linux/mm/hmm.c
<<
>>
Prefs
   1/*
   2 * Copyright 2013 Red Hat Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * Authors: Jérôme Glisse <jglisse@redhat.com>
  15 */
  16/*
  17 * Refer to include/linux/hmm.h for information about heterogeneous memory
  18 * management or HMM for short.
  19 */
  20#include <linux/mm.h>
  21#include <linux/hmm.h>
  22#include <linux/init.h>
  23#include <linux/rmap.h>
  24#include <linux/swap.h>
  25#include <linux/slab.h>
  26#include <linux/sched.h>
  27#include <linux/mmzone.h>
  28#include <linux/pagemap.h>
  29#include <linux/swapops.h>
  30#include <linux/hugetlb.h>
  31#include <linux/memremap.h>
  32#include <linux/jump_label.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/memory_hotplug.h>
  35
  36#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
  37
  38#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
  39/*
  40 * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
  41 */
  42DEFINE_STATIC_KEY_FALSE(device_private_key);
  43EXPORT_SYMBOL(device_private_key);
  44#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  45
  46
  47#if IS_ENABLED(CONFIG_HMM_MIRROR)
  48static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
  49
  50/*
  51 * struct hmm - HMM per mm struct
  52 *
  53 * @mm: mm struct this HMM struct is bound to
  54 * @lock: lock protecting ranges list
  55 * @sequence: we track updates to the CPU page table with a sequence number
  56 * @ranges: list of range being snapshotted
  57 * @mirrors: list of mirrors for this mm
  58 * @mmu_notifier: mmu notifier to track updates to CPU page table
  59 * @mirrors_sem: read/write semaphore protecting the mirrors list
  60 */
  61struct hmm {
  62        struct mm_struct        *mm;
  63        spinlock_t              lock;
  64        atomic_t                sequence;
  65        struct list_head        ranges;
  66        struct list_head        mirrors;
  67        struct mmu_notifier     mmu_notifier;
  68        struct rw_semaphore     mirrors_sem;
  69};
  70
  71/*
  72 * hmm_register - register HMM against an mm (HMM internal)
  73 *
  74 * @mm: mm struct to attach to
  75 *
  76 * This is not intended to be used directly by device drivers. It allocates an
  77 * HMM struct if mm does not have one, and initializes it.
  78 */
  79static struct hmm *hmm_register(struct mm_struct *mm)
  80{
  81        struct hmm *hmm = READ_ONCE(mm->hmm);
  82        bool cleanup = false;
  83
  84        /*
  85         * The hmm struct can only be freed once the mm_struct goes away,
  86         * hence we should always have pre-allocated an new hmm struct
  87         * above.
  88         */
  89        if (hmm)
  90                return hmm;
  91
  92        hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
  93        if (!hmm)
  94                return NULL;
  95        INIT_LIST_HEAD(&hmm->mirrors);
  96        init_rwsem(&hmm->mirrors_sem);
  97        atomic_set(&hmm->sequence, 0);
  98        hmm->mmu_notifier.ops = NULL;
  99        INIT_LIST_HEAD(&hmm->ranges);
 100        spin_lock_init(&hmm->lock);
 101        hmm->mm = mm;
 102
 103        /*
 104         * We should only get here if hold the mmap_sem in write mode ie on
 105         * registration of first mirror through hmm_mirror_register()
 106         */
 107        hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
 108        if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
 109                kfree(hmm);
 110                return NULL;
 111        }
 112
 113        spin_lock(&mm->page_table_lock);
 114        if (!mm->hmm)
 115                mm->hmm = hmm;
 116        else
 117                cleanup = true;
 118        spin_unlock(&mm->page_table_lock);
 119
 120        if (cleanup) {
 121                mmu_notifier_unregister(&hmm->mmu_notifier, mm);
 122                kfree(hmm);
 123        }
 124
 125        return mm->hmm;
 126}
 127
 128void hmm_mm_destroy(struct mm_struct *mm)
 129{
 130        kfree(mm->hmm);
 131}
 132
 133static void hmm_invalidate_range(struct hmm *hmm,
 134                                 enum hmm_update_type action,
 135                                 unsigned long start,
 136                                 unsigned long end)
 137{
 138        struct hmm_mirror *mirror;
 139        struct hmm_range *range;
 140
 141        spin_lock(&hmm->lock);
 142        list_for_each_entry(range, &hmm->ranges, list) {
 143                unsigned long addr, idx, npages;
 144
 145                if (end < range->start || start >= range->end)
 146                        continue;
 147
 148                range->valid = false;
 149                addr = max(start, range->start);
 150                idx = (addr - range->start) >> PAGE_SHIFT;
 151                npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
 152                memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
 153        }
 154        spin_unlock(&hmm->lock);
 155
 156        down_read(&hmm->mirrors_sem);
 157        list_for_each_entry(mirror, &hmm->mirrors, list)
 158                mirror->ops->sync_cpu_device_pagetables(mirror, action,
 159                                                        start, end);
 160        up_read(&hmm->mirrors_sem);
 161}
 162
 163static void hmm_invalidate_range_start(struct mmu_notifier *mn,
 164                                       struct mm_struct *mm,
 165                                       unsigned long start,
 166                                       unsigned long end)
 167{
 168        struct hmm *hmm = mm->hmm;
 169
 170        VM_BUG_ON(!hmm);
 171
 172        atomic_inc(&hmm->sequence);
 173}
 174
 175static void hmm_invalidate_range_end(struct mmu_notifier *mn,
 176                                     struct mm_struct *mm,
 177                                     unsigned long start,
 178                                     unsigned long end)
 179{
 180        struct hmm *hmm = mm->hmm;
 181
 182        VM_BUG_ON(!hmm);
 183
 184        hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
 185}
 186
 187static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
 188        .invalidate_range_start = hmm_invalidate_range_start,
 189        .invalidate_range_end   = hmm_invalidate_range_end,
 190};
 191
 192/*
 193 * hmm_mirror_register() - register a mirror against an mm
 194 *
 195 * @mirror: new mirror struct to register
 196 * @mm: mm to register against
 197 *
 198 * To start mirroring a process address space, the device driver must register
 199 * an HMM mirror struct.
