linux/mm/hugetlb.c
<<
>>
Prefs
   1/*
   2 * Generic hugetlb support.
   3 * (C) Nadia Yvette Chambers, April 2004
   4 */
   5#include <linux/list.h>
   6#include <linux/init.h>
   7#include <linux/mm.h>
   8#include <linux/seq_file.h>
   9#include <linux/sysctl.h>
  10#include <linux/highmem.h>
  11#include <linux/mmu_notifier.h>
  12#include <linux/nodemask.h>
  13#include <linux/pagemap.h>
  14#include <linux/mempolicy.h>
  15#include <linux/compiler.h>
  16#include <linux/cpuset.h>
  17#include <linux/mutex.h>
  18#include <linux/bootmem.h>
  19#include <linux/sysfs.h>
  20#include <linux/slab.h>
  21#include <linux/mmdebug.h>
  22#include <linux/sched/signal.h>
  23#include <linux/rmap.h>
  24#include <linux/string_helpers.h>
  25#include <linux/swap.h>
  26#include <linux/swapops.h>
  27#include <linux/jhash.h>
  28
  29#include <asm/page.h>
  30#include <asm/pgtable.h>
  31#include <asm/tlb.h>
  32
  33#include <linux/io.h>
  34#include <linux/hugetlb.h>
  35#include <linux/hugetlb_cgroup.h>
  36#include <linux/node.h>
  37#include <linux/userfaultfd_k.h>
  38#include <linux/page_owner.h>
  39#include "internal.h"
  40
  41int hugetlb_max_hstate __read_mostly;
  42unsigned int default_hstate_idx;
  43struct hstate hstates[HUGE_MAX_HSTATE];
  44/*
  45 * Minimum page order among possible hugepage sizes, set to a proper value
  46 * at boot time.
  47 */
  48static unsigned int minimum_order __read_mostly = UINT_MAX;
  49
  50__initdata LIST_HEAD(huge_boot_pages);
  51
  52/* for command line parsing */
  53static struct hstate * __initdata parsed_hstate;
  54static unsigned long __initdata default_hstate_max_huge_pages;
  55static unsigned long __initdata default_hstate_size;
  56static bool __initdata parsed_valid_hugepagesz = true;
  57
  58/*
  59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  60 * free_huge_pages, and surplus_huge_pages.
  61 */
  62DEFINE_SPINLOCK(hugetlb_lock);
  63
  64/*
  65 * Serializes faults on the same logical page.  This is used to
  66 * prevent spurious OOMs when the hugepage pool is fully utilized.
  67 */
  68static int num_fault_mutexes;
  69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  70
  71/* Forward declaration */
  72static int hugetlb_acct_memory(struct hstate *h, long delta);
  73
  74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  75{
  76        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  77
  78        spin_unlock(&spool->lock);
  79
  80        /* If no pages are used, and no other handles to the subpool
  81         * remain, give up any reservations mased on minimum size and
  82         * free the subpool */
  83        if (free) {
  84                if (spool->min_hpages != -1)
  85                        hugetlb_acct_memory(spool->hstate,
  86                                                -spool->min_hpages);
  87                kfree(spool);
  88        }
  89}
  90
  91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  92                                                long min_hpages)
  93{
  94        struct hugepage_subpool *spool;
  95
  96        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  97        if (!spool)
  98                return NULL;
  99
 100        spin_lock_init(&spool->lock);
 101        spool->count = 1;
 102        spool->max_hpages = max_hpages;
 103        spool->hstate = h;
 104        spool->min_hpages = min_hpages;
 105
 106        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 107                kfree(spool);
 108                return NULL;
 109        }
 110        spool->rsv_hpages = min_hpages;
 111
 112        return spool;
 113}
 114
 115void hugepage_put_subpool(struct hugepage_subpool *spool)
 116{
 117        spin_lock(&spool->lock);
 118        BUG_ON(!spool->count);
 119        spool->count--;
 120        unlock_or_release_subpool(spool);
 121}
 122
 123/*
 124 * Subpool accounting for allocating and reserving pages.
 125 * Return -ENOMEM if there are not enough resources to satisfy the
 126 * the request.  Otherwise, return the number of pages by which the
 127 * global pools must be adjusted (upward).  The returned value may
 128 * only be different than the passed value (delta) in the case where
 129 * a subpool minimum size must be manitained.
 130 */
 131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 132                                      long delta)
 133{
 134        long ret = delta;
 135
 136        if (!spool)
 137                return ret;
 138
 139        spin_lock(&spool->lock);
 140
 141        if (spool->max_hpages != -1) {          /* maximum size accounting */
 142                if ((spool->used_hpages + delta) <= spool->max_hpages)
 143                        spool->used_hpages += delta;
 144                else {
 145                        ret = -ENOMEM;
 146                        goto unlock_ret;
 147                }
 148        }
 149
 150        /* minimum size accounting */
 151        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 152                if (delta > spool->rsv_hpages) {
 153                        /*
 154                         * Asking for more reserves than those already taken on
 155                         * behalf of subpool.  Return difference.
 156                         */
 157                        ret = delta - spool->rsv_hpages;
 158                        spool->rsv_hpages = 0;
 159                } else {
 160                        ret = 0;        /* reserves already accounted for */
 161                        spool->rsv_hpages -= delta;
 162                }
 163        }
 164
 165unlock_ret:
 166        spin_unlock(&spool->lock);
 167        return ret;
 168}
 169
 170/*
 171 * Subpool accounting for freeing and unreserving pages.
 172 * Return the number of global page reservations that must be dropped.
 173 * The return value may only be different than the passed value (delta)
 174 * in the case where a subpool minimum size must be maintained.
 175 */
 176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 177                                       long delta)
 178{
 179        long ret = delta;
 180
 181        if (!spool)
 182                return delta;
 183
 184        spin_lock(&spool->lock);
 185
 186        if (spool->max_hpages != -1)            /* maximum size accounting */
 187                spool->used_hpages -= delta;
 188
 189         /* minimum size accounting */
 190        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 191                if (spool->rsv_hpages + delta <= spool->min_hpages)
 192                        ret = 0;
 193                else
 194                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 195
 196                spool->rsv_hpages += delta;
 197                if (spool->rsv_hpages > spool->min_hpages)
 198                        spool->rsv_hpages = spool->min_hpages;
 199        }
 200
 201        /*
 202         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 203         * quota reference, free it now.
 204         */
 205        unlock_or_release_subpool(spool);
 206
 207        return ret;
 208}
 209
 210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 211{
 212        return HUGETLBFS_SB(inode->i_sb)->spool;
 213}
 214
 215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 216{
 217        return subpool_inode(file_inode(vma->vm_file));
 218}
 219
 220/*
 221 * Region tracking -- allows tracking of reservations and instantiated pages
 222 *                    across the pages in a mapping.
 223 *
 224 * The region data structures are embedded into a resv_map and protected
 225 * by a resv_map's lock.  The set of regions within the resv_map represent
 226 * reservations for huge pages, or huge pages that have already been
 227 * instantiated within the map.  The from and to elements are huge page
 228 * indicies into the associated mapping.  from indicates the starting index
 229 * of the region.  to represents the first index past the end of  the region.
 230 *
 231 * For example, a file region structure with from == 0 and to == 4 represents
 232 * four huge pages in a mapping.  It is important to note that the to element
 233 * represents the first element past the end of the region. This is used in
 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 235 *
 236 * Interval notation of the form [from, to) will be used to indicate that
 237 * the endpoint from is inclusive and to is exclusive.
 238 */
 239struct file_region {
 240        struct list_head link;
 241        long from;
 242        long to;
 243};
 244
 245/*
 246 * Add the huge page range represented by [f, t) to the reserve
 247 * map.  In the normal case, existing regions will be expanded
 248 * to accommodate the specified range.  Sufficient regions should
 249 * exist for expansion due to the previous call to region_chg
 250 * with the same range.  However, it is possible that region_del
 251 * could have been called after region_chg and modifed the map
 252 * in such a way that no region exists to be expanded.  In this
 253 * case, pull a region descriptor from the cache associated with
 254 * the map and use that for the new range.
 255 *
 256 * Return the number of new huge pages added to the map.  This
 257 * number is greater than or equal to zero.
 258 */
 259static long region_add(struct resv_map *resv, long f, long t)
 260{
 261        struct list_head *head = &resv->regions;
 262        struct file_region *rg, *nrg, *trg;
 263        long add = 0;
 264
 265        spin_lock(&resv->lock);
 266        /* Locate the region we are either in or before. */
 267        list_for_each_entry(rg, head, link)
 268                if (f <= rg->to)
 269                        break;
 270
 271        /*
 272         * If no region exists which can be expanded to include the
 273         * specified range, the list must have been modified by an
 274         * interleving call to region_del().  Pull a region descriptor
 275         * from the cache and use it for this range.
 276         */
 277        if (&rg->link == head || t < rg->from) {
 278                VM_BUG_ON(resv->region_cache_count <= 0);
 279
 280                resv->region_cache_count--;
 281                nrg = list_first_entry(&resv->region_cache, struct file_region,
 282                                        link);
 283                list_del(&nrg->link);
 284
 285                nrg->from = f;
 286                nrg->to = t;
 287                list_add(&nrg->link, rg->link.prev);
 288
 289                add += t - f;
 290                goto out_locked;
 291        }
 292
 293        /* Round our left edge to the current segment if it encloses us. */
 294        if (f > rg->from)
 295                f = rg->from;
 296
 297        /* Check for and consume any regions we now overlap with. */
 298        nrg = rg;
 299        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
 300                if (&rg->link == head)
 301                        break;
 302                if (rg->from > t)
 303                        break;
 304
 305                /* If this area reaches higher then extend our area to
 306                 * include it completely.  If this is not the first area
 307                 * which we intend to reuse, free it. */
 308                if (rg->to > t)
 309                        t = rg->to;
 310                if (rg != nrg) {
 311                        /* Decrement return value by the deleted range.
 312                         * Another range will span this area so that by
 313                         * end of routine add will be >= zero
 314                         */
 315                        add -= (rg->to - rg->from);
 316                        list_del(&rg->link);
 317                        kfree(rg);
 318                }
 319        }
 320
 321        add += (nrg->from - f);         /* Added to beginning of region */
 322        nrg->from = f;
 323        add += t - nrg->to;             /* Added to end of region */
 324        nrg->to = t;
 325
 326out_locked:
 327        resv->adds_in_progress--;
 328        spin_unlock(&resv->lock);
 329        VM_BUG_ON(add < 0);
 330        return add;
 331}
 332
 333/*
 334 * Examine the existing reserve map and determine how many
 335 * huge pages in the specified range [f, t) are NOT currently
 336 * represented.  This routine is called before a subsequent
 337 * call to region_add that will actually modify the reserve
 338 * map to add the specified range [f, t).  region_chg does
 339 * not change the number of huge pages represented by the
 340 * map.  However, if the existing regions in the map can not
 341 * be expanded to represent the new range, a new file_region
 342 * structure is added to the map as a placeholder.  This is
 343 * so that the subsequent region_add call will have all the
 344 * regions it needs and will not fail.
 345 *
 346 * Upon entry, region_chg will also examine the cache of region descriptors
 347 * associated with the map.  If there are not enough descriptors cached, one
 348 * will be allocated for the in progress add operation.
 349 *
 350 * Returns the number of huge pages that need to be added to the existing
 351 * reservation map for the range [f, t).  This number is greater or equal to
 352 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 353 * is needed and can not be allocated.
 354 */
 355static long region_chg(struct resv_map *resv, long f, long t)
 356{
 357        struct list_head *head = &resv->regions;
 358        struct file_region *rg, *nrg = NULL;
 359        long chg = 0;
 360
 361retry:
 362        spin_lock(&resv->lock);
 363retry_locked:
 364        resv->adds_in_progress++;
 365
 366        /*
 367         * Check for sufficient descriptors in the cache to accommodate
 368         * the number of in progress add operations.
 369         */
 370        if (resv->adds_in_progress > resv->region_cache_count) {
 371                struct file_region *trg;
 372
 373                VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
 374                /* Must drop lock to allocate a new descriptor. */
 375                resv->adds_in_progress--;
 376                spin_unlock(&resv->lock);
 377
 378                trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 379                if (!trg) {
 380                        kfree(nrg);
 381                        return -ENOMEM;
 382                }
 383
 384                spin_lock(&resv->lock);
 385                list_add(&trg->link, &resv->region_cache);
 386                resv->region_cache_count++;
 387                goto retry_locked;
 388        }
 389
 390        /* Locate the region we are before or in. */
 391        list_for_each_entry(rg, head, link)
 392                if (f <= rg->to)
 393                        break;
 394
 395        /* If we are below the current region then a new region is required.
 396         * Subtle, allocate a new region at the position but make it zero
 397         * size such that we can guarantee to record the reservation. */
 398        if (&rg->link == head || t < rg->from) {
 399                if (!nrg) {
 400                        resv->adds_in_progress--;
 401                        spin_unlock(&resv->lock);
 402                        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 403                        if (!nrg)
 404                                return -ENOMEM;
 405
 406                        nrg->from = f;
 407                        nrg->to   = f;
 408                        INIT_LIST_HEAD(&nrg->link);
 409                        goto retry;
 410                }
 411
 412                list_add(&nrg->link, rg->link.prev);
 413                chg = t - f;
 414                goto out_nrg;
 415        }
 416
 417        /* Round our left edge to the current segment if it encloses us. */
 418        if (f > rg->from)
 419                f = rg->from;
 420        chg = t - f;
 421
 422        /* Check for and consume any regions we now overlap with. */
 423        list_for_each_entry(rg, rg->link.prev, link) {
 424                if (&rg->link == head)
 425                        break;
 426                if (rg->from > t)
 427                        goto out;
 428
 429                /* We overlap with this area, if it extends further than
 430                 * us then we must extend ourselves.  Account for its
 431                 * existing reservation. */
 432                if (rg->to > t) {
 433                        chg += rg->to - t;
 434                        t = rg->to;
 435                }
 436                chg -= rg->to - rg->from;
 437        }
 438
 439out:
 440        spin_unlock(&resv->lock);
 441        /*  We already know we raced and no longer need the new region */
 442        kfree(nrg);
 443        return chg;
 444out_nrg:
 445        spin_unlock(&resv->lock);
 446        return chg;
 447}
 448
 449/*
 450 * Abort the in progress add operation.  The adds_in_progress field
 451 * of the resv_map keeps track of the operations in progress between
 452 * calls to region_chg and region_add.  Operations are sometimes
 453 * aborted after the call to region_chg.  In such cases, region_abort
 454 * is called to decrement the adds_in_progress counter.
 455 *
 456 * NOTE: The range arguments [f, t) are not needed or used in this
 457 * routine.  They are kept to make reading the calling code easier as
 458 * arguments will match the associated region_chg call.
 459 */
 460static void region_abort(struct resv_map *resv, long f, long t)
 461{
 462        spin_lock(&resv->lock);
 463        VM_BUG_ON(!resv->region_cache_count);
 464        resv->adds_in_progress--;
 465        spin_unlock(&resv->lock);
 466}
 467
 468/*
 469 * Delete the specified range [f, t) from the reserve map.  If the
 470 * t parameter is LONG_MAX, this indicates that ALL regions after f
 471 * should be deleted.  Locate the regions which intersect [f, t)
 472 * and either trim, delete or split the existing regions.
 473 *
 474 * Returns the number of huge pages deleted from the reserve map.
 475 * In the normal case, the return value is zero or more.  In the
 476 * case where a region must be split, a new region descriptor must
 477 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 478 * NOTE: If the parameter t == LONG_MAX, then we will never split
 479 * a region and possibly return -ENOMEM.  Callers specifying
 480 * t == LONG_MAX do not need to check for -ENOMEM error.
 481 */
 482static long region_del(struct resv_map *resv, long f, long t)
 483{
 484        struct list_head *head = &resv->regions;
 485        struct file_region *rg, *trg;
 486        struct file_region *nrg = NULL;
 487        long del = 0;
 488
 489retry:
 490        spin_lock(&resv->lock);
 491        list_for_each_entry_safe(rg, trg, head, link) {
 492                /*
 493                 * Skip regions before the range to be deleted.  file_region
 494                 * ranges are normally of the form [from, to).  However, there
 495                 * may be a "placeholder" entry in the map which is of the form
 496                 * (from, to) with from == to.  Check for placeholder entries
 497                 * at the beginning of the range to be deleted.
 498                 */
 499                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 500                        continue;
 501
 502                if (rg->from >= t)
 503                        break;
 504
 505                if (f > rg->from && t < rg->to) { /* Must split region */
 506                        /*
 507                         * Check for an entry in the cache before dropping
 508                         * lock and attempting allocation.
 509                         */
 510                        if (!nrg &&
 511                            resv->region_cache_count > resv->adds_in_progress) {
 512                                nrg = list_first_entry(&resv->region_cache,
 513                                                        struct file_region,
 514                                                        link);
 515                                list_del(&nrg->link);
 516                                resv->region_cache_count--;
 517                        }
 518
 519                        if (!nrg) {
 520                                spin_unlock(&resv->lock);
 521                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 522                                if (!nrg)
 523                                        return -ENOMEM;
 524                                goto retry;
 525                        }
 526
 527                        del += t - f;
 528
 529                        /* New entry for end of split region */
 530                        nrg->from = t;
 531                        nrg->to = rg->to;
 532                        INIT_LIST_HEAD(&nrg->link);
 533
 534                        /* Original entry is trimmed */
 535                        rg->to = f;
 536
 537                        list_add(&nrg->link, &rg->link);
 538                        nrg = NULL;
 539                        break;
 540                }
 541
 542                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 543                        del += rg->to - rg->from;
 544                        list_del(&rg->link);
 545                        kfree(rg);
 546                        continue;
 547                }
 548
 549                if (f <= rg->from) {    /* Trim beginning of region */
 550                        del += t - rg->from;
 551                        rg->from = t;
 552                } else {                /* Trim end of region */
 553                        del += rg->to - f;
 554                        rg->to = f;
 555                }
 556        }
 557
 558        spin_unlock(&resv->lock);
 559        kfree(nrg);
 560        return del;
 561}
 562
 563/*
 564 * A rare out of memory error was encountered which prevented removal of
 565 * the reserve map region for a page.  The huge page itself was free'ed
 566 * and removed from the page cache.  This routine will adjust the subpool
 567 * usage count, and the global reserve count if needed.  By incrementing
 568 * these counts, the reserve map entry which could not be deleted will
 569 * appear as a "reserved" entry instead of simply dangling with incorrect
 570 * counts.
