linux/kernel/time/tick-broadcast.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/time/tick-broadcast.c
   3 *
   4 * This file contains functions which emulate a local clock-event
   5 * device via a broadcast event source.
   6 *
   7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10 *
  11 * This code is licenced under the GPL version 2. For details see
  12 * kernel-base/COPYING.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/percpu.h>
  19#include <linux/profile.h>
  20#include <linux/sched.h>
  21#include <linux/smp.h>
  22#include <linux/module.h>
  23
  24#include "tick-internal.h"
  25
  26/*
  27 * Broadcast support for broken x86 hardware, where the local apic
  28 * timer stops in C3 state.
  29 */
  30
  31static struct tick_device tick_broadcast_device;
  32static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
  33static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
  34static cpumask_var_t tmpmask __cpumask_var_read_mostly;
  35static int tick_broadcast_forced;
  36
  37static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
  38
  39#ifdef CONFIG_TICK_ONESHOT
  40static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
  41static void tick_broadcast_clear_oneshot(int cpu);
  42static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
  43#else
  44static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
  45static inline void tick_broadcast_clear_oneshot(int cpu) { }
  46static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
  47#endif
  48
  49/*
  50 * Debugging: see timer_list.c
  51 */
  52struct tick_device *tick_get_broadcast_device(void)
  53{
  54        return &tick_broadcast_device;
  55}
  56
  57struct cpumask *tick_get_broadcast_mask(void)
  58{
  59        return tick_broadcast_mask;
  60}
  61
  62/*
  63 * Start the device in periodic mode
  64 */
  65static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  66{
  67        if (bc)
  68                tick_setup_periodic(bc, 1);
  69}
  70
  71/*
  72 * Check, if the device can be utilized as broadcast device:
  73 */
  74static bool tick_check_broadcast_device(struct clock_event_device *curdev,
  75                                        struct clock_event_device *newdev)
  76{
  77        if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
  78            (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
  79            (newdev->features & CLOCK_EVT_FEAT_C3STOP))
  80                return false;
  81
  82        if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
  83            !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
  84                return false;
  85
  86        return !curdev || newdev->rating > curdev->rating;
  87}
  88
  89/*
  90 * Conditionally install/replace broadcast device
  91 */
  92void tick_install_broadcast_device(struct clock_event_device *dev)
  93{
  94        struct clock_event_device *cur = tick_broadcast_device.evtdev;
  95
  96        if (!tick_check_broadcast_device(cur, dev))
  97                return;
  98
  99        if (!try_module_get(dev->owner))
 100                return;
 101
 102        clockevents_exchange_device(cur, dev);
 103        if (cur)
 104                cur->event_handler = clockevents_handle_noop;
 105        tick_broadcast_device.evtdev = dev;
 106        if (!cpumask_empty(tick_broadcast_mask))
 107                tick_broadcast_start_periodic(dev);
 108        /*
 109         * Inform all cpus about this. We might be in a situation
 110         * where we did not switch to oneshot mode because the per cpu
 111         * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
 112         * of a oneshot capable broadcast device. Without that
 113         * notification the systems stays stuck in periodic mode
 114         * forever.
 115         */
 116        if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
 117                tick_clock_notify();
 118}
 119
 120/*
 121 * Check, if the device is the broadcast device
 122 */
 123int tick_is_broadcast_device(struct clock_event_device *dev)
 124{
 125        return (dev && tick_broadcast_device.evtdev == dev);
 126}
 127
 128int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
 129{
 130        int ret = -ENODEV;
 131
 132        if (tick_is_broadcast_device(dev)) {
 133                raw_spin_lock(&tick_broadcast_lock);
 134                ret = __clockevents_update_freq(dev, freq);
 135                raw_spin_unlock(&tick_broadcast_lock);
 136        }
 137        return ret;
 138}
 139
 140
 141static void err_broadcast(const struct cpumask *mask)
 142{
 143        pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
 144}
 145
 146static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
 147{
 148        if (!dev->broadcast)
 149                dev->broadcast = tick_broadcast;
 150        if (!dev->broadcast) {
 151                pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
 152                             dev->name);
 153                dev->broadcast = err_broadcast;
 154        }
 155}
 156
 157/*
 158 * Check, if the device is disfunctional and a place holder, which
 159 * needs to be handled by the broadcast device.
