linux/mm/compaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include "internal.h"
  26
  27#ifdef CONFIG_COMPACTION
  28static inline void count_compact_event(enum vm_event_item item)
  29{
  30        count_vm_event(item);
  31}
  32
  33static inline void count_compact_events(enum vm_event_item item, long delta)
  34{
  35        count_vm_events(item, delta);
  36}
  37#else
  38#define count_compact_event(item) do { } while (0)
  39#define count_compact_events(item, delta) do { } while (0)
  40#endif
  41
  42#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/compaction.h>
  46
  47#define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
  48#define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
  49#define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
  50#define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
  51
  52static unsigned long release_freepages(struct list_head *freelist)
  53{
  54        struct page *page, *next;
  55        unsigned long high_pfn = 0;
  56
  57        list_for_each_entry_safe(page, next, freelist, lru) {
  58                unsigned long pfn = page_to_pfn(page);
  59                list_del(&page->lru);
  60                __free_page(page);
  61                if (pfn > high_pfn)
  62                        high_pfn = pfn;
  63        }
  64
  65        return high_pfn;
  66}
  67
  68static void map_pages(struct list_head *list)
  69{
  70        unsigned int i, order, nr_pages;
  71        struct page *page, *next;
  72        LIST_HEAD(tmp_list);
  73
  74        list_for_each_entry_safe(page, next, list, lru) {
  75                list_del(&page->lru);
  76
  77                order = page_private(page);
  78                nr_pages = 1 << order;
  79
  80                post_alloc_hook(page, order, __GFP_MOVABLE);
  81                if (order)
  82                        split_page(page, order);
  83
  84                for (i = 0; i < nr_pages; i++) {
  85                        list_add(&page->lru, &tmp_list);
  86                        page++;
  87                }
  88        }
  89
  90        list_splice(&tmp_list, list);
  91}
  92
  93#ifdef CONFIG_COMPACTION
  94
  95int PageMovable(struct page *page)
  96{
  97        struct address_space *mapping;
  98
  99        VM_BUG_ON_PAGE(!PageLocked(page), page);
 100        if (!__PageMovable(page))
 101                return 0;
 102
 103        mapping = page_mapping(page);
 104        if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 105                return 1;
 106
 107        return 0;
 108}
 109EXPORT_SYMBOL(PageMovable);
 110
 111void __SetPageMovable(struct page *page, struct address_space *mapping)
 112{
 113        VM_BUG_ON_PAGE(!PageLocked(page), page);
 114        VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 115        page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 116}
 117EXPORT_SYMBOL(__SetPageMovable);
 118
 119void __ClearPageMovable(struct page *page)
 120{
 121        VM_BUG_ON_PAGE(!PageLocked(page), page);
 122        VM_BUG_ON_PAGE(!PageMovable(page), page);
 123        /*
 124         * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 125         * flag so that VM can catch up released page by driver after isolation.
 126         * With it, VM migration doesn't try to put it back.
 127         */
 128        page->mapping = (void *)((unsigned long)page->mapping &
 129                                PAGE_MAPPING_MOVABLE);
 130}
 131EXPORT_SYMBOL(__ClearPageMovable);
 132
 133/* Do not skip compaction more than 64 times */
 134#define COMPACT_MAX_DEFER_SHIFT 6
 135
 136/*
 137 * Compaction is deferred when compaction fails to result in a page
 138 * allocation success. 1 << compact_defer_limit compactions are skipped up
 139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 140 */
 141void defer_compaction(struct zone *zone, int order)
 142{
 143        zone->compact_considered = 0;
 144        zone->compact_defer_shift++;
 145
 146        if (order < zone->compact_order_failed)
 147                zone->compact_order_failed = order;
 148
 149        if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 150                zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 151
 152        trace_mm_compaction_defer_compaction(zone, order);
 153}
 154
 155/* Returns true if compaction should be skipped this time */
 156bool compaction_deferred(struct zone *zone, int order)
 157{
 158        unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 159
 160        if (order < zone->compact_order_failed)
 161                return false;
 162
 163        /* Avoid possible overflow */
 164        if (++zone->compact_considered > defer_limit)
 165                zone->compact_considered = defer_limit;
 166
 167        if (zone->compact_considered >= defer_limit)
 168                return false;
 169
 170        trace_mm_compaction_deferred(zone, order);
 171
 172        return true;
 173}
 174
 175/*
 176 * Update defer tracking counters after successful compaction of given order,
 177 * which means an allocation either succeeded (alloc_success == true) or is
 178 * expected to succeed.
 179 */
 180void compaction_defer_reset(struct zone *zone, int order,
 181                bool alloc_success)
 182{
 183        if (alloc_success) {
 184                zone->compact_considered = 0;
 185                zone->compact_defer_shift = 0;
 186        }
 187        if (order >= zone->compact_order_failed)
 188                zone->compact_order_failed = order + 1;
 189
 190        trace_mm_compaction_defer_reset(zone, order);
 191}
 192
 193/* Returns true if restarting compaction after many failures */
 194bool compaction_restarting(struct zone *zone, int order)
 195{
 196        if (order < zone->compact_order_failed)
 197                return false;
 198
 199        return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 200                zone->compact_considered >= 1UL << zone->compact_defer_shift;
 201}
 202
 203/* Returns true if the pageblock should be scanned for pages to isolate. */
 204static inline bool isolation_suitable(struct compact_control *cc,
 205                                        struct page *page)
 206{
 207        if (cc->ignore_skip_hint)
 208                return true;
 209
 210        return !get_pageblock_skip(page);
 211}
 212
 213static void reset_cached_positions(struct zone *zone)
 214{
 215        zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 216        zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 217        zone->compact_cached_free_pfn =
 218                                pageblock_start_pfn(zone_end_pfn(zone) - 1);
 219}
 220
 221/*
 222 * Compound pages of >= pageblock_order should consistenly be skipped until
 223 * released. It is always pointless to compact pages of such order (if they are
 224 * migratable), and the pageblocks they occupy cannot contain any free pages.
 225 */
 226static bool pageblock_skip_persistent(struct page *page)
 227{
 228        if (!PageCompound(page))
 229                return false;
 230
 231        page = compound_head(page);
 232
 233        if (compound_order(page) >= pageblock_order)
 234                return true;
 235
 236        return false;
 237}
 238
 239/*
 240 * This function is called to clear all cached information on pageblocks that
 241 * should be skipped for page isolation when the migrate and free page scanner
 242 * meet.
 243 */
 244static void __reset_isolation_suitable(struct zone *zone)
 245{
 246        unsigned long start_pfn = zone->zone_start_pfn;
 247        unsigned long end_pfn = zone_end_pfn(zone);
 248        unsigned long pfn;
 249
 250        zone->compact_blockskip_flush = false;
 251
 252        /* Walk the zone and mark every pageblock as suitable for isolation */
 253        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 254                struct page *page;
 255
 256                cond_resched();
 257
 258                page = pfn_to_online_page(pfn);
 259                if (!page)
 260                        continue;
 261                if (zone != page_zone(page))
 262                        continue;
 263                if (pageblock_skip_persistent(page))
 264                        continue;
 265
 266                clear_pageblock_skip(page);
 267        }
 268
 269        reset_cached_positions(zone);
 270}
 271
 272void reset_isolation_suitable(pg_data_t *pgdat)
 273{
 274        int zoneid;
 275
 276        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 277                struct zone *zone = &pgdat->node_zones[zoneid];
 278                if (!populated_zone(zone))
 279                        continue;
 280
 281                /* Only flush if a full compaction finished recently */
 282                if (zone->compact_blockskip_flush)
 283                        __reset_isolation_suitable(zone);
 284        }
 285}
 286
 287/*
 288 * If no pages were isolated then mark this pageblock to be skipped in the
 289 * future. The information is later cleared by __reset_isolation_suitable().