 571 */
 572void hugetlb_fix_reserve_counts(struct inode *inode)
 573{
 574        struct hugepage_subpool *spool = subpool_inode(inode);
 575        long rsv_adjust;
 576
 577        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 578        if (rsv_adjust) {
 579                struct hstate *h = hstate_inode(inode);
 580
 581                hugetlb_acct_memory(h, 1);
 582        }
 583}
 584
 585/*
 586 * Count and return the number of huge pages in the reserve map
 587 * that intersect with the range [f, t).
 588 */
 589static long region_count(struct resv_map *resv, long f, long t)
 590{
 591        struct list_head *head = &resv->regions;
 592        struct file_region *rg;
 593        long chg = 0;
 594
 595        spin_lock(&resv->lock);
 596        /* Locate each segment we overlap with, and count that overlap. */
 597        list_for_each_entry(rg, head, link) {
 598                long seg_from;
 599                long seg_to;
 600
 601                if (rg->to <= f)
 602                        continue;
 603                if (rg->from >= t)
 604                        break;
 605
 606                seg_from = max(rg->from, f);
 607                seg_to = min(rg->to, t);
 608
 609                chg += seg_to - seg_from;
 610        }
 611        spin_unlock(&resv->lock);
 612
 613        return chg;
 614}
 615
 616/*
 617 * Convert the address within this vma to the page offset within
 618 * the mapping, in pagecache page units; huge pages here.
 619 */
 620static pgoff_t vma_hugecache_offset(struct hstate *h,
 621                        struct vm_area_struct *vma, unsigned long address)
 622{
 623        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 624                        (vma->vm_pgoff >> huge_page_order(h));
 625}
 626
 627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 628                                     unsigned long address)
 629{
 630        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 631}
 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
 633
 634/*
 635 * Return the size of the pages allocated when backing a VMA. In the majority
 636 * cases this will be same size as used by the page table entries.
 637 */
 638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 639{
 640        struct hstate *hstate;
 641
 642        if (!is_vm_hugetlb_page(vma))
 643                return PAGE_SIZE;
 644
 645        hstate = hstate_vma(vma);
 646
 647        return 1UL << huge_page_shift(hstate);
 648}
 649EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 650
 651/*
 652 * Return the page size being used by the MMU to back a VMA. In the majority
 653 * of cases, the page size used by the kernel matches the MMU size. On
 654 * architectures where it differs, an architecture-specific version of this
 655 * function is required.
 656 */
 657#ifndef vma_mmu_pagesize
 658unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 659{
 660        return vma_kernel_pagesize(vma);
 661}
 662#endif
 663
 664/*
 665 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 666 * bits of the reservation map pointer, which are always clear due to
 667 * alignment.
 668 */
 669#define HPAGE_RESV_OWNER    (1UL << 0)
 670#define HPAGE_RESV_UNMAPPED (1UL << 1)
 671#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 672
 673/*
 674 * These helpers are used to track how many pages are reserved for
 675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 676 * is guaranteed to have their future faults succeed.
 677 *
 678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 679 * the reserve counters are updated with the hugetlb_lock held. It is safe
 680 * to reset the VMA at fork() time as it is not in use yet and there is no
 681 * chance of the global counters getting corrupted as a result of the values.
 682 *
 683 * The private mapping reservation is represented in a subtly different
 684 * manner to a shared mapping.  A shared mapping has a region map associated
 685 * with the underlying file, this region map represents the backing file
 686 * pages which have ever had a reservation assigned which this persists even
 687 * after the page is instantiated.  A private mapping has a region map
 688 * associated with the original mmap which is attached to all VMAs which
 689 * reference it, this region map represents those offsets which have consumed
 690 * reservation ie. where pages have been instantiated.
 691 */
 692static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 693{
 694        return (unsigned long)vma->vm_private_data;
 695}
 696
 697static void set_vma_private_data(struct vm_area_struct *vma,
 698                                                        unsigned long value)
 699{
 700        vma->vm_private_data = (void *)value;
 701}
 702
 703struct resv_map *resv_map_alloc(void)
 704{
 705        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 706        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 707
 708        if (!resv_map || !rg) {
 709                kfree(resv_map);
 710                kfree(rg);
 711                return NULL;
 712        }
 713
 714        kref_init(&resv_map->refs);
 715        spin_lock_init(&resv_map->lock);
 716        INIT_LIST_HEAD(&resv_map->regions);
 717
 718        resv_map->adds_in_progress = 0;
 719
 720        INIT_LIST_HEAD(&resv_map->region_cache);
 721        list_add(&rg->link, &resv_map->region_cache);
 722        resv_map->region_cache_count = 1;
 723
 724        return resv_map;
 725}
 726
 727void resv_map_release(struct kref *ref)
 728{
 729        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 730        struct list_head *head = &resv_map->region_cache;
 731        struct file_region *rg, *trg;
 732
 733        /* Clear out any active regions before we release the map. */
 734        region_del(resv_map, 0, LONG_MAX);
 735
 736        /* ... and any entries left in the cache */
 737        list_for_each_entry_safe(rg, trg, head, link) {
 738                list_del(&rg->link);
 739                kfree(rg);
 740        }
 741
 742        VM_BUG_ON(resv_map->adds_in_progress);
 743
 744        kfree(resv_map);
 745}
 746
 747static inline struct resv_map *inode_resv_map(struct inode *inode)
 748{
 749        return inode->i_mapping->private_data;
 750}
 751
 752static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 753{
 754        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 755        if (vma->vm_flags & VM_MAYSHARE) {
 756                struct address_space *mapping = vma->vm_file->f_mapping;
 757                struct inode *inode = mapping->host;
 758
 759                return inode_resv_map(inode);
 760
 761        } else {
 762                return (struct resv_map *)(get_vma_private_data(vma) &
 763                                                        ~HPAGE_RESV_MASK);
 764        }
 765}
 766
 767static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 768{
 769        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 770        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 771
 772        set_vma_private_data(vma, (get_vma_private_data(vma) &
 773                                HPAGE_RESV_MASK) | (unsigned long)map);
 774}
 775
 776static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 777{
 778        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 779        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 780
 781        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 782}
 783
 784static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 785{
 786        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 787
 788        return (get_vma_private_data(vma) & flag) != 0;
 789}
 790
 791/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 792void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 793{
 794        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 795        if (!(vma->vm_flags & VM_MAYSHARE))
 796                vma->vm_private_data = (void *)0;
 797}
 798
 799/* Returns true if the VMA has associated reserve pages */
 800static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 801{
 802        if (vma->vm_flags & VM_NORESERVE) {
 803                /*
 804                 * This address is already reserved by other process(chg == 0),
 805                 * so, we should decrement reserved count. Without decrementing,
 806                 * reserve count remains after releasing inode, because this
 807                 * allocated page will go into page cache and is regarded as
 808                 * coming from reserved pool in releasing step.  Currently, we
 809                 * don't have any other solution to deal with this situation
 810                 * properly, so add work-around here.
 811                 */
 812                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 813                        return true;
 814                else
 815                        return false;
 816        }
 817
 818        /* Shared mappings always use reserves */
 819        if (vma->vm_flags & VM_MAYSHARE) {
 820                /*
 821                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 822                 * be a region map for all pages.  The only situation where
 823                 * there is no region map is if a hole was punched via
 824                 * fallocate.  In this case, there really are no reverves to
 825                 * use.  This situation is indicated if chg != 0.
 826                 */
 827                if (chg)
 828                        return false;
 829                else
 830                        return true;
 831        }
 832
 833        /*
 834         * Only the process that called mmap() has reserves for
 835         * private mappings.
 836         */
 837        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
 838                /*
 839                 * Like the shared case above, a hole punch or truncate
 840                 * could have been performed on the private mapping.
 841                 * Examine the value of chg to determine if reserves
 842                 * actually exist or were previously consumed.
 843                 * Very Subtle - The value of chg comes from a previous
 844                 * call to vma_needs_reserves().  The reserve map for
 845                 * private mappings has different (opposite) semantics
 846                 * than that of shared mappings.  vma_needs_reserves()
 847                 * has already taken this difference in semantics into
 848                 * account.  Therefore, the meaning of chg is the same
 849                 * as in the shared case above.  Code could easily be
 850                 * combined, but keeping it separate draws attention to
 851                 * subtle differences.
 852                 */
 853                if (chg)
 854                        return false;
 855                else
 856                        return true;
 857        }
 858
 859        return false;
 860}
 861
 862static void enqueue_huge_page(struct hstate *h, struct page *page)
 863{
 864        int nid = page_to_nid(page);
 865        list_move(&page->lru, &h->hugepage_freelists[nid]);
 866        h->free_huge_pages++;
 867        h->free_huge_pages_node[nid]++;
 868}
 869
 870static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
 871{
 872        struct page *page;
 873
 874        list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
 875                if (!PageHWPoison(page))
 876                        break;
 877        /*
 878         * if 'non-isolated free hugepage' not found on the list,
 879         * the allocation fails.
 880         */
 881        if (&h->hugepage_freelists[nid] == &page->lru)
 882                return NULL;
 883        list_move(&page->lru, &h->hugepage_activelist);
 884        set_page_refcounted(page);
 885        h->free_huge_pages--;
 886        h->free_huge_pages_node[nid]--;
 887        return page;
 888}
 889
 890static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
 891                nodemask_t *nmask)
 892{
 893        unsigned int cpuset_mems_cookie;
 894        struct zonelist *zonelist;
 895        struct zone *zone;
 896        struct zoneref *z;
 897        int node = -1;
 898
 899        zonelist = node_zonelist(nid, gfp_mask);
 900
 901retry_cpuset:
 902        cpuset_mems_cookie = read_mems_allowed_begin();
 903        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
 904                struct page *page;
 905
 906                if (!cpuset_zone_allowed(zone, gfp_mask))
 907                        continue;
 908                /*
 909                 * no need to ask again on the same node. Pool is node rather than
 910                 * zone aware
 911                 */
 912                if (zone_to_nid(zone) == node)
 913                        continue;
 914                node = zone_to_nid(zone);
 915
 916                page = dequeue_huge_page_node_exact(h, node);
 917                if (page)
 918                        return page;
 919        }
 920        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
 921                goto retry_cpuset;
 922
 923        return NULL;
 924}
 925
 926/* Movability of hugepages depends on migration support. */
 927static inline gfp_t htlb_alloc_mask(struct hstate *h)
 928{
 929        if (hugepage_migration_supported(h))
 930                return GFP_HIGHUSER_MOVABLE;
 931        else
 932                return GFP_HIGHUSER;
 933}
 934
 935static struct page *dequeue_huge_page_vma(struct hstate *h,
 936                                struct vm_area_struct *vma,
 937                                unsigned long address, int avoid_reserve,
 938                                long chg)
 939{
 940        struct page *page;
 941        struct mempolicy *mpol;
 942        gfp_t gfp_mask;
 943        nodemask_t *nodemask;
 944        int nid;
 945
 946        /*
 947         * A child process with MAP_PRIVATE mappings created by their parent
 948         * have no page reserves. This check ensures that reservations are
 949         * not "stolen". The child may still get SIGKILLed
 950         */
 951        if (!vma_has_reserves(vma, chg) &&
 952                        h->free_huge_pages - h->resv_huge_pages == 0)
 953                goto err;
 954
 955        /* If reserves cannot be used, ensure enough pages are in the pool */
 956        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
 957                goto err;
 958
 959        gfp_mask = htlb_alloc_mask(h);
 960        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
 961        page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
 962        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
 963                SetPagePrivate(page);
 964                h->resv_huge_pages--;
 965        }
 966
 967        mpol_cond_put(mpol);
 968        return page;
 969
 970err:
 971        return NULL;
 972}
 973
 974/*
 975 * common helper functions for hstate_next_node_to_{alloc|free}.
 976 * We may have allocated or freed a huge page based on a different
 977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 978 * be outside of *nodes_allowed.  Ensure that we use an allowed
 979 * node for alloc or free.
 980 */
 981static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
 982{
 983        nid = next_node_in(nid, *nodes_allowed);
 984        VM_BUG_ON(nid >= MAX_NUMNODES);
 985
 986        return nid;
 987}
 988
 989static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
 990{
 991        if (!node_isset(nid, *nodes_allowed))
 992                nid = next_node_allowed(nid, nodes_allowed);
 993        return nid;
 994}
 995
 996/*
 997 * returns the previously saved node ["this node"] from which to
 998 * allocate a persistent huge page for the pool and advance the
 999 * next node from which to allocate, handling wrap at end of node
1000 * mask.
1001 */
1002static int hstate_next_node_to_alloc(struct hstate *h,
1003                                        nodemask_t *nodes_allowed)
1004{
1005        int nid;
1006
1007        VM_BUG_ON(!nodes_allowed);
1008
1009        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011
1012        return nid;
1013}
1014
1015/*
1016 * helper for free_pool_huge_page() - return the previously saved
1017 * node ["this node"] from which to free a huge page.  Advance the
1018 * next node id whether or not we find a free huge page to free so
1019 * that the next attempt to free addresses the next node.
1020 */
1021static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022{
1023        int nid;
1024
1025        VM_BUG_ON(!nodes_allowed);
1026
1027        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029
1030        return nid;
1031}
1032
1033#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1034        for (nr_nodes = nodes_weight(*mask);                            \
1035                nr_nodes > 0 &&                                         \
1036                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1037                nr_nodes--)
1038
1039#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1040        for (nr_nodes = nodes_weight(*mask);                            \
1041                nr_nodes > 0 &&                                         \
1042                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1043                nr_nodes--)
1044
1045#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046static void destroy_compound_gigantic_page(struct page *page,
1047                                        unsigned int order)
1048{
1049        int i;
1050        int nr_pages = 1 << order;
1051        struct page *p = page + 1;
1052
1053        atomic_set(compound_mapcount_ptr(page), 0);
1054        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055                clear_compound_head(p);
1056                set_page_refcounted(p);
1057        }
1058
1059        set_compound_order(page, 0);
1060        __ClearPageHead(page);
1061}
1062
1063static void free_gigantic_page(struct page *page, unsigned int order)
1064{
1065        free_contig_range(page_to_pfn(page), 1 << order);
1066}
1067
1068static int __alloc_gigantic_page(unsigned long start_pfn,
1069                                unsigned long nr_pages, gfp_t gfp_mask)
1070{
1071        unsigned long end_pfn = start_pfn + nr_pages;
1072        return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073                                  gfp_mask);
1074}
1075
1076static bool pfn_range_valid_gigantic(struct zone *z,
1077                        unsigned long start_pfn, unsigned long nr_pages)
1078{
1079        unsigned long i, end_pfn = start_pfn + nr_pages;
1080        struct page *page;
1081
1082        for (i = start_pfn; i < end_pfn; i++) {
1083                if (!pfn_valid(i))
1084                        return false;
1085
1086                page = pfn_to_page(i);
1087
1088                if (page_zone(page) != z)
1089                        return false;
1090
1091                if (PageReserved(page))
1092                        return false;
1093
1094                if (page_count(page) > 0)
1095                        return false;
1096
1097                if (PageHuge(page))
1098                        return false;
1099        }
1100
1101        return true;
1102}
1103
1104static bool zone_spans_last_pfn(const struct zone *zone,
1105                        unsigned long start_pfn, unsigned long nr_pages)
1106{
1107        unsigned long last_pfn = start_pfn + nr_pages - 1;
1108        return zone_spans_pfn(zone, last_pfn);
1109}
1110
1111static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1112                int nid, nodemask_t *nodemask)
1113{
1114        unsigned int order = huge_page_order(h);
1115        unsigned long nr_pages = 1 << order;
1116        unsigned long ret, pfn, flags;
1117        struct zonelist *zonelist;
1118        struct zone *zone;
1119        struct zoneref *z;
1120
1121        zonelist = node_zonelist(nid, gfp_mask);
1122        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1123                spin_lock_irqsave(&zone->lock, flags);
1124
1125                pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1126                while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1127                        if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1128                                /*
1129                                 * We release the zone lock here because
1130                                 * alloc_contig_range() will also lock the zone
1131                                 * at some point. If there's an allocation
1132                                 * spinning on this lock, it may win the race
1133                                 * and cause alloc_contig_range() to fail...
1134                                 */
1135                                spin_unlock_irqrestore(&zone->lock, flags);
1136                                ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1137                                if (!ret)
1138                                        return pfn_to_page(pfn);
1139                                spin_lock_irqsave(&zone->lock, flags);
1140                        }
1141                        pfn += nr_pages;
1142                }
1143
1144                spin_unlock_irqrestore(&zone->lock, flags);
1145        }
1146
1147        return NULL;
1148}
1149
1150static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1151static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1152
1153#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1154static inline bool gigantic_page_supported(void) { return false; }
1155static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1156                int nid, nodemask_t *nodemask) { return NULL; }
1157static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1158static inline void destroy_compound_gigantic_page(struct page *page,
1159                                                unsigned int order) { }
1160#endif
1161
1162static void update_and_free_page(struct hstate *h, struct page *page)
1163{
1164        int i;
1165
1166        if (hstate_is_gigantic(h) && !gigantic_page_supported())
1167                return;
1168
1169        h->nr_huge_pages--;
1170        h->nr_huge_pages_node[page_to_nid(page)]--;
1171        for (i = 0; i < pages_per_huge_page(h); i++) {
1172                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1173                                1 << PG_referenced | 1 << PG_dirty |
1174                                1 << PG_active | 1 << PG_private |
1175                                1 << PG_writeback);
1176        }
1177        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1178        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1179        set_page_refcounted(page);
1180        if (hstate_is_gigantic(h)) {
1181                destroy_compound_gigantic_page(page, huge_page_order(h));
1182                free_gigantic_page(page, huge_page_order(h));
1183        } else {
1184                __free_pages(page, huge_page_order(h));
1185        }
1186}
1187
1188struct hstate *size_to_hstate(unsigned long size)
1189{
1190        struct hstate *h;
1191
1192        for_each_hstate(h) {
1193                if (huge_page_size(h) == size)
1194                        return h;
1195        }
1196        return NULL;
1197}
1198
1199/*
1200 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1201 * to hstate->hugepage_activelist.)
