linux/kernel/cpu.c
<<
>>
Prefs
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/hotplug.h>
  12#include <linux/sched/task.h>
  13#include <linux/unistd.h>
  14#include <linux/cpu.h>
  15#include <linux/oom.h>
  16#include <linux/rcupdate.h>
  17#include <linux/export.h>
  18#include <linux/bug.h>
  19#include <linux/kthread.h>
  20#include <linux/stop_machine.h>
  21#include <linux/mutex.h>
  22#include <linux/gfp.h>
  23#include <linux/suspend.h>
  24#include <linux/lockdep.h>
  25#include <linux/tick.h>
  26#include <linux/irq.h>
  27#include <linux/nmi.h>
  28#include <linux/smpboot.h>
  29#include <linux/relay.h>
  30#include <linux/slab.h>
  31#include <linux/percpu-rwsem.h>
  32
  33#include <trace/events/power.h>
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/cpuhp.h>
  36
  37#include "smpboot.h"
  38
  39/**
  40 * cpuhp_cpu_state - Per cpu hotplug state storage
  41 * @state:      The current cpu state
  42 * @target:     The target state
  43 * @thread:     Pointer to the hotplug thread
  44 * @should_run: Thread should execute
  45 * @rollback:   Perform a rollback
  46 * @single:     Single callback invocation
  47 * @bringup:    Single callback bringup or teardown selector
  48 * @cb_state:   The state for a single callback (install/uninstall)
  49 * @result:     Result of the operation
  50 * @done_up:    Signal completion to the issuer of the task for cpu-up
  51 * @done_down:  Signal completion to the issuer of the task for cpu-down
  52 */
  53struct cpuhp_cpu_state {
  54        enum cpuhp_state        state;
  55        enum cpuhp_state        target;
  56        enum cpuhp_state        fail;
  57#ifdef CONFIG_SMP
  58        struct task_struct      *thread;
  59        bool                    should_run;
  60        bool                    rollback;
  61        bool                    single;
  62        bool                    bringup;
  63        struct hlist_node       *node;
  64        struct hlist_node       *last;
  65        enum cpuhp_state        cb_state;
  66        int                     result;
  67        struct completion       done_up;
  68        struct completion       done_down;
  69#endif
  70};
  71
  72static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  73        .fail = CPUHP_INVALID,
  74};
  75
  76#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  77static struct lockdep_map cpuhp_state_up_map =
  78        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  79static struct lockdep_map cpuhp_state_down_map =
  80        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  81
  82
  83static inline void cpuhp_lock_acquire(bool bringup)
  84{
  85        lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  86}
  87
  88static inline void cpuhp_lock_release(bool bringup)
  89{
  90        lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  91}
  92#else
  93
  94static inline void cpuhp_lock_acquire(bool bringup) { }
  95static inline void cpuhp_lock_release(bool bringup) { }
  96
  97#endif
  98
  99/**
 100 * cpuhp_step - Hotplug state machine step
 101 * @name:       Name of the step
 102 * @startup:    Startup function of the step
 103 * @teardown:   Teardown function of the step
 104 * @skip_onerr: Do not invoke the functions on error rollback
 105 *              Will go away once the notifiers are gone
 106 * @cant_stop:  Bringup/teardown can't be stopped at this step
 107 */
 108struct cpuhp_step {
 109        const char              *name;
 110        union {
 111                int             (*single)(unsigned int cpu);
 112                int             (*multi)(unsigned int cpu,
 113                                         struct hlist_node *node);
 114        } startup;
 115        union {
 116                int             (*single)(unsigned int cpu);
 117                int             (*multi)(unsigned int cpu,
 118                                         struct hlist_node *node);
 119        } teardown;
 120        struct hlist_head       list;
 121        bool                    skip_onerr;
 122        bool                    cant_stop;
 123        bool                    multi_instance;
 124};
 125
 126static DEFINE_MUTEX(cpuhp_state_mutex);
 127static struct cpuhp_step cpuhp_bp_states[];
 128static struct cpuhp_step cpuhp_ap_states[];
 129
 130static bool cpuhp_is_ap_state(enum cpuhp_state state)
 131{
 132        /*
 133         * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 134         * purposes as that state is handled explicitly in cpu_down.
 135         */
 136        return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 137}
 138
 139static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 140{
 141        struct cpuhp_step *sp;
 142
 143        sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
 144        return sp + state;
 145}
 146
 147/**
 148 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 149 * @cpu:        The cpu for which the callback should be invoked
 150 * @state:      The state to do callbacks for
 151 * @bringup:    True if the bringup callback should be invoked
 152 * @node:       For multi-instance, do a single entry callback for install/remove
 153 * @lastp:      For multi-instance rollback, remember how far we got
 154 *
 155 * Called from cpu hotplug and from the state register machinery.
 156 */
 157static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 158                                 bool bringup, struct hlist_node *node,
 159                                 struct hlist_node **lastp)
 160{
 161        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 162        struct cpuhp_step *step = cpuhp_get_step(state);
 163        int (*cbm)(unsigned int cpu, struct hlist_node *node);
 164        int (*cb)(unsigned int cpu);
 165        int ret, cnt;
 166
 167        if (st->fail == state) {
 168                st->fail = CPUHP_INVALID;
 169
 170                if (!(bringup ? step->startup.single : step->teardown.single))
 171                        return 0;
 172
 173                return -EAGAIN;
 174        }
 175
 176        if (!step->multi_instance) {
 177                WARN_ON_ONCE(lastp && *lastp);
 178                cb = bringup ? step->startup.single : step->teardown.single;
 179                if (!cb)
 180                        return 0;
 181                trace_cpuhp_enter(cpu, st->target, state, cb);
 182                ret = cb(cpu);
 183                trace_cpuhp_exit(cpu, st->state, state, ret);
 184                return ret;
 185        }
 186        cbm = bringup ? step->startup.multi : step->teardown.multi;
 187        if (!cbm)
 188                return 0;
 189
 190        /* Single invocation for instance add/remove */
 191        if (node) {
 192                WARN_ON_ONCE(lastp && *lastp);
 193                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 194                ret = cbm(cpu, node);
 195                trace_cpuhp_exit(cpu, st->state, state, ret);
 196                return ret;
 197        }
 198
 199        /* State transition. Invoke on all instances */
 200        cnt = 0;
 201        hlist_for_each(node, &step->list) {
 202                if (lastp && node == *lastp)
 203                        break;
 204
 205                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 206                ret = cbm(cpu, node);
 207                trace_cpuhp_exit(cpu, st->state, state, ret);
 208                if (ret) {
 209                        if (!lastp)
 210                                goto err;
 211
 212                        *lastp = node;
 213                        return ret;
 214                }
 215                cnt++;
 216        }
 217        if (lastp)
 218                *lastp = NULL;
 219        return 0;
 220err:
 221        /* Rollback the instances if one failed */
 222        cbm = !bringup ? step->startup.multi : step->teardown.multi;
 223        if (!cbm)
 224                return ret;
 225
 226        hlist_for_each(node, &step->list) {
 227                if (!cnt--)
 228                        break;
 229
 230                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 231                ret = cbm(cpu, node);
 232                trace_cpuhp_exit(cpu, st->state, state, ret);
 233                /*
 234                 * Rollback must not fail,
 235                 */
 236                WARN_ON_ONCE(ret);
 237        }
 238        return ret;
 239}
 240
 241#ifdef CONFIG_SMP
 242static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 243{
 244        struct completion *done = bringup ? &st->done_up : &st->done_down;
 245        wait_for_completion(done);
 246}
 247
 248static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 249{
 250        struct completion *done = bringup ? &st->done_up : &st->done_down;
 251        complete(done);
 252}
 253
 254/*
 255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 256 */
 257static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 258{
 259        return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 260}
 261
 262/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 263static DEFINE_MUTEX(cpu_add_remove_lock);
 264bool cpuhp_tasks_frozen;
 265EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 266
 267/*
 268 * The following two APIs (cpu_maps_update_begin/done) must be used when
 269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 270 */
 271void cpu_maps_update_begin(void)
 272{
 273        mutex_lock(&cpu_add_remove_lock);
 274}
 275
 276void cpu_maps_update_done(void)
 277{
 278        mutex_unlock(&cpu_add_remove_lock);
 279}
 280
 281/*
 282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 283 * Should always be manipulated under cpu_add_remove_lock
 284 */
 285static int cpu_hotplug_disabled;
 286
 287#ifdef CONFIG_HOTPLUG_CPU
 288
 289DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 290
 291void cpus_read_lock(void)
 292{
 293        percpu_down_read(&cpu_hotplug_lock);
 294}
 295EXPORT_SYMBOL_GPL(cpus_read_lock);
 296
 297void cpus_read_unlock(void)
 298{
 299        percpu_up_read(&cpu_hotplug_lock);
 300}
 301EXPORT_SYMBOL_GPL(cpus_read_unlock);
 302
 303void cpus_write_lock(void)
 304{
 305        percpu_down_write(&cpu_hotplug_lock);
 306}
 307
 308void cpus_write_unlock(void)
 309{
 310        percpu_up_write(&cpu_hotplug_lock);
 311}
 312
 313void lockdep_assert_cpus_held(void)
 314{
 315        percpu_rwsem_assert_held(&cpu_hotplug_lock);
 316}
 317
 318/*
 319 * Wait for currently running CPU hotplug operations to complete (if any) and
 320 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 321 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 322 * hotplug path before performing hotplug operations. So acquiring that lock
 323 * guarantees mutual exclusion from any currently running hotplug operations.