 290 */
 291static void update_pageblock_skip(struct compact_control *cc,
 292                        struct page *page, unsigned long nr_isolated,
 293                        bool migrate_scanner)
 294{
 295        struct zone *zone = cc->zone;
 296        unsigned long pfn;
 297
 298        if (cc->no_set_skip_hint)
 299                return;
 300
 301        if (!page)
 302                return;
 303
 304        if (nr_isolated)
 305                return;
 306
 307        set_pageblock_skip(page);
 308
 309        pfn = page_to_pfn(page);
 310
 311        /* Update where async and sync compaction should restart */
 312        if (migrate_scanner) {
 313                if (pfn > zone->compact_cached_migrate_pfn[0])
 314                        zone->compact_cached_migrate_pfn[0] = pfn;
 315                if (cc->mode != MIGRATE_ASYNC &&
 316                    pfn > zone->compact_cached_migrate_pfn[1])
 317                        zone->compact_cached_migrate_pfn[1] = pfn;
 318        } else {
 319                if (pfn < zone->compact_cached_free_pfn)
 320                        zone->compact_cached_free_pfn = pfn;
 321        }
 322}
 323#else
 324static inline bool isolation_suitable(struct compact_control *cc,
 325                                        struct page *page)
 326{
 327        return true;
 328}
 329
 330static inline bool pageblock_skip_persistent(struct page *page)
 331{
 332        return false;
 333}
 334
 335static inline void update_pageblock_skip(struct compact_control *cc,
 336                        struct page *page, unsigned long nr_isolated,
 337                        bool migrate_scanner)
 338{
 339}
 340#endif /* CONFIG_COMPACTION */
 341
 342/*
 343 * Compaction requires the taking of some coarse locks that are potentially
 344 * very heavily contended. For async compaction, back out if the lock cannot
 345 * be taken immediately. For sync compaction, spin on the lock if needed.
 346 *
 347 * Returns true if the lock is held
 348 * Returns false if the lock is not held and compaction should abort
 349 */
 350static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
 351                                                struct compact_control *cc)
 352{
 353        if (cc->mode == MIGRATE_ASYNC) {
 354                if (!spin_trylock_irqsave(lock, *flags)) {
 355                        cc->contended = true;
 356                        return false;
 357                }
 358        } else {
 359                spin_lock_irqsave(lock, *flags);
 360        }
 361
 362        return true;
 363}
 364
 365/*
 366 * Compaction requires the taking of some coarse locks that are potentially
 367 * very heavily contended. The lock should be periodically unlocked to avoid
 368 * having disabled IRQs for a long time, even when there is nobody waiting on
 369 * the lock. It might also be that allowing the IRQs will result in
 370 * need_resched() becoming true. If scheduling is needed, async compaction
 371 * aborts. Sync compaction schedules.
 372 * Either compaction type will also abort if a fatal signal is pending.
 373 * In either case if the lock was locked, it is dropped and not regained.
 374 *
 375 * Returns true if compaction should abort due to fatal signal pending, or
 376 *              async compaction due to need_resched()
 377 * Returns false when compaction can continue (sync compaction might have
 378 *              scheduled)
 379 */
 380static bool compact_unlock_should_abort(spinlock_t *lock,
 381                unsigned long flags, bool *locked, struct compact_control *cc)
 382{
 383        if (*locked) {
 384                spin_unlock_irqrestore(lock, flags);
 385                *locked = false;
 386        }
 387
 388        if (fatal_signal_pending(current)) {
 389                cc->contended = true;
 390                return true;
 391        }
 392
 393        if (need_resched()) {
 394                if (cc->mode == MIGRATE_ASYNC) {
 395                        cc->contended = true;
 396                        return true;
 397                }
 398                cond_resched();
 399        }
 400
 401        return false;
 402}
 403
 404/*
 405 * Aside from avoiding lock contention, compaction also periodically checks
 406 * need_resched() and either schedules in sync compaction or aborts async
 407 * compaction. This is similar to what compact_unlock_should_abort() does, but
 408 * is used where no lock is concerned.
 409 *
 410 * Returns false when no scheduling was needed, or sync compaction scheduled.
 411 * Returns true when async compaction should abort.
 412 */
 413static inline bool compact_should_abort(struct compact_control *cc)
 414{
 415        /* async compaction aborts if contended */
 416        if (need_resched()) {
 417                if (cc->mode == MIGRATE_ASYNC) {
 418                        cc->contended = true;
 419                        return true;
 420                }
 421
 422                cond_resched();
 423        }
 424
 425        return false;
 426}
 427
 428/*
 429 * Isolate free pages onto a private freelist. If @strict is true, will abort
 430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 431 * (even though it may still end up isolating some pages).
 432 */
 433static unsigned long isolate_freepages_block(struct compact_control *cc,
 434                                unsigned long *start_pfn,
 435                                unsigned long end_pfn,
 436                                struct list_head *freelist,
 437                                bool strict)
 438{
 439        int nr_scanned = 0, total_isolated = 0;
 440        struct page *cursor, *valid_page = NULL;
 441        unsigned long flags = 0;
 442        bool locked = false;
 443        unsigned long blockpfn = *start_pfn;
 444        unsigned int order;
 445
 446        cursor = pfn_to_page(blockpfn);
 447
 448        /* Isolate free pages. */
 449        for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 450                int isolated;
 451                struct page *page = cursor;
 452
 453                /*
 454                 * Periodically drop the lock (if held) regardless of its
 455                 * contention, to give chance to IRQs. Abort if fatal signal
 456                 * pending or async compaction detects need_resched()
 457                 */
 458                if (!(blockpfn % SWAP_CLUSTER_MAX)
 459                    && compact_unlock_should_abort(&cc->zone->lock, flags,
 460                                                                &locked, cc))
 461                        break;
 462
 463                nr_scanned++;
 464                if (!pfn_valid_within(blockpfn))
 465                        goto isolate_fail;
 466
 467                if (!valid_page)
 468                        valid_page = page;
 469
 470                /*
 471                 * For compound pages such as THP and hugetlbfs, we can save
 472                 * potentially a lot of iterations if we skip them at once.
 473                 * The check is racy, but we can consider only valid values
 474                 * and the only danger is skipping too much.
 475                 */
 476                if (PageCompound(page)) {
 477                        const unsigned int order = compound_order(page);
 478
 479                        if (likely(order < MAX_ORDER)) {
 480                                blockpfn += (1UL << order) - 1;
 481                                cursor += (1UL << order) - 1;
 482                        }
 483                        goto isolate_fail;
 484                }
 485
 486                if (!PageBuddy(page))
 487                        goto isolate_fail;
 488
 489                /*
 490                 * If we already hold the lock, we can skip some rechecking.
 491                 * Note that if we hold the lock now, checked_pageblock was
 492                 * already set in some previous iteration (or strict is true),
 493                 * so it is correct to skip the suitable migration target
 494                 * recheck as well.
 495                 */
 496                if (!locked) {
 497                        /*
 498                         * The zone lock must be held to isolate freepages.
 499                         * Unfortunately this is a very coarse lock and can be
 500                         * heavily contended if there are parallel allocations
 501                         * or parallel compactions. For async compaction do not
 502                         * spin on the lock and we acquire the lock as late as
 503                         * possible.
 504                         */
 505                        locked = compact_trylock_irqsave(&cc->zone->lock,
 506                                                                &flags, cc);
 507                        if (!locked)
 508                                break;
 509
 510                        /* Recheck this is a buddy page under lock */
 511                        if (!PageBuddy(page))
 512                                goto isolate_fail;
 513                }
 514
 515                /* Found a free page, will break it into order-0 pages */
 516                order = page_order(page);
 517                isolated = __isolate_free_page(page, order);
 518                if (!isolated)
 519                        break;
 520                set_page_private(page, order);
 521
 522                total_isolated += isolated;
 523                cc->nr_freepages += isolated;
 524                list_add_tail(&page->lru, freelist);
 525
 526                if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 527                        blockpfn += isolated;
 528                        break;
 529                }
 530                /* Advance to the end of split page */
 531                blockpfn += isolated - 1;
 532                cursor += isolated - 1;
 533                continue;
 534
 535isolate_fail:
 536                if (strict)
 537                        break;
 538                else
 539                        continue;
 540
 541        }
 542
 543        if (locked)
 544                spin_unlock_irqrestore(&cc->zone->lock, flags);
 545
 546        /*
 547         * There is a tiny chance that we have read bogus compound_order(),
 548         * so be careful to not go outside of the pageblock.
 549         */
 550        if (unlikely(blockpfn > end_pfn))
 551                blockpfn = end_pfn;
 552
 553        trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 554                                        nr_scanned, total_isolated);
 555
 556        /* Record how far we have got within the block */
 557        *start_pfn = blockpfn;
 558
 559        /*
 560         * If strict isolation is requested by CMA then check that all the
 561         * pages requested were isolated. If there were any failures, 0 is
 562         * returned and CMA will fail.
 563         */
 564        if (strict && blockpfn < end_pfn)
 565                total_isolated = 0;
 566
 567        /* Update the pageblock-skip if the whole pageblock was scanned */
 568        if (blockpfn == end_pfn)
 569                update_pageblock_skip(cc, valid_page, total_isolated, false);
 570
 571        cc->total_free_scanned += nr_scanned;
 572        if (total_isolated)
 573                count_compact_events(COMPACTISOLATED, total_isolated);
 574        return total_isolated;
 575}
 576
 577/**
 578 * isolate_freepages_range() - isolate free pages.