1202 *
1203 * This function can be called for tail pages, but never returns true for them.
1204 */
1205bool page_huge_active(struct page *page)
1206{
1207        VM_BUG_ON_PAGE(!PageHuge(page), page);
1208        return PageHead(page) && PagePrivate(&page[1]);
1209}
1210
1211/* never called for tail page */
1212static void set_page_huge_active(struct page *page)
1213{
1214        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1215        SetPagePrivate(&page[1]);
1216}
1217
1218static void clear_page_huge_active(struct page *page)
1219{
1220        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221        ClearPagePrivate(&page[1]);
1222}
1223
1224/*
1225 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1226 * code
1227 */
1228static inline bool PageHugeTemporary(struct page *page)
1229{
1230        if (!PageHuge(page))
1231                return false;
1232
1233        return (unsigned long)page[2].mapping == -1U;
1234}
1235
1236static inline void SetPageHugeTemporary(struct page *page)
1237{
1238        page[2].mapping = (void *)-1U;
1239}
1240
1241static inline void ClearPageHugeTemporary(struct page *page)
1242{
1243        page[2].mapping = NULL;
1244}
1245
1246void free_huge_page(struct page *page)
1247{
1248        /*
1249         * Can't pass hstate in here because it is called from the
1250         * compound page destructor.
1251         */
1252        struct hstate *h = page_hstate(page);
1253        int nid = page_to_nid(page);
1254        struct hugepage_subpool *spool =
1255                (struct hugepage_subpool *)page_private(page);
1256        bool restore_reserve;
1257
1258        set_page_private(page, 0);
1259        page->mapping = NULL;
1260        VM_BUG_ON_PAGE(page_count(page), page);
1261        VM_BUG_ON_PAGE(page_mapcount(page), page);
1262        restore_reserve = PagePrivate(page);
1263        ClearPagePrivate(page);
1264
1265        /*
1266         * A return code of zero implies that the subpool will be under its
1267         * minimum size if the reservation is not restored after page is free.
1268         * Therefore, force restore_reserve operation.
1269         */
1270        if (hugepage_subpool_put_pages(spool, 1) == 0)
1271                restore_reserve = true;
1272
1273        spin_lock(&hugetlb_lock);
1274        clear_page_huge_active(page);
1275        hugetlb_cgroup_uncharge_page(hstate_index(h),
1276                                     pages_per_huge_page(h), page);
1277        if (restore_reserve)
1278                h->resv_huge_pages++;
1279
1280        if (PageHugeTemporary(page)) {
1281                list_del(&page->lru);
1282                ClearPageHugeTemporary(page);
1283                update_and_free_page(h, page);
1284        } else if (h->surplus_huge_pages_node[nid]) {
1285                /* remove the page from active list */
1286                list_del(&page->lru);
1287                update_and_free_page(h, page);
1288                h->surplus_huge_pages--;
1289                h->surplus_huge_pages_node[nid]--;
1290        } else {
1291                arch_clear_hugepage_flags(page);
1292                enqueue_huge_page(h, page);
1293        }
1294        spin_unlock(&hugetlb_lock);
1295}
1296
1297static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1298{
1299        INIT_LIST_HEAD(&page->lru);
1300        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1301        spin_lock(&hugetlb_lock);
1302        set_hugetlb_cgroup(page, NULL);
1303        h->nr_huge_pages++;
1304        h->nr_huge_pages_node[nid]++;
1305        spin_unlock(&hugetlb_lock);
1306}
1307
1308static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1309{
1310        int i;
1311        int nr_pages = 1 << order;
1312        struct page *p = page + 1;
1313
1314        /* we rely on prep_new_huge_page to set the destructor */
1315        set_compound_order(page, order);
1316        __ClearPageReserved(page);
1317        __SetPageHead(page);
1318        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1319                /*
1320                 * For gigantic hugepages allocated through bootmem at
1321                 * boot, it's safer to be consistent with the not-gigantic
1322                 * hugepages and clear the PG_reserved bit from all tail pages
1323                 * too.  Otherwse drivers using get_user_pages() to access tail
1324                 * pages may get the reference counting wrong if they see
1325                 * PG_reserved set on a tail page (despite the head page not
1326                 * having PG_reserved set).  Enforcing this consistency between
1327                 * head and tail pages allows drivers to optimize away a check
1328                 * on the head page when they need know if put_page() is needed
1329                 * after get_user_pages().
1330                 */
1331                __ClearPageReserved(p);
1332                set_page_count(p, 0);
1333                set_compound_head(p, page);
1334        }
1335        atomic_set(compound_mapcount_ptr(page), -1);
1336}
1337
1338/*
1339 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1340 * transparent huge pages.  See the PageTransHuge() documentation for more
1341 * details.
1342 */
1343int PageHuge(struct page *page)
1344{
1345        if (!PageCompound(page))
1346                return 0;
1347
1348        page = compound_head(page);
1349        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1350}
1351EXPORT_SYMBOL_GPL(PageHuge);
1352
1353/*
1354 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1355 * normal or transparent huge pages.
1356 */
1357int PageHeadHuge(struct page *page_head)
1358{
1359        if (!PageHead(page_head))
1360                return 0;
1361
1362        return get_compound_page_dtor(page_head) == free_huge_page;
1363}
1364
1365pgoff_t __basepage_index(struct page *page)
1366{
1367        struct page *page_head = compound_head(page);
1368        pgoff_t index = page_index(page_head);
1369        unsigned long compound_idx;
1370
1371        if (!PageHuge(page_head))
1372                return page_index(page);
1373
1374        if (compound_order(page_head) >= MAX_ORDER)
1375                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1376        else
1377                compound_idx = page - page_head;
1378
1379        return (index << compound_order(page_head)) + compound_idx;
1380}
1381
1382static struct page *alloc_buddy_huge_page(struct hstate *h,
1383                gfp_t gfp_mask, int nid, nodemask_t *nmask)
1384{
1385        int order = huge_page_order(h);
1386        struct page *page;
1387
1388        gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1389        if (nid == NUMA_NO_NODE)
1390                nid = numa_mem_id();
1391        page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1392        if (page)
1393                __count_vm_event(HTLB_BUDDY_PGALLOC);
1394        else
1395                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396
1397        return page;
1398}
1399
1400/*
1401 * Common helper to allocate a fresh hugetlb page. All specific allocators
1402 * should use this function to get new hugetlb pages
1403 */
1404static struct page *alloc_fresh_huge_page(struct hstate *h,
1405                gfp_t gfp_mask, int nid, nodemask_t *nmask)
1406{
1407        struct page *page;
1408
1409        if (hstate_is_gigantic(h))
1410                page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1411        else
1412                page = alloc_buddy_huge_page(h, gfp_mask,
1413                                nid, nmask);
1414        if (!page)
1415                return NULL;
1416
1417        if (hstate_is_gigantic(h))
1418                prep_compound_gigantic_page(page, huge_page_order(h));
1419        prep_new_huge_page(h, page, page_to_nid(page));
1420
1421        return page;
1422}
1423
1424/*
1425 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1426 * manner.
1427 */
1428static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1429{
1430        struct page *page;
1431        int nr_nodes, node;
1432        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1433
1434        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1435                page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1436                if (page)
1437                        break;
1438        }
1439
1440        if (!page)
1441                return 0;
1442
1443        put_page(page); /* free it into the hugepage allocator */
1444
1445        return 1;
1446}
1447
1448/*
1449 * Free huge page from pool from next node to free.
1450 * Attempt to keep persistent huge pages more or less
1451 * balanced over allowed nodes.
1452 * Called with hugetlb_lock locked.
1453 */
1454static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1455                                                         bool acct_surplus)
1456{
1457        int nr_nodes, node;
1458        int ret = 0;
1459
1460        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461                /*
1462                 * If we're returning unused surplus pages, only examine
1463                 * nodes with surplus pages.
1464                 */
1465                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1466                    !list_empty(&h->hugepage_freelists[node])) {
1467                        struct page *page =
1468                                list_entry(h->hugepage_freelists[node].next,
1469                                          struct page, lru);
1470                        list_del(&page->lru);
1471                        h->free_huge_pages--;
1472                        h->free_huge_pages_node[node]--;
1473                        if (acct_surplus) {
1474                                h->surplus_huge_pages--;
1475                                h->surplus_huge_pages_node[node]--;
1476                        }
1477                        update_and_free_page(h, page);
1478                        ret = 1;
1479                        break;
1480                }
1481        }
1482
1483        return ret;
1484}
1485
1486/*
1487 * Dissolve a given free hugepage into free buddy pages. This function does
1488 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1489 * number of free hugepages would be reduced below the number of reserved
1490 * hugepages.
1491 */
1492int dissolve_free_huge_page(struct page *page)
1493{
1494        int rc = 0;
1495
1496        spin_lock(&hugetlb_lock);
1497        if (PageHuge(page) && !page_count(page)) {
1498                struct page *head = compound_head(page);
1499                struct hstate *h = page_hstate(head);
1500                int nid = page_to_nid(head);
1501                if (h->free_huge_pages - h->resv_huge_pages == 0) {
1502                        rc = -EBUSY;
1503                        goto out;
1504                }
1505                /*
1506                 * Move PageHWPoison flag from head page to the raw error page,
1507                 * which makes any subpages rather than the error page reusable.
1508                 */
1509                if (PageHWPoison(head) && page != head) {
1510                        SetPageHWPoison(page);
1511                        ClearPageHWPoison(head);
1512                }
1513                list_del(&head->lru);
1514                h->free_huge_pages--;
1515                h->free_huge_pages_node[nid]--;
1516                h->max_huge_pages--;
1517                update_and_free_page(h, head);
1518        }
1519out:
1520        spin_unlock(&hugetlb_lock);
1521        return rc;
1522}
1523
1524/*
1525 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1526 * make specified memory blocks removable from the system.
1527 * Note that this will dissolve a free gigantic hugepage completely, if any
1528 * part of it lies within the given range.
1529 * Also note that if dissolve_free_huge_page() returns with an error, all
1530 * free hugepages that were dissolved before that error are lost.
1531 */
1532int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1533{
1534        unsigned long pfn;
1535        struct page *page;
1536        int rc = 0;
1537
1538        if (!hugepages_supported())
1539                return rc;
1540
1541        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1542                page = pfn_to_page(pfn);
1543                if (PageHuge(page) && !page_count(page)) {
1544                        rc = dissolve_free_huge_page(page);
1545                        if (rc)
1546                                break;
1547                }
1548        }
1549
1550        return rc;
1551}
1552
1553/*
1554 * Allocates a fresh surplus page from the page allocator.
1555 */
1556static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1557                int nid, nodemask_t *nmask)
1558{
1559        struct page *page = NULL;
1560
1561        if (hstate_is_gigantic(h))
1562                return NULL;
1563
1564        spin_lock(&hugetlb_lock);
1565        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1566                goto out_unlock;
1567        spin_unlock(&hugetlb_lock);
1568
1569        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1570        if (!page)
1571                return NULL;
1572
1573        spin_lock(&hugetlb_lock);
1574        /*
1575         * We could have raced with the pool size change.
1576         * Double check that and simply deallocate the new page
1577         * if we would end up overcommiting the surpluses. Abuse
1578         * temporary page to workaround the nasty free_huge_page
1579         * codeflow
1580         */
1581        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1582                SetPageHugeTemporary(page);
1583                put_page(page);
1584                page = NULL;
1585        } else {
1586                h->surplus_huge_pages++;
1587                h->surplus_huge_pages_node[page_to_nid(page)]++;
1588        }
1589
1590out_unlock:
1591        spin_unlock(&hugetlb_lock);
1592
1593        return page;
1594}
1595
1596static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1597                int nid, nodemask_t *nmask)
1598{
1599        struct page *page;
1600
1601        if (hstate_is_gigantic(h))
1602                return NULL;
1603
1604        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1605        if (!page)
1606                return NULL;
1607
1608        /*
1609         * We do not account these pages as surplus because they are only
1610         * temporary and will be released properly on the last reference
1611         */
1612        SetPageHugeTemporary(page);
1613
1614        return page;
1615}
1616
1617/*
1618 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1619 */
1620static
1621struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1622                struct vm_area_struct *vma, unsigned long addr)
1623{
1624        struct page *page;
1625        struct mempolicy *mpol;
1626        gfp_t gfp_mask = htlb_alloc_mask(h);
1627        int nid;
1628        nodemask_t *nodemask;
1629
1630        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1631        page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1632        mpol_cond_put(mpol);
1633
1634        return page;
1635}
1636
1637/* page migration callback function */
1638struct page *alloc_huge_page_node(struct hstate *h, int nid)
1639{
1640        gfp_t gfp_mask = htlb_alloc_mask(h);
1641        struct page *page = NULL;
1642
1643        if (nid != NUMA_NO_NODE)
1644                gfp_mask |= __GFP_THISNODE;
1645
1646        spin_lock(&hugetlb_lock);
1647        if (h->free_huge_pages - h->resv_huge_pages > 0)
1648                page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1649        spin_unlock(&hugetlb_lock);
1650
1651        if (!page)
1652                page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1653
1654        return page;
1655}
1656
1657/* page migration callback function */
1658struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1659                nodemask_t *nmask)
1660{
1661        gfp_t gfp_mask = htlb_alloc_mask(h);
1662
1663        spin_lock(&hugetlb_lock);
1664        if (h->free_huge_pages - h->resv_huge_pages > 0) {
1665                struct page *page;
1666
1667                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1668                if (page) {
1669                        spin_unlock(&hugetlb_lock);
1670                        return page;
1671                }
1672        }
1673        spin_unlock(&hugetlb_lock);
1674
1675        return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1676}
1677
1678/* mempolicy aware migration callback */
1679struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1680                unsigned long address)
1681{
1682        struct mempolicy *mpol;
1683        nodemask_t *nodemask;
1684        struct page *page;
1685        gfp_t gfp_mask;
1686        int node;
1687
1688        gfp_mask = htlb_alloc_mask(h);
1689        node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1690        page = alloc_huge_page_nodemask(h, node, nodemask);
1691        mpol_cond_put(mpol);
1692
1693        return page;
1694}
1695
1696/*
1697 * Increase the hugetlb pool such that it can accommodate a reservation
1698 * of size 'delta'.
1699 */
1700static int gather_surplus_pages(struct hstate *h, int delta)
1701{
1702        struct list_head surplus_list;
1703        struct page *page, *tmp;
1704        int ret, i;
1705        int needed, allocated;
1706        bool alloc_ok = true;
1707
1708        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1709        if (needed <= 0) {
1710                h->resv_huge_pages += delta;
1711                return 0;
1712        }
1713
1714        allocated = 0;
1715        INIT_LIST_HEAD(&surplus_list);
1716
1717        ret = -ENOMEM;
1718retry:
1719        spin_unlock(&hugetlb_lock);
1720        for (i = 0; i < needed; i++) {
1721                page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1722                                NUMA_NO_NODE, NULL);
1723                if (!page) {
1724                        alloc_ok = false;
1725                        break;
1726                }
1727                list_add(&page->lru, &surplus_list);
1728                cond_resched();
1729        }
1730        allocated += i;
1731
1732        /*
1733         * After retaking hugetlb_lock, we need to recalculate 'needed'
1734         * because either resv_huge_pages or free_huge_pages may have changed.
1735         */
1736        spin_lock(&hugetlb_lock);
1737        needed = (h->resv_huge_pages + delta) -
1738                        (h->free_huge_pages + allocated);
1739        if (needed > 0) {
1740                if (alloc_ok)
1741                        goto retry;
1742                /*
1743                 * We were not able to allocate enough pages to
1744                 * satisfy the entire reservation so we free what
1745                 * we've allocated so far.
1746                 */
1747                goto free;
1748        }
1749        /*
1750         * The surplus_list now contains _at_least_ the number of extra pages
1751         * needed to accommodate the reservation.  Add the appropriate number
1752         * of pages to the hugetlb pool and free the extras back to the buddy
1753         * allocator.  Commit the entire reservation here to prevent another
1754         * process from stealing the pages as they are added to the pool but
1755         * before they are reserved.
1756         */
1757        needed += allocated;
1758        h->resv_huge_pages += delta;
1759        ret = 0;
1760
1761        /* Free the needed pages to the hugetlb pool */
1762        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1763                if ((--needed) < 0)
1764                        break;
1765                /*
1766                 * This page is now managed by the hugetlb allocator and has
1767                 * no users -- drop the buddy allocator's reference.
1768                 */
1769                put_page_testzero(page);
1770                VM_BUG_ON_PAGE(page_count(page), page);
1771                enqueue_huge_page(h, page);
1772        }
1773free:
1774        spin_unlock(&hugetlb_lock);
1775
1776        /* Free unnecessary surplus pages to the buddy allocator */
1777        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1778                put_page(page);
1779        spin_lock(&hugetlb_lock);
1780
1781        return ret;
1782}
1783
1784/*
1785 * This routine has two main purposes:
1786 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1787 *    in unused_resv_pages.  This corresponds to the prior adjustments made
1788 *    to the associated reservation map.
1789 * 2) Free any unused surplus pages that may have been allocated to satisfy
1790 *    the reservation.  As many as unused_resv_pages may be freed.
