linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/sched/signal.h>
  17#include <linux/uaccess.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/gfp.h>
  21#include <linux/mm.h>
  22#include <linux/swap.h>
  23#include <linux/mman.h>
  24#include <linux/pagemap.h>
  25#include <linux/file.h>
  26#include <linux/uio.h>
  27#include <linux/hash.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/security.h>
  33#include <linux/cpuset.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/shmem_fs.h>
  38#include <linux/rmap.h>
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/filemap.h>
  43
  44/*
  45 * FIXME: remove all knowledge of the buffer layer from the core VM
  46 */
  47#include <linux/buffer_head.h> /* for try_to_free_buffers */
  48
  49#include <asm/mman.h>
  50
  51/*
  52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  53 * though.
  54 *
  55 * Shared mappings now work. 15.8.1995  Bruno.
  56 *
  57 * finished 'unifying' the page and buffer cache and SMP-threaded the
  58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  59 *
  60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  61 */
  62
  63/*
  64 * Lock ordering:
  65 *
  66 *  ->i_mmap_rwsem              (truncate_pagecache)
  67 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  68 *      ->swap_lock             (exclusive_swap_page, others)
  69 *        ->mapping->tree_lock
  70 *
  71 *  ->i_mutex
  72 *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
  73 *
  74 *  ->mmap_sem
  75 *    ->i_mmap_rwsem
  76 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  77 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
  78 *
  79 *  ->mmap_sem
  80 *    ->lock_page               (access_process_vm)
  81 *
  82 *  ->i_mutex                   (generic_perform_write)
  83 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  84 *
  85 *  bdi->wb.list_lock
  86 *    sb_lock                   (fs/fs-writeback.c)
  87 *    ->mapping->tree_lock      (__sync_single_inode)
  88 *
  89 *  ->i_mmap_rwsem
  90 *    ->anon_vma.lock           (vma_adjust)
  91 *
  92 *  ->anon_vma.lock
  93 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  94 *
  95 *  ->page_table_lock or pte_lock
  96 *    ->swap_lock               (try_to_unmap_one)
  97 *    ->private_lock            (try_to_unmap_one)
  98 *    ->tree_lock               (try_to_unmap_one)
  99 *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
 100 *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
 101 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 102 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
 104 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 105 *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
 106 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 107 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 108 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 109 *
 110 * ->i_mmap_rwsem
 111 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 112 */
 113
 114static int page_cache_tree_insert(struct address_space *mapping,
 115                                  struct page *page, void **shadowp)
 116{
 117        struct radix_tree_node *node;
 118        void **slot;
 119        int error;
 120
 121        error = __radix_tree_create(&mapping->page_tree, page->index, 0,
 122                                    &node, &slot);
 123        if (error)
 124                return error;
 125        if (*slot) {
 126                void *p;
 127
 128                p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 129                if (!radix_tree_exceptional_entry(p))
 130                        return -EEXIST;
 131
 132                mapping->nrexceptional--;
 133                if (shadowp)
 134                        *shadowp = p;
 135        }
 136        __radix_tree_replace(&mapping->page_tree, node, slot, page,
 137                             workingset_lookup_update(mapping));
 138        mapping->nrpages++;
 139        return 0;
 140}
 141
 142static void page_cache_tree_delete(struct address_space *mapping,
 143                                   struct page *page, void *shadow)
 144{
 145        int i, nr;
 146
 147        /* hugetlb pages are represented by one entry in the radix tree */
 148        nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 149
 150        VM_BUG_ON_PAGE(!PageLocked(page), page);
 151        VM_BUG_ON_PAGE(PageTail(page), page);
 152        VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 153
 154        for (i = 0; i < nr; i++) {
 155                struct radix_tree_node *node;
 156                void **slot;
 157
 158                __radix_tree_lookup(&mapping->page_tree, page->index + i,
 159                                    &node, &slot);
 160
 161                VM_BUG_ON_PAGE(!node && nr != 1, page);
 162
 163                radix_tree_clear_tags(&mapping->page_tree, node, slot);
 164                __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
 165                                workingset_lookup_update(mapping));
 166        }
 167
 168        page->mapping = NULL;
 169        /* Leave page->index set: truncation lookup relies upon it */
 170
 171        if (shadow) {
 172                mapping->nrexceptional += nr;
 173                /*
 174                 * Make sure the nrexceptional update is committed before
 175                 * the nrpages update so that final truncate racing
 176                 * with reclaim does not see both counters 0 at the
 177                 * same time and miss a shadow entry.
 178                 */
 179                smp_wmb();
 180        }
 181        mapping->nrpages -= nr;
 182}
 183
 184static void unaccount_page_cache_page(struct address_space *mapping,
 185                                      struct page *page)
 186{
 187        int nr;
 188
 189        /*
 190         * if we're uptodate, flush out into the cleancache, otherwise
 191         * invalidate any existing cleancache entries.  We can't leave
 192         * stale data around in the cleancache once our page is gone
 193         */
 194        if (PageUptodate(page) && PageMappedToDisk(page))
 195                cleancache_put_page(page);
 196        else
 197                cleancache_invalidate_page(mapping, page);
 198
 199        VM_BUG_ON_PAGE(PageTail(page), page);
 200        VM_BUG_ON_PAGE(page_mapped(page), page);
 201        if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 202                int mapcount;
 203
 204                pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 205                         current->comm, page_to_pfn(page));
 206                dump_page(page, "still mapped when deleted");
 207                dump_stack();
 208                add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 209
 210                mapcount = page_mapcount(page);
 211                if (mapping_exiting(mapping) &&
 212                    page_count(page) >= mapcount + 2) {
 213                        /*
 214                         * All vmas have already been torn down, so it's
 215                         * a good bet that actually the page is unmapped,
 216                         * and we'd prefer not to leak it: if we're wrong,
 217                         * some other bad page check should catch it later.
 218                         */
 219                        page_mapcount_reset(page);
 220                        page_ref_sub(page, mapcount);
 221                }
 222        }
 223
 224        /* hugetlb pages do not participate in page cache accounting. */
 225        if (PageHuge(page))
 226                return;
 227
 228        nr = hpage_nr_pages(page);
 229
 230        __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 231        if (PageSwapBacked(page)) {
 232                __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 233                if (PageTransHuge(page))
 234                        __dec_node_page_state(page, NR_SHMEM_THPS);
 235        } else {
 236                VM_BUG_ON_PAGE(PageTransHuge(page), page);
 237        }
 238
 239        /*
 240         * At this point page must be either written or cleaned by
 241         * truncate.  Dirty page here signals a bug and loss of
 242         * unwritten data.
 243         *
 244         * This fixes dirty accounting after removing the page entirely
 245         * but leaves PageDirty set: it has no effect for truncated
 246         * page and anyway will be cleared before returning page into
 247         * buddy allocator.
 248         */
 249        if (WARN_ON_ONCE(PageDirty(page)))
 250                account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 251}
 252
 253/*
 254 * Delete a page from the page cache and free it. Caller has to make
 255 * sure the page is locked and that nobody else uses it - or that usage
 256 * is safe.  The caller must hold the mapping's tree_lock.
 257 */
 258void __delete_from_page_cache(struct page *page, void *shadow)
 259{
 260        struct address_space *mapping = page->mapping;
 261
 262        trace_mm_filemap_delete_from_page_cache(page);
 263
 264        unaccount_page_cache_page(mapping, page);
 265        page_cache_tree_delete(mapping, page, shadow);
 266}
 267
 268static void page_cache_free_page(struct address_space *mapping,
 269                                struct page *page)
 270{
 271        void (*freepage)(struct page *);
 272
 273        freepage = mapping->a_ops->freepage;
 274        if (freepage)
 275                freepage(page);
 276
 277        if (PageTransHuge(page) && !PageHuge(page)) {
 278                page_ref_sub(page, HPAGE_PMD_NR);
 279                VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 280        } else {
 281                put_page(page);
 282        }
 283}
 284
 285/**
 286 * delete_from_page_cache - delete page from page cache
 287 * @page: the page which the kernel is trying to remove from page cache
 288 *
 289 * This must be called only on pages that have been verified to be in the page
 290 * cache and locked.  It will never put the page into the free list, the caller
 291 * has a reference on the page.
 292 */
 293void delete_from_page_cache(struct page *page)
 294{
 295        struct address_space *mapping = page_mapping(page);
 296        unsigned long flags;
 297
 298        BUG_ON(!PageLocked(page));
 299        spin_lock_irqsave(&mapping->tree_lock, flags);
 300        __delete_from_page_cache(page, NULL);
 301        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 302
 303        page_cache_free_page(mapping, page);
 304}
 305EXPORT_SYMBOL(delete_from_page_cache);
 306
 307/*
 308 * page_cache_tree_delete_batch - delete several pages from page cache
 309 * @mapping: the mapping to which pages belong
 310 * @pvec: pagevec with pages to delete
 311 *
 312 * The function walks over mapping->page_tree and removes pages passed in @pvec
 313 * from the radix tree. The function expects @pvec to be sorted by page index.
 314 * It tolerates holes in @pvec (radix tree entries at those indices are not
 315 * modified). The function expects only THP head pages to be present in the
 316 * @pvec and takes care to delete all corresponding tail pages from the radix
 317 * tree as well.
 318 *
 319 * The function expects mapping->tree_lock to be held.
 320 */
 321static void
 322page_cache_tree_delete_batch(struct address_space *mapping,
 323                             struct pagevec *pvec)
 324{
 325        struct radix_tree_iter iter;
 326        void **slot;
 327        int total_pages = 0;
 328        int i = 0, tail_pages = 0;
 329        struct page *page;
 330        pgoff_t start;
 331
 332        start = pvec->pages[0]->index;
 333        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 334                if (i >= pagevec_count(pvec) && !tail_pages)
 335                        break;
 336                page = radix_tree_deref_slot_protected(slot,
 337                                                       &mapping->tree_lock);
 338                if (radix_tree_exceptional_entry(page))
 339                        continue;
 340                if (!tail_pages) {
 341                        /*
 342                         * Some page got inserted in our range? Skip it. We
 343                         * have our pages locked so they are protected from
 344                         * being removed.
 345                         */
 346                        if (page != pvec->pages[i])
 347                                continue;
 348                        WARN_ON_ONCE(!PageLocked(page));
 349                        if (PageTransHuge(page) && !PageHuge(page))
 350                                tail_pages = HPAGE_PMD_NR - 1;
 351                        page->mapping = NULL;
 352                        /*
 353                         * Leave page->index set: truncation lookup relies
 354                         * upon it
 355                         */
 356                        i++;
 357                } else {
 358                        tail_pages--;
 359                }
 360                radix_tree_clear_tags(&mapping->page_tree, iter.node, slot);
 361                __radix_tree_replace(&mapping->page_tree, iter.node, slot, NULL,
 362                                workingset_lookup_update(mapping));
 363                total_pages++;
 364        }
 365        mapping->nrpages -= total_pages;
 366}
 367
 368void delete_from_page_cache_batch(struct address_space *mapping,
 369                                  struct pagevec *pvec)
 370{
 371        int i;
 372        unsigned long flags;
 373
 374        if (!pagevec_count(pvec))
 375                return;
 376
 377        spin_lock_irqsave(&mapping->tree_lock, flags);
 378        for (i = 0; i < pagevec_count(pvec); i++) {
 379                trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 380
 381                unaccount_page_cache_page(mapping, pvec->pages[i]);
 382        }
 383        page_cache_tree_delete_batch(mapping, pvec);
 384        spin_unlock_irqrestore(&mapping->tree_lock, flags);
 385
 386        for (i = 0; i < pagevec_count(pvec); i++)
 387                page_cache_free_page(mapping, pvec->pages[i]);
 388}
 389
 390int filemap_check_errors(struct address_space *mapping)
 391{
 392        int ret = 0;
 393        /* Check for outstanding write errors */
 394        if (test_bit(AS_ENOSPC, &mapping->flags) &&
 395            test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 396                ret = -ENOSPC;
 397        if (test_bit(AS_EIO, &mapping->flags) &&
 398            test_and_clear_bit(AS_EIO, &mapping->flags))
 399                ret = -EIO;
 400        return ret;
 401}
 402EXPORT_SYMBOL(filemap_check_errors);
 403
 404static int filemap_check_and_keep_errors(struct address_space *mapping)
 405{
 406        /* Check for outstanding write errors */
 407        if (test_bit(AS_EIO, &mapping->flags))
 408                return -EIO;
 409        if (test_bit(AS_ENOSPC, &mapping->flags))
 410                return -ENOSPC;
 411        return 0;
 412}
 413
 414/**
 415 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 416 * @mapping:    address space structure to write
 417 * @start:      offset in bytes where the range starts
 418 * @end:        offset in bytes where the range ends (inclusive)
 419 * @sync_mode:  enable synchronous operation
 420 *
 421 * Start writeback against all of a mapping's dirty pages that lie
 422 * within the byte offsets <start, end> inclusive.
 423 *
 424 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 425 * opposed to a regular memory cleansing writeback.  The difference between
 426 * these two operations is that if a dirty page/buffer is encountered, it must
 427 * be waited upon, and not just skipped over.
