linux/mm/huge_memory.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58        (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
  65static struct page *get_huge_zero_page(void)
  66{
  67        struct page *zero_page;
  68retry:
  69        if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70                return READ_ONCE(huge_zero_page);
  71
  72        zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73                        HPAGE_PMD_ORDER);
  74        if (!zero_page) {
  75                count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76                return NULL;
  77        }
  78        count_vm_event(THP_ZERO_PAGE_ALLOC);
  79        preempt_disable();
  80        if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81                preempt_enable();
  82                __free_pages(zero_page, compound_order(zero_page));
  83                goto retry;
  84        }
  85
  86        /* We take additional reference here. It will be put back by shrinker */
  87        atomic_set(&huge_zero_refcount, 2);
  88        preempt_enable();
  89        return READ_ONCE(huge_zero_page);
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94        /*
  95         * Counter should never go to zero here. Only shrinker can put
  96         * last reference.
  97         */
  98        BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104                return READ_ONCE(huge_zero_page);
 105
 106        if (!get_huge_zero_page())
 107                return NULL;
 108
 109        if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110                put_huge_zero_page();
 111
 112        return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118                put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122                                        struct shrink_control *sc)
 123{
 124        /* we can free zero page only if last reference remains */
 125        return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129                                       struct shrink_control *sc)
 130{
 131        if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132                struct page *zero_page = xchg(&huge_zero_page, NULL);
 133                BUG_ON(zero_page == NULL);
 134                __free_pages(zero_page, compound_order(zero_page));
 135                return HPAGE_PMD_NR;
 136        }
 137
 138        return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142        .count_objects = shrink_huge_zero_page_count,
 143        .scan_objects = shrink_huge_zero_page_scan,
 144        .seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149                            struct kobj_attribute *attr, char *buf)
 150{
 151        if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 152                return sprintf(buf, "[always] madvise never\n");
 153        else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154                return sprintf(buf, "always [madvise] never\n");
 155        else
 156                return sprintf(buf, "always madvise [never]\n");
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160                             struct kobj_attribute *attr,
 161                             const char *buf, size_t count)
 162{
 163        ssize_t ret = count;
 164
 165        if (!memcmp("always", buf,
 166                    min(sizeof("always")-1, count))) {
 167                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168                set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169        } else if (!memcmp("madvise", buf,
 170                           min(sizeof("madvise")-1, count))) {
 171                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173        } else if (!memcmp("never", buf,
 174                           min(sizeof("never")-1, count))) {
 175                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177        } else
 178                ret = -EINVAL;
 179
 180        if (ret > 0) {
 181                int err = start_stop_khugepaged();
 182                if (err)
 183                        ret = err;
 184        }
 185        return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188        __ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191                                struct kobj_attribute *attr, char *buf,
 192                                enum transparent_hugepage_flag flag)
 193{
 194        return sprintf(buf, "%d\n",
 195                       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199                                 struct kobj_attribute *attr,
 200                                 const char *buf, size_t count,
 201                                 enum transparent_hugepage_flag flag)
 202{
 203        unsigned long value;
 204        int ret;
 205
 206        ret = kstrtoul(buf, 10, &value);
 207        if (ret < 0)
 208                return ret;
 209        if (value > 1)
 210                return -EINVAL;
 211
 212        if (value)
 213                set_bit(flag, &transparent_hugepage_flags);
 214        else
 215                clear_bit(flag, &transparent_hugepage_flags);
 216
 217        return count;
 218}
 219
 220static ssize_t defrag_show(struct kobject *kobj,
 221                           struct kobj_attribute *attr, char *buf)
 222{
 223        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224                return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226                return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228                return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230                return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231        return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235                            struct kobj_attribute *attr,
 236                            const char *buf, size_t count)
 237{
 238        if (!memcmp("always", buf,
 239                    min(sizeof("always")-1, count))) {
 240                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244        } else if (!memcmp("defer+madvise", buf,
 245                    min(sizeof("defer+madvise")-1, count))) {
 246                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250        } else if (!memcmp("defer", buf,
 251                    min(sizeof("defer")-1, count))) {
 252                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256        } else if (!memcmp("madvise", buf,
 257                           min(sizeof("madvise")-1, count))) {
 258                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262        } else if (!memcmp("never", buf,
 263                           min(sizeof("never")-1, count))) {
 264                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268        } else
 269                return -EINVAL;
 270
 271        return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274        __ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277                struct kobj_attribute *attr, char *buf)
 278{
 279        return single_hugepage_flag_show(kobj, attr, buf,
 280                                TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283                struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285        return single_hugepage_flag_store(kobj, attr, buf, count,
 286                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289        __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292                struct kobj_attribute *attr, char *buf)
 293{
 294        return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297        __ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301                                struct kobj_attribute *attr, char *buf)
 302{
 303        return single_hugepage_flag_show(kobj, attr, buf,
 304                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307                               struct kobj_attribute *attr,
 308                               const char *buf, size_t count)
 309{
 310        return single_hugepage_flag_store(kobj, attr, buf, count,
 311                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314        __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318        &enabled_attr.attr,
 319        &defrag_attr.attr,
 320        &use_zero_page_attr.attr,
 321        &hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323        &shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326        &debug_cow_attr.attr,
 327#endif
 328        NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332        .attrs = hugepage_attr,
 333};
 334
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337        int err;
 338
 339        *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340        if (unlikely(!*hugepage_kobj)) {
 341                pr_err("failed to create transparent hugepage kobject\n");
 342                return -ENOMEM;
 343        }
 344
 345        err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346        if (err) {
 347                pr_err("failed to register transparent hugepage group\n");
 348                goto delete_obj;
 349        }
 350
 351        err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352        if (err) {
 353                pr_err("failed to register transparent hugepage group\n");
 354                goto remove_hp_group;
 355        }
 356
 357        return 0;
 358
 359remove_hp_group:
 360        sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362        kobject_put(*hugepage_kobj);
 363        return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368        sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369        sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370        kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375        return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385        int err;
 386        struct kobject *hugepage_kobj;
 387
 388        if (!has_transparent_hugepage()) {
 389                transparent_hugepage_flags = 0;
 390                return -EINVAL;
 391        }
 392
 393        /*
 394         * hugepages can't be allocated by the buddy allocator
 395         */
 396        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397        /*
 398         * we use page->mapping and page->index in second tail page
 399         * as list_head: assuming THP order >= 2
 400         */
 401        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403        err = hugepage_init_sysfs(&hugepage_kobj);
 404        if (err)
 405                goto err_sysfs;
 406
 407        err = khugepaged_init();
 408        if (err)
 409                goto err_slab;
 410
 411        err = register_shrinker(&huge_zero_page_shrinker);
 412        if (err)
 413                goto err_hzp_shrinker;
 414        err = register_shrinker(&deferred_split_shrinker);
 415        if (err)
 416                goto err_split_shrinker;
 417
 418        /*
 419         * By default disable transparent hugepages on smaller systems,
 420         * where the extra memory used could hurt more than TLB overhead
 421         * is likely to save.  The admin can still enable it through /sys.
 422         */
 423        if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424                transparent_hugepage_flags = 0;
 425                return 0;
 426        }
 427
 428        err = start_stop_khugepaged();
 429        if (err)
 430                goto err_khugepaged;
 431
 432        return 0;
 433err_khugepaged:
 434        unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436        unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438        khugepaged_destroy();
 439err_slab:
 440        hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442        return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448        int ret = 0;
 449        if (!str)
 450                goto out;
 451        if (!strcmp(str, "always")) {
 452                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453                        &transparent_hugepage_flags);
 454                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455                          &transparent_hugepage_flags);
 456                ret = 1;
 457        } else if (!strcmp(str, "madvise")) {
 458                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459                          &transparent_hugepage_flags);
 460                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461                        &transparent_hugepage_flags);
 462                ret = 1;
 463        } else if (!strcmp(str, "never")) {
 464                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465                          &transparent_hugepage_flags);
 466                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467                          &transparent_hugepage_flags);
 468                ret = 1;
 469        }
 470out:
 471        if (!ret)
 472                pr_warn("transparent_hugepage= cannot parse, ignored\n");
 473        return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479        if (likely(vma->vm_flags & VM_WRITE))
 480                pmd = pmd_mkwrite(pmd);
 481        return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 485{
 486        /*
 487         * ->lru in the tail pages is occupied by compound_head.
 488         * Let's use ->mapping + ->index in the second tail page as list_head.
 489         */
 490        return (struct list_head *)&page[2].mapping;
 491}
 492
 493void prep_transhuge_page(struct page *page)
 494{
 495        /*
 496         * we use page->mapping and page->indexlru in second tail page
 497         * as list_head: assuming THP order >= 2
 498         */
 499
 500        INIT_LIST_HEAD(page_deferred_list(page));
 501        set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 502}
 503
 504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 505                loff_t off, unsigned long flags, unsigned long size)
 506{
 507        unsigned long addr;
 508        loff_t off_end = off + len;
 509        loff_t off_align = round_up(off, size);
 510        unsigned long len_pad;
 511
 512        if (off_end <= off_align || (off_end - off_align) < size)
 513                return 0;
 514
 515        len_pad = len + size;
 516        if (len_pad < len || (off + len_pad) < off)
 517                return 0;
 518
 519        addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 520                                              off >> PAGE_SHIFT, flags);
 521        if (IS_ERR_VALUE(addr))
 522                return 0;
 523
 524        addr += (off - addr) & (size - 1);
 525        return addr;
 526}
 527
 528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 529                unsigned long len, unsigned long pgoff, unsigned long flags)
 530{
 531        loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 532
 533        if (addr)
 534                goto out;
 535        if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 536                goto out;
 537
 538        addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 539        if (addr)
 540                return addr;
 541
 542 out:
 543        return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 544}
 545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 546
 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
 548                gfp_t gfp)
 549{
 550        struct vm_area_struct *vma = vmf->vma;
 551        struct mem_cgroup *memcg;
 552        pgtable_t pgtable;
 553        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 554        int ret = 0;
 555
 556        VM_BUG_ON_PAGE(!PageCompound(page), page);
 557
 558        if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
 559                                  true)) {
 560                put_page(page);
 561                count_vm_event(THP_FAULT_FALLBACK);
 562                return VM_FAULT_FALLBACK;
 563        }
 564
 565        pgtable = pte_alloc_one(vma->vm_mm, haddr);
 566        if (unlikely(!pgtable)) {
 567                ret = VM_FAULT_OOM;
 568                goto release;
 569        }
 570
 571        clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 572        /*
 573         * The memory barrier inside __SetPageUptodate makes sure that
 574         * clear_huge_page writes become visible before the set_pmd_at()
 575         * write.