 200 *
 201 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
 202 */
 203int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
 204{
 205        /* Sanity check */
 206        if (!mm || !mirror || !mirror->ops)
 207                return -EINVAL;
 208
 209        mirror->hmm = hmm_register(mm);
 210        if (!mirror->hmm)
 211                return -ENOMEM;
 212
 213        down_write(&mirror->hmm->mirrors_sem);
 214        list_add(&mirror->list, &mirror->hmm->mirrors);
 215        up_write(&mirror->hmm->mirrors_sem);
 216
 217        return 0;
 218}
 219EXPORT_SYMBOL(hmm_mirror_register);
 220
 221/*
 222 * hmm_mirror_unregister() - unregister a mirror
 223 *
 224 * @mirror: new mirror struct to register
 225 *
 226 * Stop mirroring a process address space, and cleanup.
 227 */
 228void hmm_mirror_unregister(struct hmm_mirror *mirror)
 229{
 230        struct hmm *hmm = mirror->hmm;
 231
 232        down_write(&hmm->mirrors_sem);
 233        list_del(&mirror->list);
 234        up_write(&hmm->mirrors_sem);
 235}
 236EXPORT_SYMBOL(hmm_mirror_unregister);
 237
 238struct hmm_vma_walk {
 239        struct hmm_range        *range;
 240        unsigned long           last;
 241        bool                    fault;
 242        bool                    block;
 243        bool                    write;
 244};
 245
 246static int hmm_vma_do_fault(struct mm_walk *walk,
 247                            unsigned long addr,
 248                            hmm_pfn_t *pfn)
 249{
 250        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
 251        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 252        struct vm_area_struct *vma = walk->vma;
 253        int r;
 254
 255        flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
 256        flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
 257        r = handle_mm_fault(vma, addr, flags);
 258        if (r & VM_FAULT_RETRY)
 259                return -EBUSY;
 260        if (r & VM_FAULT_ERROR) {
 261                *pfn = HMM_PFN_ERROR;
 262                return -EFAULT;
 263        }
 264
 265        return -EAGAIN;
 266}
 267
 268static void hmm_pfns_special(hmm_pfn_t *pfns,
 269                             unsigned long addr,
 270                             unsigned long end)
 271{
 272        for (; addr < end; addr += PAGE_SIZE, pfns++)
 273                *pfns = HMM_PFN_SPECIAL;
 274}
 275
 276static int hmm_pfns_bad(unsigned long addr,
 277                        unsigned long end,
 278                        struct mm_walk *walk)
 279{
 280        struct hmm_range *range = walk->private;
 281        hmm_pfn_t *pfns = range->pfns;
 282        unsigned long i;
 283
 284        i = (addr - range->start) >> PAGE_SHIFT;
 285        for (; addr < end; addr += PAGE_SIZE, i++)
 286                pfns[i] = HMM_PFN_ERROR;
 287
 288        return 0;
 289}
 290
 291static void hmm_pfns_clear(hmm_pfn_t *pfns,
 292                           unsigned long addr,
 293                           unsigned long end)
 294{
 295        for (; addr < end; addr += PAGE_SIZE, pfns++)
 296                *pfns = 0;
 297}
 298
 299static int hmm_vma_walk_hole(unsigned long addr,
 300                             unsigned long end,
 301                             struct mm_walk *walk)
 302{
 303        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 304        struct hmm_range *range = hmm_vma_walk->range;
 305        hmm_pfn_t *pfns = range->pfns;
 306        unsigned long i;
 307
 308        hmm_vma_walk->last = addr;
 309        i = (addr - range->start) >> PAGE_SHIFT;
 310        for (; addr < end; addr += PAGE_SIZE, i++) {
 311                pfns[i] = HMM_PFN_EMPTY;
 312                if (hmm_vma_walk->fault) {
 313                        int ret;
 314
 315                        ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
 316                        if (ret != -EAGAIN)
 317                                return ret;
 318                }
 319        }
 320
 321        return hmm_vma_walk->fault ? -EAGAIN : 0;
 322}
 323
 324static int hmm_vma_walk_clear(unsigned long addr,
 325                              unsigned long end,
 326                              struct mm_walk *walk)
 327{
 328        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 329        struct hmm_range *range = hmm_vma_walk->range;
 330        hmm_pfn_t *pfns = range->pfns;
 331        unsigned long i;
 332
 333        hmm_vma_walk->last = addr;
 334        i = (addr - range->start) >> PAGE_SHIFT;
 335        for (; addr < end; addr += PAGE_SIZE, i++) {
 336                pfns[i] = 0;
 337                if (hmm_vma_walk->fault) {
 338                        int ret;
 339
 340                        ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
 341                        if (ret != -EAGAIN)
 342                                return ret;
 343                }
 344        }
 345
 346        return hmm_vma_walk->fault ? -EAGAIN : 0;
 347}
 348
 349static int hmm_vma_walk_pmd(pmd_t *pmdp,
 350                            unsigned long start,
 351                            unsigned long end,
 352                            struct mm_walk *walk)
 353{
 354        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 355        struct hmm_range *range = hmm_vma_walk->range;
 356        struct vm_area_struct *vma = walk->vma;
 357        hmm_pfn_t *pfns = range->pfns;
 358        unsigned long addr = start, i;
 359        bool write_fault;
 360        hmm_pfn_t flag;
 361        pte_t *ptep;