 428 */
 429int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 430                                loff_t end, int sync_mode)
 431{
 432        int ret;
 433        struct writeback_control wbc = {
 434                .sync_mode = sync_mode,
 435                .nr_to_write = LONG_MAX,
 436                .range_start = start,
 437                .range_end = end,
 438        };
 439
 440        if (!mapping_cap_writeback_dirty(mapping))
 441                return 0;
 442
 443        wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 444        ret = do_writepages(mapping, &wbc);
 445        wbc_detach_inode(&wbc);
 446        return ret;
 447}
 448
 449static inline int __filemap_fdatawrite(struct address_space *mapping,
 450        int sync_mode)
 451{
 452        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 453}
 454
 455int filemap_fdatawrite(struct address_space *mapping)
 456{
 457        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 458}
 459EXPORT_SYMBOL(filemap_fdatawrite);
 460
 461int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 462                                loff_t end)
 463{
 464        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 465}
 466EXPORT_SYMBOL(filemap_fdatawrite_range);
 467
 468/**
 469 * filemap_flush - mostly a non-blocking flush
 470 * @mapping:    target address_space
 471 *
 472 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 473 * purposes - I/O may not be started against all dirty pages.
 474 */
 475int filemap_flush(struct address_space *mapping)
 476{
 477        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 478}
 479EXPORT_SYMBOL(filemap_flush);
 480
 481/**
 482 * filemap_range_has_page - check if a page exists in range.
 483 * @mapping:           address space within which to check
 484 * @start_byte:        offset in bytes where the range starts
 485 * @end_byte:          offset in bytes where the range ends (inclusive)
 486 *
 487 * Find at least one page in the range supplied, usually used to check if
 488 * direct writing in this range will trigger a writeback.
 489 */
 490bool filemap_range_has_page(struct address_space *mapping,
 491                           loff_t start_byte, loff_t end_byte)
 492{
 493        pgoff_t index = start_byte >> PAGE_SHIFT;
 494        pgoff_t end = end_byte >> PAGE_SHIFT;
 495        struct page *page;
 496
 497        if (end_byte < start_byte)
 498                return false;
 499
 500        if (mapping->nrpages == 0)
 501                return false;
 502
 503        if (!find_get_pages_range(mapping, &index, end, 1, &page))
 504                return false;
 505        put_page(page);
 506        return true;
 507}
 508EXPORT_SYMBOL(filemap_range_has_page);
 509
 510static void __filemap_fdatawait_range(struct address_space *mapping,
 511                                     loff_t start_byte, loff_t end_byte)
 512{
 513        pgoff_t index = start_byte >> PAGE_SHIFT;
 514        pgoff_t end = end_byte >> PAGE_SHIFT;
 515        struct pagevec pvec;
 516        int nr_pages;
 517
 518        if (end_byte < start_byte)
 519                return;
 520
 521        pagevec_init(&pvec);
 522        while (index <= end) {
 523                unsigned i;
 524
 525                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 526                                end, PAGECACHE_TAG_WRITEBACK);
 527                if (!nr_pages)
 528                        break;
 529
 530                for (i = 0; i < nr_pages; i++) {
 531                        struct page *page = pvec.pages[i];
 532
 533                        wait_on_page_writeback(page);
 534                        ClearPageError(page);
 535                }
 536                pagevec_release(&pvec);
 537                cond_resched();
 538        }
 539}
 540
 541/**
 542 * filemap_fdatawait_range - wait for writeback to complete
 543 * @mapping:            address space structure to wait for
 544 * @start_byte:         offset in bytes where the range starts
 545 * @end_byte:           offset in bytes where the range ends (inclusive)
 546 *
 547 * Walk the list of under-writeback pages of the given address space
 548 * in the given range and wait for all of them.  Check error status of
 549 * the address space and return it.
 550 *
 551 * Since the error status of the address space is cleared by this function,
 552 * callers are responsible for checking the return value and handling and/or
 553 * reporting the error.
 554 */
 555int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 556                            loff_t end_byte)
 557{
 558        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 559        return filemap_check_errors(mapping);
 560}
 561EXPORT_SYMBOL(filemap_fdatawait_range);
 562
 563/**
 564 * file_fdatawait_range - wait for writeback to complete
 565 * @file:               file pointing to address space structure to wait for
 566 * @start_byte:         offset in bytes where the range starts
 567 * @end_byte:           offset in bytes where the range ends (inclusive)
 568 *
 569 * Walk the list of under-writeback pages of the address space that file
 570 * refers to, in the given range and wait for all of them.  Check error
 571 * status of the address space vs. the file->f_wb_err cursor and return it.
 572 *
 573 * Since the error status of the file is advanced by this function,
 574 * callers are responsible for checking the return value and handling and/or
 575 * reporting the error.
 576 */
 577int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 578{
 579        struct address_space *mapping = file->f_mapping;
 580
 581        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 582        return file_check_and_advance_wb_err(file);
 583}
 584EXPORT_SYMBOL(file_fdatawait_range);
 585
 586/**
 587 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 588 * @mapping: address space structure to wait for
 589 *
 590 * Walk the list of under-writeback pages of the given address space
 591 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 592 * does not clear error status of the address space.
 593 *
 594 * Use this function if callers don't handle errors themselves.  Expected
 595 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 596 * fsfreeze(8)
 597 */
 598int filemap_fdatawait_keep_errors(struct address_space *mapping)
 599{
 600        __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 601        return filemap_check_and_keep_errors(mapping);
 602}
 603EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 604
 605static bool mapping_needs_writeback(struct address_space *mapping)
 606{
 607        return (!dax_mapping(mapping) && mapping->nrpages) ||
 608            (dax_mapping(mapping) && mapping->nrexceptional);
 609}
 610
 611int filemap_write_and_wait(struct address_space *mapping)
 612{
 613        int err = 0;
 614
 615        if (mapping_needs_writeback(mapping)) {
 616                err = filemap_fdatawrite(mapping);
 617                /*
 618                 * Even if the above returned error, the pages may be
 619                 * written partially (e.g. -ENOSPC), so we wait for it.
 620                 * But the -EIO is special case, it may indicate the worst
 621                 * thing (e.g. bug) happened, so we avoid waiting for it.
 622                 */
 623                if (err != -EIO) {
 624                        int err2 = filemap_fdatawait(mapping);
 625                        if (!err)
 626                                err = err2;
 627                } else {
 628                        /* Clear any previously stored errors */
 629                        filemap_check_errors(mapping);
 630                }
 631        } else {
 632                err = filemap_check_errors(mapping);
 633        }
 634        return err;
 635}
 636EXPORT_SYMBOL(filemap_write_and_wait);
 637
 638/**
 639 * filemap_write_and_wait_range - write out & wait on a file range
 640 * @mapping:    the address_space for the pages
 641 * @lstart:     offset in bytes where the range starts
 642 * @lend:       offset in bytes where the range ends (inclusive)
 643 *
 644 * Write out and wait upon file offsets lstart->lend, inclusive.
 645 *
 646 * Note that @lend is inclusive (describes the last byte to be written) so
 647 * that this function can be used to write to the very end-of-file (end = -1).
 648 */
 649int filemap_write_and_wait_range(struct address_space *mapping,
 650                                 loff_t lstart, loff_t lend)
 651{
 652        int err = 0;
 653
 654        if (mapping_needs_writeback(mapping)) {
 655                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 656                                                 WB_SYNC_ALL);
 657                /* See comment of filemap_write_and_wait() */
 658                if (err != -EIO) {
 659                        int err2 = filemap_fdatawait_range(mapping,
 660                                                lstart, lend);
 661                        if (!err)
 662                                err = err2;
 663                } else {
 664                        /* Clear any previously stored errors */
 665                        filemap_check_errors(mapping);
 666                }
 667        } else {
 668                err = filemap_check_errors(mapping);
 669        }
 670        return err;
 671}
 672EXPORT_SYMBOL(filemap_write_and_wait_range);
 673
 674void __filemap_set_wb_err(struct address_space *mapping, int err)
 675{
 676        errseq_t eseq = errseq_set(&mapping->wb_err, err);
 677
 678        trace_filemap_set_wb_err(mapping, eseq);
 679}
 680EXPORT_SYMBOL(__filemap_set_wb_err);
 681
 682/**
 683 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 684 *                                 and advance wb_err to current one
 685 * @file: struct file on which the error is being reported
 686 *
 687 * When userland calls fsync (or something like nfsd does the equivalent), we
 688 * want to report any writeback errors that occurred since the last fsync (or
 689 * since the file was opened if there haven't been any).
 690 *
 691 * Grab the wb_err from the mapping. If it matches what we have in the file,
 692 * then just quickly return 0. The file is all caught up.
 693 *
 694 * If it doesn't match, then take the mapping value, set the "seen" flag in
 695 * it and try to swap it into place. If it works, or another task beat us
 696 * to it with the new value, then update the f_wb_err and return the error
 697 * portion. The error at this point must be reported via proper channels
 698 * (a'la fsync, or NFS COMMIT operation, etc.).
 699 *
 700 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 701 * value is protected by the f_lock since we must ensure that it reflects
 702 * the latest value swapped in for this file descriptor.
 703 */
 704int file_check_and_advance_wb_err(struct file *file)
 705{
 706        int err = 0;
 707        errseq_t old = READ_ONCE(file->f_wb_err);
 708        struct address_space *mapping = file->f_mapping;
 709
 710        /* Locklessly handle the common case where nothing has changed */
 711        if (errseq_check(&mapping->wb_err, old)) {
 712                /* Something changed, must use slow path */
 713                spin_lock(&file->f_lock);
 714                old = file->f_wb_err;
 715                err = errseq_check_and_advance(&mapping->wb_err,
 716                                                &file->f_wb_err);
 717                trace_file_check_and_advance_wb_err(file, old);
 718                spin_unlock(&file->f_lock);
 719        }
 720
 721        /*
 722         * We're mostly using this function as a drop in replacement for
 723         * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 724         * that the legacy code would have had on these flags.
 725         */
 726        clear_bit(AS_EIO, &mapping->flags);
 727        clear_bit(AS_ENOSPC, &mapping->flags);
 728        return err;
 729}
 730EXPORT_SYMBOL(file_check_and_advance_wb_err);
 731
 732/**
 733 * file_write_and_wait_range - write out & wait on a file range
 734 * @file:       file pointing to address_space with pages
 735 * @lstart:     offset in bytes where the range starts
 736 * @lend:       offset in bytes where the range ends (inclusive)
 737 *
 738 * Write out and wait upon file offsets lstart->lend, inclusive.
 739 *
 740 * Note that @lend is inclusive (describes the last byte to be written) so
 741 * that this function can be used to write to the very end-of-file (end = -1).
 742 *
 743 * After writing out and waiting on the data, we check and advance the
 744 * f_wb_err cursor to the latest value, and return any errors detected there.
 745 */
 746int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 747{
 748        int err = 0, err2;
 749        struct address_space *mapping = file->f_mapping;
 750
 751        if (mapping_needs_writeback(mapping)) {
 752                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 753                                                 WB_SYNC_ALL);
 754                /* See comment of filemap_write_and_wait() */
 755                if (err != -EIO)
 756                        __filemap_fdatawait_range(mapping, lstart, lend);
 757        }
 758        err2 = file_check_and_advance_wb_err(file);
 759        if (!err)
 760                err = err2;
 761        return err;
 762}
 763EXPORT_SYMBOL(file_write_and_wait_range);
 764
 765/**
 766 * replace_page_cache_page - replace a pagecache page with a new one
 767 * @old:        page to be replaced
 768 * @new:        page to replace with
 769 * @gfp_mask:   allocation mode
 770 *
 771 * This function replaces a page in the pagecache with a new one.  On
 772 * success it acquires the pagecache reference for the new page and
 773 * drops it for the old page.  Both the old and new pages must be
 774 * locked.  This function does not add the new page to the LRU, the
 775 * caller must do that.
 776 *
 777 * The remove + add is atomic.  The only way this function can fail is
 778 * memory allocation failure.
 779 */
 780int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 781{
 782        int error;
 783
 784        VM_BUG_ON_PAGE(!PageLocked(old), old);
 785        VM_BUG_ON_PAGE(!PageLocked(new), new);
 786        VM_BUG_ON_PAGE(new->mapping, new);
 787
 788        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 789        if (!error) {
 790                struct address_space *mapping = old->mapping;
 791                void (*freepage)(struct page *);
 792                unsigned long flags;
 793
 794                pgoff_t offset = old->index;
 795                freepage = mapping->a_ops->freepage;
 796
 797                get_page(new);
 798                new->mapping = mapping;
 799                new->index = offset;
 800
 801                spin_lock_irqsave(&mapping->tree_lock, flags);
 802                __delete_from_page_cache(old, NULL);
 803                error = page_cache_tree_insert(mapping, new, NULL);
 804                BUG_ON(error);
 805
 806                /*
 807                 * hugetlb pages do not participate in page cache accounting.