 324 */
 325void cpu_hotplug_disable(void)
 326{
 327        cpu_maps_update_begin();
 328        cpu_hotplug_disabled++;
 329        cpu_maps_update_done();
 330}
 331EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 332
 333static void __cpu_hotplug_enable(void)
 334{
 335        if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 336                return;
 337        cpu_hotplug_disabled--;
 338}
 339
 340void cpu_hotplug_enable(void)
 341{
 342        cpu_maps_update_begin();
 343        __cpu_hotplug_enable();
 344        cpu_maps_update_done();
 345}
 346EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 347#endif  /* CONFIG_HOTPLUG_CPU */
 348
 349static inline enum cpuhp_state
 350cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 351{
 352        enum cpuhp_state prev_state = st->state;
 353
 354        st->rollback = false;
 355        st->last = NULL;
 356
 357        st->target = target;
 358        st->single = false;
 359        st->bringup = st->state < target;
 360
 361        return prev_state;
 362}
 363
 364static inline void
 365cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 366{
 367        st->rollback = true;
 368
 369        /*
 370         * If we have st->last we need to undo partial multi_instance of this
 371         * state first. Otherwise start undo at the previous state.
 372         */
 373        if (!st->last) {
 374                if (st->bringup)
 375                        st->state--;
 376                else
 377                        st->state++;
 378        }
 379
 380        st->target = prev_state;
 381        st->bringup = !st->bringup;
 382}
 383
 384/* Regular hotplug invocation of the AP hotplug thread */
 385static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 386{
 387        if (!st->single && st->state == st->target)
 388                return;
 389
 390        st->result = 0;
 391        /*
 392         * Make sure the above stores are visible before should_run becomes
 393         * true. Paired with the mb() above in cpuhp_thread_fun()
 394         */
 395        smp_mb();
 396        st->should_run = true;
 397        wake_up_process(st->thread);
 398        wait_for_ap_thread(st, st->bringup);
 399}
 400
 401static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 402{
 403        enum cpuhp_state prev_state;
 404        int ret;
 405
 406        prev_state = cpuhp_set_state(st, target);
 407        __cpuhp_kick_ap(st);
 408        if ((ret = st->result)) {
 409                cpuhp_reset_state(st, prev_state);
 410                __cpuhp_kick_ap(st);
 411        }
 412
 413        return ret;
 414}
 415
 416static int bringup_wait_for_ap(unsigned int cpu)
 417{
 418        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 419
 420        /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 421        wait_for_ap_thread(st, true);
 422        if (WARN_ON_ONCE((!cpu_online(cpu))))
 423                return -ECANCELED;
 424
 425        /* Unpark the stopper thread and the hotplug thread of the target cpu */
 426        stop_machine_unpark(cpu);
 427        kthread_unpark(st->thread);
 428
 429        if (st->target <= CPUHP_AP_ONLINE_IDLE)
 430                return 0;
 431
 432        return cpuhp_kick_ap(st, st->target);
 433}
 434
 435static int bringup_cpu(unsigned int cpu)
 436{
 437        struct task_struct *idle = idle_thread_get(cpu);
 438        int ret;
 439
 440        /*
 441         * Some architectures have to walk the irq descriptors to
 442         * setup the vector space for the cpu which comes online.
 443         * Prevent irq alloc/free across the bringup.
 444         */
 445        irq_lock_sparse();
 446
 447        /* Arch-specific enabling code. */
 448        ret = __cpu_up(cpu, idle);
 449        irq_unlock_sparse();
 450        if (ret)
 451                return ret;
 452        return bringup_wait_for_ap(cpu);
 453}
 454
 455/*
 456 * Hotplug state machine related functions
 457 */
 458
 459static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 460{
 461        for (st->state--; st->state > st->target; st->state--) {
 462                struct cpuhp_step *step = cpuhp_get_step(st->state);
 463
 464                if (!step->skip_onerr)
 465                        cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 466        }
 467}
 468
 469static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 470                              enum cpuhp_state target)
 471{
 472        enum cpuhp_state prev_state = st->state;
 473        int ret = 0;
 474
 475        while (st->state < target) {
 476                st->state++;
 477                ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 478                if (ret) {
 479                        st->target = prev_state;
 480                        undo_cpu_up(cpu, st);
 481                        break;
 482                }
 483        }
 484        return ret;
 485}
 486
 487/*
 488 * The cpu hotplug threads manage the bringup and teardown of the cpus
 489 */
 490static void cpuhp_create(unsigned int cpu)
 491{
 492        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 493
 494        init_completion(&st->done_up);
 495        init_completion(&st->done_down);
 496}
 497
 498static int cpuhp_should_run(unsigned int cpu)
 499{
 500        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 501
 502        return st->should_run;
 503}
 504
 505/*
 506 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 507 * callbacks when a state gets [un]installed at runtime.
 508 *
 509 * Each invocation of this function by the smpboot thread does a single AP
 510 * state callback.
 511 *
 512 * It has 3 modes of operation:
 513 *  - single: runs st->cb_state
 514 *  - up:     runs ++st->state, while st->state < st->target
 515 *  - down:   runs st->state--, while st->state > st->target
 516 *
 517 * When complete or on error, should_run is cleared and the completion is fired.
 518 */
 519static void cpuhp_thread_fun(unsigned int cpu)
 520{
 521        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 522        bool bringup = st->bringup;
 523        enum cpuhp_state state;
 524
 525        /*
 526         * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 527         * that if we see ->should_run we also see the rest of the state.