 576         */
 577        __SetPageUptodate(page);
 578
 579        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 580        if (unlikely(!pmd_none(*vmf->pmd))) {
 581                goto unlock_release;
 582        } else {
 583                pmd_t entry;
 584
 585                ret = check_stable_address_space(vma->vm_mm);
 586                if (ret)
 587                        goto unlock_release;
 588
 589                /* Deliver the page fault to userland */
 590                if (userfaultfd_missing(vma)) {
 591                        int ret;
 592
 593                        spin_unlock(vmf->ptl);
 594                        mem_cgroup_cancel_charge(page, memcg, true);
 595                        put_page(page);
 596                        pte_free(vma->vm_mm, pgtable);
 597                        ret = handle_userfault(vmf, VM_UFFD_MISSING);
 598                        VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 599                        return ret;
 600                }
 601
 602                entry = mk_huge_pmd(page, vma->vm_page_prot);
 603                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 604                page_add_new_anon_rmap(page, vma, haddr, true);
 605                mem_cgroup_commit_charge(page, memcg, false, true);
 606                lru_cache_add_active_or_unevictable(page, vma);
 607                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 608                set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 609                add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 610                mm_inc_nr_ptes(vma->vm_mm);
 611                spin_unlock(vmf->ptl);
 612                count_vm_event(THP_FAULT_ALLOC);
 613        }
 614
 615        return 0;
 616unlock_release:
 617        spin_unlock(vmf->ptl);
 618release:
 619        if (pgtable)
 620                pte_free(vma->vm_mm, pgtable);
 621        mem_cgroup_cancel_charge(page, memcg, true);
 622        put_page(page);
 623        return ret;
 624
 625}
 626
 627/*
 628 * always: directly stall for all thp allocations
 629 * defer: wake kswapd and fail if not immediately available
 630 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 631 *                fail if not immediately available
 632 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 633 *          available
 634 * never: never stall for any thp allocation
 635 */
 636static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 637{
 638        const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 639
 640        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 641                return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 642        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 643                return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 644        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 645                return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 646                                                             __GFP_KSWAPD_RECLAIM);
 647        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 648                return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 649                                                             0);
 650        return GFP_TRANSHUGE_LIGHT;
 651}
 652
 653/* Caller must hold page table lock. */
 654static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 655                struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 656                struct page *zero_page)
 657{
 658        pmd_t entry;
 659        if (!pmd_none(*pmd))
 660                return false;
 661        entry = mk_pmd(zero_page, vma->vm_page_prot);
 662        entry = pmd_mkhuge(entry);
 663        if (pgtable)
 664                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 665        set_pmd_at(mm, haddr, pmd, entry);
 666        mm_inc_nr_ptes(mm);
 667        return true;
 668}
 669
 670int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 671{
 672        struct vm_area_struct *vma = vmf->vma;
 673        gfp_t gfp;
 674        struct page *page;
 675        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 676
 677        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 678                return VM_FAULT_FALLBACK;
 679        if (unlikely(anon_vma_prepare(vma)))
 680                return VM_FAULT_OOM;
 681        if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 682                return VM_FAULT_OOM;
 683        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 684                        !mm_forbids_zeropage(vma->vm_mm) &&
 685                        transparent_hugepage_use_zero_page()) {
 686                pgtable_t pgtable;
 687                struct page *zero_page;
 688                bool set;
 689                int ret;
 690                pgtable = pte_alloc_one(vma->vm_mm, haddr);
 691                if (unlikely(!pgtable))
 692                        return VM_FAULT_OOM;
 693                zero_page = mm_get_huge_zero_page(vma->vm_mm);
 694                if (unlikely(!zero_page)) {
 695                        pte_free(vma->vm_mm, pgtable);
 696                        count_vm_event(THP_FAULT_FALLBACK);
 697                        return VM_FAULT_FALLBACK;
 698                }
 699                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 700                ret = 0;
 701                set = false;
 702                if (pmd_none(*vmf->pmd)) {
 703                        ret = check_stable_address_space(vma->vm_mm);
 704                        if (ret) {
 705                                spin_unlock(vmf->ptl);
 706                        } else if (userfaultfd_missing(vma)) {
 707                                spin_unlock(vmf->ptl);
 708                                ret = handle_userfault(vmf, VM_UFFD_MISSING);
 709                                VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 710                        } else {
 711                                set_huge_zero_page(pgtable, vma->vm_mm, vma,
 712                                                   haddr, vmf->pmd, zero_page);
 713                                spin_unlock(vmf->ptl);
 714                                set = true;
 715                        }
 716                } else
 717                        spin_unlock(vmf->ptl);
 718                if (!set)
 719                        pte_free(vma->vm_mm, pgtable);
 720                return ret;
 721        }
 722        gfp = alloc_hugepage_direct_gfpmask(vma);
 723        page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 724        if (unlikely(!page)) {
 725                count_vm_event(THP_FAULT_FALLBACK);
 726                return VM_FAULT_FALLBACK;
 727        }
 728        prep_transhuge_page(page);
 729        return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 730}
 731
 732static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 733                pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 734                pgtable_t pgtable)
 735{
 736        struct mm_struct *mm = vma->vm_mm;
 737        pmd_t entry;
 738        spinlock_t *ptl;
 739
 740        ptl = pmd_lock(mm, pmd);
 741        entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 742        if (pfn_t_devmap(pfn))
 743                entry = pmd_mkdevmap(entry);
 744        if (write) {
 745                entry = pmd_mkyoung(pmd_mkdirty(entry));
 746                entry = maybe_pmd_mkwrite(entry, vma);
 747        }
 748
 749        if (pgtable) {
 750                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 751                mm_inc_nr_ptes(mm);
 752        }
 753
 754        set_pmd_at(mm, addr, pmd, entry);
 755        update_mmu_cache_pmd(vma, addr, pmd);
 756        spin_unlock(ptl);
 757}
 758
 759int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 760                        pmd_t *pmd, pfn_t pfn, bool write)
 761{
 762        pgprot_t pgprot = vma->vm_page_prot;
 763        pgtable_t pgtable = NULL;
 764        /*
 765         * If we had pmd_special, we could avoid all these restrictions,
 766         * but we need to be consistent with PTEs and architectures that
 767         * can't support a 'special' bit.
 768         */
 769        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 770        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 771                                                (VM_PFNMAP|VM_MIXEDMAP));
 772        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 773        BUG_ON(!pfn_t_devmap(pfn));
 774
 775        if (addr < vma->vm_start || addr >= vma->vm_end)
 776                return VM_FAULT_SIGBUS;
 777
 778        if (arch_needs_pgtable_deposit()) {
 779                pgtable = pte_alloc_one(vma->vm_mm, addr);
 780                if (!pgtable)
 781                        return VM_FAULT_OOM;
 782        }
 783
 784        track_pfn_insert(vma, &pgprot, pfn);
 785
 786        insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 787        return VM_FAULT_NOPAGE;
 788}
 789EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 790
 791#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 792static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 793{
 794        if (likely(vma->vm_flags & VM_WRITE))
 795                pud = pud_mkwrite(pud);
 796        return pud;
 797}
 798
 799static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 800                pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 801{
 802        struct mm_struct *mm = vma->vm_mm;
 803        pud_t entry;
 804        spinlock_t *ptl;
 805
 806        ptl = pud_lock(mm, pud);
 807        entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 808        if (pfn_t_devmap(pfn))
 809                entry = pud_mkdevmap(entry);
 810        if (write) {
 811                entry = pud_mkyoung(pud_mkdirty(entry));
 812                entry = maybe_pud_mkwrite(entry, vma);
 813        }
 814        set_pud_at(mm, addr, pud, entry);
 815        update_mmu_cache_pud(vma, addr, pud);
 816        spin_unlock(ptl);
 817}
 818
 819int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 820                        pud_t *pud, pfn_t pfn, bool write)
 821{
 822        pgprot_t pgprot = vma->vm_page_prot;
 823        /*
 824         * If we had pud_special, we could avoid all these restrictions,
 825         * but we need to be consistent with PTEs and architectures that
 826         * can't support a 'special' bit.
 827         */
 828        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 829        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 830                                                (VM_PFNMAP|VM_MIXEDMAP));
 831        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 832        BUG_ON(!pfn_t_devmap(pfn));
 833
 834        if (addr < vma->vm_start || addr >= vma->vm_end)
 835                return VM_FAULT_SIGBUS;
 836
 837        track_pfn_insert(vma, &pgprot, pfn);
 838
 839        insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 840        return VM_FAULT_NOPAGE;
 841}
 842EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 843#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 844
 845static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 846                pmd_t *pmd, int flags)
 847{
 848        pmd_t _pmd;
 849
 850        _pmd = pmd_mkyoung(*pmd);
 851        if (flags & FOLL_WRITE)
 852                _pmd = pmd_mkdirty(_pmd);
 853        if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 854                                pmd, _pmd, flags & FOLL_WRITE))
 855                update_mmu_cache_pmd(vma, addr, pmd);
 856}
 857
 858struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 859                pmd_t *pmd, int flags)
 860{
 861        unsigned long pfn = pmd_pfn(*pmd);
 862        struct mm_struct *mm = vma->vm_mm;
 863        struct dev_pagemap *pgmap;
 864        struct page *page;
 865
 866        assert_spin_locked(pmd_lockptr(mm, pmd));
 867
 868        /*
 869         * When we COW a devmap PMD entry, we split it into PTEs, so we should
 870         * not be in this function with `flags & FOLL_COW` set.
 871         */
 872        WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 873
 874        if (flags & FOLL_WRITE && !pmd_write(*pmd))
 875                return NULL;
 876
 877        if (pmd_present(*pmd) && pmd_devmap(*pmd))
 878                /* pass */;
 879        else
 880                return NULL;
 881
 882        if (flags & FOLL_TOUCH)
 883                touch_pmd(vma, addr, pmd, flags);
 884
 885        /*
 886         * device mapped pages can only be returned if the
 887         * caller will manage the page reference count.
 888         */
 889        if (!(flags & FOLL_GET))
 890                return ERR_PTR(-EEXIST);
 891
 892        pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 893        pgmap = get_dev_pagemap(pfn, NULL);
 894        if (!pgmap)
 895                return ERR_PTR(-EFAULT);
 896        page = pfn_to_page(pfn);
 897        get_page(page);
 898        put_dev_pagemap(pgmap);
 899
 900        return page;
 901}
 902
 903int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 904                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 905                  struct vm_area_struct *vma)
 906{
 907        spinlock_t *dst_ptl, *src_ptl;
 908        struct page *src_page;
 909        pmd_t pmd;
 910        pgtable_t pgtable = NULL;
 911        int ret = -ENOMEM;
 912
 913        /* Skip if can be re-fill on fault */
 914        if (!vma_is_anonymous(vma))
 915                return 0;
 916
 917        pgtable = pte_alloc_one(dst_mm, addr);
 918        if (unlikely(!pgtable))
 919                goto out;
 920
 921        dst_ptl = pmd_lock(dst_mm, dst_pmd);
 922        src_ptl = pmd_lockptr(src_mm, src_pmd);
 923        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 924
 925        ret = -EAGAIN;
 926        pmd = *src_pmd;
 927
 928#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 929        if (unlikely(is_swap_pmd(pmd))) {
 930                swp_entry_t entry = pmd_to_swp_entry(pmd);
 931
 932                VM_BUG_ON(!is_pmd_migration_entry(pmd));
 933                if (is_write_migration_entry(entry)) {
 934                        make_migration_entry_read(&entry);
 935                        pmd = swp_entry_to_pmd(entry);
 936                        if (pmd_swp_soft_dirty(*src_pmd))
 937                                pmd = pmd_swp_mksoft_dirty(pmd);
 938                        set_pmd_at(src_mm, addr, src_pmd, pmd);
 939                }
 940                add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 941                mm_inc_nr_ptes(dst_mm);
 942                pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 943                set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 944                ret = 0;
 945                goto out_unlock;
 946        }
 947#endif
 948
 949        if (unlikely(!pmd_trans_huge(pmd))) {
 950                pte_free(dst_mm, pgtable);
 951                goto out_unlock;
 952        }
 953        /*
 954         * When page table lock is held, the huge zero pmd should not be
 955         * under splitting since we don't split the page itself, only pmd to
 956         * a page table.