 808                 */
 809                if (!PageHuge(new))
 810                        __inc_node_page_state(new, NR_FILE_PAGES);
 811                if (PageSwapBacked(new))
 812                        __inc_node_page_state(new, NR_SHMEM);
 813                spin_unlock_irqrestore(&mapping->tree_lock, flags);
 814                mem_cgroup_migrate(old, new);
 815                radix_tree_preload_end();
 816                if (freepage)
 817                        freepage(old);
 818                put_page(old);
 819        }
 820
 821        return error;
 822}
 823EXPORT_SYMBOL_GPL(replace_page_cache_page);
 824
 825static int __add_to_page_cache_locked(struct page *page,
 826                                      struct address_space *mapping,
 827                                      pgoff_t offset, gfp_t gfp_mask,
 828                                      void **shadowp)
 829{
 830        int huge = PageHuge(page);
 831        struct mem_cgroup *memcg;
 832        int error;
 833
 834        VM_BUG_ON_PAGE(!PageLocked(page), page);
 835        VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 836
 837        if (!huge) {
 838                error = mem_cgroup_try_charge(page, current->mm,
 839                                              gfp_mask, &memcg, false);
 840                if (error)
 841                        return error;
 842        }
 843
 844        error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 845        if (error) {
 846                if (!huge)
 847                        mem_cgroup_cancel_charge(page, memcg, false);
 848                return error;
 849        }
 850
 851        get_page(page);
 852        page->mapping = mapping;
 853        page->index = offset;
 854
 855        spin_lock_irq(&mapping->tree_lock);
 856        error = page_cache_tree_insert(mapping, page, shadowp);
 857        radix_tree_preload_end();
 858        if (unlikely(error))
 859                goto err_insert;
 860
 861        /* hugetlb pages do not participate in page cache accounting. */
 862        if (!huge)
 863                __inc_node_page_state(page, NR_FILE_PAGES);
 864        spin_unlock_irq(&mapping->tree_lock);
 865        if (!huge)
 866                mem_cgroup_commit_charge(page, memcg, false, false);
 867        trace_mm_filemap_add_to_page_cache(page);
 868        return 0;
 869err_insert:
 870        page->mapping = NULL;
 871        /* Leave page->index set: truncation relies upon it */
 872        spin_unlock_irq(&mapping->tree_lock);
 873        if (!huge)
 874                mem_cgroup_cancel_charge(page, memcg, false);
 875        put_page(page);
 876        return error;
 877}
 878
 879/**
 880 * add_to_page_cache_locked - add a locked page to the pagecache
 881 * @page:       page to add
 882 * @mapping:    the page's address_space
 883 * @offset:     page index
 884 * @gfp_mask:   page allocation mode
 885 *
 886 * This function is used to add a page to the pagecache. It must be locked.
 887 * This function does not add the page to the LRU.  The caller must do that.
 888 */
 889int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 890                pgoff_t offset, gfp_t gfp_mask)
 891{
 892        return __add_to_page_cache_locked(page, mapping, offset,
 893                                          gfp_mask, NULL);
 894}
 895EXPORT_SYMBOL(add_to_page_cache_locked);
 896
 897int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 898                                pgoff_t offset, gfp_t gfp_mask)
 899{
 900        void *shadow = NULL;
 901        int ret;
 902
 903        __SetPageLocked(page);
 904        ret = __add_to_page_cache_locked(page, mapping, offset,
 905                                         gfp_mask, &shadow);
 906        if (unlikely(ret))
 907                __ClearPageLocked(page);
 908        else {
 909                /*
 910                 * The page might have been evicted from cache only
 911                 * recently, in which case it should be activated like
 912                 * any other repeatedly accessed page.
 913                 * The exception is pages getting rewritten; evicting other
 914                 * data from the working set, only to cache data that will
 915                 * get overwritten with something else, is a waste of memory.
 916                 */
 917                if (!(gfp_mask & __GFP_WRITE) &&
 918                    shadow && workingset_refault(shadow)) {
 919                        SetPageActive(page);
 920                        workingset_activation(page);
 921                } else
 922                        ClearPageActive(page);
 923                lru_cache_add(page);
 924        }
 925        return ret;
 926}
 927EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 928
 929#ifdef CONFIG_NUMA
 930struct page *__page_cache_alloc(gfp_t gfp)
 931{
 932        int n;
 933        struct page *page;
 934
 935        if (cpuset_do_page_mem_spread()) {
 936                unsigned int cpuset_mems_cookie;
 937                do {
 938                        cpuset_mems_cookie = read_mems_allowed_begin();
 939                        n = cpuset_mem_spread_node();
 940                        page = __alloc_pages_node(n, gfp, 0);
 941                } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 942
 943                return page;
 944        }
 945        return alloc_pages(gfp, 0);
 946}
 947EXPORT_SYMBOL(__page_cache_alloc);
 948#endif
 949
 950/*
 951 * In order to wait for pages to become available there must be
 952 * waitqueues associated with pages. By using a hash table of
 953 * waitqueues where the bucket discipline is to maintain all
 954 * waiters on the same queue and wake all when any of the pages
 955 * become available, and for the woken contexts to check to be
 956 * sure the appropriate page became available, this saves space
 957 * at a cost of "thundering herd" phenomena during rare hash
 958 * collisions.
 959 */
 960#define PAGE_WAIT_TABLE_BITS 8
 961#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 962static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 963
 964static wait_queue_head_t *page_waitqueue(struct page *page)
 965{
 966        return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 967}
 968
 969void __init pagecache_init(void)
 970{
 971        int i;
 972
 973        for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 974                init_waitqueue_head(&page_wait_table[i]);
 975
 976        page_writeback_init();
 977}
 978
 979/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
 980struct wait_page_key {
 981        struct page *page;
 982        int bit_nr;
 983        int page_match;
 984};
 985
 986struct wait_page_queue {
 987        struct page *page;
 988        int bit_nr;
 989        wait_queue_entry_t wait;
 990};
 991
 992static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 993{
 994        struct wait_page_key *key = arg;
 995        struct wait_page_queue *wait_page
 996                = container_of(wait, struct wait_page_queue, wait);
 997
 998        if (wait_page->page != key->page)
 999               return 0;
1000        key->page_match = 1;
1001
1002        if (wait_page->bit_nr != key->bit_nr)
1003                return 0;
1004
1005        /* Stop walking if it's locked */
1006        if (test_bit(key->bit_nr, &key->page->flags))
1007                return -1;
1008
1009        return autoremove_wake_function(wait, mode, sync, key);
1010}
1011
1012static void wake_up_page_bit(struct page *page, int bit_nr)
1013{
1014        wait_queue_head_t *q = page_waitqueue(page);
1015        struct wait_page_key key;
1016        unsigned long flags;
1017        wait_queue_entry_t bookmark;
1018
1019        key.page = page;
1020        key.bit_nr = bit_nr;
1021        key.page_match = 0;
1022
1023        bookmark.flags = 0;
1024        bookmark.private = NULL;
1025        bookmark.func = NULL;
1026        INIT_LIST_HEAD(&bookmark.entry);
1027
1028        spin_lock_irqsave(&q->lock, flags);
1029        __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1030
1031        while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1032                /*
1033                 * Take a breather from holding the lock,
1034                 * allow pages that finish wake up asynchronously
1035                 * to acquire the lock and remove themselves
1036                 * from wait queue
1037                 */
1038                spin_unlock_irqrestore(&q->lock, flags);
1039                cpu_relax();
1040                spin_lock_irqsave(&q->lock, flags);
1041                __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1042        }
1043
1044        /*
1045         * It is possible for other pages to have collided on the waitqueue
1046         * hash, so in that case check for a page match. That prevents a long-
1047         * term waiter
1048         *
1049         * It is still possible to miss a case here, when we woke page waiters
1050         * and removed them from the waitqueue, but there are still other
1051         * page waiters.
1052         */
1053        if (!waitqueue_active(q) || !key.page_match) {
1054                ClearPageWaiters(page);
1055                /*
1056                 * It's possible to miss clearing Waiters here, when we woke
1057                 * our page waiters, but the hashed waitqueue has waiters for
1058                 * other pages on it.
1059                 *
1060                 * That's okay, it's a rare case. The next waker will clear it.
1061                 */
1062        }
1063        spin_unlock_irqrestore(&q->lock, flags);
1064}
1065
1066static void wake_up_page(struct page *page, int bit)
1067{
1068        if (!PageWaiters(page))
1069                return;
1070        wake_up_page_bit(page, bit);
1071}
1072
1073static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1074                struct page *page, int bit_nr, int state, bool lock)
1075{
1076        struct wait_page_queue wait_page;
1077        wait_queue_entry_t *wait = &wait_page.wait;
1078        int ret = 0;
1079
1080        init_wait(wait);
1081        wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1082        wait->func = wake_page_function;
1083        wait_page.page = page;
1084        wait_page.bit_nr = bit_nr;
1085
1086        for (;;) {
1087                spin_lock_irq(&q->lock);
1088
1089                if (likely(list_empty(&wait->entry))) {
1090                        __add_wait_queue_entry_tail(q, wait);
1091                        SetPageWaiters(page);
1092                }
1093
1094                set_current_state(state);
1095
1096                spin_unlock_irq(&q->lock);
1097
1098                if (likely(test_bit(bit_nr, &page->flags))) {
1099                        io_schedule();
1100                }
1101
1102                if (lock) {
1103                        if (!test_and_set_bit_lock(bit_nr, &page->flags))
1104                                break;
1105                } else {
1106                        if (!test_bit(bit_nr, &page->flags))
1107                                break;
1108                }
1109
1110                if (unlikely(signal_pending_state(state, current))) {
1111                        ret = -EINTR;
1112                        break;
1113                }
1114        }
1115
1116        finish_wait(q, wait);
1117
1118        /*
1119         * A signal could leave PageWaiters set. Clearing it here if
1120         * !waitqueue_active would be possible (by open-coding finish_wait),
1121         * but still fail to catch it in the case of wait hash collision. We
1122         * already can fail to clear wait hash collision cases, so don't
1123         * bother with signals either.
1124         */
1125
1126        return ret;
1127}
1128
1129void wait_on_page_bit(struct page *page, int bit_nr)
1130{
1131        wait_queue_head_t *q = page_waitqueue(page);
1132        wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1133}
1134EXPORT_SYMBOL(wait_on_page_bit);
1135
1136int wait_on_page_bit_killable(struct page *page, int bit_nr)
1137{
1138        wait_queue_head_t *q = page_waitqueue(page);
1139        return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1140}
1141EXPORT_SYMBOL(wait_on_page_bit_killable);
1142
1143/**
1144 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1145 * @page: Page defining the wait queue of interest
1146 * @waiter: Waiter to add to the queue
1147 *
1148 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1149 */
1150void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1151{
1152        wait_queue_head_t *q = page_waitqueue(page);
1153        unsigned long flags;
1154
1155        spin_lock_irqsave(&q->lock, flags);
1156        __add_wait_queue_entry_tail(q, waiter);
1157        SetPageWaiters(page);
1158        spin_unlock_irqrestore(&q->lock, flags);
1159}
1160EXPORT_SYMBOL_GPL(add_page_wait_queue);
1161
1162#ifndef clear_bit_unlock_is_negative_byte
1163
1164/*
1165 * PG_waiters is the high bit in the same byte as PG_lock.
1166 *
1167 * On x86 (and on many other architectures), we can clear PG_lock and
1168 * test the sign bit at the same time. But if the architecture does
1169 * not support that special operation, we just do this all by hand
1170 * instead.
1171 *
1172 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1173 * being cleared, but a memory barrier should be unneccssary since it is
1174 * in the same byte as PG_locked.
1175 */
1176static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1177{
1178        clear_bit_unlock(nr, mem);
1179        /* smp_mb__after_atomic(); */
1180        return test_bit(PG_waiters, mem);
1181}
1182
1183#endif
1184
1185/**
1186 * unlock_page - unlock a locked page
1187 * @page: the page
1188 *
1189 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1190 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1191 * mechanism between PageLocked pages and PageWriteback pages is shared.
1192 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1193 *
1194 * Note that this depends on PG_waiters being the sign bit in the byte
1195 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1196 * clear the PG_locked bit and test PG_waiters at the same time fairly
1197 * portably (architectures that do LL/SC can test any bit, while x86 can
1198 * test the sign bit).
1199 */
1200void unlock_page(struct page *page)
1201{
1202        BUILD_BUG_ON(PG_waiters != 7);
1203        page = compound_head(page);
1204        VM_BUG_ON_PAGE(!PageLocked(page), page);
1205        if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1206                wake_up_page_bit(page, PG_locked);
1207}
1208EXPORT_SYMBOL(unlock_page);
1209
1210/**
1211 * end_page_writeback - end writeback against a page
1212 * @page: the page
1213 */
1214void end_page_writeback(struct page *page)
1215{
1216        /*
1217         * TestClearPageReclaim could be used here but it is an atomic
1218         * operation and overkill in this particular case. Failing to
1219         * shuffle a page marked for immediate reclaim is too mild to
1220         * justify taking an atomic operation penalty at the end of
1221         * ever page writeback.