 528         */
 529        smp_mb();
 530
 531        if (WARN_ON_ONCE(!st->should_run))
 532                return;
 533
 534        cpuhp_lock_acquire(bringup);
 535
 536        if (st->single) {
 537                state = st->cb_state;
 538                st->should_run = false;
 539        } else {
 540                if (bringup) {
 541                        st->state++;
 542                        state = st->state;
 543                        st->should_run = (st->state < st->target);
 544                        WARN_ON_ONCE(st->state > st->target);
 545                } else {
 546                        state = st->state;
 547                        st->state--;
 548                        st->should_run = (st->state > st->target);
 549                        WARN_ON_ONCE(st->state < st->target);
 550                }
 551        }
 552
 553        WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 554
 555        if (st->rollback) {
 556                struct cpuhp_step *step = cpuhp_get_step(state);
 557                if (step->skip_onerr)
 558                        goto next;
 559        }
 560
 561        if (cpuhp_is_atomic_state(state)) {
 562                local_irq_disable();
 563                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 564                local_irq_enable();
 565
 566                /*
 567                 * STARTING/DYING must not fail!
 568                 */
 569                WARN_ON_ONCE(st->result);
 570        } else {
 571                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 572        }
 573
 574        if (st->result) {
 575                /*
 576                 * If we fail on a rollback, we're up a creek without no
 577                 * paddle, no way forward, no way back. We loose, thanks for
 578                 * playing.
 579                 */
 580                WARN_ON_ONCE(st->rollback);
 581                st->should_run = false;
 582        }
 583
 584next:
 585        cpuhp_lock_release(bringup);
 586
 587        if (!st->should_run)
 588                complete_ap_thread(st, bringup);
 589}
 590
 591/* Invoke a single callback on a remote cpu */
 592static int
 593cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 594                         struct hlist_node *node)
 595{
 596        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 597        int ret;
 598
 599        if (!cpu_online(cpu))
 600                return 0;
 601
 602        cpuhp_lock_acquire(false);
 603        cpuhp_lock_release(false);
 604
 605        cpuhp_lock_acquire(true);
 606        cpuhp_lock_release(true);
 607
 608        /*
 609         * If we are up and running, use the hotplug thread. For early calls
 610         * we invoke the thread function directly.
 611         */
 612        if (!st->thread)
 613                return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 614
 615        st->rollback = false;
 616        st->last = NULL;
 617
 618        st->node = node;
 619        st->bringup = bringup;
 620        st->cb_state = state;
 621        st->single = true;
 622
 623        __cpuhp_kick_ap(st);
 624
 625        /*
 626         * If we failed and did a partial, do a rollback.
 627         */
 628        if ((ret = st->result) && st->last) {
 629                st->rollback = true;
 630                st->bringup = !bringup;
 631
 632                __cpuhp_kick_ap(st);
 633        }
 634
 635        /*
 636         * Clean up the leftovers so the next hotplug operation wont use stale
 637         * data.
 638         */
 639        st->node = st->last = NULL;
 640        return ret;
 641}
 642
 643static int cpuhp_kick_ap_work(unsigned int cpu)
 644{
 645        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 646        enum cpuhp_state prev_state = st->state;
 647        int ret;
 648
 649        cpuhp_lock_acquire(false);
 650        cpuhp_lock_release(false);
 651
 652        cpuhp_lock_acquire(true);
 653        cpuhp_lock_release(true);
 654
 655        trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 656        ret = cpuhp_kick_ap(st, st->target);
 657        trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 658
 659        return ret;
 660}
 661
 662static struct smp_hotplug_thread cpuhp_threads = {
 663        .store                  = &cpuhp_state.thread,
 664        .create                 = &cpuhp_create,
 665        .thread_should_run      = cpuhp_should_run,
 666        .thread_fn              = cpuhp_thread_fun,
 667        .thread_comm            = "cpuhp/%u",
 668        .selfparking            = true,
 669};
 670
 671void __init cpuhp_threads_init(void)
 672{
 673        BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 674        kthread_unpark(this_cpu_read(cpuhp_state.thread));
 675}
 676
 677#ifdef CONFIG_HOTPLUG_CPU
 678/**
 679 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 680 * @cpu: a CPU id
 681 *
 682 * This function walks all processes, finds a valid mm struct for each one and
 683 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 684 * trivial, there are various non-obvious corner cases, which this function
 685 * tries to solve in a safe manner.
 686 *
 687 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 688 * be called only for an already offlined CPU.
 689 */
 690void clear_tasks_mm_cpumask(int cpu)
 691{
 692        struct task_struct *p;
 693
 694        /*
 695         * This function is called after the cpu is taken down and marked
 696         * offline, so its not like new tasks will ever get this cpu set in
 697         * their mm mask. -- Peter Zijlstra
 698         * Thus, we may use rcu_read_lock() here, instead of grabbing
 699         * full-fledged tasklist_lock.
 700         */
 701        WARN_ON(cpu_online(cpu));
 702        rcu_read_lock();
 703        for_each_process(p) {
 704                struct task_struct *t;
 705
 706                /*
 707                 * Main thread might exit, but other threads may still have
 708                 * a valid mm. Find one.
 709                 */
 710                t = find_lock_task_mm(p);
 711                if (!t)
 712                        continue;
 713                cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 714                task_unlock(t);
 715        }
 716        rcu_read_unlock();
 717}
 718
 719/* Take this CPU down. */
 720static int take_cpu_down(void *_param)
 721{
 722        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 723        enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 724        int err, cpu = smp_processor_id();
 725        int ret;
 726
 727        /* Ensure this CPU doesn't handle any more interrupts. */
 728        err = __cpu_disable();
 729        if (err < 0)
 730                return err;
 731
 732        /*
 733         * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 734         * do this step again.
 735         */
 736        WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 737        st->state--;
 738        /* Invoke the former CPU_DYING callbacks */
 739        for (; st->state > target; st->state--) {
 740                ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 741                /*
 742                 * DYING must not fail!
 743                 */
 744                WARN_ON_ONCE(ret);
 745        }
 746
 747        /* Give up timekeeping duties */
 748        tick_handover_do_timer();
 749        /* Park the stopper thread */
 750        stop_machine_park(cpu);
 751        return 0;
 752}
 753
 754static int takedown_cpu(unsigned int cpu)
 755{
 756        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 757        int err;
 758
 759        /* Park the smpboot threads */
 760        kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 761        smpboot_park_threads(cpu);
 762
 763        /*
 764         * Prevent irq alloc/free while the dying cpu reorganizes the
 765         * interrupt affinities.
 766         */
 767        irq_lock_sparse();
 768
 769        /*
 770         * So now all preempt/rcu users must observe !cpu_active().
 771         */
 772        err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 773        if (err) {
 774                /* CPU refused to die */
 775                irq_unlock_sparse();
 776                /* Unpark the hotplug thread so we can rollback there */
 777                kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 778                return err;
 779        }
 780        BUG_ON(cpu_online(cpu));
 781
 782        /*
 783         * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 784         * all runnable tasks from the CPU, there's only the idle task left now
 785         * that the migration thread is done doing the stop_machine thing.
 786         *
 787         * Wait for the stop thread to go away.