 957         */
 958        if (is_huge_zero_pmd(pmd)) {
 959                struct page *zero_page;
 960                /*
 961                 * get_huge_zero_page() will never allocate a new page here,
 962                 * since we already have a zero page to copy. It just takes a
 963                 * reference.
 964                 */
 965                zero_page = mm_get_huge_zero_page(dst_mm);
 966                set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 967                                zero_page);
 968                ret = 0;
 969                goto out_unlock;
 970        }
 971
 972        src_page = pmd_page(pmd);
 973        VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 974        get_page(src_page);
 975        page_dup_rmap(src_page, true);
 976        add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 977        mm_inc_nr_ptes(dst_mm);
 978        pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 979
 980        pmdp_set_wrprotect(src_mm, addr, src_pmd);
 981        pmd = pmd_mkold(pmd_wrprotect(pmd));
 982        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 983
 984        ret = 0;
 985out_unlock:
 986        spin_unlock(src_ptl);
 987        spin_unlock(dst_ptl);
 988out:
 989        return ret;
 990}
 991
 992#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 993static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 994                pud_t *pud, int flags)
 995{
 996        pud_t _pud;
 997
 998        _pud = pud_mkyoung(*pud);
 999        if (flags & FOLL_WRITE)
1000                _pud = pud_mkdirty(_pud);
1001        if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1002                                pud, _pud, flags & FOLL_WRITE))
1003                update_mmu_cache_pud(vma, addr, pud);
1004}
1005
1006struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1007                pud_t *pud, int flags)
1008{
1009        unsigned long pfn = pud_pfn(*pud);
1010        struct mm_struct *mm = vma->vm_mm;
1011        struct dev_pagemap *pgmap;
1012        struct page *page;
1013
1014        assert_spin_locked(pud_lockptr(mm, pud));
1015
1016        if (flags & FOLL_WRITE && !pud_write(*pud))
1017                return NULL;
1018
1019        if (pud_present(*pud) && pud_devmap(*pud))
1020                /* pass */;
1021        else
1022                return NULL;
1023
1024        if (flags & FOLL_TOUCH)
1025                touch_pud(vma, addr, pud, flags);
1026
1027        /*
1028         * device mapped pages can only be returned if the
1029         * caller will manage the page reference count.
1030         */
1031        if (!(flags & FOLL_GET))
1032                return ERR_PTR(-EEXIST);
1033
1034        pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1035        pgmap = get_dev_pagemap(pfn, NULL);
1036        if (!pgmap)
1037                return ERR_PTR(-EFAULT);
1038        page = pfn_to_page(pfn);
1039        get_page(page);
1040        put_dev_pagemap(pgmap);
1041
1042        return page;
1043}
1044
1045int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046                  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1047                  struct vm_area_struct *vma)
1048{
1049        spinlock_t *dst_ptl, *src_ptl;
1050        pud_t pud;
1051        int ret;
1052
1053        dst_ptl = pud_lock(dst_mm, dst_pud);
1054        src_ptl = pud_lockptr(src_mm, src_pud);
1055        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1056
1057        ret = -EAGAIN;
1058        pud = *src_pud;
1059        if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1060                goto out_unlock;
1061
1062        /*
1063         * When page table lock is held, the huge zero pud should not be
1064         * under splitting since we don't split the page itself, only pud to
1065         * a page table.
1066         */
1067        if (is_huge_zero_pud(pud)) {
1068                /* No huge zero pud yet */
1069        }
1070
1071        pudp_set_wrprotect(src_mm, addr, src_pud);
1072        pud = pud_mkold(pud_wrprotect(pud));
1073        set_pud_at(dst_mm, addr, dst_pud, pud);
1074
1075        ret = 0;
1076out_unlock:
1077        spin_unlock(src_ptl);
1078        spin_unlock(dst_ptl);
1079        return ret;
1080}
1081
1082void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1083{
1084        pud_t entry;
1085        unsigned long haddr;
1086        bool write = vmf->flags & FAULT_FLAG_WRITE;
1087
1088        vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1089        if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1090                goto unlock;
1091
1092        entry = pud_mkyoung(orig_pud);
1093        if (write)
1094                entry = pud_mkdirty(entry);
1095        haddr = vmf->address & HPAGE_PUD_MASK;
1096        if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1097                update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1098
1099unlock:
1100        spin_unlock(vmf->ptl);
1101}
1102#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1103
1104void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1105{
1106        pmd_t entry;
1107        unsigned long haddr;
1108        bool write = vmf->flags & FAULT_FLAG_WRITE;
1109
1110        vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1111        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1112                goto unlock;
1113
1114        entry = pmd_mkyoung(orig_pmd);
1115        if (write)
1116                entry = pmd_mkdirty(entry);
1117        haddr = vmf->address & HPAGE_PMD_MASK;
1118        if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1119                update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1120
1121unlock:
1122        spin_unlock(vmf->ptl);
1123}
1124
1125static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1126                struct page *page)
1127{
1128        struct vm_area_struct *vma = vmf->vma;
1129        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1130        struct mem_cgroup *memcg;
1131        pgtable_t pgtable;
1132        pmd_t _pmd;
1133        int ret = 0, i;
1134        struct page **pages;
1135        unsigned long mmun_start;       /* For mmu_notifiers */
1136        unsigned long mmun_end;         /* For mmu_notifiers */
1137
1138        pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1139                        GFP_KERNEL);
1140        if (unlikely(!pages)) {
1141                ret |= VM_FAULT_OOM;
1142                goto out;
1143        }
1144
1145        for (i = 0; i < HPAGE_PMD_NR; i++) {
1146                pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1147                                               vmf->address, page_to_nid(page));
1148                if (unlikely(!pages[i] ||
1149                             mem_cgroup_try_charge(pages[i], vma->vm_mm,
1150                                     GFP_KERNEL, &memcg, false))) {
1151                        if (pages[i])
1152                                put_page(pages[i]);
1153                        while (--i >= 0) {
1154                                memcg = (void *)page_private(pages[i]);
1155                                set_page_private(pages[i], 0);
1156                                mem_cgroup_cancel_charge(pages[i], memcg,
1157                                                false);
1158                                put_page(pages[i]);
1159                        }
1160                        kfree(pages);
1161                        ret |= VM_FAULT_OOM;
1162                        goto out;
1163                }
1164                set_page_private(pages[i], (unsigned long)memcg);
1165        }
1166
1167        for (i = 0; i < HPAGE_PMD_NR; i++) {
1168                copy_user_highpage(pages[i], page + i,
1169                                   haddr + PAGE_SIZE * i, vma);
1170                __SetPageUptodate(pages[i]);
1171                cond_resched();
1172        }
1173
1174        mmun_start = haddr;
1175        mmun_end   = haddr + HPAGE_PMD_SIZE;
1176        mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1177
1178        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1179        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1180                goto out_free_pages;
1181        VM_BUG_ON_PAGE(!PageHead(page), page);
1182
1183        /*
1184         * Leave pmd empty until pte is filled note we must notify here as
1185         * concurrent CPU thread might write to new page before the call to
1186         * mmu_notifier_invalidate_range_end() happens which can lead to a
1187         * device seeing memory write in different order than CPU.
1188         *
1189         * See Documentation/vm/mmu_notifier.txt
1190         */
1191        pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1192
1193        pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1194        pmd_populate(vma->vm_mm, &_pmd, pgtable);
1195
1196        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1197                pte_t entry;
1198                entry = mk_pte(pages[i], vma->vm_page_prot);
1199                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1200                memcg = (void *)page_private(pages[i]);
1201                set_page_private(pages[i], 0);
1202                page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1203                mem_cgroup_commit_charge(pages[i], memcg, false, false);
1204                lru_cache_add_active_or_unevictable(pages[i], vma);
1205                vmf->pte = pte_offset_map(&_pmd, haddr);
1206                VM_BUG_ON(!pte_none(*vmf->pte));
1207                set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1208                pte_unmap(vmf->pte);
1209        }
1210        kfree(pages);
1211
1212        smp_wmb(); /* make pte visible before pmd */
1213        pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1214        page_remove_rmap(page, true);
1215        spin_unlock(vmf->ptl);
1216
1217        /*
1218         * No need to double call mmu_notifier->invalidate_range() callback as
1219         * the above pmdp_huge_clear_flush_notify() did already call it.
1220         */
1221        mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1222                                                mmun_end);
1223
1224        ret |= VM_FAULT_WRITE;
1225        put_page(page);
1226
1227out:
1228        return ret;
1229
1230out_free_pages:
1231        spin_unlock(vmf->ptl);
1232        mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1233        for (i = 0; i < HPAGE_PMD_NR; i++) {
1234                memcg = (void *)page_private(pages[i]);
1235                set_page_private(pages[i], 0);
1236                mem_cgroup_cancel_charge(pages[i], memcg, false);
1237                put_page(pages[i]);
1238        }
1239        kfree(pages);
1240        goto out;
1241}
1242
1243int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1244{
1245        struct vm_area_struct *vma = vmf->vma;
1246        struct page *page = NULL, *new_page;
1247        struct mem_cgroup *memcg;
1248        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1249        unsigned long mmun_start;       /* For mmu_notifiers */
1250        unsigned long mmun_end;         /* For mmu_notifiers */
1251        gfp_t huge_gfp;                 /* for allocation and charge */
1252        int ret = 0;
1253
1254        vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1255        VM_BUG_ON_VMA(!vma->anon_vma, vma);
1256        if (is_huge_zero_pmd(orig_pmd))
1257                goto alloc;
1258        spin_lock(vmf->ptl);
1259        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1260                goto out_unlock;
1261
1262        page = pmd_page(orig_pmd);
1263        VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1264        /*
1265         * We can only reuse the page if nobody else maps the huge page or it's
1266         * part.