1222         */
1223        if (PageReclaim(page)) {
1224                ClearPageReclaim(page);
1225                rotate_reclaimable_page(page);
1226        }
1227
1228        if (!test_clear_page_writeback(page))
1229                BUG();
1230
1231        smp_mb__after_atomic();
1232        wake_up_page(page, PG_writeback);
1233}
1234EXPORT_SYMBOL(end_page_writeback);
1235
1236/*
1237 * After completing I/O on a page, call this routine to update the page
1238 * flags appropriately
1239 */
1240void page_endio(struct page *page, bool is_write, int err)
1241{
1242        if (!is_write) {
1243                if (!err) {
1244                        SetPageUptodate(page);
1245                } else {
1246                        ClearPageUptodate(page);
1247                        SetPageError(page);
1248                }
1249                unlock_page(page);
1250        } else {
1251                if (err) {
1252                        struct address_space *mapping;
1253
1254                        SetPageError(page);
1255                        mapping = page_mapping(page);
1256                        if (mapping)
1257                                mapping_set_error(mapping, err);
1258                }
1259                end_page_writeback(page);
1260        }
1261}
1262EXPORT_SYMBOL_GPL(page_endio);
1263
1264/**
1265 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1266 * @__page: the page to lock
1267 */
1268void __lock_page(struct page *__page)
1269{
1270        struct page *page = compound_head(__page);
1271        wait_queue_head_t *q = page_waitqueue(page);
1272        wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1273}
1274EXPORT_SYMBOL(__lock_page);
1275
1276int __lock_page_killable(struct page *__page)
1277{
1278        struct page *page = compound_head(__page);
1279        wait_queue_head_t *q = page_waitqueue(page);
1280        return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1281}
1282EXPORT_SYMBOL_GPL(__lock_page_killable);
1283
1284/*
1285 * Return values:
1286 * 1 - page is locked; mmap_sem is still held.
1287 * 0 - page is not locked.
1288 *     mmap_sem has been released (up_read()), unless flags had both
1289 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1290 *     which case mmap_sem is still held.
1291 *
1292 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1293 * with the page locked and the mmap_sem unperturbed.
1294 */
1295int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1296                         unsigned int flags)
1297{
1298        if (flags & FAULT_FLAG_ALLOW_RETRY) {
1299                /*
1300                 * CAUTION! In this case, mmap_sem is not released
1301                 * even though return 0.
1302                 */
1303                if (flags & FAULT_FLAG_RETRY_NOWAIT)
1304                        return 0;
1305
1306                up_read(&mm->mmap_sem);
1307                if (flags & FAULT_FLAG_KILLABLE)
1308                        wait_on_page_locked_killable(page);
1309                else
1310                        wait_on_page_locked(page);
1311                return 0;
1312        } else {
1313                if (flags & FAULT_FLAG_KILLABLE) {
1314                        int ret;
1315
1316                        ret = __lock_page_killable(page);
1317                        if (ret) {
1318                                up_read(&mm->mmap_sem);
1319                                return 0;
1320                        }
1321                } else
1322                        __lock_page(page);
1323                return 1;
1324        }
1325}
1326
1327/**
1328 * page_cache_next_hole - find the next hole (not-present entry)
1329 * @mapping: mapping
1330 * @index: index
1331 * @max_scan: maximum range to search
1332 *
1333 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1334 * lowest indexed hole.
1335 *
1336 * Returns: the index of the hole if found, otherwise returns an index
1337 * outside of the set specified (in which case 'return - index >=
1338 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1339 * be returned.
1340 *
1341 * page_cache_next_hole may be called under rcu_read_lock. However,
1342 * like radix_tree_gang_lookup, this will not atomically search a
1343 * snapshot of the tree at a single point in time. For example, if a
1344 * hole is created at index 5, then subsequently a hole is created at
1345 * index 10, page_cache_next_hole covering both indexes may return 10
1346 * if called under rcu_read_lock.
1347 */
1348pgoff_t page_cache_next_hole(struct address_space *mapping,
1349                             pgoff_t index, unsigned long max_scan)
1350{
1351        unsigned long i;
1352
1353        for (i = 0; i < max_scan; i++) {
1354                struct page *page;
1355
1356                page = radix_tree_lookup(&mapping->page_tree, index);
1357                if (!page || radix_tree_exceptional_entry(page))
1358                        break;
1359                index++;
1360                if (index == 0)
1361                        break;
1362        }
1363
1364        return index;
1365}
1366EXPORT_SYMBOL(page_cache_next_hole);
1367
1368/**
1369 * page_cache_prev_hole - find the prev hole (not-present entry)
1370 * @mapping: mapping
1371 * @index: index
1372 * @max_scan: maximum range to search
1373 *
1374 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1375 * the first hole.
1376 *
1377 * Returns: the index of the hole if found, otherwise returns an index
1378 * outside of the set specified (in which case 'index - return >=
1379 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1380 * will be returned.
1381 *
1382 * page_cache_prev_hole may be called under rcu_read_lock. However,
1383 * like radix_tree_gang_lookup, this will not atomically search a
1384 * snapshot of the tree at a single point in time. For example, if a
1385 * hole is created at index 10, then subsequently a hole is created at
1386 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1387 * called under rcu_read_lock.
1388 */
1389pgoff_t page_cache_prev_hole(struct address_space *mapping,
1390                             pgoff_t index, unsigned long max_scan)
1391{
1392        unsigned long i;
1393
1394        for (i = 0; i < max_scan; i++) {
1395                struct page *page;
1396
1397                page = radix_tree_lookup(&mapping->page_tree, index);
1398                if (!page || radix_tree_exceptional_entry(page))
1399                        break;
1400                index--;
1401                if (index == ULONG_MAX)
1402                        break;
1403        }
1404
1405        return index;
1406}
1407EXPORT_SYMBOL(page_cache_prev_hole);
1408
1409/**
1410 * find_get_entry - find and get a page cache entry
1411 * @mapping: the address_space to search
1412 * @offset: the page cache index
1413 *
1414 * Looks up the page cache slot at @mapping & @offset.  If there is a
1415 * page cache page, it is returned with an increased refcount.
1416 *
1417 * If the slot holds a shadow entry of a previously evicted page, or a
1418 * swap entry from shmem/tmpfs, it is returned.
1419 *
1420 * Otherwise, %NULL is returned.
1421 */
1422struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1423{
1424        void **pagep;
1425        struct page *head, *page;
1426
1427        rcu_read_lock();
1428repeat:
1429        page = NULL;
1430        pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1431        if (pagep) {
1432                page = radix_tree_deref_slot(pagep);
1433                if (unlikely(!page))
1434                        goto out;
1435                if (radix_tree_exception(page)) {
1436                        if (radix_tree_deref_retry(page))
1437                                goto repeat;
1438                        /*
1439                         * A shadow entry of a recently evicted page,
1440                         * or a swap entry from shmem/tmpfs.  Return
1441                         * it without attempting to raise page count.
1442                         */
1443                        goto out;
1444                }
1445
1446                head = compound_head(page);
1447                if (!page_cache_get_speculative(head))
1448                        goto repeat;
1449
1450                /* The page was split under us? */
1451                if (compound_head(page) != head) {
1452                        put_page(head);
1453                        goto repeat;
1454                }
1455
1456                /*
1457                 * Has the page moved?
1458                 * This is part of the lockless pagecache protocol. See
1459                 * include/linux/pagemap.h for details.
1460                 */
1461                if (unlikely(page != *pagep)) {
1462                        put_page(head);
1463                        goto repeat;
1464                }
1465        }
1466out:
1467        rcu_read_unlock();
1468
1469        return page;
1470}
1471EXPORT_SYMBOL(find_get_entry);
1472
1473/**
1474 * find_lock_entry - locate, pin and lock a page cache entry
1475 * @mapping: the address_space to search
1476 * @offset: the page cache index
1477 *
1478 * Looks up the page cache slot at @mapping & @offset.  If there is a
1479 * page cache page, it is returned locked and with an increased
1480 * refcount.
1481 *
1482 * If the slot holds a shadow entry of a previously evicted page, or a
1483 * swap entry from shmem/tmpfs, it is returned.
1484 *
1485 * Otherwise, %NULL is returned.
1486 *
1487 * find_lock_entry() may sleep.
1488 */
1489struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1490{
1491        struct page *page;
1492
1493repeat:
1494        page = find_get_entry(mapping, offset);
1495        if (page && !radix_tree_exception(page)) {
1496                lock_page(page);
1497                /* Has the page been truncated? */
1498                if (unlikely(page_mapping(page) != mapping)) {
1499                        unlock_page(page);
1500                        put_page(page);
1501                        goto repeat;
1502                }
1503                VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1504        }
1505        return page;
1506}
1507EXPORT_SYMBOL(find_lock_entry);
1508
1509/**
1510 * pagecache_get_page - find and get a page reference
1511 * @mapping: the address_space to search
1512 * @offset: the page index
1513 * @fgp_flags: PCG flags
1514 * @gfp_mask: gfp mask to use for the page cache data page allocation
1515 *
1516 * Looks up the page cache slot at @mapping & @offset.
1517 *
1518 * PCG flags modify how the page is returned.
1519 *
1520 * @fgp_flags can be:
1521 *
1522 * - FGP_ACCESSED: the page will be marked accessed
1523 * - FGP_LOCK: Page is return locked
1524 * - FGP_CREAT: If page is not present then a new page is allocated using
1525 *   @gfp_mask and added to the page cache and the VM's LRU
1526 *   list. The page is returned locked and with an increased
1527 *   refcount. Otherwise, NULL is returned.
1528 *
1529 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1530 * if the GFP flags specified for FGP_CREAT are atomic.
1531 *
1532 * If there is a page cache page, it is returned with an increased refcount.
1533 */
1534struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1535        int fgp_flags, gfp_t gfp_mask)
1536{
1537        struct page *page;
1538
1539repeat:
1540        page = find_get_entry(mapping, offset);
1541        if (radix_tree_exceptional_entry(page))
1542                page = NULL;
1543        if (!page)
1544                goto no_page;
1545
1546        if (fgp_flags & FGP_LOCK) {
1547                if (fgp_flags & FGP_NOWAIT) {
1548                        if (!trylock_page(page)) {
1549                                put_page(page);
1550                                return NULL;
1551                        }
1552                } else {
1553                        lock_page(page);
1554                }
1555
1556                /* Has the page been truncated? */
1557                if (unlikely(page->mapping != mapping)) {
1558                        unlock_page(page);
1559                        put_page(page);
1560                        goto repeat;
1561                }
1562                VM_BUG_ON_PAGE(page->index != offset, page);
1563        }
1564
1565        if (page && (fgp_flags & FGP_ACCESSED))
1566                mark_page_accessed(page);
1567
1568no_page:
1569        if (!page && (fgp_flags & FGP_CREAT)) {
1570                int err;
1571                if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1572                        gfp_mask |= __GFP_WRITE;
1573                if (fgp_flags & FGP_NOFS)
1574                        gfp_mask &= ~__GFP_FS;
1575
1576                page = __page_cache_alloc(gfp_mask);
1577                if (!page)
1578                        return NULL;
1579
1580                if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1581                        fgp_flags |= FGP_LOCK;
1582
1583                /* Init accessed so avoid atomic mark_page_accessed later */
1584                if (fgp_flags & FGP_ACCESSED)
1585                        __SetPageReferenced(page);
1586
1587                err = add_to_page_cache_lru(page, mapping, offset,
1588                                gfp_mask & GFP_RECLAIM_MASK);
1589                if (unlikely(err)) {
1590                        put_page(page);
1591                        page = NULL;
1592                        if (err == -EEXIST)
1593                                goto repeat;
1594                }
1595        }
1596
1597        return page;
1598}
1599EXPORT_SYMBOL(pagecache_get_page);
1600
1601/**
1602 * find_get_entries - gang pagecache lookup
1603 * @mapping:    The address_space to search
1604 * @start:      The starting page cache index
1605 * @nr_entries: The maximum number of entries
1606 * @entries:    Where the resulting entries are placed
1607 * @indices:    The cache indices corresponding to the entries in @entries
1608 *
1609 * find_get_entries() will search for and return a group of up to
1610 * @nr_entries entries in the mapping.  The entries are placed at
1611 * @entries.  find_get_entries() takes a reference against any actual
1612 * pages it returns.
1613 *
1614 * The search returns a group of mapping-contiguous page cache entries
1615 * with ascending indexes.  There may be holes in the indices due to
1616 * not-present pages.
1617 *
1618 * Any shadow entries of evicted pages, or swap entries from
1619 * shmem/tmpfs, are included in the returned array.
1620 *
1621 * find_get_entries() returns the number of pages and shadow entries
1622 * which were found.
1623 */
1624unsigned find_get_entries(struct address_space *mapping,
1625                          pgoff_t start, unsigned int nr_entries,
1626                          struct page **entries, pgoff_t *indices)
1627{
1628        void **slot;
1629        unsigned int ret = 0;
1630        struct radix_tree_iter iter;
1631
1632        if (!nr_entries)
1633                return 0;
1634
1635        rcu_read_lock();
1636        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1637                struct page *head, *page;
1638repeat:
1639                page = radix_tree_deref_slot(slot);
1640                if (unlikely(!page))
1641                        continue;
1642                if (radix_tree_exception(page)) {
1643                        if (radix_tree_deref_retry(page)) {
1644                                slot = radix_tree_iter_retry(&iter);
1645                                continue;
1646                        }
1647                        /*
1648                         * A shadow entry of a recently evicted page, a swap
1649                         * entry from shmem/tmpfs or a DAX entry.  Return it
1650                         * without attempting to raise page count.
1651                         */
1652                        goto export;
1653                }
1654
1655                head = compound_head(page);
1656                if (!page_cache_get_speculative(head))
1657                        goto repeat;
1658
1659                /* The page was split under us? */
1660                if (compound_head(page) != head) {
1661                        put_page(head);
1662                        goto repeat;
1663                }
1664
1665                /* Has the page moved? */
1666                if (unlikely(page != *slot)) {
1667                        put_page(head);
1668                        goto repeat;
1669                }
1670export:
1671                indices[ret] = iter.index;
1672                entries[ret] = page;
1673                if (++ret == nr_entries)
1674                        break;
1675        }
1676        rcu_read_unlock();
1677        return ret;
1678}
1679
1680/**
1681 * find_get_pages_range - gang pagecache lookup
1682 * @mapping:    The address_space to search
1683 * @start:      The starting page index
1684 * @end:        The final page index (inclusive)
1685 * @nr_pages:   The maximum number of pages
1686 * @pages:      Where the resulting pages are placed
1687 *
1688 * find_get_pages_range() will search for and return a group of up to @nr_pages
1689 * pages in the mapping starting at index @start and up to index @end
1690 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1691 * a reference against the returned pages.