1791 *
1792 * Called with hugetlb_lock held.  However, the lock could be dropped (and
1793 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1794 * we must make sure nobody else can claim pages we are in the process of
1795 * freeing.  Do this by ensuring resv_huge_page always is greater than the
1796 * number of huge pages we plan to free when dropping the lock.
1797 */
1798static void return_unused_surplus_pages(struct hstate *h,
1799                                        unsigned long unused_resv_pages)
1800{
1801        unsigned long nr_pages;
1802
1803        /* Cannot return gigantic pages currently */
1804        if (hstate_is_gigantic(h))
1805                goto out;
1806
1807        /*
1808         * Part (or even all) of the reservation could have been backed
1809         * by pre-allocated pages. Only free surplus pages.
1810         */
1811        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1812
1813        /*
1814         * We want to release as many surplus pages as possible, spread
1815         * evenly across all nodes with memory. Iterate across these nodes
1816         * until we can no longer free unreserved surplus pages. This occurs
1817         * when the nodes with surplus pages have no free pages.
1818         * free_pool_huge_page() will balance the the freed pages across the
1819         * on-line nodes with memory and will handle the hstate accounting.
1820         *
1821         * Note that we decrement resv_huge_pages as we free the pages.  If
1822         * we drop the lock, resv_huge_pages will still be sufficiently large
1823         * to cover subsequent pages we may free.
1824         */
1825        while (nr_pages--) {
1826                h->resv_huge_pages--;
1827                unused_resv_pages--;
1828                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1829                        goto out;
1830                cond_resched_lock(&hugetlb_lock);
1831        }
1832
1833out:
1834        /* Fully uncommit the reservation */
1835        h->resv_huge_pages -= unused_resv_pages;
1836}
1837
1838
1839/*
1840 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1841 * are used by the huge page allocation routines to manage reservations.
1842 *
1843 * vma_needs_reservation is called to determine if the huge page at addr
1844 * within the vma has an associated reservation.  If a reservation is
1845 * needed, the value 1 is returned.  The caller is then responsible for
1846 * managing the global reservation and subpool usage counts.  After
1847 * the huge page has been allocated, vma_commit_reservation is called
1848 * to add the page to the reservation map.  If the page allocation fails,
1849 * the reservation must be ended instead of committed.  vma_end_reservation
1850 * is called in such cases.
1851 *
1852 * In the normal case, vma_commit_reservation returns the same value
1853 * as the preceding vma_needs_reservation call.  The only time this
1854 * is not the case is if a reserve map was changed between calls.  It
1855 * is the responsibility of the caller to notice the difference and
1856 * take appropriate action.
1857 *
1858 * vma_add_reservation is used in error paths where a reservation must
1859 * be restored when a newly allocated huge page must be freed.  It is
1860 * to be called after calling vma_needs_reservation to determine if a
1861 * reservation exists.
1862 */
1863enum vma_resv_mode {
1864        VMA_NEEDS_RESV,
1865        VMA_COMMIT_RESV,
1866        VMA_END_RESV,
1867        VMA_ADD_RESV,
1868};
1869static long __vma_reservation_common(struct hstate *h,
1870                                struct vm_area_struct *vma, unsigned long addr,
1871                                enum vma_resv_mode mode)
1872{
1873        struct resv_map *resv;
1874        pgoff_t idx;
1875        long ret;
1876
1877        resv = vma_resv_map(vma);
1878        if (!resv)
1879                return 1;
1880
1881        idx = vma_hugecache_offset(h, vma, addr);
1882        switch (mode) {
1883        case VMA_NEEDS_RESV:
1884                ret = region_chg(resv, idx, idx + 1);
1885                break;
1886        case VMA_COMMIT_RESV:
1887                ret = region_add(resv, idx, idx + 1);
1888                break;
1889        case VMA_END_RESV:
1890                region_abort(resv, idx, idx + 1);
1891                ret = 0;
1892                break;
1893        case VMA_ADD_RESV:
1894                if (vma->vm_flags & VM_MAYSHARE)
1895                        ret = region_add(resv, idx, idx + 1);
1896                else {
1897                        region_abort(resv, idx, idx + 1);
1898                        ret = region_del(resv, idx, idx + 1);
1899                }
1900                break;
1901        default:
1902                BUG();
1903        }
1904
1905        if (vma->vm_flags & VM_MAYSHARE)
1906                return ret;
1907        else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1908                /*
1909                 * In most cases, reserves always exist for private mappings.
1910                 * However, a file associated with mapping could have been
1911                 * hole punched or truncated after reserves were consumed.
1912                 * As subsequent fault on such a range will not use reserves.
1913                 * Subtle - The reserve map for private mappings has the
1914                 * opposite meaning than that of shared mappings.  If NO
1915                 * entry is in the reserve map, it means a reservation exists.
1916                 * If an entry exists in the reserve map, it means the
1917                 * reservation has already been consumed.  As a result, the
1918                 * return value of this routine is the opposite of the
1919                 * value returned from reserve map manipulation routines above.
1920                 */
1921                if (ret)
1922                        return 0;
1923                else
1924                        return 1;
1925        }
1926        else
1927                return ret < 0 ? ret : 0;
1928}
1929
1930static long vma_needs_reservation(struct hstate *h,
1931                        struct vm_area_struct *vma, unsigned long addr)
1932{
1933        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1934}
1935
1936static long vma_commit_reservation(struct hstate *h,
1937                        struct vm_area_struct *vma, unsigned long addr)
1938{
1939        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1940}
1941
1942static void vma_end_reservation(struct hstate *h,
1943                        struct vm_area_struct *vma, unsigned long addr)
1944{
1945        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1946}
1947
1948static long vma_add_reservation(struct hstate *h,
1949                        struct vm_area_struct *vma, unsigned long addr)
1950{
1951        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1952}
1953
1954/*
1955 * This routine is called to restore a reservation on error paths.  In the
1956 * specific error paths, a huge page was allocated (via alloc_huge_page)
1957 * and is about to be freed.  If a reservation for the page existed,
1958 * alloc_huge_page would have consumed the reservation and set PagePrivate
1959 * in the newly allocated page.  When the page is freed via free_huge_page,
1960 * the global reservation count will be incremented if PagePrivate is set.
1961 * However, free_huge_page can not adjust the reserve map.  Adjust the
1962 * reserve map here to be consistent with global reserve count adjustments
1963 * to be made by free_huge_page.
1964 */
1965static void restore_reserve_on_error(struct hstate *h,
1966                        struct vm_area_struct *vma, unsigned long address,
1967                        struct page *page)
1968{
1969        if (unlikely(PagePrivate(page))) {
1970                long rc = vma_needs_reservation(h, vma, address);
1971
1972                if (unlikely(rc < 0)) {
1973                        /*
1974                         * Rare out of memory condition in reserve map
1975                         * manipulation.  Clear PagePrivate so that
1976                         * global reserve count will not be incremented
1977                         * by free_huge_page.  This will make it appear
1978                         * as though the reservation for this page was
1979                         * consumed.  This may prevent the task from
1980                         * faulting in the page at a later time.  This
1981                         * is better than inconsistent global huge page
1982                         * accounting of reserve counts.
1983                         */
1984                        ClearPagePrivate(page);
1985                } else if (rc) {
1986                        rc = vma_add_reservation(h, vma, address);
1987                        if (unlikely(rc < 0))
1988                                /*
1989                                 * See above comment about rare out of
1990                                 * memory condition.
1991                                 */
1992                                ClearPagePrivate(page);
1993                } else
1994                        vma_end_reservation(h, vma, address);
1995        }
1996}
1997
1998struct page *alloc_huge_page(struct vm_area_struct *vma,
1999                                    unsigned long addr, int avoid_reserve)
2000{
2001        struct hugepage_subpool *spool = subpool_vma(vma);
2002        struct hstate *h = hstate_vma(vma);
2003        struct page *page;
2004        long map_chg, map_commit;
2005        long gbl_chg;
2006        int ret, idx;
2007        struct hugetlb_cgroup *h_cg;
2008
2009        idx = hstate_index(h);
2010        /*
2011         * Examine the region/reserve map to determine if the process
2012         * has a reservation for the page to be allocated.  A return
2013         * code of zero indicates a reservation exists (no change).
2014         */
2015        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2016        if (map_chg < 0)
2017                return ERR_PTR(-ENOMEM);
2018
2019        /*
2020         * Processes that did not create the mapping will have no
2021         * reserves as indicated by the region/reserve map. Check
2022         * that the allocation will not exceed the subpool limit.
2023         * Allocations for MAP_NORESERVE mappings also need to be
2024         * checked against any subpool limit.
2025         */
2026        if (map_chg || avoid_reserve) {
2027                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2028                if (gbl_chg < 0) {
2029                        vma_end_reservation(h, vma, addr);
2030                        return ERR_PTR(-ENOSPC);
2031                }
2032
2033                /*
2034                 * Even though there was no reservation in the region/reserve
2035                 * map, there could be reservations associated with the
2036                 * subpool that can be used.  This would be indicated if the
2037                 * return value of hugepage_subpool_get_pages() is zero.
2038                 * However, if avoid_reserve is specified we still avoid even
2039                 * the subpool reservations.
2040                 */
2041                if (avoid_reserve)
2042                        gbl_chg = 1;
2043        }
2044
2045        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2046        if (ret)
2047                goto out_subpool_put;
2048
2049        spin_lock(&hugetlb_lock);
2050        /*
2051         * glb_chg is passed to indicate whether or not a page must be taken
2052         * from the global free pool (global change).  gbl_chg == 0 indicates
2053         * a reservation exists for the allocation.
2054         */
2055        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2056        if (!page) {
2057                spin_unlock(&hugetlb_lock);
2058                page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2059                if (!page)
2060                        goto out_uncharge_cgroup;
2061                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2062                        SetPagePrivate(page);
2063                        h->resv_huge_pages--;
2064                }
2065                spin_lock(&hugetlb_lock);
2066                list_move(&page->lru, &h->hugepage_activelist);
2067                /* Fall through */
2068        }
2069        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2070        spin_unlock(&hugetlb_lock);
2071
2072        set_page_private(page, (unsigned long)spool);
2073
2074        map_commit = vma_commit_reservation(h, vma, addr);
2075        if (unlikely(map_chg > map_commit)) {
2076                /*
2077                 * The page was added to the reservation map between
2078                 * vma_needs_reservation and vma_commit_reservation.
2079                 * This indicates a race with hugetlb_reserve_pages.
2080                 * Adjust for the subpool count incremented above AND
2081                 * in hugetlb_reserve_pages for the same page.  Also,
2082                 * the reservation count added in hugetlb_reserve_pages
2083                 * no longer applies.
2084                 */
2085                long rsv_adjust;
2086
2087                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2088                hugetlb_acct_memory(h, -rsv_adjust);
2089        }
2090        return page;
2091
2092out_uncharge_cgroup:
2093        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2094out_subpool_put:
2095        if (map_chg || avoid_reserve)
2096                hugepage_subpool_put_pages(spool, 1);
2097        vma_end_reservation(h, vma, addr);
2098        return ERR_PTR(-ENOSPC);
2099}
2100
2101int alloc_bootmem_huge_page(struct hstate *h)
2102        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2103int __alloc_bootmem_huge_page(struct hstate *h)
2104{
2105        struct huge_bootmem_page *m;
2106        int nr_nodes, node;
2107
2108        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2109                void *addr;
2110
2111                addr = memblock_virt_alloc_try_nid_nopanic(
2112                                huge_page_size(h), huge_page_size(h),
2113                                0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2114                if (addr) {
2115                        /*
2116                         * Use the beginning of the huge page to store the
2117                         * huge_bootmem_page struct (until gather_bootmem
2118                         * puts them into the mem_map).
2119                         */
2120                        m = addr;
2121                        goto found;
2122                }
2123        }
2124        return 0;
2125
2126found:
2127        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2128        /* Put them into a private list first because mem_map is not up yet */
2129        list_add(&m->list, &huge_boot_pages);
2130        m->hstate = h;
2131        return 1;
2132}
2133
2134static void __init prep_compound_huge_page(struct page *page,
2135                unsigned int order)
2136{
2137        if (unlikely(order > (MAX_ORDER - 1)))
2138                prep_compound_gigantic_page(page, order);
2139        else
2140                prep_compound_page(page, order);
2141}
2142
2143/* Put bootmem huge pages into the standard lists after mem_map is up */
2144static void __init gather_bootmem_prealloc(void)
2145{
2146        struct huge_bootmem_page *m;
2147
2148        list_for_each_entry(m, &huge_boot_pages, list) {
2149                struct hstate *h = m->hstate;
2150                struct page *page;
2151
2152#ifdef CONFIG_HIGHMEM
2153                page = pfn_to_page(m->phys >> PAGE_SHIFT);
2154                memblock_free_late(__pa(m),
2155                                   sizeof(struct huge_bootmem_page));
2156#else
2157                page = virt_to_page(m);
2158#endif
2159                WARN_ON(page_count(page) != 1);
2160                prep_compound_huge_page(page, h->order);
2161                WARN_ON(PageReserved(page));
2162                prep_new_huge_page(h, page, page_to_nid(page));
2163                put_page(page); /* free it into the hugepage allocator */
2164
2165                /*
2166                 * If we had gigantic hugepages allocated at boot time, we need
2167                 * to restore the 'stolen' pages to totalram_pages in order to
2168                 * fix confusing memory reports from free(1) and another
2169                 * side-effects, like CommitLimit going negative.
2170                 */
2171                if (hstate_is_gigantic(h))
2172                        adjust_managed_page_count(page, 1 << h->order);
2173        }
2174}
2175
2176static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2177{
2178        unsigned long i;
2179
2180        for (i = 0; i < h->max_huge_pages; ++i) {
2181                if (hstate_is_gigantic(h)) {
2182                        if (!alloc_bootmem_huge_page(h))
2183                                break;
2184                } else if (!alloc_pool_huge_page(h,
2185                                         &node_states[N_MEMORY]))
2186                        break;
2187                cond_resched();
2188        }
2189        if (i < h->max_huge_pages) {
2190                char buf[32];
2191
2192                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2194                        h->max_huge_pages, buf, i);
2195                h->max_huge_pages = i;
2196        }
2197}
2198
2199static void __init hugetlb_init_hstates(void)
2200{
2201        struct hstate *h;
2202
2203        for_each_hstate(h) {
2204                if (minimum_order > huge_page_order(h))
2205                        minimum_order = huge_page_order(h);
2206
2207                /* oversize hugepages were init'ed in early boot */
2208                if (!hstate_is_gigantic(h))
2209                        hugetlb_hstate_alloc_pages(h);
2210        }
2211        VM_BUG_ON(minimum_order == UINT_MAX);
2212}
2213
2214static void __init report_hugepages(void)
2215{
2216        struct hstate *h;
2217
2218        for_each_hstate(h) {
2219                char buf[32];
2220
2221                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223                        buf, h->free_huge_pages);
2224        }
2225}
2226
2227#ifdef CONFIG_HIGHMEM
2228static void try_to_free_low(struct hstate *h, unsigned long count,
2229                                                nodemask_t *nodes_allowed)
2230{
2231        int i;
2232
2233        if (hstate_is_gigantic(h))
2234                return;
2235
2236        for_each_node_mask(i, *nodes_allowed) {
2237                struct page *page, *next;
2238                struct list_head *freel = &h->hugepage_freelists[i];
2239                list_for_each_entry_safe(page, next, freel, lru) {
2240                        if (count >= h->nr_huge_pages)
2241                                return;
2242                        if (PageHighMem(page))
2243                                continue;
2244                        list_del(&page->lru);
2245                        update_and_free_page(h, page);
2246                        h->free_huge_pages--;
2247                        h->free_huge_pages_node[page_to_nid(page)]--;
2248                }
2249        }
2250}
2251#else
2252static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253                                                nodemask_t *nodes_allowed)
2254{
2255}
2256#endif
2257
2258/*
2259 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2260 * balanced by operating on them in a round-robin fashion.
2261 * Returns 1 if an adjustment was made.
2262 */
2263static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264                                int delta)
2265{
2266        int nr_nodes, node;
2267
2268        VM_BUG_ON(delta != -1 && delta != 1);
2269
2270        if (delta < 0) {
2271                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272                        if (h->surplus_huge_pages_node[node])
2273                                goto found;
2274                }
2275        } else {
2276                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277                        if (h->surplus_huge_pages_node[node] <
2278                                        h->nr_huge_pages_node[node])
2279                                goto found;
2280                }
2281        }
2282        return 0;
2283
2284found:
2285        h->surplus_huge_pages += delta;
2286        h->surplus_huge_pages_node[node] += delta;
2287        return 1;
2288}
2289
2290#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2292                                                nodemask_t *nodes_allowed)
2293{
2294        unsigned long min_count, ret;
2295
2296        if (hstate_is_gigantic(h) && !gigantic_page_supported())
2297                return h->max_huge_pages;
2298
2299        /*
2300         * Increase the pool size
2301         * First take pages out of surplus state.  Then make up the
2302         * remaining difference by allocating fresh huge pages.
2303         *
2304         * We might race with alloc_surplus_huge_page() here and be unable
2305         * to convert a surplus huge page to a normal huge page. That is
2306         * not critical, though, it just means the overall size of the
2307         * pool might be one hugepage larger than it needs to be, but
2308         * within all the constraints specified by the sysctls.
2309         */
2310        spin_lock(&hugetlb_lock);
2311        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2312                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2313                        break;
2314        }
2315
2316        while (count > persistent_huge_pages(h)) {
2317                /*
2318                 * If this allocation races such that we no longer need the
2319                 * page, free_huge_page will handle it by freeing the page
2320                 * and reducing the surplus.