 160 */
 161int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
 162{
 163        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 164        unsigned long flags;
 165        int ret = 0;
 166
 167        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 168
 169        /*
 170         * Devices might be registered with both periodic and oneshot
 171         * mode disabled. This signals, that the device needs to be
 172         * operated from the broadcast device and is a placeholder for
 173         * the cpu local device.
 174         */
 175        if (!tick_device_is_functional(dev)) {
 176                dev->event_handler = tick_handle_periodic;
 177                tick_device_setup_broadcast_func(dev);
 178                cpumask_set_cpu(cpu, tick_broadcast_mask);
 179                if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 180                        tick_broadcast_start_periodic(bc);
 181                else
 182                        tick_broadcast_setup_oneshot(bc);
 183                ret = 1;
 184        } else {
 185                /*
 186                 * Clear the broadcast bit for this cpu if the
 187                 * device is not power state affected.
 188                 */
 189                if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 190                        cpumask_clear_cpu(cpu, tick_broadcast_mask);
 191                else
 192                        tick_device_setup_broadcast_func(dev);
 193
 194                /*
 195                 * Clear the broadcast bit if the CPU is not in
 196                 * periodic broadcast on state.
 197                 */
 198                if (!cpumask_test_cpu(cpu, tick_broadcast_on))
 199                        cpumask_clear_cpu(cpu, tick_broadcast_mask);
 200
 201                switch (tick_broadcast_device.mode) {
 202                case TICKDEV_MODE_ONESHOT:
 203                        /*
 204                         * If the system is in oneshot mode we can
 205                         * unconditionally clear the oneshot mask bit,
 206                         * because the CPU is running and therefore
 207                         * not in an idle state which causes the power
 208                         * state affected device to stop. Let the
 209                         * caller initialize the device.
 210                         */
 211                        tick_broadcast_clear_oneshot(cpu);
 212                        ret = 0;
 213                        break;
 214
 215                case TICKDEV_MODE_PERIODIC:
 216                        /*
 217                         * If the system is in periodic mode, check
 218                         * whether the broadcast device can be
 219                         * switched off now.
 220                         */
 221                        if (cpumask_empty(tick_broadcast_mask) && bc)
 222                                clockevents_shutdown(bc);
 223                        /*
 224                         * If we kept the cpu in the broadcast mask,
 225                         * tell the caller to leave the per cpu device
 226                         * in shutdown state. The periodic interrupt
 227                         * is delivered by the broadcast device, if
 228                         * the broadcast device exists and is not
 229                         * hrtimer based.
 230                         */
 231                        if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 232                                ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
 233                        break;
 234                default:
 235                        break;
 236                }
 237        }
 238        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 239        return ret;
 240}
 241
 242#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 243int tick_receive_broadcast(void)
 244{
 245        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 246        struct clock_event_device *evt = td->evtdev;
 247
 248        if (!evt)
 249                return -ENODEV;
 250
 251        if (!evt->event_handler)
 252                return -EINVAL;
 253
 254        evt->event_handler(evt);
 255        return 0;
 256}
 257#endif
 258
 259/*
 260 * Broadcast the event to the cpus, which are set in the mask (mangled).
 261 */
 262static bool tick_do_broadcast(struct cpumask *mask)
 263{
 264        int cpu = smp_processor_id();
 265        struct tick_device *td;
 266        bool local = false;
 267
 268        /*
 269         * Check, if the current cpu is in the mask
 270         */
 271        if (cpumask_test_cpu(cpu, mask)) {
 272                struct clock_event_device *bc = tick_broadcast_device.evtdev;
 273
 274                cpumask_clear_cpu(cpu, mask);
 275                /*
 276                 * We only run the local handler, if the broadcast
 277                 * device is not hrtimer based. Otherwise we run into
 278                 * a hrtimer recursion.