 579 * @start_pfn: The first PFN to start isolating.
 580 * @end_pfn:   The one-past-last PFN.
 581 *
 582 * Non-free pages, invalid PFNs, or zone boundaries within the
 583 * [start_pfn, end_pfn) range are considered errors, cause function to
 584 * undo its actions and return zero.
 585 *
 586 * Otherwise, function returns one-past-the-last PFN of isolated page
 587 * (which may be greater then end_pfn if end fell in a middle of
 588 * a free page).
 589 */
 590unsigned long
 591isolate_freepages_range(struct compact_control *cc,
 592                        unsigned long start_pfn, unsigned long end_pfn)
 593{
 594        unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 595        LIST_HEAD(freelist);
 596
 597        pfn = start_pfn;
 598        block_start_pfn = pageblock_start_pfn(pfn);
 599        if (block_start_pfn < cc->zone->zone_start_pfn)
 600                block_start_pfn = cc->zone->zone_start_pfn;
 601        block_end_pfn = pageblock_end_pfn(pfn);
 602
 603        for (; pfn < end_pfn; pfn += isolated,
 604                                block_start_pfn = block_end_pfn,
 605                                block_end_pfn += pageblock_nr_pages) {
 606                /* Protect pfn from changing by isolate_freepages_block */
 607                unsigned long isolate_start_pfn = pfn;
 608
 609                block_end_pfn = min(block_end_pfn, end_pfn);
 610
 611                /*
 612                 * pfn could pass the block_end_pfn if isolated freepage
 613                 * is more than pageblock order. In this case, we adjust
 614                 * scanning range to right one.
 615                 */
 616                if (pfn >= block_end_pfn) {
 617                        block_start_pfn = pageblock_start_pfn(pfn);
 618                        block_end_pfn = pageblock_end_pfn(pfn);
 619                        block_end_pfn = min(block_end_pfn, end_pfn);
 620                }
 621
 622                if (!pageblock_pfn_to_page(block_start_pfn,
 623                                        block_end_pfn, cc->zone))
 624                        break;
 625
 626                isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 627                                                block_end_pfn, &freelist, true);
 628
 629                /*
 630                 * In strict mode, isolate_freepages_block() returns 0 if
 631                 * there are any holes in the block (ie. invalid PFNs or
 632                 * non-free pages).
 633                 */
 634                if (!isolated)
 635                        break;
 636
 637                /*
 638                 * If we managed to isolate pages, it is always (1 << n) *
 639                 * pageblock_nr_pages for some non-negative n.  (Max order
 640                 * page may span two pageblocks).
 641                 */
 642        }
 643
 644        /* __isolate_free_page() does not map the pages */
 645        map_pages(&freelist);
 646
 647        if (pfn < end_pfn) {
 648                /* Loop terminated early, cleanup. */
 649                release_freepages(&freelist);
 650                return 0;
 651        }
 652
 653        /* We don't use freelists for anything. */
 654        return pfn;
 655}
 656
 657/* Similar to reclaim, but different enough that they don't share logic */
 658static bool too_many_isolated(struct zone *zone)
 659{
 660        unsigned long active, inactive, isolated;
 661
 662        inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
 663                        node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
 664        active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
 665                        node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
 666        isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
 667                        node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
 668
 669        return isolated > (inactive + active) / 2;
 670}
 671
 672/**
 673 * isolate_migratepages_block() - isolate all migrate-able pages within
 674 *                                a single pageblock
 675 * @cc:         Compaction control structure.
 676 * @low_pfn:    The first PFN to isolate
 677 * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
 678 * @isolate_mode: Isolation mode to be used.
 679 *
 680 * Isolate all pages that can be migrated from the range specified by
 681 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 682 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 683 * first page that was not scanned (which may be both less, equal to or more
 684 * than end_pfn).
 685 *
 686 * The pages are isolated on cc->migratepages list (not required to be empty),
 687 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 688 * is neither read nor updated.
 689 */
 690static unsigned long
 691isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 692                        unsigned long end_pfn, isolate_mode_t isolate_mode)
 693{
 694        struct zone *zone = cc->zone;
 695        unsigned long nr_scanned = 0, nr_isolated = 0;
 696        struct lruvec *lruvec;
 697        unsigned long flags = 0;
 698        bool locked = false;
 699        struct page *page = NULL, *valid_page = NULL;
 700        unsigned long start_pfn = low_pfn;
 701        bool skip_on_failure = false;
 702        unsigned long next_skip_pfn = 0;
 703
 704        /*
 705         * Ensure that there are not too many pages isolated from the LRU
 706         * list by either parallel reclaimers or compaction. If there are,
 707         * delay for some time until fewer pages are isolated
 708         */
 709        while (unlikely(too_many_isolated(zone))) {
 710                /* async migration should just abort */
 711                if (cc->mode == MIGRATE_ASYNC)
 712                        return 0;
 713
 714                congestion_wait(BLK_RW_ASYNC, HZ/10);
 715
 716                if (fatal_signal_pending(current))
 717                        return 0;
 718        }
 719
 720        if (compact_should_abort(cc))
 721                return 0;
 722
 723        if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 724                skip_on_failure = true;
 725                next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 726        }
 727
 728        /* Time to isolate some pages for migration */
 729        for (; low_pfn < end_pfn; low_pfn++) {
 730
 731                if (skip_on_failure && low_pfn >= next_skip_pfn) {
 732                        /*
 733                         * We have isolated all migration candidates in the
 734                         * previous order-aligned block, and did not skip it due
 735                         * to failure. We should migrate the pages now and
 736                         * hopefully succeed compaction.
 737                         */
 738                        if (nr_isolated)
 739                                break;
 740
 741                        /*
 742                         * We failed to isolate in the previous order-aligned
 743                         * block. Set the new boundary to the end of the
 744                         * current block. Note we can't simply increase
 745                         * next_skip_pfn by 1 << order, as low_pfn might have
 746                         * been incremented by a higher number due to skipping
 747                         * a compound or a high-order buddy page in the
 748                         * previous loop iteration.
 749                         */
 750                        next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 751                }
 752
 753                /*
 754                 * Periodically drop the lock (if held) regardless of its
 755                 * contention, to give chance to IRQs. Abort async compaction
 756                 * if contended.
 757                 */
 758                if (!(low_pfn % SWAP_CLUSTER_MAX)
 759                    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
 760                                                                &locked, cc))
 761                        break;
 762
 763                if (!pfn_valid_within(low_pfn))
 764                        goto isolate_fail;
 765                nr_scanned++;
 766
 767                page = pfn_to_page(low_pfn);
 768
 769                if (!valid_page)
 770                        valid_page = page;
 771
 772                /*
 773                 * Skip if free. We read page order here without zone lock
 774                 * which is generally unsafe, but the race window is small and
 775                 * the worst thing that can happen is that we skip some
 776                 * potential isolation targets.
 777                 */
 778                if (PageBuddy(page)) {
 779                        unsigned long freepage_order = page_order_unsafe(page);
 780
 781                        /*
 782                         * Without lock, we cannot be sure that what we got is
 783                         * a valid page order. Consider only values in the
 784                         * valid order range to prevent low_pfn overflow.
 785                         */
 786                        if (freepage_order > 0 && freepage_order < MAX_ORDER)
 787                                low_pfn += (1UL << freepage_order) - 1;
 788                        continue;
 789                }
 790
 791                /*
 792                 * Regardless of being on LRU, compound pages such as THP and
 793                 * hugetlbfs are not to be compacted. We can potentially save
 794                 * a lot of iterations if we skip them at once. The check is
 795                 * racy, but we can consider only valid values and the only
 796                 * danger is skipping too much.
 797                 */
 798                if (PageCompound(page)) {
 799                        const unsigned int order = compound_order(page);
 800
 801                        if (likely(order < MAX_ORDER))
 802                                low_pfn += (1UL << order) - 1;
 803                        goto isolate_fail;
 804                }
 805
 806                /*
 807                 * Check may be lockless but that's ok as we recheck later.
 808                 * It's possible to migrate LRU and non-lru movable pages.
 809                 * Skip any other type of page
 810                 */
 811                if (!PageLRU(page)) {
 812                        /*
 813                         * __PageMovable can return false positive so we need
 814                         * to verify it under page_lock.