1692 *
1693 * The search returns a group of mapping-contiguous pages with ascending
1694 * indexes.  There may be holes in the indices due to not-present pages.
1695 * We also update @start to index the next page for the traversal.
1696 *
1697 * find_get_pages_range() returns the number of pages which were found. If this
1698 * number is smaller than @nr_pages, the end of specified range has been
1699 * reached.
1700 */
1701unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702                              pgoff_t end, unsigned int nr_pages,
1703                              struct page **pages)
1704{
1705        struct radix_tree_iter iter;
1706        void **slot;
1707        unsigned ret = 0;
1708
1709        if (unlikely(!nr_pages))
1710                return 0;
1711
1712        rcu_read_lock();
1713        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1714                struct page *head, *page;
1715
1716                if (iter.index > end)
1717                        break;
1718repeat:
1719                page = radix_tree_deref_slot(slot);
1720                if (unlikely(!page))
1721                        continue;
1722
1723                if (radix_tree_exception(page)) {
1724                        if (radix_tree_deref_retry(page)) {
1725                                slot = radix_tree_iter_retry(&iter);
1726                                continue;
1727                        }
1728                        /*
1729                         * A shadow entry of a recently evicted page,
1730                         * or a swap entry from shmem/tmpfs.  Skip
1731                         * over it.
1732                         */
1733                        continue;
1734                }
1735
1736                head = compound_head(page);
1737                if (!page_cache_get_speculative(head))
1738                        goto repeat;
1739
1740                /* The page was split under us? */
1741                if (compound_head(page) != head) {
1742                        put_page(head);
1743                        goto repeat;
1744                }
1745
1746                /* Has the page moved? */
1747                if (unlikely(page != *slot)) {
1748                        put_page(head);
1749                        goto repeat;
1750                }
1751
1752                pages[ret] = page;
1753                if (++ret == nr_pages) {
1754                        *start = pages[ret - 1]->index + 1;
1755                        goto out;
1756                }
1757        }
1758
1759        /*
1760         * We come here when there is no page beyond @end. We take care to not
1761         * overflow the index @start as it confuses some of the callers. This
1762         * breaks the iteration when there is page at index -1 but that is
1763         * already broken anyway.
1764         */
1765        if (end == (pgoff_t)-1)
1766                *start = (pgoff_t)-1;
1767        else
1768                *start = end + 1;
1769out:
1770        rcu_read_unlock();
1771
1772        return ret;
1773}
1774
1775/**
1776 * find_get_pages_contig - gang contiguous pagecache lookup
1777 * @mapping:    The address_space to search
1778 * @index:      The starting page index
1779 * @nr_pages:   The maximum number of pages
1780 * @pages:      Where the resulting pages are placed
1781 *
1782 * find_get_pages_contig() works exactly like find_get_pages(), except
1783 * that the returned number of pages are guaranteed to be contiguous.
1784 *
1785 * find_get_pages_contig() returns the number of pages which were found.
1786 */
1787unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788                               unsigned int nr_pages, struct page **pages)
1789{
1790        struct radix_tree_iter iter;
1791        void **slot;
1792        unsigned int ret = 0;
1793
1794        if (unlikely(!nr_pages))
1795                return 0;
1796
1797        rcu_read_lock();
1798        radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1799                struct page *head, *page;
1800repeat:
1801                page = radix_tree_deref_slot(slot);
1802                /* The hole, there no reason to continue */
1803                if (unlikely(!page))
1804                        break;
1805
1806                if (radix_tree_exception(page)) {
1807                        if (radix_tree_deref_retry(page)) {
1808                                slot = radix_tree_iter_retry(&iter);
1809                                continue;
1810                        }
1811                        /*
1812                         * A shadow entry of a recently evicted page,
1813                         * or a swap entry from shmem/tmpfs.  Stop
1814                         * looking for contiguous pages.
1815                         */
1816                        break;
1817                }
1818
1819                head = compound_head(page);
1820                if (!page_cache_get_speculative(head))
1821                        goto repeat;
1822
1823                /* The page was split under us? */
1824                if (compound_head(page) != head) {
1825                        put_page(head);
1826                        goto repeat;
1827                }
1828
1829                /* Has the page moved? */
1830                if (unlikely(page != *slot)) {
1831                        put_page(head);
1832                        goto repeat;
1833                }
1834
1835                /*
1836                 * must check mapping and index after taking the ref.
1837                 * otherwise we can get both false positives and false
1838                 * negatives, which is just confusing to the caller.
1839                 */
1840                if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1841                        put_page(page);
1842                        break;
1843                }
1844
1845                pages[ret] = page;
1846                if (++ret == nr_pages)
1847                        break;
1848        }
1849        rcu_read_unlock();
1850        return ret;
1851}
1852EXPORT_SYMBOL(find_get_pages_contig);
1853
1854/**
1855 * find_get_pages_range_tag - find and return pages in given range matching @tag
1856 * @mapping:    the address_space to search
1857 * @index:      the starting page index
1858 * @end:        The final page index (inclusive)
1859 * @tag:        the tag index
1860 * @nr_pages:   the maximum number of pages
1861 * @pages:      where the resulting pages are placed
1862 *
1863 * Like find_get_pages, except we only return pages which are tagged with
1864 * @tag.   We update @index to index the next page for the traversal.
1865 */
1866unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867                        pgoff_t end, int tag, unsigned int nr_pages,
1868                        struct page **pages)
1869{
1870        struct radix_tree_iter iter;
1871        void **slot;
1872        unsigned ret = 0;
1873
1874        if (unlikely(!nr_pages))
1875                return 0;
1876
1877        rcu_read_lock();
1878        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1879                                   &iter, *index, tag) {
1880                struct page *head, *page;
1881
1882                if (iter.index > end)
1883                        break;
1884repeat:
1885                page = radix_tree_deref_slot(slot);
1886                if (unlikely(!page))
1887                        continue;
1888
1889                if (radix_tree_exception(page)) {
1890                        if (radix_tree_deref_retry(page)) {
1891                                slot = radix_tree_iter_retry(&iter);
1892                                continue;
1893                        }
1894                        /*
1895                         * A shadow entry of a recently evicted page.
1896                         *
1897                         * Those entries should never be tagged, but
1898                         * this tree walk is lockless and the tags are
1899                         * looked up in bulk, one radix tree node at a
1900                         * time, so there is a sizable window for page
1901                         * reclaim to evict a page we saw tagged.
1902                         *
1903                         * Skip over it.
1904                         */
1905                        continue;
1906                }
1907
1908                head = compound_head(page);
1909                if (!page_cache_get_speculative(head))
1910                        goto repeat;
1911
1912                /* The page was split under us? */
1913                if (compound_head(page) != head) {
1914                        put_page(head);
1915                        goto repeat;
1916                }
1917
1918                /* Has the page moved? */
1919                if (unlikely(page != *slot)) {
1920                        put_page(head);
1921                        goto repeat;
1922                }
1923
1924                pages[ret] = page;
1925                if (++ret == nr_pages) {
1926                        *index = pages[ret - 1]->index + 1;
1927                        goto out;
1928                }
1929        }
1930
1931        /*
1932         * We come here when we got at @end. We take care to not overflow the
1933         * index @index as it confuses some of the callers. This breaks the
1934         * iteration when there is page at index -1 but that is already broken
1935         * anyway.
1936         */
1937        if (end == (pgoff_t)-1)
1938                *index = (pgoff_t)-1;
1939        else
1940                *index = end + 1;
1941out:
1942        rcu_read_unlock();
1943
1944        return ret;
1945}
1946EXPORT_SYMBOL(find_get_pages_range_tag);
1947
1948/**
1949 * find_get_entries_tag - find and return entries that match @tag
1950 * @mapping:    the address_space to search
1951 * @start:      the starting page cache index
1952 * @tag:        the tag index
1953 * @nr_entries: the maximum number of entries
1954 * @entries:    where the resulting entries are placed
1955 * @indices:    the cache indices corresponding to the entries in @entries
1956 *
1957 * Like find_get_entries, except we only return entries which are tagged with
1958 * @tag.
1959 */
1960unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1961                        int tag, unsigned int nr_entries,
1962                        struct page **entries, pgoff_t *indices)
1963{
1964        void **slot;
1965        unsigned int ret = 0;
1966        struct radix_tree_iter iter;
1967
1968        if (!nr_entries)
1969                return 0;
1970
1971        rcu_read_lock();
1972        radix_tree_for_each_tagged(slot, &mapping->page_tree,
1973                                   &iter, start, tag) {
1974                struct page *head, *page;
1975repeat:
1976                page = radix_tree_deref_slot(slot);
1977                if (unlikely(!page))
1978                        continue;
1979                if (radix_tree_exception(page)) {
1980                        if (radix_tree_deref_retry(page)) {
1981                                slot = radix_tree_iter_retry(&iter);
1982                                continue;
1983                        }
1984
1985                        /*
1986                         * A shadow entry of a recently evicted page, a swap
1987                         * entry from shmem/tmpfs or a DAX entry.  Return it
1988                         * without attempting to raise page count.
1989                         */
1990                        goto export;
1991                }
1992
1993                head = compound_head(page);
1994                if (!page_cache_get_speculative(head))
1995                        goto repeat;
1996
1997                /* The page was split under us? */
1998                if (compound_head(page) != head) {
1999                        put_page(head);
2000                        goto repeat;
2001                }
2002
2003                /* Has the page moved? */
2004                if (unlikely(page != *slot)) {
2005                        put_page(head);
2006                        goto repeat;
2007                }
2008export:
2009                indices[ret] = iter.index;
2010                entries[ret] = page;
2011                if (++ret == nr_entries)
2012                        break;
2013        }
2014        rcu_read_unlock();
2015        return ret;
2016}
2017EXPORT_SYMBOL(find_get_entries_tag);
2018
2019/*
2020 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2021 * a _large_ part of the i/o request. Imagine the worst scenario:
2022 *
2023 *      ---R__________________________________________B__________
2024 *         ^ reading here                             ^ bad block(assume 4k)
2025 *
2026 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2027 * => failing the whole request => read(R) => read(R+1) =>
2028 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2029 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2030 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2031 *
2032 * It is going insane. Fix it by quickly scaling down the readahead size.
2033 */
2034static void shrink_readahead_size_eio(struct file *filp,
2035                                        struct file_ra_state *ra)
2036{
2037        ra->ra_pages /= 4;
2038}
2039
2040/**
2041 * generic_file_buffered_read - generic file read routine
2042 * @iocb:       the iocb to read
2043 * @iter:       data destination
2044 * @written:    already copied
2045 *
2046 * This is a generic file read routine, and uses the
2047 * mapping->a_ops->readpage() function for the actual low-level stuff.
2048 *
2049 * This is really ugly. But the goto's actually try to clarify some
2050 * of the logic when it comes to error handling etc.
2051 */
2052static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2053                struct iov_iter *iter, ssize_t written)
2054{
2055        struct file *filp = iocb->ki_filp;
2056        struct address_space *mapping = filp->f_mapping;
2057        struct inode *inode = mapping->host;
2058        struct file_ra_state *ra = &filp->f_ra;
2059        loff_t *ppos = &iocb->ki_pos;
2060        pgoff_t index;
2061        pgoff_t last_index;
2062        pgoff_t prev_index;
2063        unsigned long offset;      /* offset into pagecache page */
2064        unsigned int prev_offset;
2065        int error = 0;
2066
2067        if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2068                return 0;
2069        iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2070
2071        index = *ppos >> PAGE_SHIFT;
2072        prev_index = ra->prev_pos >> PAGE_SHIFT;
2073        prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2074        last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2075        offset = *ppos & ~PAGE_MASK;
2076
2077        for (;;) {
2078                struct page *page;
2079                pgoff_t end_index;
2080                loff_t isize;
2081                unsigned long nr, ret;
2082
2083                cond_resched();
2084find_page:
2085                if (fatal_signal_pending(current)) {
2086                        error = -EINTR;
2087                        goto out;
2088                }
2089
2090                page = find_get_page(mapping, index);
2091                if (!page) {
2092                        if (iocb->ki_flags & IOCB_NOWAIT)
2093                                goto would_block;
2094                        page_cache_sync_readahead(mapping,
2095                                        ra, filp,
2096                                        index, last_index - index);
2097                        page = find_get_page(mapping, index);
2098                        if (unlikely(page == NULL))
2099                                goto no_cached_page;
2100                }
2101                if (PageReadahead(page)) {
2102                        page_cache_async_readahead(mapping,
2103                                        ra, filp, page,
2104                                        index, last_index - index);
2105                }
2106                if (!PageUptodate(page)) {
2107                        if (iocb->ki_flags & IOCB_NOWAIT) {
2108                                put_page(page);
2109                                goto would_block;
2110                        }
2111
2112                        /*
2113                         * See comment in do_read_cache_page on why
2114                         * wait_on_page_locked is used to avoid unnecessarily
2115                         * serialisations and why it's safe.