 362
 363        i = (addr - range->start) >> PAGE_SHIFT;
 364        flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0;
 365        write_fault = hmm_vma_walk->fault & hmm_vma_walk->write;
 366
 367again:
 368        if (pmd_none(*pmdp))
 369                return hmm_vma_walk_hole(start, end, walk);
 370
 371        if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB)
 372                return hmm_pfns_bad(start, end, walk);
 373
 374        if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
 375                unsigned long pfn;
 376                pmd_t pmd;
 377
 378                /*
 379                 * No need to take pmd_lock here, even if some other threads
 380                 * is splitting the huge pmd we will get that event through
 381                 * mmu_notifier callback.
 382                 *
 383                 * So just read pmd value and check again its a transparent
 384                 * huge or device mapping one and compute corresponding pfn
 385                 * values.
 386                 */
 387                pmd = pmd_read_atomic(pmdp);
 388                barrier();
 389                if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
 390                        goto again;
 391                if (pmd_protnone(pmd))
 392                        return hmm_vma_walk_clear(start, end, walk);
 393
 394                if (write_fault && !pmd_write(pmd))
 395                        return hmm_vma_walk_clear(start, end, walk);
 396
 397                pfn = pmd_pfn(pmd) + pte_index(addr);
 398                flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
 399                for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
 400                        pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag;
 401                return 0;
 402        }
 403
 404        if (pmd_bad(*pmdp))
 405                return hmm_pfns_bad(start, end, walk);
 406
 407        ptep = pte_offset_map(pmdp, addr);
 408        for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
 409                pte_t pte = *ptep;
 410
 411                pfns[i] = 0;
 412
 413                if (pte_none(pte)) {
 414                        pfns[i] = HMM_PFN_EMPTY;
 415                        if (hmm_vma_walk->fault)
 416                                goto fault;
 417                        continue;
 418                }
 419
 420                if (!pte_present(pte)) {
 421                        swp_entry_t entry = pte_to_swp_entry(pte);
 422
 423                        if (!non_swap_entry(entry)) {
 424                                if (hmm_vma_walk->fault)
 425                                        goto fault;
 426                                continue;
 427                        }
 428
 429                        /*
 430                         * This is a special swap entry, ignore migration, use
 431                         * device and report anything else as error.
 432                         */
 433                        if (is_device_private_entry(entry)) {
 434                                pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry));
 435                                if (is_write_device_private_entry(entry)) {
 436                                        pfns[i] |= HMM_PFN_WRITE;
 437                                } else if (write_fault)
 438                                        goto fault;
 439                                pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE;
 440                                pfns[i] |= flag;
 441                        } else if (is_migration_entry(entry)) {
 442                                if (hmm_vma_walk->fault) {
 443                                        pte_unmap(ptep);
 444                                        hmm_vma_walk->last = addr;
 445                                        migration_entry_wait(vma->vm_mm,
 446                                                             pmdp, addr);
 447                                        return -EAGAIN;
 448                                }
 449                                continue;
 450                        } else {
 451                                /* Report error for everything else */
 452                                pfns[i] = HMM_PFN_ERROR;
 453                        }
 454                        continue;
 455                }
 456
 457                if (write_fault && !pte_write(pte))
 458                        goto fault;
 459
 460                pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag;
 461                pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0;
 462                continue;
 463
 464fault:
 465                pte_unmap(ptep);
 466                /* Fault all pages in range */
 467                return hmm_vma_walk_clear(start, end, walk);
 468        }
 469        pte_unmap(ptep - 1);
 470
 471        return 0;
 472}
 473
 474/*
 475 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
 476 * @vma: virtual memory area containing the virtual address range
 477 * @range: used to track snapshot validity
 478 * @start: range virtual start address (inclusive)
 479 * @end: range virtual end address (exclusive)
 480 * @entries: array of hmm_pfn_t: provided by the caller, filled in by function
 481 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success
 482 *
 483 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
 484 * validity is tracked by range struct. See hmm_vma_range_done() for further
 485 * information.