 815                         */
 816                        if (unlikely(__PageMovable(page)) &&
 817                                        !PageIsolated(page)) {
 818                                if (locked) {
 819                                        spin_unlock_irqrestore(zone_lru_lock(zone),
 820                                                                        flags);
 821                                        locked = false;
 822                                }
 823
 824                                if (!isolate_movable_page(page, isolate_mode))
 825                                        goto isolate_success;
 826                        }
 827
 828                        goto isolate_fail;
 829                }
 830
 831                /*
 832                 * Migration will fail if an anonymous page is pinned in memory,
 833                 * so avoid taking lru_lock and isolating it unnecessarily in an
 834                 * admittedly racy check.
 835                 */
 836                if (!page_mapping(page) &&
 837                    page_count(page) > page_mapcount(page))
 838                        goto isolate_fail;
 839
 840                /*
 841                 * Only allow to migrate anonymous pages in GFP_NOFS context
 842                 * because those do not depend on fs locks.
 843                 */
 844                if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 845                        goto isolate_fail;
 846
 847                /* If we already hold the lock, we can skip some rechecking */
 848                if (!locked) {
 849                        locked = compact_trylock_irqsave(zone_lru_lock(zone),
 850                                                                &flags, cc);
 851                        if (!locked)
 852                                break;
 853
 854                        /* Recheck PageLRU and PageCompound under lock */
 855                        if (!PageLRU(page))
 856                                goto isolate_fail;
 857
 858                        /*
 859                         * Page become compound since the non-locked check,
 860                         * and it's on LRU. It can only be a THP so the order
 861                         * is safe to read and it's 0 for tail pages.
 862                         */
 863                        if (unlikely(PageCompound(page))) {
 864                                low_pfn += (1UL << compound_order(page)) - 1;
 865                                goto isolate_fail;
 866                        }
 867                }
 868
 869                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
 870
 871                /* Try isolate the page */
 872                if (__isolate_lru_page(page, isolate_mode) != 0)
 873                        goto isolate_fail;
 874
 875                VM_BUG_ON_PAGE(PageCompound(page), page);
 876
 877                /* Successfully isolated */
 878                del_page_from_lru_list(page, lruvec, page_lru(page));
 879                inc_node_page_state(page,
 880                                NR_ISOLATED_ANON + page_is_file_cache(page));
 881
 882isolate_success:
 883                list_add(&page->lru, &cc->migratepages);
 884                cc->nr_migratepages++;
 885                nr_isolated++;
 886
 887                /*
 888                 * Record where we could have freed pages by migration and not
 889                 * yet flushed them to buddy allocator.
 890                 * - this is the lowest page that was isolated and likely be
 891                 * then freed by migration.
 892                 */
 893                if (!cc->last_migrated_pfn)
 894                        cc->last_migrated_pfn = low_pfn;
 895
 896                /* Avoid isolating too much */
 897                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 898                        ++low_pfn;
 899                        break;
 900                }
 901
 902                continue;
 903isolate_fail:
 904                if (!skip_on_failure)
 905                        continue;
 906
 907                /*
 908                 * We have isolated some pages, but then failed. Release them
 909                 * instead of migrating, as we cannot form the cc->order buddy
 910                 * page anyway.
 911                 */
 912                if (nr_isolated) {
 913                        if (locked) {
 914                                spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 915                                locked = false;
 916                        }
 917                        putback_movable_pages(&cc->migratepages);
 918                        cc->nr_migratepages = 0;
 919                        cc->last_migrated_pfn = 0;
 920                        nr_isolated = 0;
 921                }
 922
 923                if (low_pfn < next_skip_pfn) {
 924                        low_pfn = next_skip_pfn - 1;
 925                        /*
 926                         * The check near the loop beginning would have updated
 927                         * next_skip_pfn too, but this is a bit simpler.
 928                         */
 929                        next_skip_pfn += 1UL << cc->order;
 930                }
 931        }
 932
 933        /*
 934         * The PageBuddy() check could have potentially brought us outside
 935         * the range to be scanned.
 936         */
 937        if (unlikely(low_pfn > end_pfn))
 938                low_pfn = end_pfn;
 939
 940        if (locked)
 941                spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 942
 943        /*
 944         * Update the pageblock-skip information and cached scanner pfn,
 945         * if the whole pageblock was scanned without isolating any page.
 946         */
 947        if (low_pfn == end_pfn)
 948                update_pageblock_skip(cc, valid_page, nr_isolated, true);
 949
 950        trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
 951                                                nr_scanned, nr_isolated);
 952
 953        cc->total_migrate_scanned += nr_scanned;
 954        if (nr_isolated)
 955                count_compact_events(COMPACTISOLATED, nr_isolated);
 956
 957        return low_pfn;
 958}
 959
 960/**
 961 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 962 * @cc:        Compaction control structure.
 963 * @start_pfn: The first PFN to start isolating.
 964 * @end_pfn:   The one-past-last PFN.
 965 *
 966 * Returns zero if isolation fails fatally due to e.g. pending signal.
 967 * Otherwise, function returns one-past-the-last PFN of isolated page
 968 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 969 */
 970unsigned long
 971isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
 972                                                        unsigned long end_pfn)
 973{
 974        unsigned long pfn, block_start_pfn, block_end_pfn;
 975
 976        /* Scan block by block. First and last block may be incomplete */
 977        pfn = start_pfn;
 978        block_start_pfn = pageblock_start_pfn(pfn);
 979        if (block_start_pfn < cc->zone->zone_start_pfn)
 980                block_start_pfn = cc->zone->zone_start_pfn;
 981        block_end_pfn = pageblock_end_pfn(pfn);
 982
 983        for (; pfn < end_pfn; pfn = block_end_pfn,
 984                                block_start_pfn = block_end_pfn,
 985                                block_end_pfn += pageblock_nr_pages) {
 986
 987                block_end_pfn = min(block_end_pfn, end_pfn);
 988
 989                if (!pageblock_pfn_to_page(block_start_pfn,
 990                                        block_end_pfn, cc->zone))
 991                        continue;
 992
 993                pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
 994                                                        ISOLATE_UNEVICTABLE);
 995
 996                if (!pfn)
 997                        break;
 998
 999                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1000                        break;
1001        }
1002
1003        return pfn;
1004}
1005
1006#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1007#ifdef CONFIG_COMPACTION
1008
1009static bool suitable_migration_source(struct compact_control *cc,
1010                                                        struct page *page)
1011{
1012        int block_mt;
1013
1014        if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1015                return true;
1016
1017        block_mt = get_pageblock_migratetype(page);
1018
1019        if (cc->migratetype == MIGRATE_MOVABLE)
1020                return is_migrate_movable(block_mt);
1021        else
1022                return block_mt == cc->migratetype;
1023}
1024
1025/* Returns true if the page is within a block suitable for migration to */
1026static bool suitable_migration_target(struct compact_control *cc,
1027                                                        struct page *page)
1028{
1029        /* If the page is a large free page, then disallow migration */
1030        if (PageBuddy(page)) {
1031                /*
1032                 * We are checking page_order without zone->lock taken. But
1033                 * the only small danger is that we skip a potentially suitable
1034                 * pageblock, so it's not worth to check order for valid range.
1035                 */
1036                if (page_order_unsafe(page) >= pageblock_order)
1037                        return false;
1038        }
1039
1040        if (cc->ignore_block_suitable)
1041                return true;
1042
1043        /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1044        if (is_migrate_movable(get_pageblock_migratetype(page)))
1045                return true;
1046
1047        /* Otherwise skip the block */
1048        return false;
1049}
1050
1051/*
1052 * Test whether the free scanner has reached the same or lower pageblock than
1053 * the migration scanner, and compaction should thus terminate.
1054 */
1055static inline bool compact_scanners_met(struct compact_control *cc)
1056{
1057        return (cc->free_pfn >> pageblock_order)
1058                <= (cc->migrate_pfn >> pageblock_order);
1059}
1060
1061/*
1062 * Based on information in the current compact_control, find blocks
1063 * suitable for isolating free pages from and then isolate them.
1064 */
1065static void isolate_freepages(struct compact_control *cc)
1066{
1067        struct zone *zone = cc->zone;
1068        struct page *page;
1069        unsigned long block_start_pfn;  /* start of current pageblock */
1070        unsigned long isolate_start_pfn; /* exact pfn we start at */
1071        unsigned long block_end_pfn;    /* end of current pageblock */
1072        unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1073        struct list_head *freelist = &cc->freepages;
1074
1075        /*
1076         * Initialise the free scanner. The starting point is where we last
1077         * successfully isolated from, zone-cached value, or the end of the
1078         * zone when isolating for the first time. For looping we also need
1079         * this pfn aligned down to the pageblock boundary, because we do
1080         * block_start_pfn -= pageblock_nr_pages in the for loop.
