->sk_write_queue, skb);
1611}
1612
1613static inline bool tcp_write_queue_empty(const struct sock *sk)
1614{
1615        return skb_queue_empty(&sk->sk_write_queue);
1616}
1617
1618static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1619{
1620        return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1621}
1622
1623static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1624{
1625        return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1626}
1627
1628static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1629{
1630        if (tcp_write_queue_empty(sk))
1631                tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1632}
1633
1634static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1635{
1636        __skb_queue_tail(&sk->sk_write_queue, skb);
1637}
1638
1639static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1640{
1641        __tcp_add_write_queue_tail(sk, skb);
1642
1643        /* Queue it, remembering where we must start sending. */
1644        if (sk->sk_write_queue.next == skb)
1645                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1646}
1647
1648/* Insert new before skb on the write queue of sk.  */
1649static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1650                                                  struct sk_buff *skb,
1651                                                  struct sock *sk)
1652{
1653        __skb_queue_before(&sk->sk_write_queue, skb, new);
1654}
1655
1656static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1657{
1658        tcp_skb_tsorted_anchor_cleanup(skb);
1659        __skb_unlink(skb, &sk->sk_write_queue);
1660}
1661
1662void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1663
1664static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1665{
1666        tcp_skb_tsorted_anchor_cleanup(skb);
1667        rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1668}
1669
1670static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1671{
1672        list_del(&skb->tcp_tsorted_anchor);
1673        tcp_rtx_queue_unlink(skb, sk);
1674        sk_wmem_free_skb(sk, skb);
1675}
1676
1677static inline void tcp_push_pending_frames(struct sock *sk)
1678{
1679        if (tcp_send_head(sk)) {
1680                struct tcp_sock *tp = tcp_sk(sk);
1681
1682                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1683        }
1684}
1685
1686/* Start sequence of the skb just after the highest skb with SACKed
1687 * bit, valid only if sacked_out > 0 or when the caller has ensured
1688 * validity by itself.
1689 */
1690static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1691{
1692        if (!tp->sacked_out)
1693                return tp->snd_una;
1694
1695        if (tp->highest_sack == NULL)
1696                return tp->snd_nxt;
1697
1698        return TCP_SKB_CB(tp->highest_sack)->seq;
1699}
1700
1701static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1702{
1703        tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1704}
1705
1706static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1707{
1708        return tcp_sk(sk)->highest_sack;
1709}
1710
1711static inline void tcp_highest_sack_reset(struct sock *sk)
1712{
1713        tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1714}
1715
1716/* Called when old skb is about to be deleted and replaced by new skb */
1717static inline void tcp_highest_sack_replace(struct sock *sk,
1718                                            struct sk_buff *old,
1719                                            struct sk_buff *new)
1720{
1721        if (old == tcp_highest_sack(sk))
1722                tcp_sk(sk)->highest_sack = new;
1723}
1724
1725/* This helper checks if socket has IP_TRANSPARENT set */
1726static inline bool inet_sk_transparent(const struct sock *sk)
1727{
1728        switch (sk->sk_state) {
1729        case TCP_TIME_WAIT:
1730                return inet_twsk(sk)->tw_transparent;
1731        case TCP_NEW_SYN_RECV:
1732                return inet_rsk(inet_reqsk(sk))->no_srccheck;
1733        }
1734        return inet_sk(sk)->transparent;
1735}
1736
1737/* Determines whether this is a thin stream (which may suffer from
1738 * increased latency). Used to trigger latency-reducing mechanisms.