 486 *
 487 * The range struct is initialized here. It tracks the CPU page table, but only
 488 * if the function returns success (0), in which case the caller must then call
 489 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
 490 *
 491 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
 492 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
 493 */
 494int hmm_vma_get_pfns(struct vm_area_struct *vma,
 495                     struct hmm_range *range,
 496                     unsigned long start,
 497                     unsigned long end,
 498                     hmm_pfn_t *pfns)
 499{
 500        struct hmm_vma_walk hmm_vma_walk;
 501        struct mm_walk mm_walk;
 502        struct hmm *hmm;
 503
 504        /* FIXME support hugetlb fs */
 505        if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
 506                hmm_pfns_special(pfns, start, end);
 507                return -EINVAL;
 508        }
 509
 510        /* Sanity check, this really should not happen ! */
 511        if (start < vma->vm_start || start >= vma->vm_end)
 512                return -EINVAL;
 513        if (end < vma->vm_start || end > vma->vm_end)
 514                return -EINVAL;
 515
 516        hmm = hmm_register(vma->vm_mm);
 517        if (!hmm)
 518                return -ENOMEM;
 519        /* Caller must have registered a mirror, via hmm_mirror_register() ! */
 520        if (!hmm->mmu_notifier.ops)
 521                return -EINVAL;
 522
 523        /* Initialize range to track CPU page table update */
 524        range->start = start;
 525        range->pfns = pfns;
 526        range->end = end;
 527        spin_lock(&hmm->lock);
 528        range->valid = true;
 529        list_add_rcu(&range->list, &hmm->ranges);
 530        spin_unlock(&hmm->lock);
 531
 532        hmm_vma_walk.fault = false;
 533        hmm_vma_walk.range = range;
 534        mm_walk.private = &hmm_vma_walk;
 535
 536        mm_walk.vma = vma;
 537        mm_walk.mm = vma->vm_mm;
 538        mm_walk.pte_entry = NULL;
 539        mm_walk.test_walk = NULL;
 540        mm_walk.hugetlb_entry = NULL;
 541        mm_walk.pmd_entry = hmm_vma_walk_pmd;
 542        mm_walk.pte_hole = hmm_vma_walk_hole;
 543
 544        walk_page_range(start, end, &mm_walk);
 545        return 0;
 546}
 547EXPORT_SYMBOL(hmm_vma_get_pfns);
 548
 549/*
 550 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
 551 * @vma: virtual memory area containing the virtual address range
 552 * @range: range being tracked
 553 * Returns: false if range data has been invalidated, true otherwise
 554 *
 555 * Range struct is used to track updates to the CPU page table after a call to
 556 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
 557 * using the data,  or wants to lock updates to the data it got from those
 558 * functions, it must call the hmm_vma_range_done() function, which will then
 559 * stop tracking CPU page table updates.
 560 *
 561 * Note that device driver must still implement general CPU page table update
 562 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
 563 * the mmu_notifier API directly.
 564 *
 565 * CPU page table update tracking done through hmm_range is only temporary and
 566 * to be used while trying to duplicate CPU page table contents for a range of
 567 * virtual addresses.
 568 *
 569 * There are two ways to use this :
 570 * again:
 571 *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
 572 *   trans = device_build_page_table_update_transaction(pfns);
 573 *   device_page_table_lock();
 574 *   if (!hmm_vma_range_done(vma, range)) {
 575 *     device_page_table_unlock();
 576 *     goto again;
 577 *   }
 578 *   device_commit_transaction(trans);
 579 *   device_page_table_unlock();
 580 *
 581 * Or:
 582 *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
 583 *   device_page_table_lock();
 584 *   hmm_vma_range_done(vma, range);
 585 *   device_update_page_table(pfns);
 586 *   device_page_table_unlock();
 587 */
 588bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range)
 589{
 590        unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
 591        struct hmm *hmm;
 592
 593        if (range->end <= range->start) {
 594                BUG();
 595                return false;
 596        }
 597
 598        hmm = hmm_register(vma->vm_mm);
 599        if (!hmm) {
 600                memset(range->pfns, 0, sizeof(*range->pfns) * npages);
 601                return false;
 602        }
 603
 604        spin_lock(&hmm->lock);
 605        list_del_rcu(&range->list);
 606        spin_unlock(&hmm->lock);
 607
 608        return range->valid;
 609}
 610EXPORT_SYMBOL(hmm_vma_range_done);
 611
 612/*
 613 * hmm_vma_fault() - try to fault some address in a virtual address range
 614 * @vma: virtual memory area containing the virtual address range
 615 * @range: use to track pfns array content validity
 616 * @start: fault range virtual start address (inclusive)
 617 * @end: fault range virtual end address (exclusive)
 618 * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted
 619 * @write: is it a write fault
 620 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
 621 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
 622 *
 623 * This is similar to a regular CPU page fault except that it will not trigger
 624 * any memory migration if the memory being faulted is not accessible by CPUs.