1081         * For ending point, take care when isolating in last pageblock of a
1082         * a zone which ends in the middle of a pageblock.
1083         * The low boundary is the end of the pageblock the migration scanner
1084         * is using.
1085         */
1086        isolate_start_pfn = cc->free_pfn;
1087        block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1088        block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1089                                                zone_end_pfn(zone));
1090        low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1091
1092        /*
1093         * Isolate free pages until enough are available to migrate the
1094         * pages on cc->migratepages. We stop searching if the migrate
1095         * and free page scanners meet or enough free pages are isolated.
1096         */
1097        for (; block_start_pfn >= low_pfn;
1098                                block_end_pfn = block_start_pfn,
1099                                block_start_pfn -= pageblock_nr_pages,
1100                                isolate_start_pfn = block_start_pfn) {
1101                /*
1102                 * This can iterate a massively long zone without finding any
1103                 * suitable migration targets, so periodically check if we need
1104                 * to schedule, or even abort async compaction.
1105                 */
1106                if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1107                                                && compact_should_abort(cc))
1108                        break;
1109
1110                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1111                                                                        zone);
1112                if (!page)
1113                        continue;
1114
1115                /* Check the block is suitable for migration */
1116                if (!suitable_migration_target(cc, page))
1117                        continue;
1118
1119                /* If isolation recently failed, do not retry */
1120                if (!isolation_suitable(cc, page))
1121                        continue;
1122
1123                /* Found a block suitable for isolating free pages from. */
1124                isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1125                                        freelist, false);
1126
1127                /*
1128                 * If we isolated enough freepages, or aborted due to lock
1129                 * contention, terminate.
1130                 */
1131                if ((cc->nr_freepages >= cc->nr_migratepages)
1132                                                        || cc->contended) {
1133                        if (isolate_start_pfn >= block_end_pfn) {
1134                                /*
1135                                 * Restart at previous pageblock if more
1136                                 * freepages can be isolated next time.
1137                                 */
1138                                isolate_start_pfn =
1139                                        block_start_pfn - pageblock_nr_pages;
1140                        }
1141                        break;
1142                } else if (isolate_start_pfn < block_end_pfn) {
1143                        /*
1144                         * If isolation failed early, do not continue
1145                         * needlessly.
1146                         */
1147                        break;
1148                }
1149        }
1150
1151        /* __isolate_free_page() does not map the pages */
1152        map_pages(freelist);
1153
1154        /*
1155         * Record where the free scanner will restart next time. Either we
1156         * broke from the loop and set isolate_start_pfn based on the last
1157         * call to isolate_freepages_block(), or we met the migration scanner
1158         * and the loop terminated due to isolate_start_pfn < low_pfn
1159         */
1160        cc->free_pfn = isolate_start_pfn;
1161}
1162
1163/*
1164 * This is a migrate-callback that "allocates" freepages by taking pages
1165 * from the isolated freelists in the block we are migrating to.
1166 */
1167static struct page *compaction_alloc(struct page *migratepage,
1168                                        unsigned long data,
1169                                        int **result)
1170{
1171        struct compact_control *cc = (struct compact_control *)data;
1172        struct page *freepage;
1173
1174        /*
1175         * Isolate free pages if necessary, and if we are not aborting due to
1176         * contention.
1177         */
1178        if (list_empty(&cc->freepages)) {
1179                if (!cc->contended)
1180                        isolate_freepages(cc);
1181
1182                if (list_empty(&cc->freepages))
1183                        return NULL;
1184        }
1185
1186        freepage = list_entry(cc->freepages.next, struct page, lru);
1187        list_del(&freepage->lru);
1188        cc->nr_freepages--;
1189
1190        return freepage;
1191}
1192
1193/*
1194 * This is a migrate-callback that "frees" freepages back to the isolated
1195 * freelist.  All pages on the freelist are from the same zone, so there is no
1196 * special handling needed for NUMA.
1197 */
1198static void compaction_free(struct page *page, unsigned long data)
1199{
1200        struct compact_control *cc = (struct compact_control *)data;
1201
1202        list_add(&page->lru, &cc->freepages);
1203        cc->nr_freepages++;
1204}
1205
1206/* possible outcome of isolate_migratepages */
1207typedef enum {
1208        ISOLATE_ABORT,          /* Abort compaction now */
1209        ISOLATE_NONE,           /* No pages isolated, continue scanning */
1210        ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1211} isolate_migrate_t;
1212
1213/*
1214 * Allow userspace to control policy on scanning the unevictable LRU for
1215 * compactable pages.
1216 */
1217int sysctl_compact_unevictable_allowed __read_mostly = 1;
1218
1219/*
1220 * Isolate all pages that can be migrated from the first suitable block,
1221 * starting at the block pointed to by the migrate scanner pfn within
1222 * compact_control.
1223 */
1224static isolate_migrate_t isolate_migratepages(struct zone *zone,
1225                                        struct compact_control *cc)
1226{
1227        unsigned long block_start_pfn;
1228        unsigned long block_end_pfn;
1229        unsigned long low_pfn;
1230        struct page *page;
1231        const isolate_mode_t isolate_mode =
1232                (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1233                (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1234
1235        /*
1236         * Start at where we last stopped, or beginning of the zone as
1237         * initialized by compact_zone()
1238         */
1239        low_pfn = cc->migrate_pfn;
1240        block_start_pfn = pageblock_start_pfn(low_pfn);
1241        if (block_start_pfn < zone->zone_start_pfn)
1242                block_start_pfn = zone->zone_start_pfn;
1243
1244        /* Only scan within a pageblock boundary */
1245        block_end_pfn = pageblock_end_pfn(low_pfn);
1246
1247        /*
1248         * Iterate over whole pageblocks until we find the first suitable.
1249         * Do not cross the free scanner.
1250         */
1251        for (; block_end_pfn <= cc->free_pfn;
1252                        low_pfn = block_end_pfn,
1253                        block_start_pfn = block_end_pfn,
1254                        block_end_pfn += pageblock_nr_pages) {
1255
1256                /*
1257                 * This can potentially iterate a massively long zone with
1258                 * many pageblocks unsuitable, so periodically check if we
1259                 * need to schedule, or even abort async compaction.
1260                 */
1261                if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1262                                                && compact_should_abort(cc))
1263                        break;
1264
1265                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1266                                                                        zone);
1267                if (!page)
1268                        continue;
1269
1270                /* If isolation recently failed, do not retry */
1271                if (!isolation_suitable(cc, page))
1272                        continue;
1273
1274                /*
1275                 * For async compaction, also only scan in MOVABLE blocks.
1276                 * Async compaction is optimistic to see if the minimum amount
1277                 * of work satisfies the allocation.
1278                 */
1279                if (!suitable_migration_source(cc, page))
1280                        continue;
1281
1282                /* Perform the isolation */
1283                low_pfn = isolate_migratepages_block(cc, low_pfn,
1284                                                block_end_pfn, isolate_mode);
1285
1286                if (!low_pfn || cc->contended)
1287                        return ISOLATE_ABORT;
1288
1289                /*
1290                 * Either we isolated something and proceed with migration. Or
1291                 * we failed and compact_zone should decide if we should
1292                 * continue or not.
1293                 */
1294                break;
1295        }
1296
1297        /* Record where migration scanner will be restarted. */
1298        cc->migrate_pfn = low_pfn;
1299
1300        return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1301}
1302
1303/*
1304 * order == -1 is expected when compacting via
1305 * /proc/sys/vm/compact_memory
1306 */
1307static inline bool is_via_compact_memory(int order)
1308{
1309        return order == -1;
1310}
1311
1312static enum compact_result __compact_finished(struct zone *zone,
1313                                                struct compact_control *cc)
1314{
1315        unsigned int order;
1316        const int migratetype = cc->migratetype;
1317
1318        if (cc->contended || fatal_signal_pending(current))
1319                return COMPACT_CONTENDED;
1320
1321        /* Compaction run completes if the migrate and free scanner meet */
1322        if (compact_scanners_met(cc)) {
1323                /* Let the next compaction start anew. */
1324                reset_cached_positions(zone);
1325
1326                /*
1327                 * Mark that the PG_migrate_skip information should be cleared
1328                 * by kswapd when it goes to sleep. kcompactd does not set the
1329                 * flag itself as the decision to be clear should be directly
1330                 * based on an allocation request.