2116                         */
2117                        error = wait_on_page_locked_killable(page);
2118                        if (unlikely(error))
2119                                goto readpage_error;
2120                        if (PageUptodate(page))
2121                                goto page_ok;
2122
2123                        if (inode->i_blkbits == PAGE_SHIFT ||
2124                                        !mapping->a_ops->is_partially_uptodate)
2125                                goto page_not_up_to_date;
2126                        /* pipes can't handle partially uptodate pages */
2127                        if (unlikely(iter->type & ITER_PIPE))
2128                                goto page_not_up_to_date;
2129                        if (!trylock_page(page))
2130                                goto page_not_up_to_date;
2131                        /* Did it get truncated before we got the lock? */
2132                        if (!page->mapping)
2133                                goto page_not_up_to_date_locked;
2134                        if (!mapping->a_ops->is_partially_uptodate(page,
2135                                                        offset, iter->count))
2136                                goto page_not_up_to_date_locked;
2137                        unlock_page(page);
2138                }
2139page_ok:
2140                /*
2141                 * i_size must be checked after we know the page is Uptodate.
2142                 *
2143                 * Checking i_size after the check allows us to calculate
2144                 * the correct value for "nr", which means the zero-filled
2145                 * part of the page is not copied back to userspace (unless
2146                 * another truncate extends the file - this is desired though).
2147                 */
2148
2149                isize = i_size_read(inode);
2150                end_index = (isize - 1) >> PAGE_SHIFT;
2151                if (unlikely(!isize || index > end_index)) {
2152                        put_page(page);
2153                        goto out;
2154                }
2155
2156                /* nr is the maximum number of bytes to copy from this page */
2157                nr = PAGE_SIZE;
2158                if (index == end_index) {
2159                        nr = ((isize - 1) & ~PAGE_MASK) + 1;
2160                        if (nr <= offset) {
2161                                put_page(page);
2162                                goto out;
2163                        }
2164                }
2165                nr = nr - offset;
2166
2167                /* If users can be writing to this page using arbitrary
2168                 * virtual addresses, take care about potential aliasing
2169                 * before reading the page on the kernel side.
2170                 */
2171                if (mapping_writably_mapped(mapping))
2172                        flush_dcache_page(page);
2173
2174                /*
2175                 * When a sequential read accesses a page several times,
2176                 * only mark it as accessed the first time.
2177                 */
2178                if (prev_index != index || offset != prev_offset)
2179                        mark_page_accessed(page);
2180                prev_index = index;
2181
2182                /*
2183                 * Ok, we have the page, and it's up-to-date, so
2184                 * now we can copy it to user space...
2185                 */
2186
2187                ret = copy_page_to_iter(page, offset, nr, iter);
2188                offset += ret;
2189                index += offset >> PAGE_SHIFT;
2190                offset &= ~PAGE_MASK;
2191                prev_offset = offset;
2192
2193                put_page(page);
2194                written += ret;
2195                if (!iov_iter_count(iter))
2196                        goto out;
2197                if (ret < nr) {
2198                        error = -EFAULT;
2199                        goto out;
2200                }
2201                continue;
2202
2203page_not_up_to_date:
2204                /* Get exclusive access to the page ... */
2205                error = lock_page_killable(page);
2206                if (unlikely(error))
2207                        goto readpage_error;
2208
2209page_not_up_to_date_locked:
2210                /* Did it get truncated before we got the lock? */
2211                if (!page->mapping) {
2212                        unlock_page(page);
2213                        put_page(page);
2214                        continue;
2215                }
2216
2217                /* Did somebody else fill it already? */
2218                if (PageUptodate(page)) {
2219                        unlock_page(page);
2220                        goto page_ok;
2221                }
2222
2223readpage:
2224                /*
2225                 * A previous I/O error may have been due to temporary
2226                 * failures, eg. multipath errors.
2227                 * PG_error will be set again if readpage fails.
2228                 */
2229                ClearPageError(page);
2230                /* Start the actual read. The read will unlock the page. */
2231                error = mapping->a_ops->readpage(filp, page);
2232
2233                if (unlikely(error)) {
2234                        if (error == AOP_TRUNCATED_PAGE) {
2235                                put_page(page);
2236                                error = 0;
2237                                goto find_page;
2238                        }
2239                        goto readpage_error;
2240                }
2241
2242                if (!PageUptodate(page)) {
2243                        error = lock_page_killable(page);
2244                        if (unlikely(error))
2245                                goto readpage_error;
2246                        if (!PageUptodate(page)) {
2247                                if (page->mapping == NULL) {
2248                                        /*
2249                                         * invalidate_mapping_pages got it
2250                                         */
2251                                        unlock_page(page);
2252                                        put_page(page);
2253                                        goto find_page;
2254                                }
2255                                unlock_page(page);
2256                                shrink_readahead_size_eio(filp, ra);
2257                                error = -EIO;
2258                                goto readpage_error;
2259                        }
2260                        unlock_page(page);
2261                }
2262
2263                goto page_ok;
2264
2265readpage_error:
2266                /* UHHUH! A synchronous read error occurred. Report it */
2267                put_page(page);
2268                goto out;
2269
2270no_cached_page:
2271                /*
2272                 * Ok, it wasn't cached, so we need to create a new
2273                 * page..
2274                 */
2275                page = page_cache_alloc(mapping);
2276                if (!page) {
2277                        error = -ENOMEM;
2278                        goto out;
2279                }
2280                error = add_to_page_cache_lru(page, mapping, index,
2281                                mapping_gfp_constraint(mapping, GFP_KERNEL));
2282                if (error) {
2283                        put_page(page);
2284                        if (error == -EEXIST) {
2285                                error = 0;
2286                                goto find_page;
2287                        }
2288                        goto out;
2289                }
2290                goto readpage;
2291        }
2292
2293would_block:
2294        error = -EAGAIN;
2295out:
2296        ra->prev_pos = prev_index;
2297        ra->prev_pos <<= PAGE_SHIFT;
2298        ra->prev_pos |= prev_offset;
2299
2300        *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2301        file_accessed(filp);
2302        return written ? written : error;
2303}
2304
2305/**
2306 * generic_file_read_iter - generic filesystem read routine
2307 * @iocb:       kernel I/O control block
2308 * @iter:       destination for the data read
2309 *
2310 * This is the "read_iter()" routine for all filesystems
2311 * that can use the page cache directly.
2312 */
2313ssize_t
2314generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2315{
2316        size_t count = iov_iter_count(iter);
2317        ssize_t retval = 0;
2318
2319        if (!count)
2320                goto out; /* skip atime */
2321
2322        if (iocb->ki_flags & IOCB_DIRECT) {
2323                struct file *file = iocb->ki_filp;
2324                struct address_space *mapping = file->f_mapping;
2325                struct inode *inode = mapping->host;
2326                loff_t size;
2327
2328                size = i_size_read(inode);
2329                if (iocb->ki_flags & IOCB_NOWAIT) {
2330                        if (filemap_range_has_page(mapping, iocb->ki_pos,
2331                                                   iocb->ki_pos + count - 1))
2332                                return -EAGAIN;
2333                } else {
2334                        retval = filemap_write_and_wait_range(mapping,
2335                                                iocb->ki_pos,
2336                                                iocb->ki_pos + count - 1);
2337                        if (retval < 0)
2338                                goto out;
2339                }
2340
2341                file_accessed(file);
2342
2343                retval = mapping->a_ops->direct_IO(iocb, iter);
2344                if (retval >= 0) {
2345                        iocb->ki_pos += retval;
2346                        count -= retval;
2347                }
2348                iov_iter_revert(iter, count - iov_iter_count(iter));
2349
2350                /*
2351                 * Btrfs can have a short DIO read if we encounter
2352                 * compressed extents, so if there was an error, or if
2353                 * we've already read everything we wanted to, or if
2354                 * there was a short read because we hit EOF, go ahead
2355                 * and return.  Otherwise fallthrough to buffered io for
2356                 * the rest of the read.  Buffered reads will not work for
2357                 * DAX files, so don't bother trying.
2358                 */
2359                if (retval < 0 || !count || iocb->ki_pos >= size ||
2360                    IS_DAX(inode))
2361                        goto out;
2362        }
2363
2364        retval = generic_file_buffered_read(iocb, iter, retval);
2365out:
2366        return retval;
2367}
2368EXPORT_SYMBOL(generic_file_read_iter);
2369
2370#ifdef CONFIG_MMU
2371/**
2372 * page_cache_read - adds requested page to the page cache if not already there
2373 * @file:       file to read
2374 * @offset:     page index
2375 * @gfp_mask:   memory allocation flags
2376 *
2377 * This adds the requested page to the page cache if it isn't already there,
2378 * and schedules an I/O to read in its contents from disk.
2379 */
2380static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2381{
2382        struct address_space *mapping = file->f_mapping;
2383        struct page *page;
2384        int ret;
2385
2386        do {
2387                page = __page_cache_alloc(gfp_mask);
2388                if (!page)
2389                        return -ENOMEM;
2390
2391                ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2392                if (ret == 0)
2393                        ret = mapping->a_ops->readpage(file, page);
2394                else if (ret == -EEXIST)
2395                        ret = 0; /* losing race to add is OK */
2396
2397                put_page(page);
2398
2399        } while (ret == AOP_TRUNCATED_PAGE);
2400
2401        return ret;
2402}
2403
2404#define MMAP_LOTSAMISS  (100)
2405
2406/*
2407 * Synchronous readahead happens when we don't even find
2408 * a page in the page cache at all.
2409 */
2410static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2411                                   struct file_ra_state *ra,
2412                                   struct file *file,
2413                                   pgoff_t offset)
2414{
2415        struct address_space *mapping = file->f_mapping;
2416
2417        /* If we don't want any read-ahead, don't bother */
2418        if (vma->vm_flags & VM_RAND_READ)
2419                return;
2420        if (!ra->ra_pages)
2421                return;
2422
2423        if (vma->vm_flags & VM_SEQ_READ) {
2424                page_cache_sync_readahead(mapping, ra, file, offset,
2425                                          ra->ra_pages);
2426                return;
2427        }
2428
2429        /* Avoid banging the cache line if not needed */
2430        if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2431                ra->mmap_miss++;
2432
2433        /*
2434         * Do we miss much more than hit in this file? If so,
2435         * stop bothering with read-ahead. It will only hurt.
2436         */
2437        if (ra->mmap_miss > MMAP_LOTSAMISS)
2438                return;
2439
2440        /*
2441         * mmap read-around
2442         */
2443        ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2444        ra->size = ra->ra_pages;
2445        ra->async_size = ra->ra_pages / 4;
2446        ra_submit(ra, mapping, file);
2447}
2448
2449/*
2450 * Asynchronous readahead happens when we find the page and PG_readahead,
2451 * so we want to possibly extend the readahead further..
2452 */
2453static void do_async_mmap_readahead(struct vm_area_struct *vma,
2454                                    struct file_ra_state *ra,
2455                                    struct file *file,
2456                                    struct page *page,
2457                                    pgoff_t offset)
2458{
2459        struct address_space *mapping = file->f_mapping;
2460
2461        /* If we don't want any read-ahead, don't bother */
2462        if (vma->vm_flags & VM_RAND_READ)
2463                return;
2464        if (ra->mmap_miss > 0)
2465                ra->mmap_miss--;
2466        if (PageReadahead(page))
2467                page_cache_async_readahead(mapping, ra, file,
2468                                           page, offset, ra->ra_pages);
2469}
2470
2471/**
2472 * filemap_fault - read in file data for page fault handling
2473 * @vmf:        struct vm_fault containing details of the fault
2474 *
2475 * filemap_fault() is invoked via the vma operations vector for a
2476 * mapped memory region to read in file data during a page fault.
2477 *
2478 * The goto's are kind of ugly, but this streamlines the normal case of having
2479 * it in the page cache, and handles the special cases reasonably without
2480 * having a lot of duplicated code.
2481 *
2482 * vma->vm_mm->mmap_sem must be held on entry.
2483 *
2484 * If our return value has VM_FAULT_RETRY set, it's because
2485 * lock_page_or_retry() returned 0.
2486 * The mmap_sem has usually been released in this case.
2487 * See __lock_page_or_retry() for the exception.
2488 *
2489 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2490 * has not been released.
2491 *
2492 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2493 */
2494int filemap_fault(struct vm_fault *vmf)
2495{
2496        int error;
2497        struct file *file = vmf->vma->vm_file;
2498        struct address_space *mapping = file->f_mapping;
2499        struct file_ra_state *ra = &file->f_ra;
2500        struct inode *inode = mapping->host;
2501        pgoff_t offset = vmf->pgoff;
2502        pgoff_t max_off;
2503        struct page *page;
2504        int ret = 0;
2505
2506        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2507        if (unlikely(offset >= max_off))
2508                return VM_FAULT_SIGBUS;
2509
2510        /*
2511         * Do we have something in the page cache already?
2512         */
2513        page = find_get_page(mapping, offset);
2514        if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2515                /*
2516                 * We found the page, so try async readahead before
2517                 * waiting for the lock.