2321                 */
2322                spin_unlock(&hugetlb_lock);
2323
2324                /* yield cpu to avoid soft lockup */
2325                cond_resched();
2326
2327                ret = alloc_pool_huge_page(h, nodes_allowed);
2328                spin_lock(&hugetlb_lock);
2329                if (!ret)
2330                        goto out;
2331
2332                /* Bail for signals. Probably ctrl-c from user */
2333                if (signal_pending(current))
2334                        goto out;
2335        }
2336
2337        /*
2338         * Decrease the pool size
2339         * First return free pages to the buddy allocator (being careful
2340         * to keep enough around to satisfy reservations).  Then place
2341         * pages into surplus state as needed so the pool will shrink
2342         * to the desired size as pages become free.
2343         *
2344         * By placing pages into the surplus state independent of the
2345         * overcommit value, we are allowing the surplus pool size to
2346         * exceed overcommit. There are few sane options here. Since
2347         * alloc_surplus_huge_page() is checking the global counter,
2348         * though, we'll note that we're not allowed to exceed surplus
2349         * and won't grow the pool anywhere else. Not until one of the
2350         * sysctls are changed, or the surplus pages go out of use.
2351         */
2352        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2353        min_count = max(count, min_count);
2354        try_to_free_low(h, min_count, nodes_allowed);
2355        while (min_count < persistent_huge_pages(h)) {
2356                if (!free_pool_huge_page(h, nodes_allowed, 0))
2357                        break;
2358                cond_resched_lock(&hugetlb_lock);
2359        }
2360        while (count < persistent_huge_pages(h)) {
2361                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2362                        break;
2363        }
2364out:
2365        ret = persistent_huge_pages(h);
2366        spin_unlock(&hugetlb_lock);
2367        return ret;
2368}
2369
2370#define HSTATE_ATTR_RO(_name) \
2371        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2372
2373#define HSTATE_ATTR(_name) \
2374        static struct kobj_attribute _name##_attr = \
2375                __ATTR(_name, 0644, _name##_show, _name##_store)
2376
2377static struct kobject *hugepages_kobj;
2378static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2379
2380static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2381
2382static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2383{
2384        int i;
2385
2386        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2387                if (hstate_kobjs[i] == kobj) {
2388                        if (nidp)
2389                                *nidp = NUMA_NO_NODE;
2390                        return &hstates[i];
2391                }
2392
2393        return kobj_to_node_hstate(kobj, nidp);
2394}
2395
2396static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2397                                        struct kobj_attribute *attr, char *buf)
2398{
2399        struct hstate *h;
2400        unsigned long nr_huge_pages;
2401        int nid;
2402
2403        h = kobj_to_hstate(kobj, &nid);
2404        if (nid == NUMA_NO_NODE)
2405                nr_huge_pages = h->nr_huge_pages;
2406        else
2407                nr_huge_pages = h->nr_huge_pages_node[nid];
2408
2409        return sprintf(buf, "%lu\n", nr_huge_pages);
2410}
2411
2412static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2413                                           struct hstate *h, int nid,
2414                                           unsigned long count, size_t len)
2415{
2416        int err;
2417        NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2418
2419        if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2420                err = -EINVAL;
2421                goto out;
2422        }
2423
2424        if (nid == NUMA_NO_NODE) {
2425                /*
2426                 * global hstate attribute
2427                 */
2428                if (!(obey_mempolicy &&
2429                                init_nodemask_of_mempolicy(nodes_allowed))) {
2430                        NODEMASK_FREE(nodes_allowed);
2431                        nodes_allowed = &node_states[N_MEMORY];
2432                }
2433        } else if (nodes_allowed) {
2434                /*
2435                 * per node hstate attribute: adjust count to global,
2436                 * but restrict alloc/free to the specified node.
2437                 */
2438                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2439                init_nodemask_of_node(nodes_allowed, nid);
2440        } else
2441                nodes_allowed = &node_states[N_MEMORY];
2442
2443        h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2444
2445        if (nodes_allowed != &node_states[N_MEMORY])
2446                NODEMASK_FREE(nodes_allowed);
2447
2448        return len;
2449out:
2450        NODEMASK_FREE(nodes_allowed);
2451        return err;
2452}
2453
2454static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2455                                         struct kobject *kobj, const char *buf,
2456                                         size_t len)
2457{
2458        struct hstate *h;
2459        unsigned long count;
2460        int nid;
2461        int err;
2462
2463        err = kstrtoul(buf, 10, &count);
2464        if (err)
2465                return err;
2466
2467        h = kobj_to_hstate(kobj, &nid);
2468        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2469}
2470
2471static ssize_t nr_hugepages_show(struct kobject *kobj,
2472                                       struct kobj_attribute *attr, char *buf)
2473{
2474        return nr_hugepages_show_common(kobj, attr, buf);
2475}
2476
2477static ssize_t nr_hugepages_store(struct kobject *kobj,
2478               struct kobj_attribute *attr, const char *buf, size_t len)
2479{
2480        return nr_hugepages_store_common(false, kobj, buf, len);
2481}
2482HSTATE_ATTR(nr_hugepages);
2483
2484#ifdef CONFIG_NUMA
2485
2486/*
2487 * hstate attribute for optionally mempolicy-based constraint on persistent
2488 * huge page alloc/free.
2489 */
2490static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2491                                       struct kobj_attribute *attr, char *buf)
2492{
2493        return nr_hugepages_show_common(kobj, attr, buf);
2494}
2495
2496static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2497               struct kobj_attribute *attr, const char *buf, size_t len)
2498{
2499        return nr_hugepages_store_common(true, kobj, buf, len);
2500}
2501HSTATE_ATTR(nr_hugepages_mempolicy);
2502#endif
2503
2504
2505static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2506                                        struct kobj_attribute *attr, char *buf)
2507{
2508        struct hstate *h = kobj_to_hstate(kobj, NULL);
2509        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2510}
2511
2512static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2513                struct kobj_attribute *attr, const char *buf, size_t count)
2514{
2515        int err;
2516        unsigned long input;
2517        struct hstate *h = kobj_to_hstate(kobj, NULL);
2518
2519        if (hstate_is_gigantic(h))
2520                return -EINVAL;
2521
2522        err = kstrtoul(buf, 10, &input);
2523        if (err)
2524                return err;
2525
2526        spin_lock(&hugetlb_lock);
2527        h->nr_overcommit_huge_pages = input;
2528        spin_unlock(&hugetlb_lock);
2529
2530        return count;
2531}
2532HSTATE_ATTR(nr_overcommit_hugepages);
2533
2534static ssize_t free_hugepages_show(struct kobject *kobj,
2535                                        struct kobj_attribute *attr, char *buf)
2536{
2537        struct hstate *h;
2538        unsigned long free_huge_pages;
2539        int nid;
2540
2541        h = kobj_to_hstate(kobj, &nid);
2542        if (nid == NUMA_NO_NODE)
2543                free_huge_pages = h->free_huge_pages;
2544        else
2545                free_huge_pages = h->free_huge_pages_node[nid];
2546
2547        return sprintf(buf, "%lu\n", free_huge_pages);
2548}
2549HSTATE_ATTR_RO(free_hugepages);
2550
2551static ssize_t resv_hugepages_show(struct kobject *kobj,
2552                                        struct kobj_attribute *attr, char *buf)
2553{
2554        struct hstate *h = kobj_to_hstate(kobj, NULL);
2555        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2556}
2557HSTATE_ATTR_RO(resv_hugepages);
2558
2559static ssize_t surplus_hugepages_show(struct kobject *kobj,
2560                                        struct kobj_attribute *attr, char *buf)
2561{
2562        struct hstate *h;
2563        unsigned long surplus_huge_pages;
2564        int nid;
2565
2566        h = kobj_to_hstate(kobj, &nid);
2567        if (nid == NUMA_NO_NODE)
2568                surplus_huge_pages = h->surplus_huge_pages;
2569        else
2570                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2571
2572        return sprintf(buf, "%lu\n", surplus_huge_pages);
2573}
2574HSTATE_ATTR_RO(surplus_hugepages);
2575
2576static struct attribute *hstate_attrs[] = {
2577        &nr_hugepages_attr.attr,
2578        &nr_overcommit_hugepages_attr.attr,
2579        &free_hugepages_attr.attr,
2580        &resv_hugepages_attr.attr,
2581        &surplus_hugepages_attr.attr,
2582#ifdef CONFIG_NUMA
2583        &nr_hugepages_mempolicy_attr.attr,
2584#endif
2585        NULL,
2586};
2587
2588static const struct attribute_group hstate_attr_group = {
2589        .attrs = hstate_attrs,
2590};
2591
2592static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2593                                    struct kobject **hstate_kobjs,
2594                                    const struct attribute_group *hstate_attr_group)
2595{
2596        int retval;
2597        int hi = hstate_index(h);
2598
2599        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2600        if (!hstate_kobjs[hi])
2601                return -ENOMEM;
2602
2603        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2604        if (retval)
2605                kobject_put(hstate_kobjs[hi]);
2606
2607        return retval;
2608}
2609
2610static void __init hugetlb_sysfs_init(void)
2611{
2612        struct hstate *h;
2613        int err;
2614
2615        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2616        if (!hugepages_kobj)
2617                return;
2618
2619        for_each_hstate(h) {
2620                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2621                                         hstate_kobjs, &hstate_attr_group);
2622                if (err)
2623                        pr_err("Hugetlb: Unable to add hstate %s", h->name);
2624        }
2625}
2626
2627#ifdef CONFIG_NUMA
2628
2629/*
2630 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2631 * with node devices in node_devices[] using a parallel array.  The array
2632 * index of a node device or _hstate == node id.
2633 * This is here to avoid any static dependency of the node device driver, in
2634 * the base kernel, on the hugetlb module.
2635 */
2636struct node_hstate {
2637        struct kobject          *hugepages_kobj;
2638        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2639};
2640static struct node_hstate node_hstates[MAX_NUMNODES];
2641
2642/*
2643 * A subset of global hstate attributes for node devices
2644 */
2645static struct attribute *per_node_hstate_attrs[] = {
2646        &nr_hugepages_attr.attr,
2647        &free_hugepages_attr.attr,
2648        &surplus_hugepages_attr.attr,
2649        NULL,
2650};
2651
2652static const struct attribute_group per_node_hstate_attr_group = {
2653        .attrs = per_node_hstate_attrs,
2654};
2655
2656/*
2657 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2658 * Returns node id via non-NULL nidp.
2659 */
2660static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2661{
2662        int nid;
2663
2664        for (nid = 0; nid < nr_node_ids; nid++) {
2665                struct node_hstate *nhs = &node_hstates[nid];
2666                int i;
2667                for (i = 0; i < HUGE_MAX_HSTATE; i++)
2668                        if (nhs->hstate_kobjs[i] == kobj) {
2669                                if (nidp)
2670                                        *nidp = nid;
2671                                return &hstates[i];
2672                        }
2673        }
2674
2675        BUG();
2676        return NULL;
2677}
2678
2679/*
2680 * Unregister hstate attributes from a single node device.
2681 * No-op if no hstate attributes attached.
2682 */
2683static void hugetlb_unregister_node(struct node *node)
2684{
2685        struct hstate *h;
2686        struct node_hstate *nhs = &node_hstates[node->dev.id];
2687
2688        if (!nhs->hugepages_kobj)
2689                return;         /* no hstate attributes */
2690
2691        for_each_hstate(h) {
2692                int idx = hstate_index(h);
2693                if (nhs->hstate_kobjs[idx]) {
2694                        kobject_put(nhs->hstate_kobjs[idx]);
2695                        nhs->hstate_kobjs[idx] = NULL;
2696                }
2697        }
2698
2699        kobject_put(nhs->hugepages_kobj);
2700        nhs->hugepages_kobj = NULL;
2701}
2702
2703
2704/*
2705 * Register hstate attributes for a single node device.
2706 * No-op if attributes already registered.
2707 */
2708static void hugetlb_register_node(struct node *node)
2709{
2710        struct hstate *h;
2711        struct node_hstate *nhs = &node_hstates[node->dev.id];
2712        int err;
2713
2714        if (nhs->hugepages_kobj)
2715                return;         /* already allocated */
2716
2717        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2718                                                        &node->dev.kobj);
2719        if (!nhs->hugepages_kobj)
2720                return;
2721
2722        for_each_hstate(h) {
2723                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2724                                                nhs->hstate_kobjs,
2725                                                &per_node_hstate_attr_group);
2726                if (err) {
2727                        pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2728                                h->name, node->dev.id);
2729                        hugetlb_unregister_node(node);
2730                        break;
2731                }
2732        }
2733}
2734
2735/*
2736 * hugetlb init time:  register hstate attributes for all registered node
2737 * devices of nodes that have memory.  All on-line nodes should have
2738 * registered their associated device by this time.
2739 */
2740static void __init hugetlb_register_all_nodes(void)
2741{
2742        int nid;
2743
2744        for_each_node_state(nid, N_MEMORY) {
2745                struct node *node = node_devices[nid];
2746                if (node->dev.id == nid)
2747                        hugetlb_register_node(node);
2748        }
2749
2750        /*
2751         * Let the node device driver know we're here so it can
2752         * [un]register hstate attributes on node hotplug.
2753         */
2754        register_hugetlbfs_with_node(hugetlb_register_node,
2755                                     hugetlb_unregister_node);
2756}
2757#else   /* !CONFIG_NUMA */
2758
2759static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2760{
2761        BUG();
2762        if (nidp)
2763                *nidp = -1;
2764        return NULL;
2765}
2766
2767static void hugetlb_register_all_nodes(void) { }
2768
2769#endif
2770
2771static int __init hugetlb_init(void)
2772{
2773        int i;
2774
2775        if (!hugepages_supported())
2776                return 0;
2777
2778        if (!size_to_hstate(default_hstate_size)) {
2779                if (default_hstate_size != 0) {
2780                        pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2781                               default_hstate_size, HPAGE_SIZE);
2782                }
2783
2784                default_hstate_size = HPAGE_SIZE;
2785                if (!size_to_hstate(default_hstate_size))
2786                        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2787        }
2788        default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2789        if (default_hstate_max_huge_pages) {
2790                if (!default_hstate.max_huge_pages)
2791                        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2792        }
2793
2794        hugetlb_init_hstates();
2795        gather_bootmem_prealloc();
2796        report_hugepages();
2797
2798        hugetlb_sysfs_init();
2799        hugetlb_register_all_nodes();
2800        hugetlb_cgroup_file_init();
2801
2802#ifdef CONFIG_SMP
2803        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2804#else
2805        num_fault_mutexes = 1;
2806#endif
2807        hugetlb_fault_mutex_table =
2808                kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2809        BUG_ON(!hugetlb_fault_mutex_table);
2810
2811        for (i = 0; i < num_fault_mutexes; i++)
2812                mutex_init(&hugetlb_fault_mutex_table[i]);
2813        return 0;
2814}
2815subsys_initcall(hugetlb_init);
2816
2817/* Should be called on processing a hugepagesz=... option */
2818void __init hugetlb_bad_size(void)
2819{
2820        parsed_valid_hugepagesz = false;
2821}
2822
2823void __init hugetlb_add_hstate(unsigned int order)
2824{
2825        struct hstate *h;
2826        unsigned long i;
2827
2828        if (size_to_hstate(PAGE_SIZE << order)) {
2829                pr_warn("hugepagesz= specified twice, ignoring\n");
2830                return;
2831        }
2832        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2833        BUG_ON(order == 0);
2834        h = &hstates[hugetlb_max_hstate++];
2835        h->order = order;
2836        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2837        h->nr_huge_pages = 0;
2838        h->free_huge_pages = 0;
2839        for (i = 0; i < MAX_NUMNODES; ++i)
2840                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2841        INIT_LIST_HEAD(&h->hugepage_activelist);
2842        h->next_nid_to_alloc = first_memory_node;
2843        h->next_nid_to_free = first_memory_node;
2844        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2845                                        huge_page_size(h)/1024);
2846
2847        parsed_hstate = h;
2848}
2849
2850static int __init hugetlb_nrpages_setup(char *s)
2851{
2852        unsigned long *mhp;
2853        static unsigned long *last_mhp;
2854
2855        if (!parsed_valid_hugepagesz) {
2856                pr_warn("hugepages = %s preceded by "
2857                        "an unsupported hugepagesz, ignoring\n", s);
2858                parsed_valid_hugepagesz = true;
2859                return 1;
2860        }
2861        /*
2862         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2863         * so this hugepages= parameter goes to the "default hstate".
2864         */
2865        else if (!hugetlb_max_hstate)
2866                mhp = &default_hstate_max_huge_pages;
2867        else
2868                mhp = &parsed_hstate->max_huge_pages;
2869
2870        if (mhp == last_mhp) {
2871                pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2872                return 1;
2873        }
2874
2875        if (sscanf(s, "%lu", mhp) <= 0)
2876                *mhp = 0;
2877
2878        /*
2879         * Global state is always initialized later in hugetlb_init.
2880         * But we need to allocate >= MAX_ORDER hstates here early to still
2881         * use the bootmem allocator.