 788         */
 789        wait_for_ap_thread(st, false);
 790        BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 791
 792        /* Interrupts are moved away from the dying cpu, reenable alloc/free */
 793        irq_unlock_sparse();
 794
 795        hotplug_cpu__broadcast_tick_pull(cpu);
 796        /* This actually kills the CPU. */
 797        __cpu_die(cpu);
 798
 799        tick_cleanup_dead_cpu(cpu);
 800        rcutree_migrate_callbacks(cpu);
 801        return 0;
 802}
 803
 804static void cpuhp_complete_idle_dead(void *arg)
 805{
 806        struct cpuhp_cpu_state *st = arg;
 807
 808        complete_ap_thread(st, false);
 809}
 810
 811void cpuhp_report_idle_dead(void)
 812{
 813        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 814
 815        BUG_ON(st->state != CPUHP_AP_OFFLINE);
 816        rcu_report_dead(smp_processor_id());
 817        st->state = CPUHP_AP_IDLE_DEAD;
 818        /*
 819         * We cannot call complete after rcu_report_dead() so we delegate it
 820         * to an online cpu.
 821         */
 822        smp_call_function_single(cpumask_first(cpu_online_mask),
 823                                 cpuhp_complete_idle_dead, st, 0);
 824}
 825
 826static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 827{
 828        for (st->state++; st->state < st->target; st->state++) {
 829                struct cpuhp_step *step = cpuhp_get_step(st->state);
 830
 831                if (!step->skip_onerr)
 832                        cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 833        }
 834}
 835
 836static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 837                                enum cpuhp_state target)
 838{
 839        enum cpuhp_state prev_state = st->state;
 840        int ret = 0;
 841
 842        for (; st->state > target; st->state--) {
 843                ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 844                if (ret) {
 845                        st->target = prev_state;
 846                        undo_cpu_down(cpu, st);
 847                        break;
 848                }
 849        }
 850        return ret;
 851}
 852
 853/* Requires cpu_add_remove_lock to be held */
 854static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 855                           enum cpuhp_state target)
 856{
 857        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 858        int prev_state, ret = 0;
 859
 860        if (num_online_cpus() == 1)
 861                return -EBUSY;
 862
 863        if (!cpu_present(cpu))
 864                return -EINVAL;
 865
 866        cpus_write_lock();
 867
 868        cpuhp_tasks_frozen = tasks_frozen;
 869
 870        prev_state = cpuhp_set_state(st, target);
 871        /*
 872         * If the current CPU state is in the range of the AP hotplug thread,
 873         * then we need to kick the thread.
 874         */
 875        if (st->state > CPUHP_TEARDOWN_CPU) {
 876                st->target = max((int)target, CPUHP_TEARDOWN_CPU);
 877                ret = cpuhp_kick_ap_work(cpu);
 878                /*
 879                 * The AP side has done the error rollback already. Just
 880                 * return the error code..
 881                 */
 882                if (ret)
 883                        goto out;
 884
 885                /*
 886                 * We might have stopped still in the range of the AP hotplug
 887                 * thread. Nothing to do anymore.
 888                 */
 889                if (st->state > CPUHP_TEARDOWN_CPU)
 890                        goto out;
 891
 892                st->target = target;
 893        }
 894        /*
 895         * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 896         * to do the further cleanups.
 897         */
 898        ret = cpuhp_down_callbacks(cpu, st, target);
 899        if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
 900                cpuhp_reset_state(st, prev_state);
 901                __cpuhp_kick_ap(st);
 902        }
 903
 904out:
 905        cpus_write_unlock();
 906        /*
 907         * Do post unplug cleanup. This is still protected against
 908         * concurrent CPU hotplug via cpu_add_remove_lock.
 909         */
 910        lockup_detector_cleanup();
 911        return ret;
 912}
 913
 914static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
 915{
 916        int err;
 917
 918        cpu_maps_update_begin();
 919
 920        if (cpu_hotplug_disabled) {
 921                err = -EBUSY;
 922                goto out;
 923        }
 924
 925        err = _cpu_down(cpu, 0, target);
 926
 927out:
 928        cpu_maps_update_done();
 929        return err;
 930}
 931
 932int cpu_down(unsigned int cpu)
 933{
 934        return do_cpu_down(cpu, CPUHP_OFFLINE);
 935}
 936EXPORT_SYMBOL(cpu_down);
 937
 938#else
 939#define takedown_cpu            NULL
 940#endif /*CONFIG_HOTPLUG_CPU*/
 941
 942/**
 943 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
 944 * @cpu: cpu that just started
 945 *
 946 * It must be called by the arch code on the new cpu, before the new cpu
 947 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 948 */
 949void notify_cpu_starting(unsigned int cpu)
 950{
 951        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 952        enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 953        int ret;
 954
 955        rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
 956        while (st->state < target) {
 957                st->state++;
 958                ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 959                /*
 960                 * STARTING must not fail!
 961                 */
 962                WARN_ON_ONCE(ret);
 963        }
 964}
 965
 966/*
 967 * Called from the idle task. Wake up the controlling task which brings the
 968 * stopper and the hotplug thread of the upcoming CPU up and then delegates
 969 * the rest of the online bringup to the hotplug thread.
 970 */
 971void cpuhp_online_idle(enum cpuhp_state state)
 972{
 973        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 974
 975        /* Happens for the boot cpu */
 976        if (state != CPUHP_AP_ONLINE_IDLE)
 977                return;
 978
 979        st->state = CPUHP_AP_ONLINE_IDLE;
 980        complete_ap_thread(st, true);
 981}
 982
 983/* Requires cpu_add_remove_lock to be held */
 984static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
 985{
 986        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 987        struct task_struct *idle;
 988        int ret = 0;
 989
 990        cpus_write_lock();
 991
 992        if (!cpu_present(cpu)) {
 993                ret = -EINVAL;
 994                goto out;
 995        }
 996
 997        /*
 998         * The caller of do_cpu_up might have raced with another
 999         * caller. Ignore it for now.
1000         */
1001        if (st->state >= target)
1002                goto out;
1003
1004        if (st->state == CPUHP_OFFLINE) {
1005                /* Let it fail before we try to bring the cpu up */
1006                idle = idle_thread_get(cpu);
1007                if (IS_ERR(idle)) {
1008                        ret = PTR_ERR(idle);
1009                        goto out;
1010                }
1011        }
1012
1013        cpuhp_tasks_frozen = tasks_frozen;
1014
1015        cpuhp_set_state(st, target);
1016        /*
1017         * If the current CPU state is in the range of the AP hotplug thread,
1018         * then we need to kick the thread once more.
1019         */
1020        if (st->state > CPUHP_BRINGUP_CPU) {
1021                ret = cpuhp_kick_ap_work(cpu);
1022                /*
1023                 * The AP side has done the error rollback already. Just
1024                 * return the error code..
1025                 */
1026                if (ret)
1027                        goto out;
1028        }
1029
1030        /*
1031         * Try to reach the target state. We max out on the BP at
1032         * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1033         * responsible for bringing it up to the target state.