1267         */
1268        if (!trylock_page(page)) {
1269                get_page(page);
1270                spin_unlock(vmf->ptl);
1271                lock_page(page);
1272                spin_lock(vmf->ptl);
1273                if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1274                        unlock_page(page);
1275                        put_page(page);
1276                        goto out_unlock;
1277                }
1278                put_page(page);
1279        }
1280        if (reuse_swap_page(page, NULL)) {
1281                pmd_t entry;
1282                entry = pmd_mkyoung(orig_pmd);
1283                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1284                if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1285                        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1286                ret |= VM_FAULT_WRITE;
1287                unlock_page(page);
1288                goto out_unlock;
1289        }
1290        unlock_page(page);
1291        get_page(page);
1292        spin_unlock(vmf->ptl);
1293alloc:
1294        if (transparent_hugepage_enabled(vma) &&
1295            !transparent_hugepage_debug_cow()) {
1296                huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1297                new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1298        } else
1299                new_page = NULL;
1300
1301        if (likely(new_page)) {
1302                prep_transhuge_page(new_page);
1303        } else {
1304                if (!page) {
1305                        split_huge_pmd(vma, vmf->pmd, vmf->address);
1306                        ret |= VM_FAULT_FALLBACK;
1307                } else {
1308                        ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1309                        if (ret & VM_FAULT_OOM) {
1310                                split_huge_pmd(vma, vmf->pmd, vmf->address);
1311                                ret |= VM_FAULT_FALLBACK;
1312                        }
1313                        put_page(page);
1314                }
1315                count_vm_event(THP_FAULT_FALLBACK);
1316                goto out;
1317        }
1318
1319        if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1320                                huge_gfp | __GFP_NORETRY, &memcg, true))) {
1321                put_page(new_page);
1322                split_huge_pmd(vma, vmf->pmd, vmf->address);
1323                if (page)
1324                        put_page(page);
1325                ret |= VM_FAULT_FALLBACK;
1326                count_vm_event(THP_FAULT_FALLBACK);
1327                goto out;
1328        }
1329
1330        count_vm_event(THP_FAULT_ALLOC);
1331
1332        if (!page)
1333                clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1334        else
1335                copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1336        __SetPageUptodate(new_page);
1337
1338        mmun_start = haddr;
1339        mmun_end   = haddr + HPAGE_PMD_SIZE;
1340        mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1341
1342        spin_lock(vmf->ptl);
1343        if (page)
1344                put_page(page);
1345        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1346                spin_unlock(vmf->ptl);
1347                mem_cgroup_cancel_charge(new_page, memcg, true);
1348                put_page(new_page);
1349                goto out_mn;
1350        } else {
1351                pmd_t entry;
1352                entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1353                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1354                pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1355                page_add_new_anon_rmap(new_page, vma, haddr, true);
1356                mem_cgroup_commit_charge(new_page, memcg, false, true);
1357                lru_cache_add_active_or_unevictable(new_page, vma);
1358                set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1359                update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1360                if (!page) {
1361                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1362                } else {
1363                        VM_BUG_ON_PAGE(!PageHead(page), page);
1364                        page_remove_rmap(page, true);
1365                        put_page(page);
1366                }
1367                ret |= VM_FAULT_WRITE;
1368        }
1369        spin_unlock(vmf->ptl);
1370out_mn:
1371        /*
1372         * No need to double call mmu_notifier->invalidate_range() callback as
1373         * the above pmdp_huge_clear_flush_notify() did already call it.
1374         */
1375        mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1376                                               mmun_end);
1377out:
1378        return ret;
1379out_unlock:
1380        spin_unlock(vmf->ptl);
1381        return ret;
1382}
1383
1384/*
1385 * FOLL_FORCE can write to even unwritable pmd's, but only
1386 * after we've gone through a COW cycle and they are dirty.
1387 */
1388static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1389{
1390        return pmd_write(pmd) ||
1391               ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1392}
1393
1394struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1395                                   unsigned long addr,
1396                                   pmd_t *pmd,
1397                                   unsigned int flags)
1398{
1399        struct mm_struct *mm = vma->vm_mm;
1400        struct page *page = NULL;
1401
1402        assert_spin_locked(pmd_lockptr(mm, pmd));
1403
1404        if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1405                goto out;
1406
1407        /* Avoid dumping huge zero page */
1408        if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1409                return ERR_PTR(-EFAULT);
1410
1411        /* Full NUMA hinting faults to serialise migration in fault paths */
1412        if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1413                goto out;
1414
1415        page = pmd_page(*pmd);
1416        VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1417        if (flags & FOLL_TOUCH)
1418                touch_pmd(vma, addr, pmd, flags);
1419        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1420                /*
1421                 * We don't mlock() pte-mapped THPs. This way we can avoid
1422                 * leaking mlocked pages into non-VM_LOCKED VMAs.
1423                 *
1424                 * For anon THP:
1425                 *
1426                 * In most cases the pmd is the only mapping of the page as we
1427                 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1428                 * writable private mappings in populate_vma_page_range().
1429                 *
1430                 * The only scenario when we have the page shared here is if we
1431                 * mlocking read-only mapping shared over fork(). We skip
1432                 * mlocking such pages.
1433                 *
1434                 * For file THP:
1435                 *
1436                 * We can expect PageDoubleMap() to be stable under page lock:
1437                 * for file pages we set it in page_add_file_rmap(), which
1438                 * requires page to be locked.
1439                 */
1440
1441                if (PageAnon(page) && compound_mapcount(page) != 1)
1442                        goto skip_mlock;
1443                if (PageDoubleMap(page) || !page->mapping)
1444                        goto skip_mlock;
1445                if (!trylock_page(page))
1446                        goto skip_mlock;
1447                lru_add_drain();
1448                if (page->mapping && !PageDoubleMap(page))
1449                        mlock_vma_page(page);
1450                unlock_page(page);
1451        }
1452skip_mlock:
1453        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1454        VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1455        if (flags & FOLL_GET)
1456                get_page(page);
1457
1458out:
1459        return page;
1460}
1461
1462/* NUMA hinting page fault entry point for trans huge pmds */
1463int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1464{
1465        struct vm_area_struct *vma = vmf->vma;
1466        struct anon_vma *anon_vma = NULL;
1467        struct page *page;
1468        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1469        int page_nid = -1, this_nid = numa_node_id();
1470        int target_nid, last_cpupid = -1;
1471        bool page_locked;
1472        bool migrated = false;
1473        bool was_writable;
1474        int flags = 0;
1475
1476        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1477        if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1478                goto out_unlock;
1479
1480        /*
1481         * If there are potential migrations, wait for completion and retry
1482         * without disrupting NUMA hinting information. Do not relock and
1483         * check_same as the page may no longer be mapped.
1484         */
1485        if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1486                page = pmd_page(*vmf->pmd);
1487                if (!get_page_unless_zero(page))
1488                        goto out_unlock;
1489                spin_unlock(vmf->ptl);
1490                wait_on_page_locked(page);
1491                put_page(page);
1492                goto out;
1493        }
1494
1495        page = pmd_page(pmd);
1496        BUG_ON(is_huge_zero_page(page));
1497        page_nid = page_to_nid(page);
1498        last_cpupid = page_cpupid_last(page);
1499        count_vm_numa_event(NUMA_HINT_FAULTS);
1500        if (page_nid == this_nid) {
1501                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1502                flags |= TNF_FAULT_LOCAL;
1503        }
1504
1505        /* See similar comment in do_numa_page for explanation */
1506        if (!pmd_savedwrite(pmd))
1507                flags |= TNF_NO_GROUP;
1508
1509        /*
1510         * Acquire the page lock to serialise THP migrations but avoid dropping
1511         * page_table_lock if at all possible
1512         */
1513        page_locked = trylock_page(page);
1514        target_nid = mpol_misplaced(page, vma, haddr);
1515        if (target_nid == -1) {
1516                /* If the page was locked, there are no parallel migrations */
1517                if (page_locked)
1518                        goto clear_pmdnuma;
1519        }
1520
1521        /* Migration could have started since the pmd_trans_migrating check */
1522        if (!page_locked) {
1523                page_nid = -1;
1524                if (!get_page_unless_zero(page))
1525                        goto out_unlock;
1526                spin_unlock(vmf->ptl);
1527                wait_on_page_locked(page);
1528                put_page(page);
1529                goto out;
1530        }
1531
1532        /*
1533         * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1534         * to serialises splits
1535         */
1536        get_page(page);
1537        spin_unlock(vmf->ptl);
1538        anon_vma = page_lock_anon_vma_read(page);
1539
1540        /* Confirm the PMD did not change while page_table_lock was released */
1541        spin_lock(vmf->ptl);
1542        if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1543                unlock_page(page);
1544                put_page(page);
1545                page_nid = -1;
1546                goto out_unlock;
1547        }
1548
1549        /* Bail if we fail to protect against THP splits for any reason */
1550        if (unlikely(!anon_vma)) {
1551                put_page(page);
1552                page_nid = -1;
1553                goto clear_pmdnuma;
1554        }
1555
1556        /*
1557         * Since we took the NUMA fault, we must have observed the !accessible
1558         * bit. Make sure all other CPUs agree with that, to avoid them
1559         * modifying the page we're about to migrate.
1560         *
1561         * Must be done under PTL such that we'll observe the relevant
1562         * inc_tlb_flush_pending().
1563         *
1564         * We are not sure a pending tlb flush here is for a huge page
1565         * mapping or not. Hence use the tlb range variant
1566         */
1567        if (mm_tlb_flush_pending(vma->vm_mm))
1568                flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1569
1570        /*
1571         * Migrate the THP to the requested node, returns with page unlocked
1572         * and access rights restored.
1573         */
1574        spin_unlock(vmf->ptl);
1575
1576        migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1577                                vmf->pmd, pmd, vmf->address, page, target_nid);
1578        if (migrated) {
1579                flags |= TNF_MIGRATED;
1580                page_nid = target_nid;
1581        } else
1582                flags |= TNF_MIGRATE_FAIL;
1583
1584        goto out;
1585clear_pmdnuma:
1586        BUG_ON(!PageLocked(page));
1587        was_writable = pmd_savedwrite(pmd);
1588        pmd = pmd_modify(pmd, vma->vm_page_prot);
1589        pmd = pmd_mkyoung(pmd);
1590        if (was_writable)
1591                pmd = pmd_mkwrite(pmd);
1592        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1593        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1594        unlock_page(page);
1595out_unlock:
1596        spin_unlock(vmf->ptl);
1597
1598out:
1599        if (anon_vma)
1600                page_unlock_anon_vma_read(anon_vma);
1601
1602        if (page_nid != -1)
1603                task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1604                                flags);
1605
1606        return 0;
1607}
1608
1609/*
1610 * Return true if we do MADV_FREE successfully on entire pmd page.
1611 * Otherwise, return false.