2882         */
2883        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2884                hugetlb_hstate_alloc_pages(parsed_hstate);
2885
2886        last_mhp = mhp;
2887
2888        return 1;
2889}
2890__setup("hugepages=", hugetlb_nrpages_setup);
2891
2892static int __init hugetlb_default_setup(char *s)
2893{
2894        default_hstate_size = memparse(s, &s);
2895        return 1;
2896}
2897__setup("default_hugepagesz=", hugetlb_default_setup);
2898
2899static unsigned int cpuset_mems_nr(unsigned int *array)
2900{
2901        int node;
2902        unsigned int nr = 0;
2903
2904        for_each_node_mask(node, cpuset_current_mems_allowed)
2905                nr += array[node];
2906
2907        return nr;
2908}
2909
2910#ifdef CONFIG_SYSCTL
2911static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2912                         struct ctl_table *table, int write,
2913                         void __user *buffer, size_t *length, loff_t *ppos)
2914{
2915        struct hstate *h = &default_hstate;
2916        unsigned long tmp = h->max_huge_pages;
2917        int ret;
2918
2919        if (!hugepages_supported())
2920                return -EOPNOTSUPP;
2921
2922        table->data = &tmp;
2923        table->maxlen = sizeof(unsigned long);
2924        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2925        if (ret)
2926                goto out;
2927
2928        if (write)
2929                ret = __nr_hugepages_store_common(obey_mempolicy, h,
2930                                                  NUMA_NO_NODE, tmp, *length);
2931out:
2932        return ret;
2933}
2934
2935int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2936                          void __user *buffer, size_t *length, loff_t *ppos)
2937{
2938
2939        return hugetlb_sysctl_handler_common(false, table, write,
2940                                                        buffer, length, ppos);
2941}
2942
2943#ifdef CONFIG_NUMA
2944int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2945                          void __user *buffer, size_t *length, loff_t *ppos)
2946{
2947        return hugetlb_sysctl_handler_common(true, table, write,
2948                                                        buffer, length, ppos);
2949}
2950#endif /* CONFIG_NUMA */
2951
2952int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2953                        void __user *buffer,
2954                        size_t *length, loff_t *ppos)
2955{
2956        struct hstate *h = &default_hstate;
2957        unsigned long tmp;
2958        int ret;
2959
2960        if (!hugepages_supported())
2961                return -EOPNOTSUPP;
2962
2963        tmp = h->nr_overcommit_huge_pages;
2964
2965        if (write && hstate_is_gigantic(h))
2966                return -EINVAL;
2967
2968        table->data = &tmp;
2969        table->maxlen = sizeof(unsigned long);
2970        ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2971        if (ret)
2972                goto out;
2973
2974        if (write) {
2975                spin_lock(&hugetlb_lock);
2976                h->nr_overcommit_huge_pages = tmp;
2977                spin_unlock(&hugetlb_lock);
2978        }
2979out:
2980        return ret;
2981}
2982
2983#endif /* CONFIG_SYSCTL */
2984
2985void hugetlb_report_meminfo(struct seq_file *m)
2986{
2987        struct hstate *h;
2988        unsigned long total = 0;
2989
2990        if (!hugepages_supported())
2991                return;
2992
2993        for_each_hstate(h) {
2994                unsigned long count = h->nr_huge_pages;
2995
2996                total += (PAGE_SIZE << huge_page_order(h)) * count;
2997
2998                if (h == &default_hstate)
2999                        seq_printf(m,
3000                                   "HugePages_Total:   %5lu\n"
3001                                   "HugePages_Free:    %5lu\n"
3002                                   "HugePages_Rsvd:    %5lu\n"
3003                                   "HugePages_Surp:    %5lu\n"
3004                                   "Hugepagesize:   %8lu kB\n",
3005                                   count,
3006                                   h->free_huge_pages,
3007                                   h->resv_huge_pages,
3008                                   h->surplus_huge_pages,
3009                                   (PAGE_SIZE << huge_page_order(h)) / 1024);
3010        }
3011
3012        seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3013}
3014
3015int hugetlb_report_node_meminfo(int nid, char *buf)
3016{
3017        struct hstate *h = &default_hstate;
3018        if (!hugepages_supported())
3019                return 0;
3020        return sprintf(buf,
3021                "Node %d HugePages_Total: %5u\n"
3022                "Node %d HugePages_Free:  %5u\n"
3023                "Node %d HugePages_Surp:  %5u\n",
3024                nid, h->nr_huge_pages_node[nid],
3025                nid, h->free_huge_pages_node[nid],
3026                nid, h->surplus_huge_pages_node[nid]);
3027}
3028
3029void hugetlb_show_meminfo(void)
3030{
3031        struct hstate *h;
3032        int nid;
3033
3034        if (!hugepages_supported())
3035                return;
3036
3037        for_each_node_state(nid, N_MEMORY)
3038                for_each_hstate(h)
3039                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3040                                nid,
3041                                h->nr_huge_pages_node[nid],
3042                                h->free_huge_pages_node[nid],
3043                                h->surplus_huge_pages_node[nid],
3044                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3045}
3046
3047void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3048{
3049        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3050                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3051}
3052
3053/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3054unsigned long hugetlb_total_pages(void)
3055{
3056        struct hstate *h;
3057        unsigned long nr_total_pages = 0;
3058
3059        for_each_hstate(h)
3060                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3061        return nr_total_pages;
3062}
3063
3064static int hugetlb_acct_memory(struct hstate *h, long delta)
3065{
3066        int ret = -ENOMEM;
3067
3068        spin_lock(&hugetlb_lock);
3069        /*
3070         * When cpuset is configured, it breaks the strict hugetlb page
3071         * reservation as the accounting is done on a global variable. Such
3072         * reservation is completely rubbish in the presence of cpuset because
3073         * the reservation is not checked against page availability for the
3074         * current cpuset. Application can still potentially OOM'ed by kernel
3075         * with lack of free htlb page in cpuset that the task is in.
3076         * Attempt to enforce strict accounting with cpuset is almost
3077         * impossible (or too ugly) because cpuset is too fluid that
3078         * task or memory node can be dynamically moved between cpusets.
3079         *
3080         * The change of semantics for shared hugetlb mapping with cpuset is
3081         * undesirable. However, in order to preserve some of the semantics,
3082         * we fall back to check against current free page availability as
3083         * a best attempt and hopefully to minimize the impact of changing
3084         * semantics that cpuset has.
3085         */
3086        if (delta > 0) {
3087                if (gather_surplus_pages(h, delta) < 0)
3088                        goto out;
3089
3090                if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3091                        return_unused_surplus_pages(h, delta);
3092                        goto out;
3093                }
3094        }
3095
3096        ret = 0;
3097        if (delta < 0)
3098                return_unused_surplus_pages(h, (unsigned long) -delta);
3099
3100out:
3101        spin_unlock(&hugetlb_lock);
3102        return ret;
3103}
3104
3105static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3106{
3107        struct resv_map *resv = vma_resv_map(vma);
3108
3109        /*
3110         * This new VMA should share its siblings reservation map if present.
3111         * The VMA will only ever have a valid reservation map pointer where
3112         * it is being copied for another still existing VMA.  As that VMA
3113         * has a reference to the reservation map it cannot disappear until
3114         * after this open call completes.  It is therefore safe to take a
3115         * new reference here without additional locking.
3116         */
3117        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3118                kref_get(&resv->refs);
3119}
3120
3121static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3122{
3123        struct hstate *h = hstate_vma(vma);
3124        struct resv_map *resv = vma_resv_map(vma);
3125        struct hugepage_subpool *spool = subpool_vma(vma);
3126        unsigned long reserve, start, end;
3127        long gbl_reserve;
3128
3129        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3130                return;
3131
3132        start = vma_hugecache_offset(h, vma, vma->vm_start);
3133        end = vma_hugecache_offset(h, vma, vma->vm_end);
3134
3135        reserve = (end - start) - region_count(resv, start, end);
3136
3137        kref_put(&resv->refs, resv_map_release);
3138
3139        if (reserve) {
3140                /*
3141                 * Decrement reserve counts.  The global reserve count may be
3142                 * adjusted if the subpool has a minimum size.
3143                 */
3144                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3145                hugetlb_acct_memory(h, -gbl_reserve);
3146        }
3147}
3148
3149static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3150{
3151        if (addr & ~(huge_page_mask(hstate_vma(vma))))
3152                return -EINVAL;
3153        return 0;
3154}
3155
3156/*
3157 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3158 * handle_mm_fault() to try to instantiate regular-sized pages in the
3159 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3160 * this far.
3161 */
3162static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3163{
3164        BUG();
3165        return 0;
3166}
3167
3168const struct vm_operations_struct hugetlb_vm_ops = {
3169        .fault = hugetlb_vm_op_fault,
3170        .open = hugetlb_vm_op_open,
3171        .close = hugetlb_vm_op_close,
3172        .split = hugetlb_vm_op_split,
3173};
3174
3175static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3176                                int writable)
3177{
3178        pte_t entry;
3179
3180        if (writable) {
3181                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3182                                         vma->vm_page_prot)));
3183        } else {
3184                entry = huge_pte_wrprotect(mk_huge_pte(page,
3185                                           vma->vm_page_prot));
3186        }
3187        entry = pte_mkyoung(entry);
3188        entry = pte_mkhuge(entry);
3189        entry = arch_make_huge_pte(entry, vma, page, writable);
3190
3191        return entry;
3192}
3193
3194static void set_huge_ptep_writable(struct vm_area_struct *vma,
3195                                   unsigned long address, pte_t *ptep)
3196{
3197        pte_t entry;
3198
3199        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3200        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3201                update_mmu_cache(vma, address, ptep);
3202}
3203
3204bool is_hugetlb_entry_migration(pte_t pte)
3205{
3206        swp_entry_t swp;
3207
3208        if (huge_pte_none(pte) || pte_present(pte))
3209                return false;
3210        swp = pte_to_swp_entry(pte);
3211        if (non_swap_entry(swp) && is_migration_entry(swp))
3212                return true;
3213        else
3214                return false;
3215}
3216
3217static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3218{
3219        swp_entry_t swp;
3220
3221        if (huge_pte_none(pte) || pte_present(pte))
3222                return 0;
3223        swp = pte_to_swp_entry(pte);
3224        if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3225                return 1;
3226        else
3227                return 0;
3228}
3229
3230int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3231                            struct vm_area_struct *vma)
3232{
3233        pte_t *src_pte, *dst_pte, entry;
3234        struct page *ptepage;
3235        unsigned long addr;
3236        int cow;
3237        struct hstate *h = hstate_vma(vma);
3238        unsigned long sz = huge_page_size(h);
3239        unsigned long mmun_start;       /* For mmu_notifiers */
3240        unsigned long mmun_end;         /* For mmu_notifiers */
3241        int ret = 0;
3242
3243        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3244
3245        mmun_start = vma->vm_start;
3246        mmun_end = vma->vm_end;
3247        if (cow)
3248                mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3249
3250        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3251                spinlock_t *src_ptl, *dst_ptl;
3252                src_pte = huge_pte_offset(src, addr, sz);
3253                if (!src_pte)
3254                        continue;
3255                dst_pte = huge_pte_alloc(dst, addr, sz);
3256                if (!dst_pte) {
3257                        ret = -ENOMEM;
3258                        break;
3259                }
3260
3261                /* If the pagetables are shared don't copy or take references */
3262                if (dst_pte == src_pte)
3263                        continue;
3264
3265                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266                src_ptl = huge_pte_lockptr(h, src, src_pte);
3267                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3268                entry = huge_ptep_get(src_pte);
3269                if (huge_pte_none(entry)) { /* skip none entry */
3270                        ;
3271                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3272                                    is_hugetlb_entry_hwpoisoned(entry))) {
3273                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3274
3275                        if (is_write_migration_entry(swp_entry) && cow) {
3276                                /*
3277                                 * COW mappings require pages in both
3278                                 * parent and child to be set to read.
3279                                 */
3280                                make_migration_entry_read(&swp_entry);
3281                                entry = swp_entry_to_pte(swp_entry);
3282                                set_huge_swap_pte_at(src, addr, src_pte,
3283                                                     entry, sz);
3284                        }
3285                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3286                } else {
3287                        if (cow) {
3288                                /*
3289                                 * No need to notify as we are downgrading page
3290                                 * table protection not changing it to point
3291                                 * to a new page.
3292                                 *
3293                                 * See Documentation/vm/mmu_notifier.txt
3294                                 */
3295                                huge_ptep_set_wrprotect(src, addr, src_pte);
3296                        }
3297                        entry = huge_ptep_get(src_pte);
3298                        ptepage = pte_page(entry);
3299                        get_page(ptepage);
3300                        page_dup_rmap(ptepage, true);
3301                        set_huge_pte_at(dst, addr, dst_pte, entry);
3302                        hugetlb_count_add(pages_per_huge_page(h), dst);
3303                }
3304                spin_unlock(src_ptl);
3305                spin_unlock(dst_ptl);
3306        }
3307
3308        if (cow)
3309                mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3310
3311        return ret;
3312}
3313
3314void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3315                            unsigned long start, unsigned long end,
3316                            struct page *ref_page)
3317{
3318        struct mm_struct *mm = vma->vm_mm;
3319        unsigned long address;
3320        pte_t *ptep;
3321        pte_t pte;
3322        spinlock_t *ptl;
3323        struct page *page;
3324        struct hstate *h = hstate_vma(vma);
3325        unsigned long sz = huge_page_size(h);
3326        const unsigned long mmun_start = start; /* For mmu_notifiers */
3327        const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3328
3329        WARN_ON(!is_vm_hugetlb_page(vma));
3330        BUG_ON(start & ~huge_page_mask(h));
3331        BUG_ON(end & ~huge_page_mask(h));
3332
3333        /*
3334         * This is a hugetlb vma, all the pte entries should point
3335         * to huge page.
3336         */
3337        tlb_remove_check_page_size_change(tlb, sz);
3338        tlb_start_vma(tlb, vma);
3339        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3340        address = start;
3341        for (; address < end; address += sz) {
3342                ptep = huge_pte_offset(mm, address, sz);
3343                if (!ptep)
3344                        continue;
3345
3346                ptl = huge_pte_lock(h, mm, ptep);
3347                if (huge_pmd_unshare(mm, &address, ptep)) {
3348                        spin_unlock(ptl);
3349                        continue;
3350                }
3351
3352                pte = huge_ptep_get(ptep);
3353                if (huge_pte_none(pte)) {
3354                        spin_unlock(ptl);
3355                        continue;
3356                }
3357
3358                /*
3359                 * Migrating hugepage or HWPoisoned hugepage is already
3360                 * unmapped and its refcount is dropped, so just clear pte here.
3361                 */
3362                if (unlikely(!pte_present(pte))) {
3363                        huge_pte_clear(mm, address, ptep, sz);
3364                        spin_unlock(ptl);
3365                        continue;
3366                }
3367
3368                page = pte_page(pte);
3369                /*
3370                 * If a reference page is supplied, it is because a specific
3371                 * page is being unmapped, not a range. Ensure the page we
3372                 * are about to unmap is the actual page of interest.
3373                 */
3374                if (ref_page) {
3375                        if (page != ref_page) {
3376                                spin_unlock(ptl);
3377                                continue;
3378                        }
3379                        /*
3380                         * Mark the VMA as having unmapped its page so that
3381                         * future faults in this VMA will fail rather than
3382                         * looking like data was lost
3383                         */
3384                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3385                }
3386
3387                pte = huge_ptep_get_and_clear(mm, address, ptep);
3388                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3389                if (huge_pte_dirty(pte))
3390                        set_page_dirty(page);
3391
3392                hugetlb_count_sub(pages_per_huge_page(h), mm);
3393                page_remove_rmap(page, true);
3394
3395                spin_unlock(ptl);
3396                tlb_remove_page_size(tlb, page, huge_page_size(h));
3397                /*
3398                 * Bail out after unmapping reference page if supplied
3399                 */
3400                if (ref_page)
3401                        break;
3402        }
3403        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3404        tlb_end_vma(tlb, vma);
3405}
3406
3407void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3408                          struct vm_area_struct *vma, unsigned long start,
3409                          unsigned long end, struct page *ref_page)
3410{
3411        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3412
3413        /*
3414         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3415         * test will fail on a vma being torn down, and not grab a page table
3416         * on its way out.  We're lucky that the flag has such an appropriate
3417         * name, and can in fact be safely cleared here. We could clear it
3418         * before the __unmap_hugepage_range above, but all that's necessary
3419         * is to clear it before releasing the i_mmap_rwsem. This works
3420         * because in the context this is called, the VMA is about to be
3421         * destroyed and the i_mmap_rwsem is held.
3422         */
3423        vma->vm_flags &= ~VM_MAYSHARE;
3424}
3425
3426void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3427                          unsigned long end, struct page *ref_page)
3428{
3429        struct mm_struct *mm;
3430        struct mmu_gather tlb;
3431
3432        mm = vma->vm_mm;
3433
3434        tlb_gather_mmu(&tlb, mm, start, end);
3435        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3436        tlb_finish_mmu(&tlb, start, end);
3437}
3438
3439/*
3440 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3441 * mappping it owns the reserve page for. The intention is to unmap the page
3442 * from other VMAs and let the children be SIGKILLed if they are faulting the
3443 * same region.
3444 */
3445static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3446                              struct page *page, unsigned long address)
3447{
3448        struct hstate *h = hstate_vma(vma);
3449        struct vm_area_struct *iter_vma;
3450        struct address_space *mapping;
3451        pgoff_t pgoff;
3452
3453        /*
3454         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3455         * from page cache lookup which is in HPAGE_SIZE units.
3456         */
3457        address = address & huge_page_mask(h);
3458        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3459                        vma->vm_pgoff;
3460        mapping = vma->vm_file->f_mapping;
3461
3462        /*
3463         * Take the mapping lock for the duration of the table walk. As
3464         * this mapping should be shared between all the VMAs,
3465         * __unmap_hugepage_range() is called as the lock is already held
3466         */
3467        i_mmap_lock_write(mapping);
3468        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3469                /* Do not unmap the current VMA */
3470                if (iter_vma == vma)
3471                        continue;
3472
3473                /*
3474                 * Shared VMAs have their own reserves and do not affect
3475                 * MAP_PRIVATE accounting but it is possible that a shared
3476                 * VMA is using the same page so check and skip such VMAs.
3477                 */
3478                if (iter_vma->vm_flags & VM_MAYSHARE)
3479                        continue;
3480
3481                /*
3482                 * Unmap the page from other VMAs without their own reserves.
3483                 * They get marked to be SIGKILLed if they fault in these
3484                 * areas. This is because a future no-page fault on this VMA
3485                 * could insert a zeroed page instead of the data existing
3486                 * from the time of fork. This would look like data corruption
3487                 */
3488                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3489                        unmap_hugepage_range(iter_vma, address,
3490                                             address + huge_page_size(h), page);
3491        }
3492        i_mmap_unlock_write(mapping);
3493}
3494
3495/*
3496 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3497 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3498 * cannot race with other handlers or page migration.
3499 * Keep the pte_same checks anyway to make transition from the mutex easier.