 279                 *
 280                 * local timer_interrupt()
 281                 *   local_handler()
 282                 *     expire_hrtimers()
 283                 *       bc_handler()
 284                 *         local_handler()
 285                 *           expire_hrtimers()
 286                 */
 287                local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
 288        }
 289
 290        if (!cpumask_empty(mask)) {
 291                /*
 292                 * It might be necessary to actually check whether the devices
 293                 * have different broadcast functions. For now, just use the
 294                 * one of the first device. This works as long as we have this
 295                 * misfeature only on x86 (lapic)
 296                 */
 297                td = &per_cpu(tick_cpu_device, cpumask_first(mask));
 298                td->evtdev->broadcast(mask);
 299        }
 300        return local;
 301}
 302
 303/*
 304 * Periodic broadcast:
 305 * - invoke the broadcast handlers
 306 */
 307static bool tick_do_periodic_broadcast(void)
 308{
 309        cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
 310        return tick_do_broadcast(tmpmask);
 311}
 312
 313/*
 314 * Event handler for periodic broadcast ticks
 315 */
 316static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 317{
 318        struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 319        bool bc_local;
 320
 321        raw_spin_lock(&tick_broadcast_lock);
 322
 323        /* Handle spurious interrupts gracefully */
 324        if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
 325                raw_spin_unlock(&tick_broadcast_lock);
 326                return;
 327        }
 328
 329        bc_local = tick_do_periodic_broadcast();
 330
 331        if (clockevent_state_oneshot(dev)) {
 332                ktime_t next = ktime_add(dev->next_event, tick_period);
 333
 334                clockevents_program_event(dev, next, true);
 335        }
 336        raw_spin_unlock(&tick_broadcast_lock);
 337
 338        /*
 339         * We run the handler of the local cpu after dropping
 340         * tick_broadcast_lock because the handler might deadlock when
 341         * trying to switch to oneshot mode.
 342         */
 343        if (bc_local)
 344                td->evtdev->event_handler(td->evtdev);
 345}
 346
 347/**
 348 * tick_broadcast_control - Enable/disable or force broadcast mode
 349 * @mode:       The selected broadcast mode
 350 *
 351 * Called when the system enters a state where affected tick devices
 352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 353 */
 354void tick_broadcast_control(enum tick_broadcast_mode mode)
 355{
 356        struct clock_event_device *bc, *dev;
 357        struct tick_device *td;
 358        int cpu, bc_stopped;
 359        unsigned long flags;
 360
 361        /* Protects also the local clockevent device. */
 362        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 363        td = this_cpu_ptr(&tick_cpu_device);
 364        dev = td->evtdev;
 365
 366        /*
 367         * Is the device not affected by the powerstate ?
 368         */
 369        if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 370                goto out;
 371
 372        if (!tick_device_is_functional(dev))
 373                goto out;
 374
 375        cpu = smp_processor_id();
 376        bc = tick_broadcast_device.evtdev;
 377        bc_stopped = cpumask_empty(tick_broadcast_mask);
 378
 379        switch (mode) {
 380        case TICK_BROADCAST_FORCE:
 381                tick_broadcast_forced = 1;
 382        case TICK_BROADCAST_ON:
 383                cpumask_set_cpu(cpu, tick_broadcast_on);
 384                if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
 385                        /*
 386                         * Only shutdown the cpu local device, if:
 387                         *
 388                         * - the broadcast device exists
 389                         * - the broadcast device is not a hrtimer based one
 390                         * - the broadcast device is in periodic mode to
 391                         *   avoid a hickup during switch to oneshot mode
 392                         */
 393                        if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
 394                            tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 395                                clockevents_shutdown(dev);
 396                }
 397                break;
 398
 399        case TICK_BROADCAST_OFF:
 400                if (tick_broadcast_forced)
 401                        break;
 402                cpumask_clear_cpu(cpu, tick_broadcast_on);
 403                if (!tick_device_is_functional(dev))
 404                        break;
 405                if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
 406                        if (tick_broadcast_device.mode ==
 407                            TICKDEV_MODE_PERIODIC)
 408                                tick_setup_periodic(dev, 0);
 409                }
 410                break;
 411        }
 412
 413        if (bc) {
 414                if (cpumask_empty(tick_broadcast_mask)) {
 415                        if (!bc_stopped)
 416                                clockevents_shutdown(bc);
 417                } else if (bc_stopped) {
 418                        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 419                                tick_broadcast_start_periodic(bc);
 420                        else
 421                                tick_broadcast_setup_oneshot(bc);
 422                }
 423        }
 424out:
 425        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 426}
 427EXPORT_SYMBOL_GPL(tick_broadcast_control);
 428
 429/*
 430 * Set the periodic handler depending on broadcast on/off
 431 */
 432void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 433{
 434        if (!broadcast)
 435                dev->event_handler = tick_handle_periodic;
 436        else
 437                dev->event_handler = tick_handle_periodic_broadcast;
 438}
 439
 440#ifdef CONFIG_HOTPLUG_CPU
 441/*
 442 * Remove a CPU from broadcasting
 443 */
 444void tick_shutdown_broadcast(unsigned int cpu)
 445{
 446        struct clock_event_device *bc;
 447        unsigned long flags;
 448
 449        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 450
 451        bc = tick_broadcast_device.evtdev;
 452        cpumask_clear_cpu(cpu, tick_broadcast_mask);
 453        cpumask_clear_cpu(cpu, tick_broadcast_on);
 454
 455        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 456                if (bc && cpumask_empty(tick_broadcast_mask))
 457                        clockevents_shutdown(bc);
 458        }
 459
 460        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 461}
 462#endif
 463
 464void tick_suspend_broadcast(void)
 465{
 466        struct clock_event_device *bc;
 467        unsigned long flags;
 468
 469        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 470
 471        bc = tick_broadcast_device.evtdev;
 472        if (bc)
 473                clockevents_shutdown(bc);
 474
 475        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 476}
 477
 478/*
 479 * This is called from tick_resume_local() on a resuming CPU. That's
 480 * called from the core resume function, tick_unfreeze() and the magic XEN
 481 * resume hackery.