1034         */
1035        target = min((int)target, CPUHP_BRINGUP_CPU);
1036        ret = cpuhp_up_callbacks(cpu, st, target);
1037out:
1038        cpus_write_unlock();
1039        return ret;
1040}
1041
1042static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1043{
1044        int err = 0;
1045
1046        if (!cpu_possible(cpu)) {
1047                pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1048                       cpu);
1049#if defined(CONFIG_IA64)
1050                pr_err("please check additional_cpus= boot parameter\n");
1051#endif
1052                return -EINVAL;
1053        }
1054
1055        err = try_online_node(cpu_to_node(cpu));
1056        if (err)
1057                return err;
1058
1059        cpu_maps_update_begin();
1060
1061        if (cpu_hotplug_disabled) {
1062                err = -EBUSY;
1063                goto out;
1064        }
1065
1066        err = _cpu_up(cpu, 0, target);
1067out:
1068        cpu_maps_update_done();
1069        return err;
1070}
1071
1072int cpu_up(unsigned int cpu)
1073{
1074        return do_cpu_up(cpu, CPUHP_ONLINE);
1075}
1076EXPORT_SYMBOL_GPL(cpu_up);
1077
1078#ifdef CONFIG_PM_SLEEP_SMP
1079static cpumask_var_t frozen_cpus;
1080
1081int freeze_secondary_cpus(int primary)
1082{
1083        int cpu, error = 0;
1084
1085        cpu_maps_update_begin();
1086        if (!cpu_online(primary))
1087                primary = cpumask_first(cpu_online_mask);
1088        /*
1089         * We take down all of the non-boot CPUs in one shot to avoid races
1090         * with the userspace trying to use the CPU hotplug at the same time
1091         */
1092        cpumask_clear(frozen_cpus);
1093
1094        pr_info("Disabling non-boot CPUs ...\n");
1095        for_each_online_cpu(cpu) {
1096                if (cpu == primary)
1097                        continue;
1098                trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1099                error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1100                trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1101                if (!error)
1102                        cpumask_set_cpu(cpu, frozen_cpus);
1103                else {
1104                        pr_err("Error taking CPU%d down: %d\n", cpu, error);
1105                        break;
1106                }
1107        }
1108
1109        if (!error)
1110                BUG_ON(num_online_cpus() > 1);
1111        else
1112                pr_err("Non-boot CPUs are not disabled\n");
1113
1114        /*
1115         * Make sure the CPUs won't be enabled by someone else. We need to do
1116         * this even in case of failure as all disable_nonboot_cpus() users are
1117         * supposed to do enable_nonboot_cpus() on the failure path.
1118         */
1119        cpu_hotplug_disabled++;
1120
1121        cpu_maps_update_done();
1122        return error;
1123}
1124
1125void __weak arch_enable_nonboot_cpus_begin(void)
1126{
1127}
1128
1129void __weak arch_enable_nonboot_cpus_end(void)
1130{
1131}
1132
1133void enable_nonboot_cpus(void)
1134{
1135        int cpu, error;
1136
1137        /* Allow everyone to use the CPU hotplug again */
1138        cpu_maps_update_begin();
1139        __cpu_hotplug_enable();
1140        if (cpumask_empty(frozen_cpus))
1141                goto out;
1142
1143        pr_info("Enabling non-boot CPUs ...\n");
1144
1145        arch_enable_nonboot_cpus_begin();
1146
1147        for_each_cpu(cpu, frozen_cpus) {
1148                trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1149                error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1150                trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1151                if (!error) {
1152                        pr_info("CPU%d is up\n", cpu);
1153                        continue;
1154                }
1155                pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1156        }
1157
1158        arch_enable_nonboot_cpus_end();
1159
1160        cpumask_clear(frozen_cpus);
1161out:
1162        cpu_maps_update_done();
1163}
1164
1165static int __init alloc_frozen_cpus(void)
1166{
1167        if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1168                return -ENOMEM;
1169        return 0;
1170}
1171core_initcall(alloc_frozen_cpus);
1172
1173/*
1174 * When callbacks for CPU hotplug notifications are being executed, we must
1175 * ensure that the state of the system with respect to the tasks being frozen
1176 * or not, as reported by the notification, remains unchanged *throughout the
1177 * duration* of the execution of the callbacks.
1178 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1179 *
1180 * This synchronization is implemented by mutually excluding regular CPU
1181 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1182 * Hibernate notifications.
1183 */
1184static int
1185cpu_hotplug_pm_callback(struct notifier_block *nb,
1186                        unsigned long action, void *ptr)
1187{
1188        switch (action) {
1189
1190        case PM_SUSPEND_PREPARE:
1191        case PM_HIBERNATION_PREPARE:
1192                cpu_hotplug_disable();
1193                break;
1194
1195        case PM_POST_SUSPEND:
1196        case PM_POST_HIBERNATION:
1197                cpu_hotplug_enable();
1198                break;
1199
1200        default:
1201                return NOTIFY_DONE;
1202        }
1203
1204        return NOTIFY_OK;
1205}
1206
1207
1208static int __init cpu_hotplug_pm_sync_init(void)
1209{
1210        /*
1211         * cpu_hotplug_pm_callback has higher priority than x86
1212         * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1213         * to disable cpu hotplug to avoid cpu hotplug race.
1214         */
1215        pm_notifier(cpu_hotplug_pm_callback, 0);
1216        return 0;
1217}
1218core_initcall(cpu_hotplug_pm_sync_init);
1219
1220#endif /* CONFIG_PM_SLEEP_SMP */
1221
1222int __boot_cpu_id;
1223
1224#endif /* CONFIG_SMP */
1225
1226/* Boot processor state steps */
1227static struct cpuhp_step cpuhp_bp_states[] = {
1228        [CPUHP_OFFLINE] = {
1229                .name                   = "offline",
1230                .startup.single         = NULL,
1231                .teardown.single        = NULL,
1232        },
1233#ifdef CONFIG_SMP
1234        [CPUHP_CREATE_THREADS]= {
1235                .name                   = "threads:prepare",
1236                .startup.single         = smpboot_create_threads,
1237                .teardown.single        = NULL,
1238                .cant_stop              = true,
1239        },
1240        [CPUHP_PERF_PREPARE] = {
1241                .name                   = "perf:prepare",
1242                .startup.single         = perf_event_init_cpu,
1243                .teardown.single        = perf_event_exit_cpu,
1244        },
1245        [CPUHP_WORKQUEUE_PREP] = {
1246                .name                   = "workqueue:prepare",
1247                .startup.single         = workqueue_prepare_cpu,
1248                .teardown.single        = NULL,
1249        },
1250        [CPUHP_HRTIMERS_PREPARE] = {
1251                .name                   = "hrtimers:prepare",
1252                .startup.single         = hrtimers_prepare_cpu,
1253                .teardown.single        = hrtimers_dead_cpu,
1254        },
1255        [CPUHP_SMPCFD_PREPARE] = {
1256                .name                   = "smpcfd:prepare",
1257                .startup.single         = smpcfd_prepare_cpu,
1258                .teardown.single        = smpcfd_dead_cpu,
1259        },
1260        [CPUHP_RELAY_PREPARE] = {
1261                .name                   = "relay:prepare",
1262                .startup.single         = relay_prepare_cpu,
1263                .teardown.single        = NULL,
1264        },
1265        [CPUHP_SLAB_PREPARE] = {
1266                .name                   = "slab:prepare",
1267                .startup.single         = slab_prepare_cpu,
1268                .teardown.single        = slab_dead_cpu,
1269        },
1270        [CPUHP_RCUTREE_PREP] = {
1271                .name                   = "RCU/tree:prepare",
1272                .startup.single         = rcutree_prepare_cpu,
1273                .teardown.single        = rcutree_dead_cpu,
1274        },
1275        /*
1276         * On the tear-down path, timers_dead_cpu() must be invoked
1277         * before blk_mq_queue_reinit_notify() from notify_dead(),
1278         * otherwise a RCU stall occurs.