1612 */
1613bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1614                pmd_t *pmd, unsigned long addr, unsigned long next)
1615{
1616        spinlock_t *ptl;
1617        pmd_t orig_pmd;
1618        struct page *page;
1619        struct mm_struct *mm = tlb->mm;
1620        bool ret = false;
1621
1622        tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1623
1624        ptl = pmd_trans_huge_lock(pmd, vma);
1625        if (!ptl)
1626                goto out_unlocked;
1627
1628        orig_pmd = *pmd;
1629        if (is_huge_zero_pmd(orig_pmd))
1630                goto out;
1631
1632        if (unlikely(!pmd_present(orig_pmd))) {
1633                VM_BUG_ON(thp_migration_supported() &&
1634                                  !is_pmd_migration_entry(orig_pmd));
1635                goto out;
1636        }
1637
1638        page = pmd_page(orig_pmd);
1639        /*
1640         * If other processes are mapping this page, we couldn't discard
1641         * the page unless they all do MADV_FREE so let's skip the page.
1642         */
1643        if (page_mapcount(page) != 1)
1644                goto out;
1645
1646        if (!trylock_page(page))
1647                goto out;
1648
1649        /*
1650         * If user want to discard part-pages of THP, split it so MADV_FREE
1651         * will deactivate only them.
1652         */
1653        if (next - addr != HPAGE_PMD_SIZE) {
1654                get_page(page);
1655                spin_unlock(ptl);
1656                split_huge_page(page);
1657                unlock_page(page);
1658                put_page(page);
1659                goto out_unlocked;
1660        }
1661
1662        if (PageDirty(page))
1663                ClearPageDirty(page);
1664        unlock_page(page);
1665
1666        if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1667                pmdp_invalidate(vma, addr, pmd);
1668                orig_pmd = pmd_mkold(orig_pmd);
1669                orig_pmd = pmd_mkclean(orig_pmd);
1670
1671                set_pmd_at(mm, addr, pmd, orig_pmd);
1672                tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1673        }
1674
1675        mark_page_lazyfree(page);
1676        ret = true;
1677out:
1678        spin_unlock(ptl);
1679out_unlocked:
1680        return ret;
1681}
1682
1683static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1684{
1685        pgtable_t pgtable;
1686
1687        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1688        pte_free(mm, pgtable);
1689        mm_dec_nr_ptes(mm);
1690}
1691
1692int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1693                 pmd_t *pmd, unsigned long addr)
1694{
1695        pmd_t orig_pmd;
1696        spinlock_t *ptl;
1697
1698        tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1699
1700        ptl = __pmd_trans_huge_lock(pmd, vma);
1701        if (!ptl)
1702                return 0;
1703        /*
1704         * For architectures like ppc64 we look at deposited pgtable
1705         * when calling pmdp_huge_get_and_clear. So do the
1706         * pgtable_trans_huge_withdraw after finishing pmdp related
1707         * operations.
1708         */
1709        orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1710                        tlb->fullmm);
1711        tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1712        if (vma_is_dax(vma)) {
1713                if (arch_needs_pgtable_deposit())
1714                        zap_deposited_table(tlb->mm, pmd);
1715                spin_unlock(ptl);
1716                if (is_huge_zero_pmd(orig_pmd))
1717                        tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1718        } else if (is_huge_zero_pmd(orig_pmd)) {
1719                zap_deposited_table(tlb->mm, pmd);
1720                spin_unlock(ptl);
1721                tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1722        } else {
1723                struct page *page = NULL;
1724                int flush_needed = 1;
1725
1726                if (pmd_present(orig_pmd)) {
1727                        page = pmd_page(orig_pmd);
1728                        page_remove_rmap(page, true);
1729                        VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1730                        VM_BUG_ON_PAGE(!PageHead(page), page);
1731                } else if (thp_migration_supported()) {
1732                        swp_entry_t entry;
1733
1734                        VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1735                        entry = pmd_to_swp_entry(orig_pmd);
1736                        page = pfn_to_page(swp_offset(entry));
1737                        flush_needed = 0;
1738                } else
1739                        WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1740
1741                if (PageAnon(page)) {
1742                        zap_deposited_table(tlb->mm, pmd);
1743                        add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1744                } else {
1745                        if (arch_needs_pgtable_deposit())
1746                                zap_deposited_table(tlb->mm, pmd);
1747                        add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1748                }
1749
1750                spin_unlock(ptl);
1751                if (flush_needed)
1752                        tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1753        }
1754        return 1;
1755}
1756
1757#ifndef pmd_move_must_withdraw
1758static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1759                                         spinlock_t *old_pmd_ptl,
1760                                         struct vm_area_struct *vma)
1761{
1762        /*
1763         * With split pmd lock we also need to move preallocated
1764         * PTE page table if new_pmd is on different PMD page table.
1765         *
1766         * We also don't deposit and withdraw tables for file pages.
1767         */
1768        return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1769}
1770#endif
1771
1772static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1773{
1774#ifdef CONFIG_MEM_SOFT_DIRTY
1775        if (unlikely(is_pmd_migration_entry(pmd)))
1776                pmd = pmd_swp_mksoft_dirty(pmd);
1777        else if (pmd_present(pmd))
1778                pmd = pmd_mksoft_dirty(pmd);
1779#endif
1780        return pmd;
1781}
1782
1783bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1784                  unsigned long new_addr, unsigned long old_end,
1785                  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1786{
1787        spinlock_t *old_ptl, *new_ptl;
1788        pmd_t pmd;
1789        struct mm_struct *mm = vma->vm_mm;
1790        bool force_flush = false;
1791
1792        if ((old_addr & ~HPAGE_PMD_MASK) ||
1793            (new_addr & ~HPAGE_PMD_MASK) ||
1794            old_end - old_addr < HPAGE_PMD_SIZE)
1795                return false;
1796
1797        /*
1798         * The destination pmd shouldn't be established, free_pgtables()
1799         * should have release it.
1800         */
1801        if (WARN_ON(!pmd_none(*new_pmd))) {
1802                VM_BUG_ON(pmd_trans_huge(*new_pmd));
1803                return false;
1804        }
1805
1806        /*
1807         * We don't have to worry about the ordering of src and dst
1808         * ptlocks because exclusive mmap_sem prevents deadlock.
1809         */
1810        old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1811        if (old_ptl) {
1812                new_ptl = pmd_lockptr(mm, new_pmd);
1813                if (new_ptl != old_ptl)
1814                        spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1815                pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1816                if (pmd_present(pmd) && pmd_dirty(pmd))
1817                        force_flush = true;
1818                VM_BUG_ON(!pmd_none(*new_pmd));
1819
1820                if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1821                        pgtable_t pgtable;
1822                        pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1823                        pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1824                }
1825                pmd = move_soft_dirty_pmd(pmd);
1826                set_pmd_at(mm, new_addr, new_pmd, pmd);
1827                if (new_ptl != old_ptl)
1828                        spin_unlock(new_ptl);
1829                if (force_flush)
1830                        flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1831                else
1832                        *need_flush = true;
1833                spin_unlock(old_ptl);
1834                return true;
1835        }
1836        return false;
1837}
1838
1839/*
1840 * Returns
1841 *  - 0 if PMD could not be locked
1842 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1843 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1844 */
1845int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1846                unsigned long addr, pgprot_t newprot, int prot_numa)
1847{
1848        struct mm_struct *mm = vma->vm_mm;
1849        spinlock_t *ptl;
1850        pmd_t entry;
1851        bool preserve_write;
1852        int ret;
1853
1854        ptl = __pmd_trans_huge_lock(pmd, vma);
1855        if (!ptl)
1856                return 0;
1857
1858        preserve_write = prot_numa && pmd_write(*pmd);
1859        ret = 1;
1860
1861#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1862        if (is_swap_pmd(*pmd)) {
1863                swp_entry_t entry = pmd_to_swp_entry(*pmd);
1864
1865                VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1866                if (is_write_migration_entry(entry)) {
1867                        pmd_t newpmd;
1868                        /*
1869                         * A protection check is difficult so
1870                         * just be safe and disable write
1871                         */
1872                        make_migration_entry_read(&entry);
1873                        newpmd = swp_entry_to_pmd(entry);
1874                        if (pmd_swp_soft_dirty(*pmd))
1875                                newpmd = pmd_swp_mksoft_dirty(newpmd);
1876                        set_pmd_at(mm, addr, pmd, newpmd);
1877                }
1878                goto unlock;
1879        }
1880#endif
1881
1882        /*
1883         * Avoid trapping faults against the zero page. The read-only
1884         * data is likely to be read-cached on the local CPU and
1885         * local/remote hits to the zero page are not interesting.
1886         */
1887        if (prot_numa && is_huge_zero_pmd(*pmd))
1888                goto unlock;
1889
1890        if (prot_numa && pmd_protnone(*pmd))
1891                goto unlock;
1892
1893        /*
1894         * In case prot_numa, we are under down_read(mmap_sem). It's critical
1895         * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1896         * which is also under down_read(mmap_sem):
1897         *
1898         *      CPU0:                           CPU1:
1899         *                              change_huge_pmd(prot_numa=1)
1900         *                               pmdp_huge_get_and_clear_notify()
1901         * madvise_dontneed()
1902         *  zap_pmd_range()
1903         *   pmd_trans_huge(*pmd) == 0 (without ptl)
1904         *   // skip the pmd
1905         *                               set_pmd_at();
1906         *                               // pmd is re-established
1907         *
1908         * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1909         * which may break userspace.
1910         *
1911         * pmdp_invalidate() is required to make sure we don't miss
1912         * dirty/young flags set by hardware.
1913         */
1914        entry = pmdp_invalidate(vma, addr, pmd);
1915
1916        entry = pmd_modify(entry, newprot);
1917        if (preserve_write)
1918                entry = pmd_mk_savedwrite(entry);
1919        ret = HPAGE_PMD_NR;
1920        set_pmd_at(mm, addr, pmd, entry);
1921        BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1922unlock:
1923        spin_unlock(ptl);
1924        return ret;
1925}
1926
1927/*
1928 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1929 *
1930 * Note that if it returns page table lock pointer, this routine returns without
1931 * unlocking page table lock. So callers must unlock it.
1932 */
1933spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1934{
1935        spinlock_t *ptl;
1936        ptl = pmd_lock(vma->vm_mm, pmd);
1937        if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1938                        pmd_devmap(*pmd)))
1939                return ptl;
1940        spin_unlock(ptl);
1941        return NULL;
1942}
1943
1944/*
1945 * Returns true if a given pud maps a thp, false otherwise.
1946 *
1947 * Note that if it returns true, this routine returns without unlocking page
1948 * table lock. So callers must unlock it.