 482 *
 483 * In none of these cases the broadcast device mode can change and the
 484 * bit of the resuming CPU in the broadcast mask is safe as well.
 485 */
 486bool tick_resume_check_broadcast(void)
 487{
 488        if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
 489                return false;
 490        else
 491                return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
 492}
 493
 494void tick_resume_broadcast(void)
 495{
 496        struct clock_event_device *bc;
 497        unsigned long flags;
 498
 499        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 500
 501        bc = tick_broadcast_device.evtdev;
 502
 503        if (bc) {
 504                clockevents_tick_resume(bc);
 505
 506                switch (tick_broadcast_device.mode) {
 507                case TICKDEV_MODE_PERIODIC:
 508                        if (!cpumask_empty(tick_broadcast_mask))
 509                                tick_broadcast_start_periodic(bc);
 510                        break;
 511                case TICKDEV_MODE_ONESHOT:
 512                        if (!cpumask_empty(tick_broadcast_mask))
 513                                tick_resume_broadcast_oneshot(bc);
 514                        break;
 515                }
 516        }
 517        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 518}
 519
 520#ifdef CONFIG_TICK_ONESHOT
 521
 522static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
 523static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
 524static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
 525
 526/*
 527 * Exposed for debugging: see timer_list.c
 528 */
 529struct cpumask *tick_get_broadcast_oneshot_mask(void)
 530{
 531        return tick_broadcast_oneshot_mask;
 532}
 533
 534/*
 535 * Called before going idle with interrupts disabled. Checks whether a
 536 * broadcast event from the other core is about to happen. We detected
 537 * that in tick_broadcast_oneshot_control(). The callsite can use this
 538 * to avoid a deep idle transition as we are about to get the
 539 * broadcast IPI right away.
 540 */
 541int tick_check_broadcast_expired(void)
 542{
 543        return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
 544}
 545
 546/*
 547 * Set broadcast interrupt affinity
 548 */
 549static void tick_broadcast_set_affinity(struct clock_event_device *bc,
 550                                        const struct cpumask *cpumask)
 551{
 552        if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
 553                return;
 554
 555        if (cpumask_equal(bc->cpumask, cpumask))
 556                return;
 557
 558        bc->cpumask = cpumask;
 559        irq_set_affinity(bc->irq, bc->cpumask);
 560}
 561
 562static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
 563                                     ktime_t expires)
 564{
 565        if (!clockevent_state_oneshot(bc))
 566                clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 567
 568        clockevents_program_event(bc, expires, 1);
 569        tick_broadcast_set_affinity(bc, cpumask_of(cpu));
 570}
 571
 572static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 573{
 574        clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 575}
 576
 577/*
 578 * Called from irq_enter() when idle was interrupted to reenable the
 579 * per cpu device.
 580 */
 581void tick_check_oneshot_broadcast_this_cpu(void)
 582{
 583        if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
 584                struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
 585
 586                /*
 587                 * We might be in the middle of switching over from
 588                 * periodic to oneshot. If the CPU has not yet
 589                 * switched over, leave the device alone.