1279         */
1280        [CPUHP_TIMERS_PREPARE] = {
1281                .name                   = "timers:dead",
1282                .startup.single         = timers_prepare_cpu,
1283                .teardown.single        = timers_dead_cpu,
1284        },
1285        /* Kicks the plugged cpu into life */
1286        [CPUHP_BRINGUP_CPU] = {
1287                .name                   = "cpu:bringup",
1288                .startup.single         = bringup_cpu,
1289                .teardown.single        = NULL,
1290                .cant_stop              = true,
1291        },
1292        /*
1293         * Handled on controll processor until the plugged processor manages
1294         * this itself.
1295         */
1296        [CPUHP_TEARDOWN_CPU] = {
1297                .name                   = "cpu:teardown",
1298                .startup.single         = NULL,
1299                .teardown.single        = takedown_cpu,
1300                .cant_stop              = true,
1301        },
1302#else
1303        [CPUHP_BRINGUP_CPU] = { },
1304#endif
1305};
1306
1307/* Application processor state steps */
1308static struct cpuhp_step cpuhp_ap_states[] = {
1309#ifdef CONFIG_SMP
1310        /* Final state before CPU kills itself */
1311        [CPUHP_AP_IDLE_DEAD] = {
1312                .name                   = "idle:dead",
1313        },
1314        /*
1315         * Last state before CPU enters the idle loop to die. Transient state
1316         * for synchronization.
1317         */
1318        [CPUHP_AP_OFFLINE] = {
1319                .name                   = "ap:offline",
1320                .cant_stop              = true,
1321        },
1322        /* First state is scheduler control. Interrupts are disabled */
1323        [CPUHP_AP_SCHED_STARTING] = {
1324                .name                   = "sched:starting",
1325                .startup.single         = sched_cpu_starting,
1326                .teardown.single        = sched_cpu_dying,
1327        },
1328        [CPUHP_AP_RCUTREE_DYING] = {
1329                .name                   = "RCU/tree:dying",
1330                .startup.single         = NULL,
1331                .teardown.single        = rcutree_dying_cpu,
1332        },
1333        [CPUHP_AP_SMPCFD_DYING] = {
1334                .name                   = "smpcfd:dying",
1335                .startup.single         = NULL,
1336                .teardown.single        = smpcfd_dying_cpu,
1337        },
1338        /* Entry state on starting. Interrupts enabled from here on. Transient
1339         * state for synchronsization */
1340        [CPUHP_AP_ONLINE] = {
1341                .name                   = "ap:online",
1342        },
1343        /* Handle smpboot threads park/unpark */
1344        [CPUHP_AP_SMPBOOT_THREADS] = {
1345                .name                   = "smpboot/threads:online",
1346                .startup.single         = smpboot_unpark_threads,
1347                .teardown.single        = NULL,
1348        },
1349        [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1350                .name                   = "irq/affinity:online",
1351                .startup.single         = irq_affinity_online_cpu,
1352                .teardown.single        = NULL,
1353        },
1354        [CPUHP_AP_PERF_ONLINE] = {
1355                .name                   = "perf:online",
1356                .startup.single         = perf_event_init_cpu,
1357                .teardown.single        = perf_event_exit_cpu,
1358        },
1359        [CPUHP_AP_WORKQUEUE_ONLINE] = {
1360                .name                   = "workqueue:online",
1361                .startup.single         = workqueue_online_cpu,
1362                .teardown.single        = workqueue_offline_cpu,
1363        },
1364        [CPUHP_AP_RCUTREE_ONLINE] = {
1365                .name                   = "RCU/tree:online",
1366                .startup.single         = rcutree_online_cpu,
1367                .teardown.single        = rcutree_offline_cpu,
1368        },
1369#endif
1370        /*
1371         * The dynamically registered state space is here
1372         */
1373
1374#ifdef CONFIG_SMP
1375        /* Last state is scheduler control setting the cpu active */
1376        [CPUHP_AP_ACTIVE] = {
1377                .name                   = "sched:active",
1378                .startup.single         = sched_cpu_activate,
1379                .teardown.single        = sched_cpu_deactivate,
1380        },
1381#endif
1382
1383        /* CPU is fully up and running. */
1384        [CPUHP_ONLINE] = {
1385                .name                   = "online",
1386                .startup.single         = NULL,
1387                .teardown.single        = NULL,
1388        },
1389};
1390
1391/* Sanity check for callbacks */
1392static int cpuhp_cb_check(enum cpuhp_state state)
1393{
1394        if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1395                return -EINVAL;
1396        return 0;
1397}
1398
1399/*
1400 * Returns a free for dynamic slot assignment of the Online state. The states
1401 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1402 * by having no name assigned.
1403 */
1404static int cpuhp_reserve_state(enum cpuhp_state state)
1405{
1406        enum cpuhp_state i, end;
1407        struct cpuhp_step *step;
1408
1409        switch (state) {
1410        case CPUHP_AP_ONLINE_DYN:
1411                step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1412                end = CPUHP_AP_ONLINE_DYN_END;
1413                break;
1414        case CPUHP_BP_PREPARE_DYN:
1415                step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1416                end = CPUHP_BP_PREPARE_DYN_END;
1417                break;
1418        default:
1419                return -EINVAL;
1420        }
1421
1422        for (i = state; i <= end; i++, step++) {
1423                if (!step->name)
1424                        return i;
1425        }
1426        WARN(1, "No more dynamic states available for CPU hotplug\n");
1427        return -ENOSPC;
1428}
1429
1430static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1431                                 int (*startup)(unsigned int cpu),
1432                                 int (*teardown)(unsigned int cpu),
1433                                 bool multi_instance)
1434{
1435        /* (Un)Install the callbacks for further cpu hotplug operations */
1436        struct cpuhp_step *sp;
1437        int ret = 0;
1438
1439        /*
1440         * If name is NULL, then the state gets removed.
1441         *
1442         * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1443         * the first allocation from these dynamic ranges, so the removal
1444         * would trigger a new allocation and clear the wrong (already
1445         * empty) state, leaving the callbacks of the to be cleared state
1446         * dangling, which causes wreckage on the next hotplug operation.
1447         */
1448        if (name && (state == CPUHP_AP_ONLINE_DYN ||
1449                     state == CPUHP_BP_PREPARE_DYN)) {
1450                ret = cpuhp_reserve_state(state);
1451                if (ret < 0)
1452                        return ret;
1453                state = ret;
1454        }
1455        sp = cpuhp_get_step(state);
1456        if (name && sp->name)
1457                return -EBUSY;
1458
1459        sp->startup.single = startup;
1460        sp->teardown.single = teardown;
1461        sp->name = name;
1462        sp->multi_instance = multi_instance;
1463        INIT_HLIST_HEAD(&sp->list);
1464        return ret;
1465}
1466
1467static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1468{
1469        return cpuhp_get_step(state)->teardown.single;
1470}
1471
1472/*
1473 * Call the startup/teardown function for a step either on the AP or
1474 * on the current CPU.
1475 */
1476static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1477                            struct hlist_node *node)
1478{
1479        struct cpuhp_step *sp = cpuhp_get_step(state);
1480        int ret;
1481
1482        /*
1483         * If there's nothing to do, we done.
1484         * Relies on the union for multi_instance.
1485         */
1486        if ((bringup && !sp->startup.single) ||
1487            (!bringup && !sp->teardown.single))
1488                return 0;
1489        /*
1490         * The non AP bound callbacks can fail on bringup. On teardown
1491         * e.g. module removal we crash for now.