2518                 */
2519                do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2520        } else if (!page) {
2521                /* No page in the page cache at all */
2522                do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2523                count_vm_event(PGMAJFAULT);
2524                count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2525                ret = VM_FAULT_MAJOR;
2526retry_find:
2527                page = find_get_page(mapping, offset);
2528                if (!page)
2529                        goto no_cached_page;
2530        }
2531
2532        if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2533                put_page(page);
2534                return ret | VM_FAULT_RETRY;
2535        }
2536
2537        /* Did it get truncated? */
2538        if (unlikely(page->mapping != mapping)) {
2539                unlock_page(page);
2540                put_page(page);
2541                goto retry_find;
2542        }
2543        VM_BUG_ON_PAGE(page->index != offset, page);
2544
2545        /*
2546         * We have a locked page in the page cache, now we need to check
2547         * that it's up-to-date. If not, it is going to be due to an error.
2548         */
2549        if (unlikely(!PageUptodate(page)))
2550                goto page_not_uptodate;
2551
2552        /*
2553         * Found the page and have a reference on it.
2554         * We must recheck i_size under page lock.
2555         */
2556        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2557        if (unlikely(offset >= max_off)) {
2558                unlock_page(page);
2559                put_page(page);
2560                return VM_FAULT_SIGBUS;
2561        }
2562
2563        vmf->page = page;
2564        return ret | VM_FAULT_LOCKED;
2565
2566no_cached_page:
2567        /*
2568         * We're only likely to ever get here if MADV_RANDOM is in
2569         * effect.
2570         */
2571        error = page_cache_read(file, offset, vmf->gfp_mask);
2572
2573        /*
2574         * The page we want has now been added to the page cache.
2575         * In the unlikely event that someone removed it in the
2576         * meantime, we'll just come back here and read it again.
2577         */
2578        if (error >= 0)
2579                goto retry_find;
2580
2581        /*
2582         * An error return from page_cache_read can result if the
2583         * system is low on memory, or a problem occurs while trying
2584         * to schedule I/O.
2585         */
2586        if (error == -ENOMEM)
2587                return VM_FAULT_OOM;
2588        return VM_FAULT_SIGBUS;
2589
2590page_not_uptodate:
2591        /*
2592         * Umm, take care of errors if the page isn't up-to-date.
2593         * Try to re-read it _once_. We do this synchronously,
2594         * because there really aren't any performance issues here
2595         * and we need to check for errors.
2596         */
2597        ClearPageError(page);
2598        error = mapping->a_ops->readpage(file, page);
2599        if (!error) {
2600                wait_on_page_locked(page);
2601                if (!PageUptodate(page))
2602                        error = -EIO;
2603        }
2604        put_page(page);
2605
2606        if (!error || error == AOP_TRUNCATED_PAGE)
2607                goto retry_find;
2608
2609        /* Things didn't work out. Return zero to tell the mm layer so. */
2610        shrink_readahead_size_eio(file, ra);
2611        return VM_FAULT_SIGBUS;
2612}
2613EXPORT_SYMBOL(filemap_fault);
2614
2615void filemap_map_pages(struct vm_fault *vmf,
2616                pgoff_t start_pgoff, pgoff_t end_pgoff)
2617{
2618        struct radix_tree_iter iter;
2619        void **slot;
2620        struct file *file = vmf->vma->vm_file;
2621        struct address_space *mapping = file->f_mapping;
2622        pgoff_t last_pgoff = start_pgoff;
2623        unsigned long max_idx;
2624        struct page *head, *page;
2625
2626        rcu_read_lock();
2627        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2628                        start_pgoff) {
2629                if (iter.index > end_pgoff)
2630                        break;
2631repeat:
2632                page = radix_tree_deref_slot(slot);
2633                if (unlikely(!page))
2634                        goto next;
2635                if (radix_tree_exception(page)) {
2636                        if (radix_tree_deref_retry(page)) {
2637                                slot = radix_tree_iter_retry(&iter);
2638                                continue;
2639                        }
2640                        goto next;
2641                }
2642
2643                head = compound_head(page);
2644                if (!page_cache_get_speculative(head))
2645                        goto repeat;
2646
2647                /* The page was split under us? */
2648                if (compound_head(page) != head) {
2649                        put_page(head);
2650                        goto repeat;
2651                }
2652
2653                /* Has the page moved? */
2654                if (unlikely(page != *slot)) {
2655                        put_page(head);
2656                        goto repeat;
2657                }
2658
2659                if (!PageUptodate(page) ||
2660                                PageReadahead(page) ||
2661                                PageHWPoison(page))
2662                        goto skip;
2663                if (!trylock_page(page))
2664                        goto skip;
2665
2666                if (page->mapping != mapping || !PageUptodate(page))
2667                        goto unlock;
2668
2669                max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2670                if (page->index >= max_idx)
2671                        goto unlock;
2672
2673                if (file->f_ra.mmap_miss > 0)
2674                        file->f_ra.mmap_miss--;
2675
2676                vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2677                if (vmf->pte)
2678                        vmf->pte += iter.index - last_pgoff;
2679                last_pgoff = iter.index;
2680                if (alloc_set_pte(vmf, NULL, page))
2681                        goto unlock;
2682                unlock_page(page);
2683                goto next;
2684unlock:
2685                unlock_page(page);
2686skip:
2687                put_page(page);
2688next:
2689                /* Huge page is mapped? No need to proceed. */
2690                if (pmd_trans_huge(*vmf->pmd))
2691                        break;
2692                if (iter.index == end_pgoff)
2693                        break;
2694        }
2695        rcu_read_unlock();
2696}
2697EXPORT_SYMBOL(filemap_map_pages);
2698
2699int filemap_page_mkwrite(struct vm_fault *vmf)
2700{
2701        struct page *page = vmf->page;
2702        struct inode *inode = file_inode(vmf->vma->vm_file);
2703        int ret = VM_FAULT_LOCKED;
2704
2705        sb_start_pagefault(inode->i_sb);
2706        file_update_time(vmf->vma->vm_file);
2707        lock_page(page);
2708        if (page->mapping != inode->i_mapping) {
2709                unlock_page(page);
2710                ret = VM_FAULT_NOPAGE;
2711                goto out;
2712        }
2713        /*
2714         * We mark the page dirty already here so that when freeze is in
2715         * progress, we are guaranteed that writeback during freezing will
2716         * see the dirty page and writeprotect it again.
2717         */
2718        set_page_dirty(page);
2719        wait_for_stable_page(page);
2720out:
2721        sb_end_pagefault(inode->i_sb);
2722        return ret;
2723}
2724EXPORT_SYMBOL(filemap_page_mkwrite);
2725
2726const struct vm_operations_struct generic_file_vm_ops = {
2727        .fault          = filemap_fault,
2728        .map_pages      = filemap_map_pages,
2729        .page_mkwrite   = filemap_page_mkwrite,
2730};
2731
2732/* This is used for a general mmap of a disk file */
2733
2734int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2735{
2736        struct address_space *mapping = file->f_mapping;
2737
2738        if (!mapping->a_ops->readpage)
2739                return -ENOEXEC;
2740        file_accessed(file);
2741        vma->vm_ops = &generic_file_vm_ops;
2742        return 0;
2743}
2744
2745/*
2746 * This is for filesystems which do not implement ->writepage.
2747 */
2748int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2749{
2750        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2751                return -EINVAL;
2752        return generic_file_mmap(file, vma);
2753}
2754#else
2755int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757        return -ENOSYS;
2758}
2759int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2760{
2761        return -ENOSYS;
2762}
2763#endif /* CONFIG_MMU */
2764
2765EXPORT_SYMBOL(generic_file_mmap);
2766EXPORT_SYMBOL(generic_file_readonly_mmap);
2767
2768static struct page *wait_on_page_read(struct page *page)
2769{
2770        if (!IS_ERR(page)) {
2771                wait_on_page_locked(page);
2772                if (!PageUptodate(page)) {
2773                        put_page(page);
2774                        page = ERR_PTR(-EIO);
2775                }
2776        }
2777        return page;
2778}
2779
2780static struct page *do_read_cache_page(struct address_space *mapping,
2781                                pgoff_t index,
2782                                int (*filler)(void *, struct page *),
2783                                void *data,
2784                                gfp_t gfp)
2785{
2786        struct page *page;
2787        int err;
2788repeat:
2789        page = find_get_page(mapping, index);
2790        if (!page) {
2791                page = __page_cache_alloc(gfp);
2792                if (!page)
2793                        return ERR_PTR(-ENOMEM);
2794                err = add_to_page_cache_lru(page, mapping, index, gfp);
2795                if (unlikely(err)) {
2796                        put_page(page);
2797                        if (err == -EEXIST)
2798                                goto repeat;
2799                        /* Presumably ENOMEM for radix tree node */
2800                        return ERR_PTR(err);
2801                }
2802
2803filler:
2804                err = filler(data, page);
2805                if (err < 0) {
2806                        put_page(page);
2807                        return ERR_PTR(err);
2808                }
2809
2810                page = wait_on_page_read(page);
2811                if (IS_ERR(page))
2812                        return page;
2813                goto out;
2814        }
2815        if (PageUptodate(page))
2816                goto out;
2817
2818        /*
2819         * Page is not up to date and may be locked due one of the following
2820         * case a: Page is being filled and the page lock is held
2821         * case b: Read/write error clearing the page uptodate status
2822         * case c: Truncation in progress (page locked)
2823         * case d: Reclaim in progress
2824         *
2825         * Case a, the page will be up to date when the page is unlocked.
2826         *    There is no need to serialise on the page lock here as the page
2827         *    is pinned so the lock gives no additional protection. Even if the
2828         *    the page is truncated, the data is still valid if PageUptodate as
2829         *    it's a race vs truncate race.
2830         * Case b, the page will not be up to date
2831         * Case c, the page may be truncated but in itself, the data may still
2832         *    be valid after IO completes as it's a read vs truncate race. The
2833         *    operation must restart if the page is not uptodate on unlock but
2834         *    otherwise serialising on page lock to stabilise the mapping gives
2835         *    no additional guarantees to the caller as the page lock is
2836         *    released before return.
2837         * Case d, similar to truncation. If reclaim holds the page lock, it
2838         *    will be a race with remove_mapping that determines if the mapping
2839         *    is valid on unlock but otherwise the data is valid and there is
2840         *    no need to serialise with page lock.
2841         *
2842         * As the page lock gives no additional guarantee, we optimistically
2843         * wait on the page to be unlocked and check if it's up to date and
2844         * use the page if it is. Otherwise, the page lock is required to
2845         * distinguish between the different cases. The motivation is that we
2846         * avoid spurious serialisations and wakeups when multiple processes
2847         * wait on the same page for IO to complete.
2848         */
2849        wait_on_page_locked(page);
2850        if (PageUptodate(page))
2851                goto out;
2852
2853        /* Distinguish between all the cases under the safety of the lock */
2854        lock_page(page);
2855
2856        /* Case c or d, restart the operation */
2857        if (!page->mapping) {
2858                unlock_page(page);
2859                put_page(page);
2860                goto repeat;
2861        }
2862
2863        /* Someone else locked and filled the page in a very small window */
2864        if (PageUptodate(page)) {
2865                unlock_page(page);
2866                goto out;
2867        }
2868        goto filler;
2869
2870out:
2871        mark_page_accessed(page);
2872        return page;
2873}
2874
2875/**
2876 * read_cache_page - read into page cache, fill it if needed
2877 * @mapping:    the page's address_space
2878 * @index:      the page index
2879 * @filler:     function to perform the read
2880 * @data:       first arg to filler(data, page) function, often left as NULL
2881 *
2882 * Read into the page cache. If a page already exists, and PageUptodate() is
2883 * not set, try to fill the page and wait for it to become unlocked.
2884 *
2885 * If the page does not get brought uptodate, return -EIO.
2886 */
2887struct page *read_cache_page(struct address_space *mapping,
2888                                pgoff_t index,
2889                                int (*filler)(void *, struct page *),
2890                                void *data)
2891{
2892        return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2893}
2894EXPORT_SYMBOL(read_cache_page);
2895
2896/**
2897 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2898 * @mapping:    the page's address_space
2899 * @index:      the page index
2900 * @gfp:        the page allocator flags to use if allocating
2901 *
2902 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2903 * any new page allocations done using the specified allocation flags.
2904 *
2905 * If the page does not get brought uptodate, return -EIO.
2906 */
2907struct page *read_cache_page_gfp(struct address_space *mapping,
2908                                pgoff_t index,
2909                                gfp_t gfp)
2910{
2911        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2912
2913        return do_read_cache_page(mapping, index, filler, NULL, gfp);
2914}
2915EXPORT_SYMBOL(read_cache_page_gfp);
2916
2917/*
2918 * Performs necessary checks before doing a write
2919 *
2920 * Can adjust writing position or amount of bytes to write.
2921 * Returns appropriate error code that caller should return or
2922 * zero in case that write should be allowed.
2923 */
2924inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2925{
2926        struct file *file = iocb->ki_filp;
2927        struct inode *inode = file->f_mapping->host;
2928        unsigned long limit = rlimit(RLIMIT_FSIZE);
2929        loff_t pos;
2930
2931        if (!iov_iter_count(from))
2932                return 0;
2933
2934        /* FIXME: this is for backwards compatibility with 2.4 */
2935        if (iocb->ki_flags & IOCB_APPEND)
2936                iocb->ki_pos = i_size_read(inode);
2937
2938        pos = iocb->ki_pos;
2939
2940        if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2941                return -EINVAL;
2942
2943        if (limit != RLIM_INFINITY) {
2944                if (iocb->ki_pos >= limit) {
2945                        send_sig(SIGXFSZ, current, 0);
2946                        return -EFBIG;
2947                }
2948                iov_iter_truncate(from, limit - (unsigned long)pos);
2949        }
2950
2951        /*
2952         * LFS rule
2953         */
2954        if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2955                                !(file->f_flags & O_LARGEFILE))) {
2956                if (pos >= MAX_NON_LFS)
2957                        return -EFBIG;
2958                iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2959        }
2960
2961        /*
2962         * Are we about to exceed the fs block limit ?