1949 */
1950spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1951{
1952        spinlock_t *ptl;
1953
1954        ptl = pud_lock(vma->vm_mm, pud);
1955        if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1956                return ptl;
1957        spin_unlock(ptl);
1958        return NULL;
1959}
1960
1961#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1962int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1963                 pud_t *pud, unsigned long addr)
1964{
1965        pud_t orig_pud;
1966        spinlock_t *ptl;
1967
1968        ptl = __pud_trans_huge_lock(pud, vma);
1969        if (!ptl)
1970                return 0;
1971        /*
1972         * For architectures like ppc64 we look at deposited pgtable
1973         * when calling pudp_huge_get_and_clear. So do the
1974         * pgtable_trans_huge_withdraw after finishing pudp related
1975         * operations.
1976         */
1977        orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1978                        tlb->fullmm);
1979        tlb_remove_pud_tlb_entry(tlb, pud, addr);
1980        if (vma_is_dax(vma)) {
1981                spin_unlock(ptl);
1982                /* No zero page support yet */
1983        } else {
1984                /* No support for anonymous PUD pages yet */
1985                BUG();
1986        }
1987        return 1;
1988}
1989
1990static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1991                unsigned long haddr)
1992{
1993        VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1994        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1995        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1996        VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1997
1998        count_vm_event(THP_SPLIT_PUD);
1999
2000        pudp_huge_clear_flush_notify(vma, haddr, pud);
2001}
2002
2003void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2004                unsigned long address)
2005{
2006        spinlock_t *ptl;
2007        struct mm_struct *mm = vma->vm_mm;
2008        unsigned long haddr = address & HPAGE_PUD_MASK;
2009
2010        mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2011        ptl = pud_lock(mm, pud);
2012        if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2013                goto out;
2014        __split_huge_pud_locked(vma, pud, haddr);
2015
2016out:
2017        spin_unlock(ptl);
2018        /*
2019         * No need to double call mmu_notifier->invalidate_range() callback as
2020         * the above pudp_huge_clear_flush_notify() did already call it.
2021         */
2022        mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2023                                               HPAGE_PUD_SIZE);
2024}
2025#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2026
2027static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2028                unsigned long haddr, pmd_t *pmd)
2029{
2030        struct mm_struct *mm = vma->vm_mm;
2031        pgtable_t pgtable;
2032        pmd_t _pmd;
2033        int i;
2034
2035        /*
2036         * Leave pmd empty until pte is filled note that it is fine to delay
2037         * notification until mmu_notifier_invalidate_range_end() as we are
2038         * replacing a zero pmd write protected page with a zero pte write
2039         * protected page.
2040         *
2041         * See Documentation/vm/mmu_notifier.txt
2042         */
2043        pmdp_huge_clear_flush(vma, haddr, pmd);
2044
2045        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2046        pmd_populate(mm, &_pmd, pgtable);
2047
2048        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2049                pte_t *pte, entry;
2050                entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2051                entry = pte_mkspecial(entry);
2052                pte = pte_offset_map(&_pmd, haddr);
2053                VM_BUG_ON(!pte_none(*pte));
2054                set_pte_at(mm, haddr, pte, entry);
2055                pte_unmap(pte);
2056        }
2057        smp_wmb(); /* make pte visible before pmd */
2058        pmd_populate(mm, pmd, pgtable);
2059}
2060
2061static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2062                unsigned long haddr, bool freeze)
2063{
2064        struct mm_struct *mm = vma->vm_mm;
2065        struct page *page;
2066        pgtable_t pgtable;
2067        pmd_t old_pmd, _pmd;
2068        bool young, write, soft_dirty, pmd_migration = false;
2069        unsigned long addr;
2070        int i;
2071
2072        VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2073        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2074        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2075        VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2076                                && !pmd_devmap(*pmd));
2077
2078        count_vm_event(THP_SPLIT_PMD);
2079
2080        if (!vma_is_anonymous(vma)) {
2081                _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2082                /*
2083                 * We are going to unmap this huge page. So
2084                 * just go ahead and zap it
2085                 */
2086                if (arch_needs_pgtable_deposit())
2087                        zap_deposited_table(mm, pmd);
2088                if (vma_is_dax(vma))
2089                        return;
2090                page = pmd_page(_pmd);
2091                if (!PageReferenced(page) && pmd_young(_pmd))
2092                        SetPageReferenced(page);
2093                page_remove_rmap(page, true);
2094                put_page(page);
2095                add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2096                return;
2097        } else if (is_huge_zero_pmd(*pmd)) {
2098                /*
2099                 * FIXME: Do we want to invalidate secondary mmu by calling
2100                 * mmu_notifier_invalidate_range() see comments below inside
2101                 * __split_huge_pmd() ?
2102                 *
2103                 * We are going from a zero huge page write protected to zero
2104                 * small page also write protected so it does not seems useful
2105                 * to invalidate secondary mmu at this time.
2106                 */
2107                return __split_huge_zero_page_pmd(vma, haddr, pmd);
2108        }
2109
2110        /*
2111         * Up to this point the pmd is present and huge and userland has the
2112         * whole access to the hugepage during the split (which happens in
2113         * place). If we overwrite the pmd with the not-huge version pointing
2114         * to the pte here (which of course we could if all CPUs were bug
2115         * free), userland could trigger a small page size TLB miss on the
2116         * small sized TLB while the hugepage TLB entry is still established in
2117         * the huge TLB. Some CPU doesn't like that.
2118         * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2119         * 383 on page 93. Intel should be safe but is also warns that it's
2120         * only safe if the permission and cache attributes of the two entries
2121         * loaded in the two TLB is identical (which should be the case here).
2122         * But it is generally safer to never allow small and huge TLB entries
2123         * for the same virtual address to be loaded simultaneously. So instead
2124         * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2125         * current pmd notpresent (atomically because here the pmd_trans_huge
2126         * must remain set at all times on the pmd until the split is complete
2127         * for this pmd), then we flush the SMP TLB and finally we write the
2128         * non-huge version of the pmd entry with pmd_populate.
2129         */
2130        old_pmd = pmdp_invalidate(vma, haddr, pmd);
2131
2132#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2133        pmd_migration = is_pmd_migration_entry(old_pmd);
2134        if (pmd_migration) {
2135                swp_entry_t entry;
2136
2137                entry = pmd_to_swp_entry(old_pmd);
2138                page = pfn_to_page(swp_offset(entry));
2139        } else
2140#endif
2141                page = pmd_page(old_pmd);
2142        VM_BUG_ON_PAGE(!page_count(page), page);
2143        page_ref_add(page, HPAGE_PMD_NR - 1);
2144        if (pmd_dirty(old_pmd))
2145                SetPageDirty(page);
2146        write = pmd_write(old_pmd);
2147        young = pmd_young(old_pmd);
2148        soft_dirty = pmd_soft_dirty(old_pmd);
2149
2150        /*
2151         * Withdraw the table only after we mark the pmd entry invalid.
2152         * This's critical for some architectures (Power).
2153         */
2154        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2155        pmd_populate(mm, &_pmd, pgtable);
2156
2157        for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2158                pte_t entry, *pte;
2159                /*
2160                 * Note that NUMA hinting access restrictions are not
2161                 * transferred to avoid any possibility of altering
2162                 * permissions across VMAs.
2163                 */
2164                if (freeze || pmd_migration) {
2165                        swp_entry_t swp_entry;
2166                        swp_entry = make_migration_entry(page + i, write);
2167                        entry = swp_entry_to_pte(swp_entry);
2168                        if (soft_dirty)
2169                                entry = pte_swp_mksoft_dirty(entry);
2170                } else {
2171                        entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2172                        entry = maybe_mkwrite(entry, vma);
2173                        if (!write)
2174                                entry = pte_wrprotect(entry);
2175                        if (!young)
2176                                entry = pte_mkold(entry);
2177                        if (soft_dirty)
2178                                entry = pte_mksoft_dirty(entry);
2179                }
2180                pte = pte_offset_map(&_pmd, addr);
2181                BUG_ON(!pte_none(*pte));
2182                set_pte_at(mm, addr, pte, entry);
2183                atomic_inc(&page[i]._mapcount);
2184                pte_unmap(pte);
2185        }
2186
2187        /*
2188         * Set PG_double_map before dropping compound_mapcount to avoid
2189         * false-negative page_mapped().
2190         */
2191        if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2192                for (i = 0; i < HPAGE_PMD_NR; i++)
2193                        atomic_inc(&page[i]._mapcount);
2194        }
2195
2196        if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2197                /* Last compound_mapcount is gone. */
2198                __dec_node_page_state(page, NR_ANON_THPS);
2199                if (TestClearPageDoubleMap(page)) {
2200                        /* No need in mapcount reference anymore */
2201                        for (i = 0; i < HPAGE_PMD_NR; i++)
2202                                atomic_dec(&page[i]._mapcount);
2203                }
2204        }
2205
2206        smp_wmb(); /* make pte visible before pmd */
2207        pmd_populate(mm, pmd, pgtable);
2208
2209        if (freeze) {
2210                for (i = 0; i < HPAGE_PMD_NR; i++) {
2211                        page_remove_rmap(page + i, false);
2212                        put_page(page + i);
2213                }
2214        }
2215}
2216
2217void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2218                unsigned long address, bool freeze, struct page *page)
2219{
2220        spinlock_t *ptl;
2221        struct mm_struct *mm = vma->vm_mm;
2222        unsigned long haddr = address & HPAGE_PMD_MASK;
2223
2224        mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2225        ptl = pmd_lock(mm, pmd);
2226
2227        /*
2228         * If caller asks to setup a migration entries, we need a page to check
2229         * pmd against. Otherwise we can end up replacing wrong page.
2230         */
2231        VM_BUG_ON(freeze && !page);
2232        if (page && page != pmd_page(*pmd))
2233                goto out;
2234
2235        if (pmd_trans_huge(*pmd)) {
2236                page = pmd_page(*pmd);
2237                if (PageMlocked(page))
2238                        clear_page_mlock(page);
2239        } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2240                goto out;
2241        __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2242out:
2243        spin_unlock(ptl);
2244        /*
2245         * No need to double call mmu_notifier->invalidate_range() callback.
2246         * They are 3 cases to consider inside __split_huge_pmd_locked():
2247         *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2248         *  2) __split_huge_zero_page_pmd() read only zero page and any write
2249         *    fault will trigger a flush_notify before pointing to a new page
2250         *    (it is fine if the secondary mmu keeps pointing to the old zero
2251         *    page in the meantime)
2252         *  3) Split a huge pmd into pte pointing to the same page. No need
2253         *     to invalidate secondary tlb entry they are all still valid.
2254         *     any further changes to individual pte will notify. So no need
2255         *     to call mmu_notifier->invalidate_range()
2256         */
2257        mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2258                                               HPAGE_PMD_SIZE);
2259}
2260
2261void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2262                bool freeze, struct page *page)
2263{
2264        pgd_t *pgd;
2265        p4d_t *p4d;
2266        pud_t *pud;
2267        pmd_t *pmd;
2268
2269        pgd = pgd_offset(vma->vm_mm, address);
2270        if (!pgd_present(*pgd))
2271                return;
2272
2273        p4d = p4d_offset(pgd, address);
2274        if (!p4d_present(*p4d))
2275                return;
2276
2277        pud = pud_offset(p4d, address);
2278        if (!pud_present(*pud))
2279                return;
2280
2281        pmd = pmd_offset(pud, address);
2282
2283        __split_huge_pmd(vma, pmd, address, freeze, page);
2284}
2285
2286void vma_adjust_trans_huge(struct vm_area_struct *vma,
2287                             unsigned long start,
2288                             unsigned long end,
2289                             long adjust_next)
2290{
2291        /*
2292         * If the new start address isn't hpage aligned and it could
2293         * previously contain an hugepage: check if we need to split
2294         * an huge pmd.