1492         */
1493#ifdef CONFIG_SMP
1494        if (cpuhp_is_ap_state(state))
1495                ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1496        else
1497                ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1498#else
1499        ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1500#endif
1501        BUG_ON(ret && !bringup);
1502        return ret;
1503}
1504
1505/*
1506 * Called from __cpuhp_setup_state on a recoverable failure.
1507 *
1508 * Note: The teardown callbacks for rollback are not allowed to fail!
1509 */
1510static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1511                                   struct hlist_node *node)
1512{
1513        int cpu;
1514
1515        /* Roll back the already executed steps on the other cpus */
1516        for_each_present_cpu(cpu) {
1517                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1518                int cpustate = st->state;
1519
1520                if (cpu >= failedcpu)
1521                        break;
1522
1523                /* Did we invoke the startup call on that cpu ? */
1524                if (cpustate >= state)
1525                        cpuhp_issue_call(cpu, state, false, node);
1526        }
1527}
1528
1529int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1530                                          struct hlist_node *node,
1531                                          bool invoke)
1532{
1533        struct cpuhp_step *sp;
1534        int cpu;
1535        int ret;
1536
1537        lockdep_assert_cpus_held();
1538
1539        sp = cpuhp_get_step(state);
1540        if (sp->multi_instance == false)
1541                return -EINVAL;
1542
1543        mutex_lock(&cpuhp_state_mutex);
1544
1545        if (!invoke || !sp->startup.multi)
1546                goto add_node;
1547
1548        /*
1549         * Try to call the startup callback for each present cpu
1550         * depending on the hotplug state of the cpu.
1551         */
1552        for_each_present_cpu(cpu) {
1553                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1554                int cpustate = st->state;
1555
1556                if (cpustate < state)
1557                        continue;
1558
1559                ret = cpuhp_issue_call(cpu, state, true, node);
1560                if (ret) {
1561                        if (sp->teardown.multi)
1562                                cpuhp_rollback_install(cpu, state, node);
1563                        goto unlock;
1564                }
1565        }
1566add_node:
1567        ret = 0;
1568        hlist_add_head(node, &sp->list);
1569unlock:
1570        mutex_unlock(&cpuhp_state_mutex);
1571        return ret;
1572}
1573
1574int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1575                               bool invoke)
1576{
1577        int ret;
1578
1579        cpus_read_lock();
1580        ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1581        cpus_read_unlock();
1582        return ret;
1583}
1584EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1585
1586/**
1587 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1588 * @state:              The state to setup
1589 * @invoke:             If true, the startup function is invoked for cpus where
1590 *                      cpu state >= @state
1591 * @startup:            startup callback function
1592 * @teardown:           teardown callback function
1593 * @multi_instance:     State is set up for multiple instances which get
1594 *                      added afterwards.
1595 *
1596 * The caller needs to hold cpus read locked while calling this function.
1597 * Returns:
1598 *   On success:
1599 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1600 *      0 for all other states
1601 *   On failure: proper (negative) error code
1602 */
1603int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1604                                   const char *name, bool invoke,
1605                                   int (*startup)(unsigned int cpu),
1606                                   int (*teardown)(unsigned int cpu),
1607                                   bool multi_instance)
1608{
1609        int cpu, ret = 0;
1610        bool dynstate;
1611
1612        lockdep_assert_cpus_held();
1613
1614        if (cpuhp_cb_check(state) || !name)
1615                return -EINVAL;
1616
1617        mutex_lock(&cpuhp_state_mutex);
1618
1619        ret = cpuhp_store_callbacks(state, name, startup, teardown,
1620                                    multi_instance);
1621
1622        dynstate = state == CPUHP_AP_ONLINE_DYN;
1623        if (ret > 0 && dynstate) {
1624                state = ret;
1625                ret = 0;
1626        }
1627
1628        if (ret || !invoke || !startup)
1629                goto out;
1630
1631        /*
1632         * Try to call the startup callback for each present cpu
1633         * depending on the hotplug state of the cpu.
1634         */
1635        for_each_present_cpu(cpu) {
1636                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1637                int cpustate = st->state;
1638
1639                if (cpustate < state)
1640                        continue;
1641
1642                ret = cpuhp_issue_call(cpu, state, true, NULL);
1643                if (ret) {
1644                        if (teardown)
1645                                cpuhp_rollback_install(cpu, state, NULL);
1646                        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1647                        goto out;
1648                }
1649        }
1650out:
1651        mutex_unlock(&cpuhp_state_mutex);
1652        /*
1653         * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1654         * dynamically allocated state in case of success.
1655         */
1656        if (!ret && dynstate)
1657                return state;
1658        return ret;
1659}
1660EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1661
1662int __cpuhp_setup_state(enum cpuhp_state state,
1663                        const char *name, bool invoke,
1664                        int (*startup)(unsigned int cpu),
1665                        int (*teardown)(unsigned int cpu),
1666                        bool multi_instance)
1667{
1668        int ret;
1669
1670        cpus_read_lock();
1671        ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1672                                             teardown, multi_instance);
1673        cpus_read_unlock();
1674        return ret;
1675}
1676EXPORT_SYMBOL(__cpuhp_setup_state);
1677
1678int __cpuhp_state_remove_instance(enum cpuhp_state state,
1679                                  struct hlist_node *node, bool invoke)
1680{
1681        struct cpuhp_step *sp = cpuhp_get_step(state);
1682        int cpu;
1683
1684        BUG_ON(cpuhp_cb_check(state));
1685
1686        if (!sp->multi_instance)
1687                return -EINVAL;
1688
1689        cpus_read_lock();
1690        mutex_lock(&cpuhp_state_mutex);
1691
1692        if (!invoke || !cpuhp_get_teardown_cb(state))
1693                goto remove;
1694        /*
1695         * Call the teardown callback for each present cpu depending
1696         * on the hotplug state of the cpu. This function is not
1697         * allowed to fail currently!
1698         */
1699        for_each_present_cpu(cpu) {
1700                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1701                int cpustate = st->state;
1702
1703                if (cpustate >= state)
1704                        cpuhp_issue_call(cpu, state, false, node);
1705        }
1706
1707remove:
1708        hlist_del(node);
1709        mutex_unlock(&cpuhp_state_mutex);
1710        cpus_read_unlock();
1711
1712        return 0;
1713}
1714EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1715
1716/**
1717 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1718 * @state:      The state to remove
1719 * @invoke:     If true, the teardown function is invoked for cpus where
1720 *              cpu state >= @state
1721 *
1722 * The caller needs to hold cpus read locked while calling this function.
1723 * The teardown callback is currently not allowed to fail. Think
1724 * about module removal!
1725 */
1726void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1727{
1728        struct cpuhp_step *sp = cpuhp_get_step(state);
1729        int cpu;
1730
1731        BUG_ON(cpuhp_cb_check(state));
1732
1733        lockdep_assert_cpus_held();
1734
1735        mutex_lock(&cpuhp_state_mutex);
1736        if (sp->multi_instance) {
1737                WARN(!hlist_empty(&sp->list),
1738                     "Error: Removing state %d which has instances left.\n",
1739                     state);
1740                goto remove;
1741        }
1742
1743        if (!invoke || !cpuhp_get_teardown_cb(state))
1744                goto remove;
1745
1746        /*
1747         * Call the teardown callback for each present cpu depending
1748         * on the hotplug state of the cpu. This function is not
1749         * allowed to fail currently!
