linux/kernel/locking/osq_lock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/percpu.h>
   3#include <linux/sched.h>
   4#include <linux/osq_lock.h>
   5
   6/*
   7 * An MCS like lock especially tailored for optimistic spinning for sleeping
   8 * lock implementations (mutex, rwsem, etc).
   9 *
  10 * Using a single mcs node per CPU is safe because sleeping locks should not be
  11 * called from interrupt context and we have preemption disabled while
  12 * spinning.
  13 */
  14static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);
  15
  16/*
  17 * We use the value 0 to represent "no CPU", thus the encoded value
  18 * will be the CPU number incremented by 1.
  19 */
  20static inline int encode_cpu(int cpu_nr)
  21{
  22        return cpu_nr + 1;
  23}
  24
  25static inline int node_cpu(struct optimistic_spin_node *node)
  26{
  27        return node->cpu - 1;
  28}
  29
  30static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
  31{
  32        int cpu_nr = encoded_cpu_val - 1;
  33
  34        return per_cpu_ptr(&osq_node, cpu_nr);
  35}
  36
  37/*
  38 * Get a stable @node->next pointer, either for unlock() or unqueue() purposes.
  39 * Can return NULL in case we were the last queued and we updated @lock instead.
  40 */
  41static inline struct optimistic_spin_node *
  42osq_wait_next(struct optimistic_spin_queue *lock,
  43              struct optimistic_spin_node *node,
  44              struct optimistic_spin_node *prev)
  45{
  46        struct optimistic_spin_node *next = NULL;
  47        int curr = encode_cpu(smp_processor_id());
  48        int old;
  49
  50        /*
  51         * If there is a prev node in queue, then the 'old' value will be
  52         * the prev node's CPU #, else it's set to OSQ_UNLOCKED_VAL since if
  53         * we're currently last in queue, then the queue will then become empty.
  54         */
  55        old = prev ? prev->cpu : OSQ_UNLOCKED_VAL;
  56
  57        for (;;) {
  58                if (atomic_read(&lock->tail) == curr &&
  59                    atomic_cmpxchg_acquire(&lock->tail, curr, old) == curr) {
  60                        /*
  61                         * We were the last queued, we moved @lock back. @prev
  62                         * will now observe @lock and will complete its
  63                         * unlock()/unqueue().
  64                         */
  65                        break;
  66                }
  67
  68                /*
  69                 * We must xchg() the @node->next value, because if we were to
  70                 * leave it in, a concurrent unlock()/unqueue() from
  71                 * @node->next might complete Step-A and think its @prev is
  72                 * still valid.
  73                 *
  74                 * If the concurrent unlock()/unqueue() wins the race, we'll
  75                 * wait for either @lock to point to us, through its Step-B, or
  76                 * wait for a new @node->next from its Step-C.
  77                 */
  78                if (node->next) {
  79                        next = xchg(&node->next, NULL);
  80                        if (next)
  81                                break;
  82                }
  83
  84                cpu_relax();
  85        }
  86
  87        return next;
  88}
  89
  90bool osq_lock(struct optimistic_spin_queue *lock)
  91{
  92        struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);
  93        struct optimistic_spin_node *prev, *next;
  94        int curr = encode_cpu(smp_processor_id());
  95        int old;
  96
  97        node->locked = 0;
  98        node->next = NULL;
  99        node->cpu = curr;
 100
 101        /*
 102         * We need both ACQUIRE (pairs with corresponding RELEASE in
 103         * unlock() uncontended, or fastpath) and RELEASE (to publish
 104         * the node fields we just initialised) semantics when updating
 105         * the lock tail.
 106         */
 107        old = atomic_xchg(&lock->tail, curr);
 108        if (old == OSQ_UNLOCKED_VAL)
 109                return true;
 110
 111        prev = decode_cpu(old);
 112        node->prev = prev;
 113
 114        /*
 115         * osq_lock()                   unqueue
 116         *
 117         * node->prev = prev            osq_wait_next()
 118         * WMB                          MB
 119         * prev->next = node            next->prev = prev // unqueue-C
 120         *
 121         * Here 'node->prev' and 'next->prev' are the same variable and we need
 122         * to ensure these stores happen in-order to avoid corrupting the list.
 123         */
 124        smp_wmb();
 125
 126        WRITE_ONCE(prev->next, node);
 127
 128        /*
 129         * Normally @prev is untouchable after the above store; because at that
 130         * moment unlock can proceed and wipe the node element from stack.
 131         *
 132         * However, since our nodes are static per-cpu storage, we're
 133         * guaranteed their existence -- this allows us to apply
 134         * cmpxchg in an attempt to undo our queueing.
 135         */
 136
 137        while (!READ_ONCE(node->locked)) {
 138                /*
 139                 * If we need to reschedule bail... so we can block.
 140                 * Use vcpu_is_preempted() to avoid waiting for a preempted
 141                 * lock holder:
 142                 */
 143                if (need_resched() || vcpu_is_preempted(node_cpu(node->prev)))
 144                        goto unqueue;
 145
 146                cpu_relax();
 147        }
 148        return true;
 149
 150unqueue:
 151        /*
 152         * Step - A  -- stabilize @prev
 153         *
 154         * Undo our @prev->next assignment; this will make @prev's
 155         * unlock()/unqueue() wait for a next pointer since @lock points to us
 156         * (or later).
 157         */
 158
 159        for (;;) {
 160                if (prev->next == node &&
 161                    cmpxchg(&prev->next, node, NULL) == node)
 162                        break;
 163
 164                /*
 165                 * We can only fail the cmpxchg() racing against an unlock(),
 166                 * in which case we should observe @node->locked becomming
 167                 * true.
 168                 */
 169                if (smp_load_acquire(&node->locked))
 170                        return true;
 171
 172                cpu_relax();
 173
 174                /*
 175                 * Or we race against a concurrent unqueue()'s step-B, in which
 176                 * case its step-C will write us a new @node->prev pointer.
 177                 */
 178                prev = READ_ONCE(node->prev);
 179        }
 180
 181        /*
 182         * Step - B -- stabilize @next
 183         *
 184         * Similar to unlock(), wait for @node->next or move @lock from @node
 185         * back to @prev.
 186         */
 187
 188        next = osq_wait_next(lock, node, prev);
 189        if (!next)
 190                return false;
 191
 192        /*
 193         * Step - C -- unlink
 194         *
 195         * @prev is stable because its still waiting for a new @prev->next
 196         * pointer, @next is stable because our @node->next pointer is NULL and
 197         * it will wait in Step-A.
 198         */
 199
 200        WRITE_ONCE(next->prev, prev);
 201        WRITE_ONCE(prev->next, next);
 202
 203        return false;
 204}
 205
 206void osq_unlock(struct optimistic_spin_queue *lock)
 207{
 208        struct optimistic_spin_node *node, *next;
 209        int curr = encode_cpu(smp_processor_id());
 210
 211        /*
 212         * Fast path for the uncontended case.
 213         */
 214        if (likely(atomic_cmpxchg_release(&lock->tail, curr,
 215                                          OSQ_UNLOCKED_VAL) == curr))
 216                return;
 217
 218        /*
 219         * Second most likely case.
 220         */
 221        node = this_cpu_ptr(&osq_node);
 222        next = xchg(&node->next, NULL);
 223        if (next) {
 224                WRITE_ONCE(next->locked, 1);
 225                return;
 226        }
 227
 228        next = osq_wait_next(lock, node, NULL);
 229        if (next)
 230                WRITE_ONCE(next->locked, 1);
 231}
 232