1739 */
1740static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1741{
1742        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1743}
1744
1745/* /proc */
1746enum tcp_seq_states {
1747        TCP_SEQ_STATE_LISTENING,
1748        TCP_SEQ_STATE_ESTABLISHED,
1749};
1750
1751int tcp_seq_open(struct inode *inode, struct file *file);
1752
1753struct tcp_seq_afinfo {
1754        char                            *name;
1755        sa_family_t                     family;
1756        const struct file_operations    *seq_fops;
1757        struct seq_operations           seq_ops;
1758};
1759
1760struct tcp_iter_state {
1761        struct seq_net_private  p;
1762        sa_family_t             family;
1763        enum tcp_seq_states     state;
1764        struct sock             *syn_wait_sk;
1765        int                     bucket, offset, sbucket, num;
1766        loff_t                  last_pos;
1767};
1768
1769int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1770void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1771
1772extern struct request_sock_ops tcp_request_sock_ops;
1773extern struct request_sock_ops tcp6_request_sock_ops;
1774
1775void tcp_v4_destroy_sock(struct sock *sk);
1776
1777struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1778                                netdev_features_t features);
1779struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1780int tcp_gro_complete(struct sk_buff *skb);
1781
1782void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1783
1784static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1785{
1786        struct net *net = sock_net((struct sock *)tp);
1787        return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1788}
1789
1790static inline bool tcp_stream_memory_free(const struct sock *sk)
1791{
1792        const struct tcp_sock *tp = tcp_sk(sk);
1793        u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1794
1795        return notsent_bytes < tcp_notsent_lowat(tp);
1796}
1797
1798#ifdef CONFIG_PROC_FS
1799int tcp4_proc_init(void);
1800void tcp4_proc_exit(void);
1801#endif
1802
1803int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1804int tcp_conn_request(struct request_sock_ops *rsk_ops,
1805                     const struct tcp_request_sock_ops *af_ops,
1806                     struct sock *sk, struct sk_buff *skb);
1807
1808/* TCP af-specific functions */
1809struct tcp_sock_af_ops {
1810#ifdef CONFIG_TCP_MD5SIG
1811        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
1812                                                const struct sock *addr_sk);
1813        int             (*calc_md5_hash)(char *location,
1814                                         const struct tcp_md5sig_key *md5,
1815                                         const struct sock *sk,
1816                                         const struct sk_buff *skb);
1817        int             (*md5_parse)(struct sock *sk,
1818                                     int optname,
1819                                     char __user *optval,
1820                                     int optlen);
1821#endif
1822};
1823
1824struct tcp_request_sock_ops {
1825        u16 mss_clamp;
1826#ifdef CONFIG_TCP_MD5SIG
1827        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1828                                                 const struct sock *addr_sk);
1829        int             (*calc_md5_hash) (char *location,
1830                                          const struct tcp_md5sig_key *md5,
1831                                          const struct sock *sk,
1832                                          const struct sk_buff *skb);
1833#endif
1834        void (*init_req)(struct request_sock *req,
1835                         const struct sock *sk_listener,
1836                         struct sk_buff *skb);
1837#ifdef CONFIG_SYN_COOKIES
1838        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1839                                 __u16 *mss);
1840#endif
1841        struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1842                                       const struct request_sock *req);
1843        u32 (*init_seq)(const struct sk_buff *skb);
1844        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1845        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1846                           struct flowi *fl, struct request_sock *req,
1847                           struct tcp_fastopen_cookie *foc,
1848                           enum tcp_synack_type synack_type);
1849};
1850
1851#ifdef CONFIG_SYN_COOKIES
1852static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1853                                         const struct sock *sk, struct sk_buff *skb,
1854                                         __u16 *mss)
1855{
1856        tcp_synq_overflow(sk);
1857        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1858        return ops->cookie_init_seq(skb, mss);
1859}
1860#else
1861static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1862                                         const struct sock *sk, struct sk_buff *skb,
1863                                         __u16 *mss)
1864{
1865        return 0;
1866}
1867#endif
1868
1869int tcpv4_offload_init(void);
1870
1871void tcp_v4_init(void);
1872void tcp_init(void);
1873
1874/* tcp_recovery.c */
1875extern void tcp_rack_mark_lost(struct sock *sk);
1876extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1877                             u64 xmit_time);
1878extern void tcp_rack_reo_timeout(struct sock *sk);
1879extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1880
1881/* At how many usecs into the future should the RTO fire? */
1882static inline s64 tcp_rto_delta_us(const struct sock *sk)
1883{
1884        const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1885        u32 rto = inet_csk(sk)->icsk_rto;
1886        u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1887
1888        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1889}
1890
1891/*
1892 * Save and compile IPv4 options, return a pointer to it
1893 */
1894static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1895                                                         struct sk_buff *skb)
1896{
1897        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1898        struct ip_options_rcu *dopt = NULL;
1899
1900        if (opt->optlen) {
1901                int opt_size = sizeof(*dopt) + opt->optlen;
1902
1903                dopt = kmalloc(opt_size, GFP_ATOMIC);
1904                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1905                        kfree(dopt);
1906                        dopt = NULL;
1907                }
1908        }
1909        return dopt;
1910}
1911
1912/* locally generated TCP pure ACKs have skb->truesize == 2
1913 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1914 * This is much faster than dissecting the packet to find out.