1331                 */
1332                if (cc->direct_compaction)
1333                        zone->compact_blockskip_flush = true;
1334
1335                if (cc->whole_zone)
1336                        return COMPACT_COMPLETE;
1337                else
1338                        return COMPACT_PARTIAL_SKIPPED;
1339        }
1340
1341        if (is_via_compact_memory(cc->order))
1342                return COMPACT_CONTINUE;
1343
1344        if (cc->finishing_block) {
1345                /*
1346                 * We have finished the pageblock, but better check again that
1347                 * we really succeeded.
1348                 */
1349                if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1350                        cc->finishing_block = false;
1351                else
1352                        return COMPACT_CONTINUE;
1353        }
1354
1355        /* Direct compactor: Is a suitable page free? */
1356        for (order = cc->order; order < MAX_ORDER; order++) {
1357                struct free_area *area = &zone->free_area[order];
1358                bool can_steal;
1359
1360                /* Job done if page is free of the right migratetype */
1361                if (!list_empty(&area->free_list[migratetype]))
1362                        return COMPACT_SUCCESS;
1363
1364#ifdef CONFIG_CMA
1365                /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1366                if (migratetype == MIGRATE_MOVABLE &&
1367                        !list_empty(&area->free_list[MIGRATE_CMA]))
1368                        return COMPACT_SUCCESS;
1369#endif
1370                /*
1371                 * Job done if allocation would steal freepages from
1372                 * other migratetype buddy lists.
1373                 */
1374                if (find_suitable_fallback(area, order, migratetype,
1375                                                true, &can_steal) != -1) {
1376
1377                        /* movable pages are OK in any pageblock */
1378                        if (migratetype == MIGRATE_MOVABLE)
1379                                return COMPACT_SUCCESS;
1380
1381                        /*
1382                         * We are stealing for a non-movable allocation. Make
1383                         * sure we finish compacting the current pageblock
1384                         * first so it is as free as possible and we won't
1385                         * have to steal another one soon. This only applies
1386                         * to sync compaction, as async compaction operates
1387                         * on pageblocks of the same migratetype.
1388                         */
1389                        if (cc->mode == MIGRATE_ASYNC ||
1390                                        IS_ALIGNED(cc->migrate_pfn,
1391                                                        pageblock_nr_pages)) {
1392                                return COMPACT_SUCCESS;
1393                        }
1394
1395                        cc->finishing_block = true;
1396                        return COMPACT_CONTINUE;
1397                }
1398        }
1399
1400        return COMPACT_NO_SUITABLE_PAGE;
1401}
1402
1403static enum compact_result compact_finished(struct zone *zone,
1404                        struct compact_control *cc)
1405{
1406        int ret;
1407
1408        ret = __compact_finished(zone, cc);
1409        trace_mm_compaction_finished(zone, cc->order, ret);
1410        if (ret == COMPACT_NO_SUITABLE_PAGE)
1411                ret = COMPACT_CONTINUE;
1412
1413        return ret;
1414}
1415
1416/*
1417 * compaction_suitable: Is this suitable to run compaction on this zone now?
1418 * Returns
1419 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1420 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1421 *   COMPACT_CONTINUE - If compaction should run now
1422 */
1423static enum compact_result __compaction_suitable(struct zone *zone, int order,
1424                                        unsigned int alloc_flags,
1425                                        int classzone_idx,
1426                                        unsigned long wmark_target)
1427{
1428        unsigned long watermark;
1429
1430        if (is_via_compact_memory(order))
1431                return COMPACT_CONTINUE;
1432
1433        watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1434        /*
1435         * If watermarks for high-order allocation are already met, there
1436         * should be no need for compaction at all.
1437         */
1438        if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1439                                                                alloc_flags))
1440                return COMPACT_SUCCESS;
1441
1442        /*
1443         * Watermarks for order-0 must be met for compaction to be able to
1444         * isolate free pages for migration targets. This means that the
1445         * watermark and alloc_flags have to match, or be more pessimistic than
1446         * the check in __isolate_free_page(). We don't use the direct
1447         * compactor's alloc_flags, as they are not relevant for freepage
1448         * isolation. We however do use the direct compactor's classzone_idx to
1449         * skip over zones where lowmem reserves would prevent allocation even
1450         * if compaction succeeds.
1451         * For costly orders, we require low watermark instead of min for
1452         * compaction to proceed to increase its chances.
1453         * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1454         * suitable migration targets
1455         */
1456        watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1457                                low_wmark_pages(zone) : min_wmark_pages(zone);
1458        watermark += compact_gap(order);
1459        if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1460                                                ALLOC_CMA, wmark_target))
1461                return COMPACT_SKIPPED;
1462
1463        return COMPACT_CONTINUE;
1464}
1465
1466enum compact_result compaction_suitable(struct zone *zone, int order,
1467                                        unsigned int alloc_flags,
1468                                        int classzone_idx)
1469{
1470        enum compact_result ret;
1471        int fragindex;
1472
1473        ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1474                                    zone_page_state(zone, NR_FREE_PAGES));
1475        /*
1476         * fragmentation index determines if allocation failures are due to
1477         * low memory or external fragmentation
1478         *
1479         * index of -1000 would imply allocations might succeed depending on
1480         * watermarks, but we already failed the high-order watermark check
1481         * index towards 0 implies failure is due to lack of memory
1482         * index towards 1000 implies failure is due to fragmentation
1483         *
1484         * Only compact if a failure would be due to fragmentation. Also
1485         * ignore fragindex for non-costly orders where the alternative to
1486         * a successful reclaim/compaction is OOM. Fragindex and the
1487         * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1488         * excessive compaction for costly orders, but it should not be at the
1489         * expense of system stability.
1490         */
1491        if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1492                fragindex = fragmentation_index(zone, order);
1493                if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1494                        ret = COMPACT_NOT_SUITABLE_ZONE;
1495        }
1496
1497        trace_mm_compaction_suitable(zone, order, ret);
1498        if (ret == COMPACT_NOT_SUITABLE_ZONE)
1499                ret = COMPACT_SKIPPED;
1500
1501        return ret;
1502}
1503
1504bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1505                int alloc_flags)
1506{
1507        struct zone *zone;
1508        struct zoneref *z;
1509
1510        /*
1511         * Make sure at least one zone would pass __compaction_suitable if we continue
1512         * retrying the reclaim.
1513         */
1514        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1515                                        ac->nodemask) {
1516                unsigned long available;
1517                enum compact_result compact_result;
1518
1519                /*
1520                 * Do not consider all the reclaimable memory because we do not
1521                 * want to trash just for a single high order allocation which
1522                 * is even not guaranteed to appear even if __compaction_suitable
1523                 * is happy about the watermark check.
1524                 */
1525                available = zone_reclaimable_pages(zone) / order;
1526                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1527                compact_result = __compaction_suitable(zone, order, alloc_flags,
1528                                ac_classzone_idx(ac), available);
1529                if (compact_result != COMPACT_SKIPPED)
1530                        return true;
1531        }
1532
1533        return false;
1534}
1535
1536static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1537{
1538        enum compact_result ret;
1539        unsigned long start_pfn = zone->zone_start_pfn;
1540        unsigned long end_pfn = zone_end_pfn(zone);
1541        const bool sync = cc->mode != MIGRATE_ASYNC;
1542
1543        cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1544        ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1545                                                        cc->classzone_idx);
1546        /* Compaction is likely to fail */
1547        if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1548                return ret;
1549
1550        /* huh, compaction_suitable is returning something unexpected */
1551        VM_BUG_ON(ret != COMPACT_CONTINUE);
1552
1553        /*
1554         * Clear pageblock skip if there were failures recently and compaction
1555         * is about to be retried after being deferred.
1556         */
1557        if (compaction_restarting(zone, cc->order))
1558                __reset_isolation_suitable(zone);
1559
1560        /*
1561         * Setup to move all movable pages to the end of the zone. Used cached
1562         * information on where the scanners should start (unless we explicitly
1563         * want to compact the whole zone), but check that it is initialised
1564         * by ensuring the values are within zone boundaries.
1565         */
1566        if (cc->whole_zone) {
1567                cc->migrate_pfn = start_pfn;
1568                cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1569        } else {
1570                cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1571                cc->free_pfn = zone->compact_cached_free_pfn;
1572                if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1573                        cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1574                        zone->compact_cached_free_pfn = cc->free_pfn;
1575                }
1576                if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1577                        cc->migrate_pfn = start_pfn;
1578                        zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1579                        zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1580                }
1581
1582                if (cc->migrate_pfn == start_pfn)
1583                        cc->whole_zone = true;
1584        }
1585
1586        cc->last_migrated_pfn = 0;
1587
1588        trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1589                                cc->free_pfn, end_pfn, sync);
1590
1591        migrate_prep_local();
1592
1593        while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1594                int err;
1595
1596                switch (isolate_migratepages(zone, cc)) {
1597                case ISOLATE_ABORT:
1598                        ret = COMPACT_CONTENDED;
1599                        putback_movable_pages(&cc->migratepages);
1600                        cc->nr_migratepages = 0;
1601                        goto out;
1602                case ISOLATE_NONE:
1603                        /*
1604                         * We haven't isolated and migrated anything, but
1605                         * there might still be unflushed migrations from
1606                         * previous cc->order aligned block.