 625 *
 626 * On error, for one virtual address in the range, the function will set the
 627 * hmm_pfn_t error flag for the corresponding pfn entry.
 628 *
 629 * Expected use pattern:
 630 * retry:
 631 *   down_read(&mm->mmap_sem);
 632 *   // Find vma and address device wants to fault, initialize hmm_pfn_t
 633 *   // array accordingly
 634 *   ret = hmm_vma_fault(vma, start, end, pfns, allow_retry);
 635 *   switch (ret) {
 636 *   case -EAGAIN:
 637 *     hmm_vma_range_done(vma, range);
 638 *     // You might want to rate limit or yield to play nicely, you may
 639 *     // also commit any valid pfn in the array assuming that you are
 640 *     // getting true from hmm_vma_range_monitor_end()
 641 *     goto retry;
 642 *   case 0:
 643 *     break;
 644 *   default:
 645 *     // Handle error !
 646 *     up_read(&mm->mmap_sem)
 647 *     return;
 648 *   }
 649 *   // Take device driver lock that serialize device page table update
 650 *   driver_lock_device_page_table_update();
 651 *   hmm_vma_range_done(vma, range);
 652 *   // Commit pfns we got from hmm_vma_fault()
 653 *   driver_unlock_device_page_table_update();
 654 *   up_read(&mm->mmap_sem)
 655 *
 656 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
 657 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
 658 *
 659 * YOU HAVE BEEN WARNED !
 660 */
 661int hmm_vma_fault(struct vm_area_struct *vma,
 662                  struct hmm_range *range,
 663                  unsigned long start,
 664                  unsigned long end,
 665                  hmm_pfn_t *pfns,
 666                  bool write,
 667                  bool block)
 668{
 669        struct hmm_vma_walk hmm_vma_walk;
 670        struct mm_walk mm_walk;
 671        struct hmm *hmm;
 672        int ret;
 673
 674        /* Sanity check, this really should not happen ! */
 675        if (start < vma->vm_start || start >= vma->vm_end)
 676                return -EINVAL;
 677        if (end < vma->vm_start || end > vma->vm_end)
 678                return -EINVAL;
 679
 680        hmm = hmm_register(vma->vm_mm);
 681        if (!hmm) {
 682                hmm_pfns_clear(pfns, start, end);
 683                return -ENOMEM;
 684        }
 685        /* Caller must have registered a mirror using hmm_mirror_register() */
 686        if (!hmm->mmu_notifier.ops)
 687                return -EINVAL;
 688
 689        /* Initialize range to track CPU page table update */
 690        range->start = start;
 691        range->pfns = pfns;
 692        range->end = end;
 693        spin_lock(&hmm->lock);
 694        range->valid = true;
 695        list_add_rcu(&range->list, &hmm->ranges);
 696        spin_unlock(&hmm->lock);
 697
 698        /* FIXME support hugetlb fs */
 699        if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
 700                hmm_pfns_special(pfns, start, end);
 701                return 0;
 702        }
 703
 704        hmm_vma_walk.fault = true;
 705        hmm_vma_walk.write = write;
 706        hmm_vma_walk.block = block;
 707        hmm_vma_walk.range = range;
 708        mm_walk.private = &hmm_vma_walk;
 709        hmm_vma_walk.last = range->start;
 710
 711        mm_walk.vma = vma;
 712        mm_walk.mm = vma->vm_mm;
 713        mm_walk.pte_entry = NULL;
 714        mm_walk.test_walk = NULL;
 715        mm_walk.hugetlb_entry = NULL;
 716        mm_walk.pmd_entry = hmm_vma_walk_pmd;
 717        mm_walk.pte_hole = hmm_vma_walk_hole;
 718
 719        do {
 720                ret = walk_page_range(start, end, &mm_walk);
 721                start = hmm_vma_walk.last;
 722        } while (ret == -EAGAIN);
 723
 724        if (ret) {
 725                unsigned long i;
 726
 727                i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
 728                hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end);
 729                hmm_vma_range_done(vma, range);
 730        }
 731        return ret;
 732}
 733EXPORT_SYMBOL(hmm_vma_fault);
 734#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
 735
 736
 737#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
 738struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
 739                                       unsigned long addr)
 740{
 741        struct page *page;
 742
 743        page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
 744        if (!page)
 745                return NULL;
 746        lock_page(page);
 747        return page;
 748}
 749EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
 750
 751
 752static void hmm_devmem_ref_release(struct percpu_ref *ref)
 753{
 754        struct hmm_devmem *devmem;
 755
 756        devmem = container_of(ref, struct hmm_devmem, ref);
 757        complete(&devmem->completion);
 758}
 759
 760static void hmm_devmem_ref_exit(void *data)
 761{
 762        struct percpu_ref *ref = data;
 763        struct hmm_devmem *devmem;
 764
 765        devmem = container_of(ref, struct hmm_devmem, ref);
 766        percpu_ref_exit(ref);
 767        devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
 768}
 769
 770static void hmm_devmem_ref_kill(void *data)
 771{
 772        struct percpu_ref *ref = data;
 773        struct hmm_devmem *devmem;
 774
 775        devmem = container_of(ref, struct hmm_devmem, ref);
 776        percpu_ref_kill(ref);
 777        wait_for_completion(&devmem->completion);
 778        devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
 779}
 780
 781static int hmm_devmem_fault(struct vm_area_struct *vma,
 782                            unsigned long addr,
 783                            const struct page *page,
 784                            unsigned int flags,