2963         *
2964         * If we have written data it becomes a short write.  If we have
2965         * exceeded without writing data we send a signal and return EFBIG.
2966         * Linus frestrict idea will clean these up nicely..
2967         */
2968        if (unlikely(pos >= inode->i_sb->s_maxbytes))
2969                return -EFBIG;
2970
2971        iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2972        return iov_iter_count(from);
2973}
2974EXPORT_SYMBOL(generic_write_checks);
2975
2976int pagecache_write_begin(struct file *file, struct address_space *mapping,
2977                                loff_t pos, unsigned len, unsigned flags,
2978                                struct page **pagep, void **fsdata)
2979{
2980        const struct address_space_operations *aops = mapping->a_ops;
2981
2982        return aops->write_begin(file, mapping, pos, len, flags,
2983                                                        pagep, fsdata);
2984}
2985EXPORT_SYMBOL(pagecache_write_begin);
2986
2987int pagecache_write_end(struct file *file, struct address_space *mapping,
2988                                loff_t pos, unsigned len, unsigned copied,
2989                                struct page *page, void *fsdata)
2990{
2991        const struct address_space_operations *aops = mapping->a_ops;
2992
2993        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2994}
2995EXPORT_SYMBOL(pagecache_write_end);
2996
2997ssize_t
2998generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2999{
3000        struct file     *file = iocb->ki_filp;
3001        struct address_space *mapping = file->f_mapping;
3002        struct inode    *inode = mapping->host;
3003        loff_t          pos = iocb->ki_pos;
3004        ssize_t         written;
3005        size_t          write_len;
3006        pgoff_t         end;
3007
3008        write_len = iov_iter_count(from);
3009        end = (pos + write_len - 1) >> PAGE_SHIFT;
3010
3011        if (iocb->ki_flags & IOCB_NOWAIT) {
3012                /* If there are pages to writeback, return */
3013                if (filemap_range_has_page(inode->i_mapping, pos,
3014                                           pos + iov_iter_count(from)))
3015                        return -EAGAIN;
3016        } else {
3017                written = filemap_write_and_wait_range(mapping, pos,
3018                                                        pos + write_len - 1);
3019                if (written)
3020                        goto out;
3021        }
3022
3023        /*
3024         * After a write we want buffered reads to be sure to go to disk to get
3025         * the new data.  We invalidate clean cached page from the region we're
3026         * about to write.  We do this *before* the write so that we can return
3027         * without clobbering -EIOCBQUEUED from ->direct_IO().
3028         */
3029        written = invalidate_inode_pages2_range(mapping,
3030                                        pos >> PAGE_SHIFT, end);
3031        /*
3032         * If a page can not be invalidated, return 0 to fall back
3033         * to buffered write.
3034         */
3035        if (written) {
3036                if (written == -EBUSY)
3037                        return 0;
3038                goto out;
3039        }
3040
3041        written = mapping->a_ops->direct_IO(iocb, from);
3042
3043        /*
3044         * Finally, try again to invalidate clean pages which might have been
3045         * cached by non-direct readahead, or faulted in by get_user_pages()
3046         * if the source of the write was an mmap'ed region of the file
3047         * we're writing.  Either one is a pretty crazy thing to do,
3048         * so we don't support it 100%.  If this invalidation
3049         * fails, tough, the write still worked...
3050         *
3051         * Most of the time we do not need this since dio_complete() will do
3052         * the invalidation for us. However there are some file systems that
3053         * do not end up with dio_complete() being called, so let's not break
3054         * them by removing it completely
3055         */
3056        if (mapping->nrpages)
3057                invalidate_inode_pages2_range(mapping,
3058                                        pos >> PAGE_SHIFT, end);
3059
3060        if (written > 0) {
3061                pos += written;
3062                write_len -= written;
3063                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3064                        i_size_write(inode, pos);
3065                        mark_inode_dirty(inode);
3066                }
3067                iocb->ki_pos = pos;
3068        }
3069        iov_iter_revert(from, write_len - iov_iter_count(from));
3070out:
3071        return written;
3072}
3073EXPORT_SYMBOL(generic_file_direct_write);
3074
3075/*
3076 * Find or create a page at the given pagecache position. Return the locked
3077 * page. This function is specifically for buffered writes.
3078 */
3079struct page *grab_cache_page_write_begin(struct address_space *mapping,
3080                                        pgoff_t index, unsigned flags)
3081{
3082        struct page *page;
3083        int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3084
3085        if (flags & AOP_FLAG_NOFS)
3086                fgp_flags |= FGP_NOFS;
3087
3088        page = pagecache_get_page(mapping, index, fgp_flags,
3089                        mapping_gfp_mask(mapping));
3090        if (page)
3091                wait_for_stable_page(page);
3092
3093        return page;
3094}
3095EXPORT_SYMBOL(grab_cache_page_write_begin);
3096
3097ssize_t generic_perform_write(struct file *file,
3098                                struct iov_iter *i, loff_t pos)
3099{
3100        struct address_space *mapping = file->f_mapping;
3101        const struct address_space_operations *a_ops = mapping->a_ops;
3102        long status = 0;
3103        ssize_t written = 0;
3104        unsigned int flags = 0;
3105
3106        do {
3107                struct page *page;
3108                unsigned long offset;   /* Offset into pagecache page */
3109                unsigned long bytes;    /* Bytes to write to page */
3110                size_t copied;          /* Bytes copied from user */
3111                void *fsdata;
3112
3113                offset = (pos & (PAGE_SIZE - 1));
3114                bytes = min_t(unsigned long, PAGE_SIZE - offset,
3115                                                iov_iter_count(i));
3116
3117again:
3118                /*
3119                 * Bring in the user page that we will copy from _first_.
3120                 * Otherwise there's a nasty deadlock on copying from the
3121                 * same page as we're writing to, without it being marked
3122                 * up-to-date.
3123                 *
3124                 * Not only is this an optimisation, but it is also required
3125                 * to check that the address is actually valid, when atomic
3126                 * usercopies are used, below.
3127                 */
3128                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3129                        status = -EFAULT;
3130                        break;
3131                }
3132
3133                if (fatal_signal_pending(current)) {
3134                        status = -EINTR;
3135                        break;
3136                }
3137
3138                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3139                                                &page, &fsdata);
3140                if (unlikely(status < 0))
3141                        break;
3142
3143                if (mapping_writably_mapped(mapping))
3144                        flush_dcache_page(page);
3145
3146                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3147                flush_dcache_page(page);
3148
3149                status = a_ops->write_end(file, mapping, pos, bytes, copied,
3150                                                page, fsdata);
3151                if (unlikely(status < 0))
3152                        break;
3153                copied = status;
3154
3155                cond_resched();
3156
3157                iov_iter_advance(i, copied);
3158                if (unlikely(copied == 0)) {
3159                        /*
3160                         * If we were unable to copy any data at all, we must
3161                         * fall back to a single segment length write.
3162                         *
3163                         * If we didn't fallback here, we could livelock
3164                         * because not all segments in the iov can be copied at
3165                         * once without a pagefault.
3166                         */
3167                        bytes = min_t(unsigned long, PAGE_SIZE - offset,
3168                                                iov_iter_single_seg_count(i));
3169                        goto again;
3170                }
3171                pos += copied;
3172                written += copied;
3173
3174                balance_dirty_pages_ratelimited(mapping);
3175        } while (iov_iter_count(i));
3176
3177        return written ? written : status;
3178}
3179EXPORT_SYMBOL(generic_perform_write);
3180
3181/**
3182 * __generic_file_write_iter - write data to a file
3183 * @iocb:       IO state structure (file, offset, etc.)
3184 * @from:       iov_iter with data to write
3185 *
3186 * This function does all the work needed for actually writing data to a
3187 * file. It does all basic checks, removes SUID from the file, updates
3188 * modification times and calls proper subroutines depending on whether we
3189 * do direct IO or a standard buffered write.
3190 *
3191 * It expects i_mutex to be grabbed unless we work on a block device or similar
3192 * object which does not need locking at all.
3193 *
3194 * This function does *not* take care of syncing data in case of O_SYNC write.
3195 * A caller has to handle it. This is mainly due to the fact that we want to
3196 * avoid syncing under i_mutex.
3197 */
3198ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3199{
3200        struct file *file = iocb->ki_filp;
3201        struct address_space * mapping = file->f_mapping;
3202        struct inode    *inode = mapping->host;
3203        ssize_t         written = 0;
3204        ssize_t         err;
3205        ssize_t         status;
3206
3207        /* We can write back this queue in page reclaim */
3208        current->backing_dev_info = inode_to_bdi(inode);
3209        err = file_remove_privs(file);
3210        if (err)
3211                goto out;
3212
3213        err = file_update_time(file);
3214        if (err)
3215                goto out;
3216
3217        if (iocb->ki_flags & IOCB_DIRECT) {
3218                loff_t pos, endbyte;
3219
3220                written = generic_file_direct_write(iocb, from);
3221                /*
3222                 * If the write stopped short of completing, fall back to
3223                 * buffered writes.  Some filesystems do this for writes to
3224                 * holes, for example.  For DAX files, a buffered write will
3225                 * not succeed (even if it did, DAX does not handle dirty
3226                 * page-cache pages correctly).
3227                 */
3228                if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3229                        goto out;
3230
3231                status = generic_perform_write(file, from, pos = iocb->ki_pos);
3232                /*
3233                 * If generic_perform_write() returned a synchronous error
3234                 * then we want to return the number of bytes which were
3235                 * direct-written, or the error code if that was zero.  Note
3236                 * that this differs from normal direct-io semantics, which
3237                 * will return -EFOO even if some bytes were written.
3238                 */
3239                if (unlikely(status < 0)) {
3240                        err = status;
3241                        goto out;
3242                }
3243                /*
3244                 * We need to ensure that the page cache pages are written to
3245                 * disk and invalidated to preserve the expected O_DIRECT
3246                 * semantics.
3247                 */
3248                endbyte = pos + status - 1;
3249                err = filemap_write_and_wait_range(mapping, pos, endbyte);
3250                if (err == 0) {
3251                        iocb->ki_pos = endbyte + 1;
3252                        written += status;
3253                        invalidate_mapping_pages(mapping,
3254                                                 pos >> PAGE_SHIFT,
3255                                                 endbyte >> PAGE_SHIFT);
3256                } else {
3257                        /*
3258                         * We don't know how much we wrote, so just return
3259                         * the number of bytes which were direct-written
3260                         */
3261                }
3262        } else {
3263                written = generic_perform_write(file, from, iocb->ki_pos);
3264                if (likely(written > 0))
3265                        iocb->ki_pos += written;
3266        }
3267out:
3268        current->backing_dev_info = NULL;
3269        return written ? written : err;
3270}
3271EXPORT_SYMBOL(__generic_file_write_iter);
3272
3273/**
3274 * generic_file_write_iter - write data to a file
3275 * @iocb:       IO state structure
3276 * @from:       iov_iter with data to write
3277 *
3278 * This is a wrapper around __generic_file_write_iter() to be used by most
3279 * filesystems. It takes care of syncing the file in case of O_SYNC file
3280 * and acquires i_mutex as needed.
3281 */
3282ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3283{
3284        struct file *file = iocb->ki_filp;
3285        struct inode *inode = file->f_mapping->host;
3286        ssize_t ret;
3287
3288        inode_lock(inode);
3289        ret = generic_write_checks(iocb, from);
3290        if (ret > 0)
3291                ret = __generic_file_write_iter(iocb, from);
3292        inode_unlock(inode);
3293
3294        if (ret > 0)
3295                ret = generic_write_sync(iocb, ret);
3296        return ret;
3297}
3298EXPORT_SYMBOL(generic_file_write_iter);
3299
3300/**
3301 * try_to_release_page() - release old fs-specific metadata on a page
3302 *
3303 * @page: the page which the kernel is trying to free
3304 * @gfp_mask: memory allocation flags (and I/O mode)
3305 *
3306 * The address_space is to try to release any data against the page
3307 * (presumably at page->private).  If the release was successful, return '1'.
3308 * Otherwise return zero.
3309 *
3310 * This may also be called if PG_fscache is set on a page, indicating that the
3311 * page is known to the local caching routines.
3312 *
3313 * The @gfp_mask argument specifies whether I/O may be performed to release
3314 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3315 *
3316 */
3317int try_to_release_page(struct page *page, gfp_t gfp_mask)
3318{
3319        struct address_space * const mapping = page->mapping;
3320
3321        BUG_ON(!PageLocked(page));
3322        if (PageWriteback(page))
3323                return 0;
3324
3325        if (mapping && mapping->a_ops->releasepage)
3326                return mapping->a_ops->releasepage(page, gfp_mask);
3327        return try_to_free_buffers(page);
3328}
3329
3330EXPORT_SYMBOL(try_to_release_page);
3331