2295         */
2296        if (start & ~HPAGE_PMD_MASK &&
2297            (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2298            (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2299                split_huge_pmd_address(vma, start, false, NULL);
2300
2301        /*
2302         * If the new end address isn't hpage aligned and it could
2303         * previously contain an hugepage: check if we need to split
2304         * an huge pmd.
2305         */
2306        if (end & ~HPAGE_PMD_MASK &&
2307            (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2308            (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2309                split_huge_pmd_address(vma, end, false, NULL);
2310
2311        /*
2312         * If we're also updating the vma->vm_next->vm_start, if the new
2313         * vm_next->vm_start isn't page aligned and it could previously
2314         * contain an hugepage: check if we need to split an huge pmd.
2315         */
2316        if (adjust_next > 0) {
2317                struct vm_area_struct *next = vma->vm_next;
2318                unsigned long nstart = next->vm_start;
2319                nstart += adjust_next << PAGE_SHIFT;
2320                if (nstart & ~HPAGE_PMD_MASK &&
2321                    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2322                    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2323                        split_huge_pmd_address(next, nstart, false, NULL);
2324        }
2325}
2326
2327static void freeze_page(struct page *page)
2328{
2329        enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2330                TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2331        bool unmap_success;
2332
2333        VM_BUG_ON_PAGE(!PageHead(page), page);
2334
2335        if (PageAnon(page))
2336                ttu_flags |= TTU_SPLIT_FREEZE;
2337
2338        unmap_success = try_to_unmap(page, ttu_flags);
2339        VM_BUG_ON_PAGE(!unmap_success, page);
2340}
2341
2342static void unfreeze_page(struct page *page)
2343{
2344        int i;
2345        if (PageTransHuge(page)) {
2346                remove_migration_ptes(page, page, true);
2347        } else {
2348                for (i = 0; i < HPAGE_PMD_NR; i++)
2349                        remove_migration_ptes(page + i, page + i, true);
2350        }
2351}
2352
2353static void __split_huge_page_tail(struct page *head, int tail,
2354                struct lruvec *lruvec, struct list_head *list)
2355{
2356        struct page *page_tail = head + tail;
2357
2358        VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2359        VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2360
2361        /*
2362         * tail_page->_refcount is zero and not changing from under us. But
2363         * get_page_unless_zero() may be running from under us on the
2364         * tail_page. If we used atomic_set() below instead of atomic_inc() or
2365         * atomic_add(), we would then run atomic_set() concurrently with
2366         * get_page_unless_zero(), and atomic_set() is implemented in C not
2367         * using locked ops. spin_unlock on x86 sometime uses locked ops
2368         * because of PPro errata 66, 92, so unless somebody can guarantee
2369         * atomic_set() here would be safe on all archs (and not only on x86),
2370         * it's safer to use atomic_inc()/atomic_add().
2371         */
2372        if (PageAnon(head) && !PageSwapCache(head)) {
2373                page_ref_inc(page_tail);
2374        } else {
2375                /* Additional pin to radix tree */
2376                page_ref_add(page_tail, 2);
2377        }
2378
2379        page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2380        page_tail->flags |= (head->flags &
2381                        ((1L << PG_referenced) |
2382                         (1L << PG_swapbacked) |
2383                         (1L << PG_swapcache) |
2384                         (1L << PG_mlocked) |
2385                         (1L << PG_uptodate) |
2386                         (1L << PG_active) |
2387                         (1L << PG_locked) |
2388                         (1L << PG_unevictable) |
2389                         (1L << PG_dirty)));
2390
2391        /*
2392         * After clearing PageTail the gup refcount can be released.
2393         * Page flags also must be visible before we make the page non-compound.
2394         */
2395        smp_wmb();
2396
2397        clear_compound_head(page_tail);
2398
2399        if (page_is_young(head))
2400                set_page_young(page_tail);
2401        if (page_is_idle(head))
2402                set_page_idle(page_tail);
2403
2404        /* ->mapping in first tail page is compound_mapcount */
2405        VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2406                        page_tail);
2407        page_tail->mapping = head->mapping;
2408
2409        page_tail->index = head->index + tail;
2410        page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2411        lru_add_page_tail(head, page_tail, lruvec, list);
2412}
2413
2414static void __split_huge_page(struct page *page, struct list_head *list,
2415                unsigned long flags)
2416{
2417        struct page *head = compound_head(page);
2418        struct zone *zone = page_zone(head);
2419        struct lruvec *lruvec;
2420        pgoff_t end = -1;
2421        int i;
2422
2423        lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2424
2425        /* complete memcg works before add pages to LRU */
2426        mem_cgroup_split_huge_fixup(head);
2427
2428        if (!PageAnon(page))
2429                end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2430
2431        for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2432                __split_huge_page_tail(head, i, lruvec, list);
2433                /* Some pages can be beyond i_size: drop them from page cache */
2434                if (head[i].index >= end) {
2435                        __ClearPageDirty(head + i);
2436                        __delete_from_page_cache(head + i, NULL);
2437                        if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2438                                shmem_uncharge(head->mapping->host, 1);
2439                        put_page(head + i);
2440                }
2441        }
2442
2443        ClearPageCompound(head);
2444        /* See comment in __split_huge_page_tail() */
2445        if (PageAnon(head)) {
2446                /* Additional pin to radix tree of swap cache */
2447                if (PageSwapCache(head))
2448                        page_ref_add(head, 2);
2449                else
2450                        page_ref_inc(head);
2451        } else {
2452                /* Additional pin to radix tree */
2453                page_ref_add(head, 2);
2454                spin_unlock(&head->mapping->tree_lock);
2455        }
2456
2457        spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2458
2459        unfreeze_page(head);
2460
2461        for (i = 0; i < HPAGE_PMD_NR; i++) {
2462                struct page *subpage = head + i;
2463                if (subpage == page)
2464                        continue;
2465                unlock_page(subpage);
2466
2467                /*
2468                 * Subpages may be freed if there wasn't any mapping
2469                 * like if add_to_swap() is running on a lru page that
2470                 * had its mapping zapped. And freeing these pages
2471                 * requires taking the lru_lock so we do the put_page
2472                 * of the tail pages after the split is complete.
2473                 */
2474                put_page(subpage);
2475        }
2476}
2477
2478int total_mapcount(struct page *page)
2479{
2480        int i, compound, ret;
2481
2482        VM_BUG_ON_PAGE(PageTail(page), page);
2483
2484        if (likely(!PageCompound(page)))
2485                return atomic_read(&page->_mapcount) + 1;
2486
2487        compound = compound_mapcount(page);
2488        if (PageHuge(page))
2489                return compound;
2490        ret = compound;
2491        for (i = 0; i < HPAGE_PMD_NR; i++)
2492                ret += atomic_read(&page[i]._mapcount) + 1;
2493        /* File pages has compound_mapcount included in _mapcount */
2494        if (!PageAnon(page))
2495                return ret - compound * HPAGE_PMD_NR;
2496        if (PageDoubleMap(page))
2497                ret -= HPAGE_PMD_NR;
2498        return ret;
2499}
2500
2501/*
2502 * This calculates accurately how many mappings a transparent hugepage
2503 * has (unlike page_mapcount() which isn't fully accurate). This full
2504 * accuracy is primarily needed to know if copy-on-write faults can
2505 * reuse the page and change the mapping to read-write instead of
2506 * copying them. At the same time this returns the total_mapcount too.
2507 *
2508 * The function returns the highest mapcount any one of the subpages
2509 * has. If the return value is one, even if different processes are
2510 * mapping different subpages of the transparent hugepage, they can
2511 * all reuse it, because each process is reusing a different subpage.
2512 *
2513 * The total_mapcount is instead counting all virtual mappings of the
2514 * subpages. If the total_mapcount is equal to "one", it tells the
2515 * caller all mappings belong to the same "mm" and in turn the
2516 * anon_vma of the transparent hugepage can become the vma->anon_vma
2517 * local one as no other process may be mapping any of the subpages.
2518 *
2519 * It would be more accurate to replace page_mapcount() with
2520 * page_trans_huge_mapcount(), however we only use
2521 * page_trans_huge_mapcount() in the copy-on-write faults where we
2522 * need full accuracy to avoid breaking page pinning, because
2523 * page_trans_huge_mapcount() is slower than page_mapcount().
2524 */
2525int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2526{
2527        int i, ret, _total_mapcount, mapcount;
2528
2529        /* hugetlbfs shouldn't call it */
2530        VM_BUG_ON_PAGE(PageHuge(page), page);
2531
2532        if (likely(!PageTransCompound(page))) {
2533                mapcount = atomic_read(&page->_mapcount) + 1;
2534                if (total_mapcount)
2535                        *total_mapcount = mapcount;
2536                return mapcount;
2537        }
2538
2539        page = compound_head(page);
2540
2541        _total_mapcount = ret = 0;
2542        for (i = 0; i < HPAGE_PMD_NR; i++) {
2543                mapcount = atomic_read(&page[i]._mapcount) + 1;
2544                ret = max(ret, mapcount);
2545                _total_mapcount += mapcount;
2546        }
2547        if (PageDoubleMap(page)) {
2548                ret -= 1;
2549                _total_mapcount -= HPAGE_PMD_NR;
2550        }
2551        mapcount = compound_mapcount(page);
2552        ret += mapcount;
2553        _total_mapcount += mapcount;
2554        if (total_mapcount)
2555                *total_mapcount = _total_mapcount;
2556        return ret;
2557}
2558
2559/* Racy check whether the huge page can be split */
2560bool can_split_huge_page(struct page *page, int *pextra_pins)
2561{
2562        int extra_pins;
2563
2564        /* Additional pins from radix tree */
2565        if (PageAnon(page))
2566                extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2567        else
2568                extra_pins = HPAGE_PMD_NR;
2569        if (pextra_pins)
2570                *pextra_pins = extra_pins;
2571        return total_mapcount(page) == page_count(page) - extra_pins - 1;
2572}
2573
2574/*
2575 * This function splits huge page into normal pages. @page can point to any
2576 * subpage of huge page to split. Split doesn't change the position of @page.
2577 *
2578 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2579 * The huge page must be locked.
2580 *
2581 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2582 *
2583 * Both head page and tail pages will inherit mapping, flags, and so on from
2584 * the hugepage.
2585 *
2586 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2587 * they are not mapped.