 785                            pmd_t *pmdp)
 786{
 787        struct hmm_devmem *devmem = page->pgmap->data;
 788
 789        return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
 790}
 791
 792static void hmm_devmem_free(struct page *page, void *data)
 793{
 794        struct hmm_devmem *devmem = data;
 795
 796        devmem->ops->free(devmem, page);
 797}
 798
 799static DEFINE_MUTEX(hmm_devmem_lock);
 800static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
 801
 802static void hmm_devmem_radix_release(struct resource *resource)
 803{
 804        resource_size_t key, align_start, align_size;
 805
 806        align_start = resource->start & ~(PA_SECTION_SIZE - 1);
 807        align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
 808
 809        mutex_lock(&hmm_devmem_lock);
 810        for (key = resource->start;
 811             key <= resource->end;
 812             key += PA_SECTION_SIZE)
 813                radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
 814        mutex_unlock(&hmm_devmem_lock);
 815}
 816
 817static void hmm_devmem_release(struct device *dev, void *data)
 818{
 819        struct hmm_devmem *devmem = data;
 820        struct resource *resource = devmem->resource;
 821        unsigned long start_pfn, npages;
 822        struct zone *zone;
 823        struct page *page;
 824
 825        if (percpu_ref_tryget_live(&devmem->ref)) {
 826                dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
 827                percpu_ref_put(&devmem->ref);
 828        }
 829
 830        /* pages are dead and unused, undo the arch mapping */
 831        start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
 832        npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
 833
 834        page = pfn_to_page(start_pfn);
 835        zone = page_zone(page);
 836
 837        mem_hotplug_begin();
 838        if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
 839                __remove_pages(zone, start_pfn, npages, NULL);
 840        else
 841                arch_remove_memory(start_pfn << PAGE_SHIFT,
 842                                   npages << PAGE_SHIFT, NULL);
 843        mem_hotplug_done();
 844
 845        hmm_devmem_radix_release(resource);
 846}
 847
 848static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
 849{
 850        WARN_ON_ONCE(!rcu_read_lock_held());
 851
 852        return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
 853}
 854
 855static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
 856{
 857        resource_size_t key, align_start, align_size, align_end;
 858        struct device *device = devmem->device;
 859        int ret, nid, is_ram;
 860        unsigned long pfn;
 861
 862        align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
 863        align_size = ALIGN(devmem->resource->start +
 864                           resource_size(devmem->resource),
 865                           PA_SECTION_SIZE) - align_start;
 866
 867        is_ram = region_intersects(align_start, align_size,
 868                                   IORESOURCE_SYSTEM_RAM,
 869                                   IORES_DESC_NONE);
 870        if (is_ram == REGION_MIXED) {
 871                WARN_ONCE(1, "%s attempted on mixed region %pr\n",
 872                                __func__, devmem->resource);
 873                return -ENXIO;
 874        }
 875        if (is_ram == REGION_INTERSECTS)
 876                return -ENXIO;
 877
 878        if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
 879                devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
 880        else
 881                devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
 882
 883        devmem->pagemap.res = *devmem->resource;
 884        devmem->pagemap.page_fault = hmm_devmem_fault;
 885        devmem->pagemap.page_free = hmm_devmem_free;
 886        devmem->pagemap.dev = devmem->device;
 887        devmem->pagemap.ref = &devmem->ref;
 888        devmem->pagemap.data = devmem;
 889
 890        mutex_lock(&hmm_devmem_lock);
 891        align_end = align_start + align_size - 1;
 892        for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
 893                struct hmm_devmem *dup;
 894
 895                rcu_read_lock();
 896                dup = hmm_devmem_find(key);
 897                rcu_read_unlock();
 898                if (dup) {
 899                        dev_err(device, "%s: collides with mapping for %s\n",
 900                                __func__, dev_name(dup->device));
 901                        mutex_unlock(&hmm_devmem_lock);
 902                        ret = -EBUSY;
 903                        goto error;
 904                }
 905                ret = radix_tree_insert(&hmm_devmem_radix,
 906                                        key >> PA_SECTION_SHIFT,
 907                                        devmem);
 908                if (ret) {
 909                        dev_err(device, "%s: failed: %d\n", __func__, ret);
 910                        mutex_unlock(&hmm_devmem_lock);
 911                        goto error_radix;
 912                }
 913        }
 914        mutex_unlock(&hmm_devmem_lock);
 915
 916        nid = dev_to_node(device);
 917        if (nid < 0)
 918                nid = numa_mem_id();
 919
 920        mem_hotplug_begin();
 921        /*
 922         * For device private memory we call add_pages() as we only need to
 923         * allocate and initialize struct page for the device memory. More-
 924         * over the device memory is un-accessible thus we do not want to
 925         * create a linear mapping for the memory like arch_add_memory()
 926         * would do.