1607                         */
1608                        goto check_drain;
1609                case ISOLATE_SUCCESS:
1610                        ;
1611                }
1612
1613                err = migrate_pages(&cc->migratepages, compaction_alloc,
1614                                compaction_free, (unsigned long)cc, cc->mode,
1615                                MR_COMPACTION);
1616
1617                trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1618                                                        &cc->migratepages);
1619
1620                /* All pages were either migrated or will be released */
1621                cc->nr_migratepages = 0;
1622                if (err) {
1623                        putback_movable_pages(&cc->migratepages);
1624                        /*
1625                         * migrate_pages() may return -ENOMEM when scanners meet
1626                         * and we want compact_finished() to detect it
1627                         */
1628                        if (err == -ENOMEM && !compact_scanners_met(cc)) {
1629                                ret = COMPACT_CONTENDED;
1630                                goto out;
1631                        }
1632                        /*
1633                         * We failed to migrate at least one page in the current
1634                         * order-aligned block, so skip the rest of it.
1635                         */
1636                        if (cc->direct_compaction &&
1637                                                (cc->mode == MIGRATE_ASYNC)) {
1638                                cc->migrate_pfn = block_end_pfn(
1639                                                cc->migrate_pfn - 1, cc->order);
1640                                /* Draining pcplists is useless in this case */
1641                                cc->last_migrated_pfn = 0;
1642
1643                        }
1644                }
1645
1646check_drain:
1647                /*
1648                 * Has the migration scanner moved away from the previous
1649                 * cc->order aligned block where we migrated from? If yes,
1650                 * flush the pages that were freed, so that they can merge and
1651                 * compact_finished() can detect immediately if allocation
1652                 * would succeed.
1653                 */
1654                if (cc->order > 0 && cc->last_migrated_pfn) {
1655                        int cpu;
1656                        unsigned long current_block_start =
1657                                block_start_pfn(cc->migrate_pfn, cc->order);
1658
1659                        if (cc->last_migrated_pfn < current_block_start) {
1660                                cpu = get_cpu();
1661                                lru_add_drain_cpu(cpu);
1662                                drain_local_pages(zone);
1663                                put_cpu();
1664                                /* No more flushing until we migrate again */
1665                                cc->last_migrated_pfn = 0;
1666                        }
1667                }
1668
1669        }
1670
1671out:
1672        /*
1673         * Release free pages and update where the free scanner should restart,
1674         * so we don't leave any returned pages behind in the next attempt.
1675         */
1676        if (cc->nr_freepages > 0) {
1677                unsigned long free_pfn = release_freepages(&cc->freepages);
1678
1679                cc->nr_freepages = 0;
1680                VM_BUG_ON(free_pfn == 0);
1681                /* The cached pfn is always the first in a pageblock */
1682                free_pfn = pageblock_start_pfn(free_pfn);
1683                /*
1684                 * Only go back, not forward. The cached pfn might have been
1685                 * already reset to zone end in compact_finished()
1686                 */
1687                if (free_pfn > zone->compact_cached_free_pfn)
1688                        zone->compact_cached_free_pfn = free_pfn;
1689        }
1690
1691        count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1692        count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1693
1694        trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1695                                cc->free_pfn, end_pfn, sync, ret);
1696
1697        return ret;
1698}
1699
1700static enum compact_result compact_zone_order(struct zone *zone, int order,
1701                gfp_t gfp_mask, enum compact_priority prio,
1702                unsigned int alloc_flags, int classzone_idx)
1703{
1704        enum compact_result ret;
1705        struct compact_control cc = {
1706                .nr_freepages = 0,
1707                .nr_migratepages = 0,
1708                .total_migrate_scanned = 0,
1709                .total_free_scanned = 0,
1710                .order = order,
1711                .gfp_mask = gfp_mask,
1712                .zone = zone,
1713                .mode = (prio == COMPACT_PRIO_ASYNC) ?
1714                                        MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1715                .alloc_flags = alloc_flags,
1716                .classzone_idx = classzone_idx,
1717                .direct_compaction = true,
1718                .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1719                .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1720                .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1721        };
1722        INIT_LIST_HEAD(&cc.freepages);
1723        INIT_LIST_HEAD(&cc.migratepages);
1724
1725        ret = compact_zone(zone, &cc);
1726
1727        VM_BUG_ON(!list_empty(&cc.freepages));
1728        VM_BUG_ON(!list_empty(&cc.migratepages));
1729
1730        return ret;
1731}
1732
1733int sysctl_extfrag_threshold = 500;
1734
1735/**
1736 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1737 * @gfp_mask: The GFP mask of the current allocation
1738 * @order: The order of the current allocation
1739 * @alloc_flags: The allocation flags of the current allocation
1740 * @ac: The context of current allocation
1741 * @prio: Determines how hard direct compaction should try to succeed
1742 *
1743 * This is the main entry point for direct page compaction.
1744 */
1745enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1746                unsigned int alloc_flags, const struct alloc_context *ac,
1747                enum compact_priority prio)
1748{
1749        int may_perform_io = gfp_mask & __GFP_IO;
1750        struct zoneref *z;
1751        struct zone *zone;
1752        enum compact_result rc = COMPACT_SKIPPED;
1753
1754        /*
1755         * Check if the GFP flags allow compaction - GFP_NOIO is really
1756         * tricky context because the migration might require IO
1757         */
1758        if (!may_perform_io)
1759                return COMPACT_SKIPPED;
1760
1761        trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1762
1763        /* Compact each zone in the list */
1764        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1765                                                                ac->nodemask) {
1766                enum compact_result status;
1767
1768                if (prio > MIN_COMPACT_PRIORITY
1769                                        && compaction_deferred(zone, order)) {
1770                        rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1771                        continue;
1772                }
1773
1774                status = compact_zone_order(zone, order, gfp_mask, prio,
1775                                        alloc_flags, ac_classzone_idx(ac));
1776                rc = max(status, rc);
1777
1778                /* The allocation should succeed, stop compacting */
1779                if (status == COMPACT_SUCCESS) {
1780                        /*
1781                         * We think the allocation will succeed in this zone,
1782                         * but it is not certain, hence the false. The caller
1783                         * will repeat this with true if allocation indeed
1784                         * succeeds in this zone.
1785                         */
1786                        compaction_defer_reset(zone, order, false);
1787
1788                        break;
1789                }
1790
1791                if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1792                                        status == COMPACT_PARTIAL_SKIPPED))
1793                        /*
1794                         * We think that allocation won't succeed in this zone
1795                         * so we defer compaction there. If it ends up
1796                         * succeeding after all, it will be reset.