3500 */
3501static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3502                       unsigned long address, pte_t *ptep,
3503                       struct page *pagecache_page, spinlock_t *ptl)
3504{
3505        pte_t pte;
3506        struct hstate *h = hstate_vma(vma);
3507        struct page *old_page, *new_page;
3508        int ret = 0, outside_reserve = 0;
3509        unsigned long mmun_start;       /* For mmu_notifiers */
3510        unsigned long mmun_end;         /* For mmu_notifiers */
3511
3512        pte = huge_ptep_get(ptep);
3513        old_page = pte_page(pte);
3514
3515retry_avoidcopy:
3516        /* If no-one else is actually using this page, avoid the copy
3517         * and just make the page writable */
3518        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3519                page_move_anon_rmap(old_page, vma);
3520                set_huge_ptep_writable(vma, address, ptep);
3521                return 0;
3522        }
3523
3524        /*
3525         * If the process that created a MAP_PRIVATE mapping is about to
3526         * perform a COW due to a shared page count, attempt to satisfy
3527         * the allocation without using the existing reserves. The pagecache
3528         * page is used to determine if the reserve at this address was
3529         * consumed or not. If reserves were used, a partial faulted mapping
3530         * at the time of fork() could consume its reserves on COW instead
3531         * of the full address range.
3532         */
3533        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3534                        old_page != pagecache_page)
3535                outside_reserve = 1;
3536
3537        get_page(old_page);
3538
3539        /*
3540         * Drop page table lock as buddy allocator may be called. It will
3541         * be acquired again before returning to the caller, as expected.
3542         */
3543        spin_unlock(ptl);
3544        new_page = alloc_huge_page(vma, address, outside_reserve);
3545
3546        if (IS_ERR(new_page)) {
3547                /*
3548                 * If a process owning a MAP_PRIVATE mapping fails to COW,
3549                 * it is due to references held by a child and an insufficient
3550                 * huge page pool. To guarantee the original mappers
3551                 * reliability, unmap the page from child processes. The child
3552                 * may get SIGKILLed if it later faults.
3553                 */
3554                if (outside_reserve) {
3555                        put_page(old_page);
3556                        BUG_ON(huge_pte_none(pte));
3557                        unmap_ref_private(mm, vma, old_page, address);
3558                        BUG_ON(huge_pte_none(pte));
3559                        spin_lock(ptl);
3560                        ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3561                                               huge_page_size(h));
3562                        if (likely(ptep &&
3563                                   pte_same(huge_ptep_get(ptep), pte)))
3564                                goto retry_avoidcopy;
3565                        /*
3566                         * race occurs while re-acquiring page table
3567                         * lock, and our job is done.
3568                         */
3569                        return 0;
3570                }
3571
3572                ret = (PTR_ERR(new_page) == -ENOMEM) ?
3573                        VM_FAULT_OOM : VM_FAULT_SIGBUS;
3574                goto out_release_old;
3575        }
3576
3577        /*
3578         * When the original hugepage is shared one, it does not have
3579         * anon_vma prepared.
3580         */
3581        if (unlikely(anon_vma_prepare(vma))) {
3582                ret = VM_FAULT_OOM;
3583                goto out_release_all;
3584        }
3585
3586        copy_user_huge_page(new_page, old_page, address, vma,
3587                            pages_per_huge_page(h));
3588        __SetPageUptodate(new_page);
3589        set_page_huge_active(new_page);
3590
3591        mmun_start = address & huge_page_mask(h);
3592        mmun_end = mmun_start + huge_page_size(h);
3593        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3594
3595        /*
3596         * Retake the page table lock to check for racing updates
3597         * before the page tables are altered
3598         */
3599        spin_lock(ptl);
3600        ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3601                               huge_page_size(h));
3602        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3603                ClearPagePrivate(new_page);
3604
3605                /* Break COW */
3606                huge_ptep_clear_flush(vma, address, ptep);
3607                mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3608                set_huge_pte_at(mm, address, ptep,
3609                                make_huge_pte(vma, new_page, 1));
3610                page_remove_rmap(old_page, true);
3611                hugepage_add_new_anon_rmap(new_page, vma, address);
3612                /* Make the old page be freed below */
3613                new_page = old_page;
3614        }
3615        spin_unlock(ptl);
3616        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3617out_release_all:
3618        restore_reserve_on_error(h, vma, address, new_page);
3619        put_page(new_page);
3620out_release_old:
3621        put_page(old_page);
3622
3623        spin_lock(ptl); /* Caller expects lock to be held */
3624        return ret;
3625}
3626
3627/* Return the pagecache page at a given address within a VMA */
3628static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3629                        struct vm_area_struct *vma, unsigned long address)
3630{
3631        struct address_space *mapping;
3632        pgoff_t idx;
3633
3634        mapping = vma->vm_file->f_mapping;
3635        idx = vma_hugecache_offset(h, vma, address);
3636
3637        return find_lock_page(mapping, idx);
3638}
3639
3640/*
3641 * Return whether there is a pagecache page to back given address within VMA.
3642 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3643 */
3644static bool hugetlbfs_pagecache_present(struct hstate *h,
3645                        struct vm_area_struct *vma, unsigned long address)
3646{
3647        struct address_space *mapping;
3648        pgoff_t idx;
3649        struct page *page;
3650
3651        mapping = vma->vm_file->f_mapping;
3652        idx = vma_hugecache_offset(h, vma, address);
3653
3654        page = find_get_page(mapping, idx);
3655        if (page)
3656                put_page(page);
3657        return page != NULL;
3658}
3659
3660int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3661                           pgoff_t idx)
3662{
3663        struct inode *inode = mapping->host;
3664        struct hstate *h = hstate_inode(inode);
3665        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3666
3667        if (err)
3668                return err;
3669        ClearPagePrivate(page);
3670
3671        spin_lock(&inode->i_lock);
3672        inode->i_blocks += blocks_per_huge_page(h);
3673        spin_unlock(&inode->i_lock);
3674        return 0;
3675}
3676
3677static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3678                           struct address_space *mapping, pgoff_t idx,
3679                           unsigned long address, pte_t *ptep, unsigned int flags)
3680{
3681        struct hstate *h = hstate_vma(vma);
3682        int ret = VM_FAULT_SIGBUS;
3683        int anon_rmap = 0;
3684        unsigned long size;
3685        struct page *page;
3686        pte_t new_pte;
3687        spinlock_t *ptl;
3688
3689        /*
3690         * Currently, we are forced to kill the process in the event the
3691         * original mapper has unmapped pages from the child due to a failed
3692         * COW. Warn that such a situation has occurred as it may not be obvious
3693         */
3694        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3695                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3696                           current->pid);
3697                return ret;
3698        }
3699
3700        /*
3701         * Use page lock to guard against racing truncation
3702         * before we get page_table_lock.
3703         */
3704retry:
3705        page = find_lock_page(mapping, idx);
3706        if (!page) {
3707                size = i_size_read(mapping->host) >> huge_page_shift(h);
3708                if (idx >= size)
3709                        goto out;
3710
3711                /*
3712                 * Check for page in userfault range
3713                 */
3714                if (userfaultfd_missing(vma)) {
3715                        u32 hash;
3716                        struct vm_fault vmf = {
3717                                .vma = vma,
3718                                .address = address,
3719                                .flags = flags,
3720                                /*
3721                                 * Hard to debug if it ends up being
3722                                 * used by a callee that assumes
3723                                 * something about the other
3724                                 * uninitialized fields... same as in
3725                                 * memory.c
3726                                 */
3727                        };
3728
3729                        /*
3730                         * hugetlb_fault_mutex must be dropped before
3731                         * handling userfault.  Reacquire after handling
3732                         * fault to make calling code simpler.
3733                         */
3734                        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3735                                                        idx, address);
3736                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3737                        ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3738                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3739                        goto out;
3740                }
3741
3742                page = alloc_huge_page(vma, address, 0);
3743                if (IS_ERR(page)) {
3744                        ret = PTR_ERR(page);
3745                        if (ret == -ENOMEM)
3746                                ret = VM_FAULT_OOM;
3747                        else
3748                                ret = VM_FAULT_SIGBUS;
3749                        goto out;
3750                }
3751                clear_huge_page(page, address, pages_per_huge_page(h));
3752                __SetPageUptodate(page);
3753                set_page_huge_active(page);
3754
3755                if (vma->vm_flags & VM_MAYSHARE) {
3756                        int err = huge_add_to_page_cache(page, mapping, idx);
3757                        if (err) {
3758                                put_page(page);
3759                                if (err == -EEXIST)
3760                                        goto retry;
3761                                goto out;
3762                        }
3763                } else {
3764                        lock_page(page);
3765                        if (unlikely(anon_vma_prepare(vma))) {
3766                                ret = VM_FAULT_OOM;
3767                                goto backout_unlocked;
3768                        }
3769                        anon_rmap = 1;
3770                }
3771        } else {
3772                /*
3773                 * If memory error occurs between mmap() and fault, some process
3774                 * don't have hwpoisoned swap entry for errored virtual address.
3775                 * So we need to block hugepage fault by PG_hwpoison bit check.
3776                 */
3777                if (unlikely(PageHWPoison(page))) {
3778                        ret = VM_FAULT_HWPOISON |
3779                                VM_FAULT_SET_HINDEX(hstate_index(h));
3780                        goto backout_unlocked;
3781                }
3782        }
3783
3784        /*
3785         * If we are going to COW a private mapping later, we examine the
3786         * pending reservations for this page now. This will ensure that
3787         * any allocations necessary to record that reservation occur outside
3788         * the spinlock.
3789         */
3790        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3791                if (vma_needs_reservation(h, vma, address) < 0) {
3792                        ret = VM_FAULT_OOM;
3793                        goto backout_unlocked;
3794                }
3795                /* Just decrements count, does not deallocate */
3796                vma_end_reservation(h, vma, address);
3797        }
3798
3799        ptl = huge_pte_lock(h, mm, ptep);
3800        size = i_size_read(mapping->host) >> huge_page_shift(h);
3801        if (idx >= size)
3802                goto backout;
3803
3804        ret = 0;
3805        if (!huge_pte_none(huge_ptep_get(ptep)))
3806                goto backout;
3807
3808        if (anon_rmap) {
3809                ClearPagePrivate(page);
3810                hugepage_add_new_anon_rmap(page, vma, address);
3811        } else
3812                page_dup_rmap(page, true);
3813        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3814                                && (vma->vm_flags & VM_SHARED)));
3815        set_huge_pte_at(mm, address, ptep, new_pte);
3816
3817        hugetlb_count_add(pages_per_huge_page(h), mm);
3818        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3819                /* Optimization, do the COW without a second fault */
3820                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3821        }
3822
3823        spin_unlock(ptl);
3824        unlock_page(page);
3825out:
3826        return ret;
3827
3828backout:
3829        spin_unlock(ptl);
3830backout_unlocked:
3831        unlock_page(page);
3832        restore_reserve_on_error(h, vma, address, page);
3833        put_page(page);
3834        goto out;
3835}
3836
3837#ifdef CONFIG_SMP
3838u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839                            struct vm_area_struct *vma,
3840                            struct address_space *mapping,
3841                            pgoff_t idx, unsigned long address)
3842{
3843        unsigned long key[2];
3844        u32 hash;
3845
3846        if (vma->vm_flags & VM_SHARED) {
3847                key[0] = (unsigned long) mapping;
3848                key[1] = idx;
3849        } else {
3850                key[0] = (unsigned long) mm;
3851                key[1] = address >> huge_page_shift(h);
3852        }
3853
3854        hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3855
3856        return hash & (num_fault_mutexes - 1);
3857}
3858#else
3859/*
3860 * For uniprocesor systems we always use a single mutex, so just
3861 * return 0 and avoid the hashing overhead.
3862 */
3863u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3864                            struct vm_area_struct *vma,
3865                            struct address_space *mapping,
3866                            pgoff_t idx, unsigned long address)
3867{
3868        return 0;
3869}
3870#endif
3871
3872int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3873                        unsigned long address, unsigned int flags)
3874{
3875        pte_t *ptep, entry;
3876        spinlock_t *ptl;
3877        int ret;
3878        u32 hash;
3879        pgoff_t idx;
3880        struct page *page = NULL;
3881        struct page *pagecache_page = NULL;
3882        struct hstate *h = hstate_vma(vma);
3883        struct address_space *mapping;
3884        int need_wait_lock = 0;
3885
3886        address &= huge_page_mask(h);
3887
3888        ptep = huge_pte_offset(mm, address, huge_page_size(h));
3889        if (ptep) {
3890                entry = huge_ptep_get(ptep);
3891                if (unlikely(is_hugetlb_entry_migration(entry))) {
3892                        migration_entry_wait_huge(vma, mm, ptep);
3893                        return 0;
3894                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3895                        return VM_FAULT_HWPOISON_LARGE |
3896                                VM_FAULT_SET_HINDEX(hstate_index(h));
3897        } else {
3898                ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3899                if (!ptep)
3900                        return VM_FAULT_OOM;
3901        }
3902
3903        mapping = vma->vm_file->f_mapping;
3904        idx = vma_hugecache_offset(h, vma, address);
3905
3906        /*
3907         * Serialize hugepage allocation and instantiation, so that we don't
3908         * get spurious allocation failures if two CPUs race to instantiate
3909         * the same page in the page cache.
3910         */
3911        hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3912        mutex_lock(&hugetlb_fault_mutex_table[hash]);
3913
3914        entry = huge_ptep_get(ptep);
3915        if (huge_pte_none(entry)) {
3916                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3917                goto out_mutex;
3918        }
3919
3920        ret = 0;
3921
3922        /*
3923         * entry could be a migration/hwpoison entry at this point, so this
3924         * check prevents the kernel from going below assuming that we have
3925         * a active hugepage in pagecache. This goto expects the 2nd page fault,
3926         * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3927         * handle it.
3928         */
3929        if (!pte_present(entry))
3930                goto out_mutex;
3931
3932        /*
3933         * If we are going to COW the mapping later, we examine the pending
3934         * reservations for this page now. This will ensure that any
3935         * allocations necessary to record that reservation occur outside the
3936         * spinlock. For private mappings, we also lookup the pagecache
3937         * page now as it is used to determine if a reservation has been
3938         * consumed.
3939         */
3940        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3941                if (vma_needs_reservation(h, vma, address) < 0) {
3942                        ret = VM_FAULT_OOM;
3943                        goto out_mutex;
3944                }
3945                /* Just decrements count, does not deallocate */
3946                vma_end_reservation(h, vma, address);
3947
3948                if (!(vma->vm_flags & VM_MAYSHARE))
3949                        pagecache_page = hugetlbfs_pagecache_page(h,
3950                                                                vma, address);
3951        }
3952
3953        ptl = huge_pte_lock(h, mm, ptep);
3954
3955        /* Check for a racing update before calling hugetlb_cow */
3956        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3957                goto out_ptl;
3958
3959        /*
3960         * hugetlb_cow() requires page locks of pte_page(entry) and
3961         * pagecache_page, so here we need take the former one
3962         * when page != pagecache_page or !pagecache_page.
3963         */
3964        page = pte_page(entry);
3965        if (page != pagecache_page)
3966                if (!trylock_page(page)) {
3967                        need_wait_lock = 1;
3968                        goto out_ptl;
3969                }
3970
3971        get_page(page);
3972
3973        if (flags & FAULT_FLAG_WRITE) {
3974                if (!huge_pte_write(entry)) {
3975                        ret = hugetlb_cow(mm, vma, address, ptep,
3976                                          pagecache_page, ptl);
3977                        goto out_put_page;
3978                }
3979                entry = huge_pte_mkdirty(entry);
3980        }
3981        entry = pte_mkyoung(entry);
3982        if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3983                                                flags & FAULT_FLAG_WRITE))
3984                update_mmu_cache(vma, address, ptep);
3985out_put_page:
3986        if (page != pagecache_page)
3987                unlock_page(page);
3988        put_page(page);
3989out_ptl:
3990        spin_unlock(ptl);
3991
3992        if (pagecache_page) {
3993                unlock_page(pagecache_page);
3994                put_page(pagecache_page);
3995        }
3996out_mutex:
3997        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3998        /*
3999         * Generally it's safe to hold refcount during waiting page lock. But
4000         * here we just wait to defer the next page fault to avoid busy loop and
4001         * the page is not used after unlocked before returning from the current
4002         * page fault. So we are safe from accessing freed page, even if we wait
4003         * here without taking refcount.
4004         */
4005        if (need_wait_lock)
4006                wait_on_page_locked(page);
4007        return ret;
4008}
4009
4010/*
4011 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4012 * modifications for huge pages.
4013 */
4014int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4015                            pte_t *dst_pte,
4016                            struct vm_area_struct *dst_vma,
4017                            unsigned long dst_addr,
4018                            unsigned long src_addr,
4019                            struct page **pagep)
4020{
4021        struct address_space *mapping;
4022        pgoff_t idx;
4023        unsigned long size;
4024        int vm_shared = dst_vma->vm_flags & VM_SHARED;
4025        struct hstate *h = hstate_vma(dst_vma);
4026        pte_t _dst_pte;
4027        spinlock_t *ptl;
4028        int ret;
4029        struct page *page;
4030
4031        if (!*pagep) {
4032                ret = -ENOMEM;
4033                page = alloc_huge_page(dst_vma, dst_addr, 0);
4034                if (IS_ERR(page))
4035                        goto out;
4036
4037                ret = copy_huge_page_from_user(page,
4038                                                (const void __user *) src_addr,
4039                                                pages_per_huge_page(h), false);
4040
4041                /* fallback to copy_from_user outside mmap_sem */
4042                if (unlikely(ret)) {
4043                        ret = -EFAULT;
4044                        *pagep = page;
4045                        /* don't free the page */
4046                        goto out;
4047                }
4048        } else {
4049                page = *pagep;
4050                *pagep = NULL;
4051        }
4052
4053        /*
4054         * The memory barrier inside __SetPageUptodate makes sure that
4055         * preceding stores to the page contents become visible before
4056         * the set_pte_at() write.