1750         */
1751        for_each_present_cpu(cpu) {
1752                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1753                int cpustate = st->state;
1754
1755                if (cpustate >= state)
1756                        cpuhp_issue_call(cpu, state, false, NULL);
1757        }
1758remove:
1759        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1760        mutex_unlock(&cpuhp_state_mutex);
1761}
1762EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1763
1764void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1765{
1766        cpus_read_lock();
1767        __cpuhp_remove_state_cpuslocked(state, invoke);
1768        cpus_read_unlock();
1769}
1770EXPORT_SYMBOL(__cpuhp_remove_state);
1771
1772#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1773static ssize_t show_cpuhp_state(struct device *dev,
1774                                struct device_attribute *attr, char *buf)
1775{
1776        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1777
1778        return sprintf(buf, "%d\n", st->state);
1779}
1780static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1781
1782static ssize_t write_cpuhp_target(struct device *dev,
1783                                  struct device_attribute *attr,
1784                                  const char *buf, size_t count)
1785{
1786        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1787        struct cpuhp_step *sp;
1788        int target, ret;
1789
1790        ret = kstrtoint(buf, 10, &target);
1791        if (ret)
1792                return ret;
1793
1794#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1795        if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1796                return -EINVAL;
1797#else
1798        if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1799                return -EINVAL;
1800#endif
1801
1802        ret = lock_device_hotplug_sysfs();
1803        if (ret)
1804                return ret;
1805
1806        mutex_lock(&cpuhp_state_mutex);
1807        sp = cpuhp_get_step(target);
1808        ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1809        mutex_unlock(&cpuhp_state_mutex);
1810        if (ret)
1811                goto out;
1812
1813        if (st->state < target)
1814                ret = do_cpu_up(dev->id, target);
1815        else
1816                ret = do_cpu_down(dev->id, target);
1817out:
1818        unlock_device_hotplug();
1819        return ret ? ret : count;
1820}
1821
1822static ssize_t show_cpuhp_target(struct device *dev,
1823                                 struct device_attribute *attr, char *buf)
1824{
1825        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1826
1827        return sprintf(buf, "%d\n", st->target);
1828}
1829static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1830
1831
1832static ssize_t write_cpuhp_fail(struct device *dev,
1833                                struct device_attribute *attr,
1834                                const char *buf, size_t count)
1835{
1836        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1837        struct cpuhp_step *sp;
1838        int fail, ret;
1839
1840        ret = kstrtoint(buf, 10, &fail);
1841        if (ret)
1842                return ret;
1843
1844        /*
1845         * Cannot fail STARTING/DYING callbacks.
1846         */
1847        if (cpuhp_is_atomic_state(fail))
1848                return -EINVAL;
1849
1850        /*
1851         * Cannot fail anything that doesn't have callbacks.
1852         */
1853        mutex_lock(&cpuhp_state_mutex);
1854        sp = cpuhp_get_step(fail);
1855        if (!sp->startup.single && !sp->teardown.single)
1856                ret = -EINVAL;
1857        mutex_unlock(&cpuhp_state_mutex);
1858        if (ret)
1859                return ret;
1860
1861        st->fail = fail;
1862
1863        return count;
1864}
1865
1866static ssize_t show_cpuhp_fail(struct device *dev,
1867                               struct device_attribute *attr, char *buf)
1868{
1869        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1870
1871        return sprintf(buf, "%d\n", st->fail);
1872}
1873
1874static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1875
1876static struct attribute *cpuhp_cpu_attrs[] = {
1877        &dev_attr_state.attr,
1878        &dev_attr_target.attr,
1879        &dev_attr_fail.attr,
1880        NULL
1881};
1882
1883static const struct attribute_group cpuhp_cpu_attr_group = {
1884        .attrs = cpuhp_cpu_attrs,
1885        .name = "hotplug",
1886        NULL
1887};
1888
1889static ssize_t show_cpuhp_states(struct device *dev,
1890                                 struct device_attribute *attr, char *buf)
1891{
1892        ssize_t cur, res = 0;
1893        int i;
1894
1895        mutex_lock(&cpuhp_state_mutex);
1896        for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1897                struct cpuhp_step *sp = cpuhp_get_step(i);
1898
1899                if (sp->name) {
1900                        cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1901                        buf += cur;
1902                        res += cur;
1903                }
1904        }
1905        mutex_unlock(&cpuhp_state_mutex);
1906        return res;
1907}
1908static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1909
1910static struct attribute *cpuhp_cpu_root_attrs[] = {
1911        &dev_attr_states.attr,
1912        NULL
1913};
1914
1915static const struct attribute_group cpuhp_cpu_root_attr_group = {
1916        .attrs = cpuhp_cpu_root_attrs,
1917        .name = "hotplug",
1918        NULL
1919};
1920
1921static int __init cpuhp_sysfs_init(void)
1922{
1923        int cpu, ret;
1924
1925        ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1926                                 &cpuhp_cpu_root_attr_group);
1927        if (ret)
1928                return ret;
1929
1930        for_each_possible_cpu(cpu) {
1931                struct device *dev = get_cpu_device(cpu);
1932
1933                if (!dev)
1934                        continue;
1935                ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1936                if (ret)
1937                        return ret;
1938        }
1939        return 0;
1940}
1941device_initcall(cpuhp_sysfs_init);
1942#endif
1943
1944/*
1945 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1946 * represents all NR_CPUS bits binary values of 1<<nr.
1947 *
1948 * It is used by cpumask_of() to get a constant address to a CPU
1949 * mask value that has a single bit set only.
1950 */
1951
1952/* cpu_bit_bitmap[0] is empty - so we can back into it */
1953#define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
1954#define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1955#define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1956#define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1957
1958const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1959
1960        MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
1961        MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
1962#if BITS_PER_LONG > 32
1963        MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
1964        MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
1965#endif
1966};
1967EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1968
1969const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1970EXPORT_SYMBOL(cpu_all_bits);
1971
1972#ifdef CONFIG_INIT_ALL_POSSIBLE
1973struct cpumask __cpu_possible_mask __read_mostly
1974        = {CPU_BITS_ALL};
1975#else
1976struct cpumask __cpu_possible_mask __read_mostly;
1977#endif
1978EXPORT_SYMBOL(__cpu_possible_mask);
1979
1980struct cpumask __cpu_online_mask __read_mostly;
1981EXPORT_SYMBOL(__cpu_online_mask);
1982
1983struct cpumask __cpu_present_mask __read_mostly;
1984EXPORT_SYMBOL(__cpu_present_mask);
1985
1986struct cpumask __cpu_active_mask __read_mostly;
1987EXPORT_SYMBOL(__cpu_active_mask);
1988
1989void init_cpu_present(const struct cpumask *src)
1990{
1991        cpumask_copy(&__cpu_present_mask, src);
1992}
1993
1994void init_cpu_possible(const struct cpumask *src)
1995{
1996        cpumask_copy(&__cpu_possible_mask, src);
1997}
1998
1999void init_cpu_online(const struct cpumask *src)
2000{
2001        cpumask_copy(&__cpu_online_mask, src);
2002}
2003
2004/*
2005 * Activate the first processor.
2006 */
2007void __init boot_cpu_init(void)
2008{
2009        int cpu = smp_processor_id();
2010
2011        /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2012        set_cpu_online(cpu, true);
2013        set_cpu_active(cpu, true);
2014        set_cpu_present(cpu, true);
2015        set_cpu_possible(cpu, true);
2016
2017#ifdef CONFIG_SMP
2018        __boot_cpu_id = cpu;
2019#endif
2020}
2021
2022/*
2023 * Must be called _AFTER_ setting up the per_cpu areas
2024 */
2025void __init boot_cpu_state_init(void)
2026{
2027        per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2028}
2029