 927         *
 928         * For device public memory, which is accesible by the CPU, we do
 929         * want the linear mapping and thus use arch_add_memory().
 930         */
 931        if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
 932                ret = arch_add_memory(nid, align_start, align_size, NULL,
 933                                false);
 934        else
 935                ret = add_pages(nid, align_start >> PAGE_SHIFT,
 936                                align_size >> PAGE_SHIFT, NULL, false);
 937        if (ret) {
 938                mem_hotplug_done();
 939                goto error_add_memory;
 940        }
 941        move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
 942                                align_start >> PAGE_SHIFT,
 943                                align_size >> PAGE_SHIFT, NULL);
 944        mem_hotplug_done();
 945
 946        for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
 947                struct page *page = pfn_to_page(pfn);
 948
 949                page->pgmap = &devmem->pagemap;
 950        }
 951        return 0;
 952
 953error_add_memory:
 954        untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
 955error_radix:
 956        hmm_devmem_radix_release(devmem->resource);
 957error:
 958        return ret;
 959}
 960
 961static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
 962{
 963        struct hmm_devmem *devmem = data;
 964
 965        return devmem->resource == match_data;
 966}
 967
 968static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
 969{
 970        devres_release(devmem->device, &hmm_devmem_release,
 971                       &hmm_devmem_match, devmem->resource);
 972}
 973
 974/*
 975 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
 976 *
 977 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
 978 * @device: device struct to bind the resource too
 979 * @size: size in bytes of the device memory to add
 980 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
 981 *
 982 * This function first finds an empty range of physical address big enough to
 983 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
 984 * in turn allocates struct pages. It does not do anything beyond that; all
 985 * events affecting the memory will go through the various callbacks provided
 986 * by hmm_devmem_ops struct.
 987 *
 988 * Device driver should call this function during device initialization and
 989 * is then responsible of memory management. HMM only provides helpers.
 990 */
 991struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
 992                                  struct device *device,
 993                                  unsigned long size)
 994{
 995        struct hmm_devmem *devmem;
 996        resource_size_t addr;
 997        int ret;
 998
 999        static_branch_enable(&device_private_key);
1000
1001        devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1002                                   GFP_KERNEL, dev_to_node(device));
1003        if (!devmem)
1004                return ERR_PTR(-ENOMEM);
1005
1006        init_completion(&devmem->completion);
1007        devmem->pfn_first = -1UL;
1008        devmem->pfn_last = -1UL;
1009        devmem->resource = NULL;
1010        devmem->device = device;
1011        devmem->ops = ops;
1012
1013        ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1014                              0, GFP_KERNEL);
1015        if (ret)
1016                goto error_percpu_ref;
1017
1018        ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1019        if (ret)
1020                goto error_devm_add_action;
1021
1022        size = ALIGN(size, PA_SECTION_SIZE);
1023        addr = min((unsigned long)iomem_resource.end,
1024                   (1UL << MAX_PHYSMEM_BITS) - 1);
1025        addr = addr - size + 1UL;
1026
1027        /*
1028         * FIXME add a new helper to quickly walk resource tree and find free
1029         * range
1030         *
1031         * FIXME what about ioport_resource resource ?
1032         */
1033        for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1034                ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1035                if (ret != REGION_DISJOINT)
1036                        continue;
1037
1038                devmem->resource = devm_request_mem_region(device, addr, size,
1039                                                           dev_name(device));
1040                if (!devmem->resource) {
1041                        ret = -ENOMEM;
1042                        goto error_no_resource;
1043                }
1044                break;
1045        }
1046        if (!devmem->resource) {
1047                ret = -ERANGE;
1048                goto error_no_resource;
1049        }
1050
1051        devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1052        devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1053        devmem->pfn_last = devmem->pfn_first +
1054                           (resource_size(devmem->resource) >> PAGE_SHIFT);
1055
1056        ret = hmm_devmem_pages_create(devmem);
1057        if (ret)
1058                goto error_pages;
1059
1060        devres_add(device, devmem);
1061
1062        ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1063        if (ret) {
1064                hmm_devmem_remove(devmem);
1065                return ERR_PTR(ret);
1066        }
1067
1068        return devmem;
1069
1070error_pages:
1071        devm_release_mem_region(device, devmem->resource->start,
1072                                resource_size(devmem->resource));
1073error_no_resource:
1074error_devm_add_action:
1075        hmm_devmem_ref_kill(&devmem->ref);
1076        hmm_devmem_ref_exit(&devmem->ref);
1077error_percpu_ref:
1078        devres_free(devmem);
1079        return ERR_PTR(ret);
1080}
1081EXPORT_SYMBOL(hmm_devmem_add);
1082