 590                 */
 591                if (td->mode == TICKDEV_MODE_ONESHOT) {
 592                        clockevents_switch_state(td->evtdev,
 593                                              CLOCK_EVT_STATE_ONESHOT);
 594                }
 595        }
 596}
 597
 598/*
 599 * Handle oneshot mode broadcasting
 600 */
 601static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 602{
 603        struct tick_device *td;
 604        ktime_t now, next_event;
 605        int cpu, next_cpu = 0;
 606        bool bc_local;
 607
 608        raw_spin_lock(&tick_broadcast_lock);
 609        dev->next_event = KTIME_MAX;
 610        next_event = KTIME_MAX;
 611        cpumask_clear(tmpmask);
 612        now = ktime_get();
 613        /* Find all expired events */
 614        for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
 615                td = &per_cpu(tick_cpu_device, cpu);
 616                if (td->evtdev->next_event <= now) {
 617                        cpumask_set_cpu(cpu, tmpmask);
 618                        /*
 619                         * Mark the remote cpu in the pending mask, so
 620                         * it can avoid reprogramming the cpu local
 621                         * timer in tick_broadcast_oneshot_control().
 622                         */
 623                        cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
 624                } else if (td->evtdev->next_event < next_event) {
 625                        next_event = td->evtdev->next_event;
 626                        next_cpu = cpu;
 627                }
 628        }
 629
 630        /*
 631         * Remove the current cpu from the pending mask. The event is
 632         * delivered immediately in tick_do_broadcast() !
 633         */
 634        cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
 635
 636        /* Take care of enforced broadcast requests */
 637        cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
 638        cpumask_clear(tick_broadcast_force_mask);
 639
 640        /*
 641         * Sanity check. Catch the case where we try to broadcast to
 642         * offline cpus.
 643         */
 644        if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
 645                cpumask_and(tmpmask, tmpmask, cpu_online_mask);
 646
 647        /*
 648         * Wakeup the cpus which have an expired event.
 649         */
 650        bc_local = tick_do_broadcast(tmpmask);
 651
 652        /*
 653         * Two reasons for reprogram:
 654         *
 655         * - The global event did not expire any CPU local
 656         * events. This happens in dyntick mode, as the maximum PIT
 657         * delta is quite small.
 658         *
 659         * - There are pending events on sleeping CPUs which were not
 660         * in the event mask
 661         */
 662        if (next_event != KTIME_MAX)
 663                tick_broadcast_set_event(dev, next_cpu, next_event);
 664
 665        raw_spin_unlock(&tick_broadcast_lock);
 666
 667        if (bc_local) {
 668                td = this_cpu_ptr(&tick_cpu_device);
 669                td->evtdev->event_handler(td->evtdev);
 670        }
 671}
 672
 673static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
 674{
 675        if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
 676                return 0;
 677        if (bc->next_event == KTIME_MAX)
 678                return 0;
 679        return bc->bound_on == cpu ? -EBUSY : 0;
 680}
 681
 682static void broadcast_shutdown_local(struct clock_event_device *bc,
 683                                     struct clock_event_device *dev)
 684{
 685        /*
 686         * For hrtimer based broadcasting we cannot shutdown the cpu
 687         * local device if our own event is the first one to expire or
 688         * if we own the broadcast timer.
 689         */
 690        if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
 691                if (broadcast_needs_cpu(bc, smp_processor_id()))
 692                        return;
 693                if (dev->next_event < bc->next_event)
 694                        return;
 695        }
 696        clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
 697}
 698
 699int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 700{
 701        struct clock_event_device *bc, *dev;
 702        int cpu, ret = 0;
 703        ktime_t now;
 704
 705        /*
 706         * If there is no broadcast device, tell the caller not to go
 707         * into deep idle.
 708         */
 709        if (!tick_broadcast_device.evtdev)
 710                return -EBUSY;
 711
 712        dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
 713
 714        raw_spin_lock(&tick_broadcast_lock);
 715        bc = tick_broadcast_device.evtdev;
 716        cpu = smp_processor_id();
 717
 718        if (state == TICK_BROADCAST_ENTER) {
 719                /*
 720                 * If the current CPU owns the hrtimer broadcast
 721                 * mechanism, it cannot go deep idle and we do not add
 722                 * the CPU to the broadcast mask. We don't have to go
 723                 * through the EXIT path as the local timer is not
 724                 * shutdown.