2588 *
2589 * Returns 0 if the hugepage is split successfully.
2590 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2591 * us.
2592 */
2593int split_huge_page_to_list(struct page *page, struct list_head *list)
2594{
2595        struct page *head = compound_head(page);
2596        struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2597        struct anon_vma *anon_vma = NULL;
2598        struct address_space *mapping = NULL;
2599        int count, mapcount, extra_pins, ret;
2600        bool mlocked;
2601        unsigned long flags;
2602
2603        VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2604        VM_BUG_ON_PAGE(!PageLocked(page), page);
2605        VM_BUG_ON_PAGE(!PageCompound(page), page);
2606
2607        if (PageWriteback(page))
2608                return -EBUSY;
2609
2610        if (PageAnon(head)) {
2611                /*
2612                 * The caller does not necessarily hold an mmap_sem that would
2613                 * prevent the anon_vma disappearing so we first we take a
2614                 * reference to it and then lock the anon_vma for write. This
2615                 * is similar to page_lock_anon_vma_read except the write lock
2616                 * is taken to serialise against parallel split or collapse
2617                 * operations.
2618                 */
2619                anon_vma = page_get_anon_vma(head);
2620                if (!anon_vma) {
2621                        ret = -EBUSY;
2622                        goto out;
2623                }
2624                mapping = NULL;
2625                anon_vma_lock_write(anon_vma);
2626        } else {
2627                mapping = head->mapping;
2628
2629                /* Truncated ? */
2630                if (!mapping) {
2631                        ret = -EBUSY;
2632                        goto out;
2633                }
2634
2635                anon_vma = NULL;
2636                i_mmap_lock_read(mapping);
2637        }
2638
2639        /*
2640         * Racy check if we can split the page, before freeze_page() will
2641         * split PMDs
2642         */
2643        if (!can_split_huge_page(head, &extra_pins)) {
2644                ret = -EBUSY;
2645                goto out_unlock;
2646        }
2647
2648        mlocked = PageMlocked(page);
2649        freeze_page(head);
2650        VM_BUG_ON_PAGE(compound_mapcount(head), head);
2651
2652        /* Make sure the page is not on per-CPU pagevec as it takes pin */
2653        if (mlocked)
2654                lru_add_drain();
2655
2656        /* prevent PageLRU to go away from under us, and freeze lru stats */
2657        spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2658
2659        if (mapping) {
2660                void **pslot;
2661
2662                spin_lock(&mapping->tree_lock);
2663                pslot = radix_tree_lookup_slot(&mapping->page_tree,
2664                                page_index(head));
2665                /*
2666                 * Check if the head page is present in radix tree.
2667                 * We assume all tail are present too, if head is there.
2668                 */
2669                if (radix_tree_deref_slot_protected(pslot,
2670                                        &mapping->tree_lock) != head)
2671                        goto fail;
2672        }
2673
2674        /* Prevent deferred_split_scan() touching ->_refcount */
2675        spin_lock(&pgdata->split_queue_lock);
2676        count = page_count(head);
2677        mapcount = total_mapcount(head);
2678        if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2679                if (!list_empty(page_deferred_list(head))) {
2680                        pgdata->split_queue_len--;
2681                        list_del(page_deferred_list(head));
2682                }
2683                if (mapping)
2684                        __dec_node_page_state(page, NR_SHMEM_THPS);
2685                spin_unlock(&pgdata->split_queue_lock);
2686                __split_huge_page(page, list, flags);
2687                if (PageSwapCache(head)) {
2688                        swp_entry_t entry = { .val = page_private(head) };
2689
2690                        ret = split_swap_cluster(entry);
2691                } else
2692                        ret = 0;
2693        } else {
2694                if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2695                        pr_alert("total_mapcount: %u, page_count(): %u\n",
2696                                        mapcount, count);
2697                        if (PageTail(page))
2698                                dump_page(head, NULL);
2699                        dump_page(page, "total_mapcount(head) > 0");
2700                        BUG();
2701                }
2702                spin_unlock(&pgdata->split_queue_lock);
2703fail:           if (mapping)
2704                        spin_unlock(&mapping->tree_lock);
2705                spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2706                unfreeze_page(head);
2707                ret = -EBUSY;
2708        }
2709
2710out_unlock:
2711        if (anon_vma) {
2712                anon_vma_unlock_write(anon_vma);
2713                put_anon_vma(anon_vma);
2714        }
2715        if (mapping)
2716                i_mmap_unlock_read(mapping);
2717out:
2718        count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2719        return ret;
2720}
2721
2722void free_transhuge_page(struct page *page)
2723{
2724        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2725        unsigned long flags;
2726
2727        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2728        if (!list_empty(page_deferred_list(page))) {
2729                pgdata->split_queue_len--;
2730                list_del(page_deferred_list(page));
2731        }
2732        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2733        free_compound_page(page);
2734}
2735
2736void deferred_split_huge_page(struct page *page)
2737{
2738        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2739        unsigned long flags;
2740
2741        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2742
2743        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2744        if (list_empty(page_deferred_list(page))) {
2745                count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2746                list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2747                pgdata->split_queue_len++;
2748        }
2749        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2750}
2751
2752static unsigned long deferred_split_count(struct shrinker *shrink,
2753                struct shrink_control *sc)
2754{
2755        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2756        return READ_ONCE(pgdata->split_queue_len);
2757}
2758
2759static unsigned long deferred_split_scan(struct shrinker *shrink,
2760                struct shrink_control *sc)
2761{
2762        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2763        unsigned long flags;
2764        LIST_HEAD(list), *pos, *next;
2765        struct page *page;
2766        int split = 0;
2767
2768        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2769        /* Take pin on all head pages to avoid freeing them under us */
2770        list_for_each_safe(pos, next, &pgdata->split_queue) {
2771                page = list_entry((void *)pos, struct page, mapping);
2772                page = compound_head(page);
2773                if (get_page_unless_zero(page)) {
2774                        list_move(page_deferred_list(page), &list);
2775                } else {
2776                        /* We lost race with put_compound_page() */
2777                        list_del_init(page_deferred_list(page));
2778                        pgdata->split_queue_len--;
2779                }
2780                if (!--sc->nr_to_scan)
2781                        break;
2782        }
2783        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2784
2785        list_for_each_safe(pos, next, &list) {
2786                page = list_entry((void *)pos, struct page, mapping);
2787                if (!trylock_page(page))
2788                        goto next;
2789                /* split_huge_page() removes page from list on success */
2790                if (!split_huge_page(page))
2791                        split++;
2792                unlock_page(page);
2793next:
2794                put_page(page);
2795        }
2796
2797        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2798        list_splice_tail(&list, &pgdata->split_queue);
2799        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2800
2801        /*
2802         * Stop shrinker if we didn't split any page, but the queue is empty.
2803         * This can happen if pages were freed under us.
2804         */
2805        if (!split && list_empty(&pgdata->split_queue))
2806                return SHRINK_STOP;
2807        return split;
2808}
2809
2810static struct shrinker deferred_split_shrinker = {
2811        .count_objects = deferred_split_count,
2812        .scan_objects = deferred_split_scan,
2813        .seeks = DEFAULT_SEEKS,
2814        .flags = SHRINKER_NUMA_AWARE,
2815};
2816
2817#ifdef CONFIG_DEBUG_FS
2818static int split_huge_pages_set(void *data, u64 val)
2819{
2820        struct zone *zone;
2821        struct page *page;
2822        unsigned long pfn, max_zone_pfn;
2823        unsigned long total = 0, split = 0;
2824
2825        if (val != 1)
2826                return -EINVAL;
2827
2828        for_each_populated_zone(zone) {
2829                max_zone_pfn = zone_end_pfn(zone);
2830                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2831                        if (!pfn_valid(pfn))
2832                                continue;
2833
2834                        page = pfn_to_page(pfn);
2835                        if (!get_page_unless_zero(page))
2836                                continue;
2837
2838                        if (zone != page_zone(page))
2839                                goto next;
2840
2841                        if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2842                                goto next;
2843
2844                        total++;
2845                        lock_page(page);
2846                        if (!split_huge_page(page))
2847                                split++;
2848                        unlock_page(page);
2849next:
2850                        put_page(page);
2851                }
2852        }
2853
2854        pr_info("%lu of %lu THP split\n", split, total);
2855
2856        return 0;
2857}
2858DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2859                "%llu\n");
2860
2861static int __init split_huge_pages_debugfs(void)
2862{
2863        void *ret;
2864
2865        ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2866                        &split_huge_pages_fops);
2867        if (!ret)
2868                pr_warn("Failed to create split_huge_pages in debugfs");
2869        return 0;
2870}
2871late_initcall(split_huge_pages_debugfs);
2872#endif
2873
2874#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2875void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2876                struct page *page)
2877{
2878        struct vm_area_struct *vma = pvmw->vma;
2879        struct mm_struct *mm = vma->vm_mm;
2880        unsigned long address = pvmw->address;
2881        pmd_t pmdval;
2882        swp_entry_t entry;
2883        pmd_t pmdswp;
2884
2885        if (!(pvmw->pmd && !pvmw->pte))
2886                return;
2887
2888        mmu_notifier_invalidate_range_start(mm, address,
2889                        address + HPAGE_PMD_SIZE);
2890
2891        flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2892        pmdval = *pvmw->pmd;
2893        pmdp_invalidate(vma, address, pvmw->pmd);
2894        if (pmd_dirty(pmdval))
2895                set_page_dirty(page);
2896        entry = make_migration_entry(page, pmd_write(pmdval));
2897        pmdswp = swp_entry_to_pmd(entry);
2898        if (pmd_soft_dirty(pmdval))
2899                pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2900        set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2901        page_remove_rmap(page, true);
2902        put_page(page);
2903
2904        mmu_notifier_invalidate_range_end(mm, address,
2905                        address + HPAGE_PMD_SIZE);
2906}
2907
2908void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2909{
2910        struct vm_area_struct *vma = pvmw->vma;
2911        struct mm_struct *mm = vma->vm_mm;
2912        unsigned long address = pvmw->address;
2913        unsigned long mmun_start = address & HPAGE_PMD_MASK;
2914        pmd_t pmde;
2915        swp_entry_t entry;
2916
2917        if (!(pvmw->pmd && !pvmw->pte))
2918                return;
2919
2920        entry = pmd_to_swp_entry(*pvmw->pmd);
2921        get_page(new);
2922        pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2923        if (pmd_swp_soft_dirty(*pvmw->pmd))
2924                pmde = pmd_mksoft_dirty(pmde);
2925        if (is_write_migration_entry(entry))
2926                pmde = maybe_pmd_mkwrite(pmde, vma);
2927
2928        flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2929        page_add_anon_rmap(new, vma, mmun_start, true);
2930        set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2931        if (vma->vm_flags & VM_LOCKED)
2932                mlock_vma_page(new);
2933        update_mmu_cache_pmd(vma, address, pvmw->pmd);
2934}
2935#endif
2936