1797                         */
1798                        defer_compaction(zone, order);
1799
1800                /*
1801                 * We might have stopped compacting due to need_resched() in
1802                 * async compaction, or due to a fatal signal detected. In that
1803                 * case do not try further zones
1804                 */
1805                if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1806                                        || fatal_signal_pending(current))
1807                        break;
1808        }
1809
1810        return rc;
1811}
1812
1813
1814/* Compact all zones within a node */
1815static void compact_node(int nid)
1816{
1817        pg_data_t *pgdat = NODE_DATA(nid);
1818        int zoneid;
1819        struct zone *zone;
1820        struct compact_control cc = {
1821                .order = -1,
1822                .total_migrate_scanned = 0,
1823                .total_free_scanned = 0,
1824                .mode = MIGRATE_SYNC,
1825                .ignore_skip_hint = true,
1826                .whole_zone = true,
1827                .gfp_mask = GFP_KERNEL,
1828        };
1829
1830
1831        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1832
1833                zone = &pgdat->node_zones[zoneid];
1834                if (!populated_zone(zone))
1835                        continue;
1836
1837                cc.nr_freepages = 0;
1838                cc.nr_migratepages = 0;
1839                cc.zone = zone;
1840                INIT_LIST_HEAD(&cc.freepages);
1841                INIT_LIST_HEAD(&cc.migratepages);
1842
1843                compact_zone(zone, &cc);
1844
1845                VM_BUG_ON(!list_empty(&cc.freepages));
1846                VM_BUG_ON(!list_empty(&cc.migratepages));
1847        }
1848}
1849
1850/* Compact all nodes in the system */
1851static void compact_nodes(void)
1852{
1853        int nid;
1854
1855        /* Flush pending updates to the LRU lists */
1856        lru_add_drain_all();
1857
1858        for_each_online_node(nid)
1859                compact_node(nid);
1860}
1861
1862/* The written value is actually unused, all memory is compacted */
1863int sysctl_compact_memory;
1864
1865/*
1866 * This is the entry point for compacting all nodes via
1867 * /proc/sys/vm/compact_memory
1868 */
1869int sysctl_compaction_handler(struct ctl_table *table, int write,
1870                        void __user *buffer, size_t *length, loff_t *ppos)
1871{
1872        if (write)
1873                compact_nodes();
1874
1875        return 0;
1876}
1877
1878int sysctl_extfrag_handler(struct ctl_table *table, int write,
1879                        void __user *buffer, size_t *length, loff_t *ppos)
1880{
1881        proc_dointvec_minmax(table, write, buffer, length, ppos);
1882
1883        return 0;
1884}
1885
1886#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1887static ssize_t sysfs_compact_node(struct device *dev,
1888                        struct device_attribute *attr,
1889                        const char *buf, size_t count)
1890{
1891        int nid = dev->id;
1892
1893        if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1894                /* Flush pending updates to the LRU lists */
1895                lru_add_drain_all();
1896
1897                compact_node(nid);
1898        }
1899
1900        return count;
1901}
1902static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1903
1904int compaction_register_node(struct node *node)
1905{
1906        return device_create_file(&node->dev, &dev_attr_compact);
1907}
1908
1909void compaction_unregister_node(struct node *node)
1910{
1911        return device_remove_file(&node->dev, &dev_attr_compact);
1912}
1913#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1914
1915static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1916{
1917        return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1918}
1919
1920static bool kcompactd_node_suitable(pg_data_t *pgdat)
1921{
1922        int zoneid;
1923        struct zone *zone;
1924        enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1925
1926        for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1927                zone = &pgdat->node_zones[zoneid];
1928
1929                if (!populated_zone(zone))
1930                        continue;
1931
1932                if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1933                                        classzone_idx) == COMPACT_CONTINUE)
1934                        return true;
1935        }
1936
1937        return false;
1938}
1939
1940static void kcompactd_do_work(pg_data_t *pgdat)
1941{
1942        /*
1943         * With no special task, compact all zones so that a page of requested
1944         * order is allocatable.
1945         */
1946        int zoneid;
1947        struct zone *zone;
1948        struct compact_control cc = {
1949                .order = pgdat->kcompactd_max_order,
1950                .total_migrate_scanned = 0,
1951                .total_free_scanned = 0,
1952                .classzone_idx = pgdat->kcompactd_classzone_idx,
1953                .mode = MIGRATE_SYNC_LIGHT,
1954                .ignore_skip_hint = false,
1955                .gfp_mask = GFP_KERNEL,
1956        };
1957        trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1958                                                        cc.classzone_idx);
1959        count_compact_event(KCOMPACTD_WAKE);
1960
1961        for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1962                int status;
1963
1964                zone = &pgdat->node_zones[zoneid];
1965                if (!populated_zone(zone))
1966                        continue;
1967
1968                if (compaction_deferred(zone, cc.order))
1969                        continue;
1970
1971                if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1972                                                        COMPACT_CONTINUE)
1973                        continue;
1974
1975                cc.nr_freepages = 0;
1976                cc.nr_migratepages = 0;
1977                cc.total_migrate_scanned = 0;
1978                cc.total_free_scanned = 0;
1979                cc.zone = zone;
1980                INIT_LIST_HEAD(&cc.freepages);
1981                INIT_LIST_HEAD(&cc.migratepages);
1982
1983                if (kthread_should_stop())
1984                        return;
1985                status = compact_zone(zone, &cc);
1986
1987                if (status == COMPACT_SUCCESS) {
1988                        compaction_defer_reset(zone, cc.order, false);
1989                } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1990                        /*
1991                         * We use sync migration mode here, so we defer like
1992                         * sync direct compaction does.
1993                         */
1994                        defer_compaction(zone, cc.order);
1995                }
1996
1997                count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1998                                     cc.total_migrate_scanned);
1999                count_compact_events(KCOMPACTD_FREE_SCANNED,
2000                                     cc.total_free_scanned);
2001
2002                VM_BUG_ON(!list_empty(&cc.freepages));
2003                VM_BUG_ON(!list_empty(&cc.migratepages));
2004        }
2005
2006        /*
2007         * Regardless of success, we are done until woken up next. But remember
2008         * the requested order/classzone_idx in case it was higher/tighter than
2009         * our current ones
2010         */
2011        if (pgdat->kcompactd_max_order <= cc.order)
2012                pgdat->kcompactd_max_order = 0;
2013        if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2014                pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2015}
2016
2017void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2018{
2019        if (!order)
2020                return;
2021
2022        if (pgdat->kcompactd_max_order < order)
2023                pgdat->kcompactd_max_order = order;
2024
2025        if (pgdat->kcompactd_classzone_idx > classzone_idx)
2026                pgdat->kcompactd_classzone_idx = classzone_idx;
2027
2028        /*
2029         * Pairs with implicit barrier in wait_event_freezable()
2030         * such that wakeups are not missed.
2031         */
2032        if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2033                return;
2034
2035        if (!kcompactd_node_suitable(pgdat))
2036                return;
2037
2038        trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2039                                                        classzone_idx);
2040        wake_up_interruptible(&pgdat->kcompactd_wait);
2041}
2042
2043/*
2044 * The background compaction daemon, started as a kernel thread
2045 * from the init process.
2046 */
2047static int kcompactd(void *p)
2048{
2049        pg_data_t *pgdat = (pg_data_t*)p;
2050        struct task_struct *tsk = current;
2051
2052        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2053
2054        if (!cpumask_empty(cpumask))
2055                set_cpus_allowed_ptr(tsk, cpumask);
2056
2057        set_freezable();
2058
2059        pgdat->kcompactd_max_order = 0;
2060        pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2061
2062        while (!kthread_should_stop()) {
2063                trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2064                wait_event_freezable(pgdat->kcompactd_wait,
2065                                kcompactd_work_requested(pgdat));
2066
2067                kcompactd_do_work(pgdat);
2068        }
2069
2070        return 0;
2071}
2072
2073/*
2074 * This kcompactd start function will be called by init and node-hot-add.
2075 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2076 */
2077int kcompactd_run(int nid)
2078{
2079        pg_data_t *pgdat = NODE_DATA(nid);
2080        int ret = 0;
2081
2082        if (pgdat->kcompactd)
2083                return 0;
2084
2085        pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2086        if (IS_ERR(pgdat->kcompactd)) {
2087                pr_err("Failed to start kcompactd on node %d\n", nid);
2088                ret = PTR_ERR(pgdat->kcompactd);
2089                pgdat->kcompactd = NULL;
2090        }
2091        return ret;
2092}
2093
2094/*
2095 * Called by memory hotplug when all memory in a node is offlined. Caller must
2096 * hold mem_hotplug_begin/end().
2097 */
2098void kcompactd_stop(int nid)
2099{
2100        struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2101
2102        if (kcompactd) {
2103                kthread_stop(kcompactd);
2104                NODE_DATA(nid)->kcompactd = NULL;
2105        }
2106}
2107
2108/*
2109 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2110 * not required for correctness. So if the last cpu in a node goes
2111 * away, we get changed to run anywhere: as the first one comes back,
2112 * restore their cpu bindings.
2113 */
2114static int kcompactd_cpu_online(unsigned int cpu)
2115{
2116        int nid;
2117
2118        for_each_node_state(nid, N_MEMORY) {
2119                pg_data_t *pgdat = NODE_DATA(nid);
2120                const struct cpumask *mask;
2121
2122                mask = cpumask_of_node(pgdat->node_id);
2123
2124                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2125                        /* One of our CPUs online: restore mask */
2126                        set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2127        }
2128        return 0;
2129}
2130
2131static int __init kcompactd_init(void)
2132{
2133        int nid;
2134        int ret;
2135
2136        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2137                                        "mm/compaction:online",
2138                                        kcompactd_cpu_online, NULL);
2139        if (ret < 0) {
2140                pr_err("kcompactd: failed to register hotplug callbacks.\n");
2141                return ret;
2142        }
2143
2144        for_each_node_state(nid, N_MEMORY)
2145                kcompactd_run(nid);
2146        return 0;
2147}
2148subsys_initcall(kcompactd_init)
2149
2150#endif /* CONFIG_COMPACTION */
2151