 725                 */
 726                ret = broadcast_needs_cpu(bc, cpu);
 727                if (ret)
 728                        goto out;
 729
 730                /*
 731                 * If the broadcast device is in periodic mode, we
 732                 * return.
 733                 */
 734                if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 735                        /* If it is a hrtimer based broadcast, return busy */
 736                        if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
 737                                ret = -EBUSY;
 738                        goto out;
 739                }
 740
 741                if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
 742                        WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
 743
 744                        /* Conditionally shut down the local timer. */
 745                        broadcast_shutdown_local(bc, dev);
 746
 747                        /*
 748                         * We only reprogram the broadcast timer if we
 749                         * did not mark ourself in the force mask and
 750                         * if the cpu local event is earlier than the
 751                         * broadcast event. If the current CPU is in
 752                         * the force mask, then we are going to be
 753                         * woken by the IPI right away; we return
 754                         * busy, so the CPU does not try to go deep
 755                         * idle.
 756                         */
 757                        if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
 758                                ret = -EBUSY;
 759                        } else if (dev->next_event < bc->next_event) {
 760                                tick_broadcast_set_event(bc, cpu, dev->next_event);
 761                                /*
 762                                 * In case of hrtimer broadcasts the
 763                                 * programming might have moved the
 764                                 * timer to this cpu. If yes, remove
 765                                 * us from the broadcast mask and
 766                                 * return busy.
 767                                 */
 768                                ret = broadcast_needs_cpu(bc, cpu);
 769                                if (ret) {
 770                                        cpumask_clear_cpu(cpu,
 771                                                tick_broadcast_oneshot_mask);
 772                                }
 773                        }
 774                }
 775        } else {
 776                if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
 777                        clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
 778                        /*
 779                         * The cpu which was handling the broadcast
 780                         * timer marked this cpu in the broadcast
 781                         * pending mask and fired the broadcast
 782                         * IPI. So we are going to handle the expired
 783                         * event anyway via the broadcast IPI
 784                         * handler. No need to reprogram the timer
 785                         * with an already expired event.
 786                         */
 787                        if (cpumask_test_and_clear_cpu(cpu,
 788                                       tick_broadcast_pending_mask))
 789                                goto out;
 790
 791                        /*
 792                         * Bail out if there is no next event.
 793                         */
 794                        if (dev->next_event == KTIME_MAX)
 795                                goto out;
 796                        /*
 797                         * If the pending bit is not set, then we are
 798                         * either the CPU handling the broadcast
 799                         * interrupt or we got woken by something else.
 800                         *
 801                         * We are not longer in the broadcast mask, so
 802                         * if the cpu local expiry time is already
 803                         * reached, we would reprogram the cpu local
 804                         * timer with an already expired event.
 805                         *
 806                         * This can lead to a ping-pong when we return
 807                         * to idle and therefor rearm the broadcast
 808                         * timer before the cpu local timer was able
 809                         * to fire. This happens because the forced
 810                         * reprogramming makes sure that the event
 811                         * will happen in the future and depending on
 812                         * the min_delta setting this might be far
 813                         * enough out that the ping-pong starts.
 814                         *
 815                         * If the cpu local next_event has expired
 816                         * then we know that the broadcast timer
 817                         * next_event has expired as well and
 818                         * broadcast is about to be handled. So we
 819                         * avoid reprogramming and enforce that the
 820                         * broadcast handler, which did not run yet,
 821                         * will invoke the cpu local handler.
 822                         *
 823                         * We cannot call the handler directly from
 824                         * here, because we might be in a NOHZ phase
 825                         * and we did not go through the irq_enter()
 826                         * nohz fixups.
 827                         */
 828                        now = ktime_get();
 829                        if (dev->next_event <= now) {
 830                                cpumask_set_cpu(cpu, tick_broadcast_force_mask);
 831                                goto out;
 832                        }
 833                        /*
 834                         * We got woken by something else. Reprogram
 835                         * the cpu local timer device.