1083struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1084                                           struct device *device,
1085                                           struct resource *res)
1086{
1087        struct hmm_devmem *devmem;
1088        int ret;
1089
1090        if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1091                return ERR_PTR(-EINVAL);
1092
1093        static_branch_enable(&device_private_key);
1094
1095        devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1096                                   GFP_KERNEL, dev_to_node(device));
1097        if (!devmem)
1098                return ERR_PTR(-ENOMEM);
1099
1100        init_completion(&devmem->completion);
1101        devmem->pfn_first = -1UL;
1102        devmem->pfn_last = -1UL;
1103        devmem->resource = res;
1104        devmem->device = device;
1105        devmem->ops = ops;
1106
1107        ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1108                              0, GFP_KERNEL);
1109        if (ret)
1110                goto error_percpu_ref;
1111
1112        ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1113        if (ret)
1114                goto error_devm_add_action;
1115
1116
1117        devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1118        devmem->pfn_last = devmem->pfn_first +
1119                           (resource_size(devmem->resource) >> PAGE_SHIFT);
1120
1121        ret = hmm_devmem_pages_create(devmem);
1122        if (ret)
1123                goto error_devm_add_action;
1124
1125        devres_add(device, devmem);
1126
1127        ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1128        if (ret) {
1129                hmm_devmem_remove(devmem);
1130                return ERR_PTR(ret);
1131        }
1132
1133        return devmem;
1134
1135error_devm_add_action:
1136        hmm_devmem_ref_kill(&devmem->ref);
1137        hmm_devmem_ref_exit(&devmem->ref);
1138error_percpu_ref:
1139        devres_free(devmem);
1140        return ERR_PTR(ret);
1141}
1142EXPORT_SYMBOL(hmm_devmem_add_resource);
1143
1144/*
1145 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1146 *
1147 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1148 *
1149 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1150 * of the device driver. It will free struct page and remove the resource that
1151 * reserved the physical address range for this device memory.
1152 */
1153void hmm_devmem_remove(struct hmm_devmem *devmem)
1154{
1155        resource_size_t start, size;
1156        struct device *device;
1157        bool cdm = false;
1158
1159        if (!devmem)
1160                return;
1161
1162        device = devmem->device;
1163        start = devmem->resource->start;
1164        size = resource_size(devmem->resource);
1165
1166        cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1167        hmm_devmem_ref_kill(&devmem->ref);
1168        hmm_devmem_ref_exit(&devmem->ref);
1169        hmm_devmem_pages_remove(devmem);
1170
1171        if (!cdm)
1172                devm_release_mem_region(device, start, size);
1173}
1174EXPORT_SYMBOL(hmm_devmem_remove);
1175
1176/*
1177 * A device driver that wants to handle multiple devices memory through a
1178 * single fake device can use hmm_device to do so. This is purely a helper
1179 * and it is not needed to make use of any HMM functionality.
1180 */
1181#define HMM_DEVICE_MAX 256
1182
1183static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1184static DEFINE_SPINLOCK(hmm_device_lock);
1185static struct class *hmm_device_class;
1186static dev_t hmm_device_devt;
1187
1188static void hmm_device_release(struct device *device)
1189{
1190        struct hmm_device *hmm_device;
1191
1192        hmm_device = container_of(device, struct hmm_device, device);
1193        spin_lock(&hmm_device_lock);
1194        clear_bit(hmm_device->minor, hmm_device_mask);
1195        spin_unlock(&hmm_device_lock);
1196
1197        kfree(hmm_device);
1198}
1199
1200struct hmm_device *hmm_device_new(void *drvdata)
1201{
1202        struct hmm_device *hmm_device;
1203
1204        hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1205        if (!hmm_device)
1206                return ERR_PTR(-ENOMEM);
1207
1208        spin_lock(&hmm_device_lock);
1209        hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1210        if (hmm_device->minor >= HMM_DEVICE_MAX) {
1211                spin_unlock(&hmm_device_lock);
1212                kfree(hmm_device);
1213                return ERR_PTR(-EBUSY);
1214        }
1215        set_bit(hmm_device->minor, hmm_device_mask);
1216        spin_unlock(&hmm_device_lock);
1217
1218        dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1219        hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1220                                        hmm_device->minor);
1221        hmm_device->device.release = hmm_device_release;
1222        dev_set_drvdata(&hmm_device->device, drvdata);
1223        hmm_device->device.class = hmm_device_class;
1224        device_initialize(&hmm_device->device);
1225
1226        return hmm_device;
1227}
1228EXPORT_SYMBOL(hmm_device_new);
1229
1230void hmm_device_put(struct hmm_device *hmm_device)
1231{
1232        put_device(&hmm_device->device);
1233}
1234EXPORT_SYMBOL(hmm_device_put);
1235
1236static int __init hmm_init(void)
1237{
1238        int ret;
1239
1240        ret = alloc_chrdev_region(&hmm_device_devt, 0,
1241                                  HMM_DEVICE_MAX,
1242                                  "hmm_device");
1243        if (ret)
1244                return ret;
1245
1246        hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1247        if (IS_ERR(hmm_device_class)) {
1248                unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1249                return PTR_ERR(hmm_device_class);
1250        }
1251        return 0;
1252}
1253
1254device_initcall(hmm_init);
1255#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1256