1915 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1916 */
1917static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1918{
1919        return skb->truesize == 2;
1920}
1921
1922static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1923{
1924        skb->truesize = 2;
1925}
1926
1927static inline int tcp_inq(struct sock *sk)
1928{
1929        struct tcp_sock *tp = tcp_sk(sk);
1930        int answ;
1931
1932        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1933                answ = 0;
1934        } else if (sock_flag(sk, SOCK_URGINLINE) ||
1935                   !tp->urg_data ||
1936                   before(tp->urg_seq, tp->copied_seq) ||
1937                   !before(tp->urg_seq, tp->rcv_nxt)) {
1938
1939                answ = tp->rcv_nxt - tp->copied_seq;
1940
1941                /* Subtract 1, if FIN was received */
1942                if (answ && sock_flag(sk, SOCK_DONE))
1943                        answ--;
1944        } else {
1945                answ = tp->urg_seq - tp->copied_seq;
1946        }
1947
1948        return answ;
1949}
1950
1951int tcp_peek_len(struct socket *sock);
1952
1953static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1954{
1955        u16 segs_in;
1956
1957        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1958        tp->segs_in += segs_in;
1959        if (skb->len > tcp_hdrlen(skb))
1960                tp->data_segs_in += segs_in;
1961}
1962
1963/*
1964 * TCP listen path runs lockless.
1965 * We forced "struct sock" to be const qualified to make sure
1966 * we don't modify one of its field by mistake.
1967 * Here, we increment sk_drops which is an atomic_t, so we can safely
1968 * make sock writable again.
1969 */
1970static inline void tcp_listendrop(const struct sock *sk)
1971{
1972        atomic_inc(&((struct sock *)sk)->sk_drops);
1973        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1974}
1975
1976enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1977
1978/*
1979 * Interface for adding Upper Level Protocols over TCP
1980 */
1981
1982#define TCP_ULP_NAME_MAX        16
1983#define TCP_ULP_MAX             128
1984#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1985
1986enum {
1987        TCP_ULP_TLS,
1988        TCP_ULP_BPF,
1989};
1990
1991struct tcp_ulp_ops {
1992        struct list_head        list;
1993
1994        /* initialize ulp */
1995        int (*init)(struct sock *sk);
1996        /* cleanup ulp */
1997        void (*release)(struct sock *sk);
1998
1999        int             uid;
2000        char            name[TCP_ULP_NAME_MAX];
2001        bool            user_visible;
2002        struct module   *owner;
2003};
2004int tcp_register_ulp(struct tcp_ulp_ops *type);
2005void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2006int tcp_set_ulp(struct sock *sk, const char *name);
2007int tcp_set_ulp_id(struct sock *sk, const int ulp);
2008void tcp_get_available_ulp(char *buf, size_t len);
2009void tcp_cleanup_ulp(struct sock *sk);
2010
2011/* Call BPF_SOCK_OPS program that returns an int. If the return value
2012 * is < 0, then the BPF op failed (for example if the loaded BPF
2013 * program does not support the chosen operation or there is no BPF
2014 * program loaded).
2015 */
2016#ifdef CONFIG_BPF
2017static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2018{
2019        struct bpf_sock_ops_kern sock_ops;
2020        int ret;
2021
2022        memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2023        if (sk_fullsock(sk)) {
2024                sock_ops.is_fullsock = 1;
2025                sock_owned_by_me(sk);
2026        }
2027
2028        sock_ops.sk = sk;
2029        sock_ops.op = op;
2030        if (nargs > 0)
2031                memcpy(sock_ops.args, args, nargs * sizeof(*args));
2032
2033        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2034        if (ret == 0)
2035                ret = sock_ops.reply;
2036        else
2037                ret = -1;
2038        return ret;
2039}
2040
2041static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2042{
2043        u32 args[2] = {arg1, arg2};
2044
2045        return tcp_call_bpf(sk, op, 2, args);
2046}
2047
2048static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2049                                    u32 arg3)
2050{
2051        u32 args[3] = {arg1, arg2, arg3};
2052
2053        return tcp_call_bpf(sk, op, 3, args);
2054}
2055
2056#else
2057static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2058{
2059        return -EPERM;
2060}
2061
2062static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2063{
2064        return -EPERM;
2065}
2066
2067static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2068                                    u32 arg3)
2069{
2070        return -EPERM;
2071}
2072
2073#endif
2074
2075static inline u32 tcp_timeout_init(struct sock *sk)
2076{
2077        int timeout;
2078
2079        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2080
2081        if (timeout <= 0)
2082                timeout = TCP_TIMEOUT_INIT;
2083        return timeout;
2084}
2085
2086static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2087{
2088        int rwnd;
2089
2090        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2091
2092        if (rwnd < 0)
2093                rwnd = 0;
2094        return rwnd;
2095}
2096
2097static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2098{
2099        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2100}
2101
2102#if IS_ENABLED(CONFIG_SMC)
2103extern struct static_key_false tcp_have_smc;
2104#endif
2105#endif  /* _TCP_H */
2106