 836                         */
 837                        tick_program_event(dev->next_event, 1);
 838                }
 839        }
 840out:
 841        raw_spin_unlock(&tick_broadcast_lock);
 842        return ret;
 843}
 844
 845/*
 846 * Reset the one shot broadcast for a cpu
 847 *
 848 * Called with tick_broadcast_lock held
 849 */
 850static void tick_broadcast_clear_oneshot(int cpu)
 851{
 852        cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 853        cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 854}
 855
 856static void tick_broadcast_init_next_event(struct cpumask *mask,
 857                                           ktime_t expires)
 858{
 859        struct tick_device *td;
 860        int cpu;
 861
 862        for_each_cpu(cpu, mask) {
 863                td = &per_cpu(tick_cpu_device, cpu);
 864                if (td->evtdev)
 865                        td->evtdev->next_event = expires;
 866        }
 867}
 868
 869/**
 870 * tick_broadcast_setup_oneshot - setup the broadcast device
 871 */
 872static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
 873{
 874        int cpu = smp_processor_id();
 875
 876        if (!bc)
 877                return;
 878
 879        /* Set it up only once ! */
 880        if (bc->event_handler != tick_handle_oneshot_broadcast) {
 881                int was_periodic = clockevent_state_periodic(bc);
 882
 883                bc->event_handler = tick_handle_oneshot_broadcast;
 884
 885                /*
 886                 * We must be careful here. There might be other CPUs
 887                 * waiting for periodic broadcast. We need to set the
 888                 * oneshot_mask bits for those and program the
 889                 * broadcast device to fire.
 890                 */
 891                cpumask_copy(tmpmask, tick_broadcast_mask);
 892                cpumask_clear_cpu(cpu, tmpmask);
 893                cpumask_or(tick_broadcast_oneshot_mask,
 894                           tick_broadcast_oneshot_mask, tmpmask);
 895
 896                if (was_periodic && !cpumask_empty(tmpmask)) {
 897                        clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
 898                        tick_broadcast_init_next_event(tmpmask,
 899                                                       tick_next_period);
 900                        tick_broadcast_set_event(bc, cpu, tick_next_period);
 901                } else
 902                        bc->next_event = KTIME_MAX;
 903        } else {
 904                /*
 905                 * The first cpu which switches to oneshot mode sets
 906                 * the bit for all other cpus which are in the general
 907                 * (periodic) broadcast mask. So the bit is set and
 908                 * would prevent the first broadcast enter after this
 909                 * to program the bc device.
 910                 */
 911                tick_broadcast_clear_oneshot(cpu);
 912        }
 913}
 914
 915/*
 916 * Select oneshot operating mode for the broadcast device
 917 */
 918void tick_broadcast_switch_to_oneshot(void)
 919{
 920        struct clock_event_device *bc;
 921        unsigned long flags;
 922
 923        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 924
 925        tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
 926        bc = tick_broadcast_device.evtdev;
 927        if (bc)
 928                tick_broadcast_setup_oneshot(bc);
 929
 930        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 931}
 932
 933#ifdef CONFIG_HOTPLUG_CPU
 934void hotplug_cpu__broadcast_tick_pull(int deadcpu)
 935{
 936        struct clock_event_device *bc;
 937        unsigned long flags;
 938
 939        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 940        bc = tick_broadcast_device.evtdev;
 941
 942        if (bc && broadcast_needs_cpu(bc, deadcpu)) {
 943                /* This moves the broadcast assignment to this CPU: */
 944                clockevents_program_event(bc, bc->next_event, 1);
 945        }
 946        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 947}
 948
 949/*
 950 * Remove a dead CPU from broadcasting
 951 */
 952void tick_shutdown_broadcast_oneshot(unsigned int cpu)
 953{
 954        unsigned long flags;
 955
 956        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 957
 958        /*
 959         * Clear the broadcast masks for the dead cpu, but do not stop
 960         * the broadcast device!
 961         */
 962        cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
 963        cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
 964        cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
 965
 966        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 967}
 968#endif
 969
 970/*
 971 * Check, whether the broadcast device is in one shot mode
 972 */
 973int tick_broadcast_oneshot_active(void)
 974{
 975        return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
 976}
 977
 978/*
 979 * Check whether the broadcast device supports oneshot.
 980 */
 981bool tick_broadcast_oneshot_available(void)
 982{
 983        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 984
 985        return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
 986}
 987
 988#else
 989int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
 990{
 991        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 992
 993        if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
 994                return -EBUSY;
 995
 996        return 0;
 997}
 998#endif
 999
1000void __init tick_broadcast_init(void)
1001{
1002        zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1003        zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1004        zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1005#ifdef CONFIG_TICK_ONESHOT
1006        zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1007        zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1008        zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1009#endif
1010}
1011