4057         */
4058        __SetPageUptodate(page);
4059        set_page_huge_active(page);
4060
4061        mapping = dst_vma->vm_file->f_mapping;
4062        idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4063
4064        /*
4065         * If shared, add to page cache
4066         */
4067        if (vm_shared) {
4068                size = i_size_read(mapping->host) >> huge_page_shift(h);
4069                ret = -EFAULT;
4070                if (idx >= size)
4071                        goto out_release_nounlock;
4072
4073                /*
4074                 * Serialization between remove_inode_hugepages() and
4075                 * huge_add_to_page_cache() below happens through the
4076                 * hugetlb_fault_mutex_table that here must be hold by
4077                 * the caller.
4078                 */
4079                ret = huge_add_to_page_cache(page, mapping, idx);
4080                if (ret)
4081                        goto out_release_nounlock;
4082        }
4083
4084        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4085        spin_lock(ptl);
4086
4087        /*
4088         * Recheck the i_size after holding PT lock to make sure not
4089         * to leave any page mapped (as page_mapped()) beyond the end
4090         * of the i_size (remove_inode_hugepages() is strict about
4091         * enforcing that). If we bail out here, we'll also leave a
4092         * page in the radix tree in the vm_shared case beyond the end
4093         * of the i_size, but remove_inode_hugepages() will take care
4094         * of it as soon as we drop the hugetlb_fault_mutex_table.
4095         */
4096        size = i_size_read(mapping->host) >> huge_page_shift(h);
4097        ret = -EFAULT;
4098        if (idx >= size)
4099                goto out_release_unlock;
4100
4101        ret = -EEXIST;
4102        if (!huge_pte_none(huge_ptep_get(dst_pte)))
4103                goto out_release_unlock;
4104
4105        if (vm_shared) {
4106                page_dup_rmap(page, true);
4107        } else {
4108                ClearPagePrivate(page);
4109                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4110        }
4111
4112        _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4113        if (dst_vma->vm_flags & VM_WRITE)
4114                _dst_pte = huge_pte_mkdirty(_dst_pte);
4115        _dst_pte = pte_mkyoung(_dst_pte);
4116
4117        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4118
4119        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4120                                        dst_vma->vm_flags & VM_WRITE);
4121        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4122
4123        /* No need to invalidate - it was non-present before */
4124        update_mmu_cache(dst_vma, dst_addr, dst_pte);
4125
4126        spin_unlock(ptl);
4127        if (vm_shared)
4128                unlock_page(page);
4129        ret = 0;
4130out:
4131        return ret;
4132out_release_unlock:
4133        spin_unlock(ptl);
4134        if (vm_shared)
4135                unlock_page(page);
4136out_release_nounlock:
4137        put_page(page);
4138        goto out;
4139}
4140
4141long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4142                         struct page **pages, struct vm_area_struct **vmas,
4143                         unsigned long *position, unsigned long *nr_pages,
4144                         long i, unsigned int flags, int *nonblocking)
4145{
4146        unsigned long pfn_offset;
4147        unsigned long vaddr = *position;
4148        unsigned long remainder = *nr_pages;
4149        struct hstate *h = hstate_vma(vma);
4150        int err = -EFAULT;
4151
4152        while (vaddr < vma->vm_end && remainder) {
4153                pte_t *pte;
4154                spinlock_t *ptl = NULL;
4155                int absent;
4156                struct page *page;
4157
4158                /*
4159                 * If we have a pending SIGKILL, don't keep faulting pages and
4160                 * potentially allocating memory.
4161                 */
4162                if (unlikely(fatal_signal_pending(current))) {
4163                        remainder = 0;
4164                        break;
4165                }
4166
4167                /*
4168                 * Some archs (sparc64, sh*) have multiple pte_ts to
4169                 * each hugepage.  We have to make sure we get the
4170                 * first, for the page indexing below to work.
4171                 *
4172                 * Note that page table lock is not held when pte is null.
4173                 */
4174                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4175                                      huge_page_size(h));
4176                if (pte)
4177                        ptl = huge_pte_lock(h, mm, pte);
4178                absent = !pte || huge_pte_none(huge_ptep_get(pte));
4179
4180                /*
4181                 * When coredumping, it suits get_dump_page if we just return
4182                 * an error where there's an empty slot with no huge pagecache
4183                 * to back it.  This way, we avoid allocating a hugepage, and
4184                 * the sparse dumpfile avoids allocating disk blocks, but its
4185                 * huge holes still show up with zeroes where they need to be.
4186                 */
4187                if (absent && (flags & FOLL_DUMP) &&
4188                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4189                        if (pte)
4190                                spin_unlock(ptl);
4191                        remainder = 0;
4192                        break;
4193                }
4194
4195                /*
4196                 * We need call hugetlb_fault for both hugepages under migration
4197                 * (in which case hugetlb_fault waits for the migration,) and
4198                 * hwpoisoned hugepages (in which case we need to prevent the
4199                 * caller from accessing to them.) In order to do this, we use
4200                 * here is_swap_pte instead of is_hugetlb_entry_migration and
4201                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4202                 * both cases, and because we can't follow correct pages
4203                 * directly from any kind of swap entries.
4204                 */
4205                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4206                    ((flags & FOLL_WRITE) &&
4207                      !huge_pte_write(huge_ptep_get(pte)))) {
4208                        int ret;
4209                        unsigned int fault_flags = 0;
4210
4211                        if (pte)
4212                                spin_unlock(ptl);
4213                        if (flags & FOLL_WRITE)
4214                                fault_flags |= FAULT_FLAG_WRITE;
4215                        if (nonblocking)
4216                                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4217                        if (flags & FOLL_NOWAIT)
4218                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4219                                        FAULT_FLAG_RETRY_NOWAIT;
4220                        if (flags & FOLL_TRIED) {
4221                                VM_WARN_ON_ONCE(fault_flags &
4222                                                FAULT_FLAG_ALLOW_RETRY);
4223                                fault_flags |= FAULT_FLAG_TRIED;
4224                        }
4225                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4226                        if (ret & VM_FAULT_ERROR) {
4227                                err = vm_fault_to_errno(ret, flags);
4228                                remainder = 0;
4229                                break;
4230                        }
4231                        if (ret & VM_FAULT_RETRY) {
4232                                if (nonblocking)
4233                                        *nonblocking = 0;
4234                                *nr_pages = 0;
4235                                /*
4236                                 * VM_FAULT_RETRY must not return an
4237                                 * error, it will return zero
4238                                 * instead.
4239                                 *
4240                                 * No need to update "position" as the
4241                                 * caller will not check it after
4242                                 * *nr_pages is set to 0.
4243                                 */
4244                                return i;
4245                        }
4246                        continue;
4247                }
4248
4249                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4250                page = pte_page(huge_ptep_get(pte));
4251same_page:
4252                if (pages) {
4253                        pages[i] = mem_map_offset(page, pfn_offset);
4254                        get_page(pages[i]);
4255                }
4256
4257                if (vmas)
4258                        vmas[i] = vma;
4259
4260                vaddr += PAGE_SIZE;
4261                ++pfn_offset;
4262                --remainder;
4263                ++i;
4264                if (vaddr < vma->vm_end && remainder &&
4265                                pfn_offset < pages_per_huge_page(h)) {
4266                        /*
4267                         * We use pfn_offset to avoid touching the pageframes
4268                         * of this compound page.
4269                         */
4270                        goto same_page;
4271                }
4272                spin_unlock(ptl);
4273        }
4274        *nr_pages = remainder;
4275        /*
4276         * setting position is actually required only if remainder is
4277         * not zero but it's faster not to add a "if (remainder)"
4278         * branch.
4279         */
4280        *position = vaddr;
4281
4282        return i ? i : err;
4283}
4284
4285#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4286/*
4287 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4288 * implement this.
4289 */
4290#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4291#endif
4292
4293unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4294                unsigned long address, unsigned long end, pgprot_t newprot)
4295{
4296        struct mm_struct *mm = vma->vm_mm;
4297        unsigned long start = address;
4298        pte_t *ptep;
4299        pte_t pte;
4300        struct hstate *h = hstate_vma(vma);
4301        unsigned long pages = 0;
4302
4303        BUG_ON(address >= end);
4304        flush_cache_range(vma, address, end);
4305
4306        mmu_notifier_invalidate_range_start(mm, start, end);
4307        i_mmap_lock_write(vma->vm_file->f_mapping);
4308        for (; address < end; address += huge_page_size(h)) {
4309                spinlock_t *ptl;
4310                ptep = huge_pte_offset(mm, address, huge_page_size(h));
4311                if (!ptep)
4312                        continue;
4313                ptl = huge_pte_lock(h, mm, ptep);
4314                if (huge_pmd_unshare(mm, &address, ptep)) {
4315                        pages++;
4316                        spin_unlock(ptl);
4317                        continue;
4318                }
4319                pte = huge_ptep_get(ptep);
4320                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4321                        spin_unlock(ptl);
4322                        continue;
4323                }
4324                if (unlikely(is_hugetlb_entry_migration(pte))) {
4325                        swp_entry_t entry = pte_to_swp_entry(pte);
4326
4327                        if (is_write_migration_entry(entry)) {
4328                                pte_t newpte;
4329
4330                                make_migration_entry_read(&entry);
4331                                newpte = swp_entry_to_pte(entry);
4332                                set_huge_swap_pte_at(mm, address, ptep,
4333                                                     newpte, huge_page_size(h));
4334                                pages++;
4335                        }
4336                        spin_unlock(ptl);
4337                        continue;
4338                }
4339                if (!huge_pte_none(pte)) {
4340                        pte = huge_ptep_get_and_clear(mm, address, ptep);
4341                        pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4342                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
4343                        set_huge_pte_at(mm, address, ptep, pte);
4344                        pages++;
4345                }
4346                spin_unlock(ptl);
4347        }
4348        /*
4349         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4350         * may have cleared our pud entry and done put_page on the page table:
4351         * once we release i_mmap_rwsem, another task can do the final put_page
4352         * and that page table be reused and filled with junk.
4353         */
4354        flush_hugetlb_tlb_range(vma, start, end);
4355        /*
4356         * No need to call mmu_notifier_invalidate_range() we are downgrading
4357         * page table protection not changing it to point to a new page.
4358         *
4359         * See Documentation/vm/mmu_notifier.txt
4360         */
4361        i_mmap_unlock_write(vma->vm_file->f_mapping);
4362        mmu_notifier_invalidate_range_end(mm, start, end);
4363
4364        return pages << h->order;
4365}
4366
4367int hugetlb_reserve_pages(struct inode *inode,
4368                                        long from, long to,
4369                                        struct vm_area_struct *vma,
4370                                        vm_flags_t vm_flags)
4371{
4372        long ret, chg;
4373        struct hstate *h = hstate_inode(inode);
4374        struct hugepage_subpool *spool = subpool_inode(inode);
4375        struct resv_map *resv_map;
4376        long gbl_reserve;
4377
4378        /* This should never happen */
4379        if (from > to) {
4380                VM_WARN(1, "%s called with a negative range\n", __func__);
4381                return -EINVAL;
4382        }
4383
4384        /*
4385         * Only apply hugepage reservation if asked. At fault time, an
4386         * attempt will be made for VM_NORESERVE to allocate a page
4387         * without using reserves
4388         */
4389        if (vm_flags & VM_NORESERVE)
4390                return 0;
4391
4392        /*
4393         * Shared mappings base their reservation on the number of pages that
4394         * are already allocated on behalf of the file. Private mappings need
4395         * to reserve the full area even if read-only as mprotect() may be
4396         * called to make the mapping read-write. Assume !vma is a shm mapping
4397         */
4398        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4399                resv_map = inode_resv_map(inode);
4400
4401                chg = region_chg(resv_map, from, to);
4402
4403        } else {
4404                resv_map = resv_map_alloc();
4405                if (!resv_map)
4406                        return -ENOMEM;
4407
4408                chg = to - from;
4409
4410                set_vma_resv_map(vma, resv_map);
4411                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4412        }
4413
4414        if (chg < 0) {
4415                ret = chg;
4416                goto out_err;
4417        }
4418
4419        /*
4420         * There must be enough pages in the subpool for the mapping. If
4421         * the subpool has a minimum size, there may be some global
4422         * reservations already in place (gbl_reserve).
4423         */
4424        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4425        if (gbl_reserve < 0) {
4426                ret = -ENOSPC;
4427                goto out_err;
4428        }
4429
4430        /*
4431         * Check enough hugepages are available for the reservation.
4432         * Hand the pages back to the subpool if there are not
4433         */
4434        ret = hugetlb_acct_memory(h, gbl_reserve);
4435        if (ret < 0) {
4436                /* put back original number of pages, chg */
4437                (void)hugepage_subpool_put_pages(spool, chg);
4438                goto out_err;
4439        }
4440
4441        /*
4442         * Account for the reservations made. Shared mappings record regions
4443         * that have reservations as they are shared by multiple VMAs.
4444         * When the last VMA disappears, the region map says how much
4445         * the reservation was and the page cache tells how much of
4446         * the reservation was consumed. Private mappings are per-VMA and
4447         * only the consumed reservations are tracked. When the VMA
4448         * disappears, the original reservation is the VMA size and the
4449         * consumed reservations are stored in the map. Hence, nothing
4450         * else has to be done for private mappings here
4451         */
4452        if (!vma || vma->vm_flags & VM_MAYSHARE) {
4453                long add = region_add(resv_map, from, to);
4454
4455                if (unlikely(chg > add)) {
4456                        /*
4457                         * pages in this range were added to the reserve
4458                         * map between region_chg and region_add.  This
4459                         * indicates a race with alloc_huge_page.  Adjust
4460                         * the subpool and reserve counts modified above
4461                         * based on the difference.
4462                         */
4463                        long rsv_adjust;
4464
4465                        rsv_adjust = hugepage_subpool_put_pages(spool,
4466                                                                chg - add);
4467                        hugetlb_acct_memory(h, -rsv_adjust);
4468                }
4469        }
4470        return 0;
4471out_err:
4472        if (!vma || vma->vm_flags & VM_MAYSHARE)
4473                /* Don't call region_abort if region_chg failed */
4474                if (chg >= 0)
4475                        region_abort(resv_map, from, to);
4476        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4477                kref_put(&resv_map->refs, resv_map_release);
4478        return ret;
4479}
4480
4481long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4482                                                                long freed)
4483{
4484        struct hstate *h = hstate_inode(inode);
4485        struct resv_map *resv_map = inode_resv_map(inode);
4486        long chg = 0;
4487        struct hugepage_subpool *spool = subpool_inode(inode);
4488        long gbl_reserve;
4489
4490        if (resv_map) {
4491                chg = region_del(resv_map, start, end);
4492                /*
4493                 * region_del() can fail in the rare case where a region
4494                 * must be split and another region descriptor can not be
4495                 * allocated.  If end == LONG_MAX, it will not fail.
4496                 */
4497                if (chg < 0)
4498                        return chg;
4499        }
4500
4501        spin_lock(&inode->i_lock);
4502        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4503        spin_unlock(&inode->i_lock);
4504
4505        /*
4506         * If the subpool has a minimum size, the number of global
4507         * reservations to be released may be adjusted.
4508         */
4509        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4510        hugetlb_acct_memory(h, -gbl_reserve);
4511
4512        return 0;
4513}
4514
4515#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4516static unsigned long page_table_shareable(struct vm_area_struct *svma,
4517                                struct vm_area_struct *vma,
4518                                unsigned long addr, pgoff_t idx)
4519{
4520        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4521                                svma->vm_start;
4522        unsigned long sbase = saddr & PUD_MASK;
4523        unsigned long s_end = sbase + PUD_SIZE;
4524
4525        /* Allow segments to share if only one is marked locked */
4526        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4527        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4528
4529        /*
4530         * match the virtual addresses, permission and the alignment of the
4531         * page table page.
4532         */
4533        if (pmd_index(addr) != pmd_index(saddr) ||
4534            vm_flags != svm_flags ||
4535            sbase < svma->vm_start || svma->vm_end < s_end)
4536                return 0;
4537
4538        return saddr;
4539}
4540
4541static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4542{
4543        unsigned long base = addr & PUD_MASK;
4544        unsigned long end = base + PUD_SIZE;
4545
4546        /*
4547         * check on proper vm_flags and page table alignment
4548         */
4549        if (vma->vm_flags & VM_MAYSHARE &&
4550            vma->vm_start <= base && end <= vma->vm_end)
4551                return true;
4552        return false;
4553}
4554
4555/*
4556 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4557 * and returns the corresponding pte. While this is not necessary for the
4558 * !shared pmd case because we can allocate the pmd later as well, it makes the
4559 * code much cleaner. pmd allocation is essential for the shared case because
4560 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4561 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4562 * bad pmd for sharing.
4563 */
4564pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4565{
4566        struct vm_area_struct *vma = find_vma(mm, addr);
4567        struct address_space *mapping = vma->vm_file->f_mapping;
4568        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4569                        vma->vm_pgoff;
4570        struct vm_area_struct *svma;
4571        unsigned long saddr;
4572        pte_t *spte = NULL;
4573        pte_t *pte;
4574        spinlock_t *ptl;
4575
4576        if (!vma_shareable(vma, addr))
4577                return (pte_t *)pmd_alloc(mm, pud, addr);
4578
4579        i_mmap_lock_write(mapping);
4580        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4581                if (svma == vma)
4582                        continue;
4583
4584                saddr = page_table_shareable(svma, vma, addr, idx);
4585                if (saddr) {
4586                        spte = huge_pte_offset(svma->vm_mm, saddr,
4587                                               vma_mmu_pagesize(svma));
4588                        if (spte) {
4589                                get_page(virt_to_page(spte));
4590                                break;
4591                        }
4592                }
4593        }
4594
4595        if (!spte)
4596                goto out;
4597
4598        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4599        if (pud_none(*pud)) {
4600                pud_populate(mm, pud,
4601                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
4602                mm_inc_nr_pmds(mm);
4603        } else {
4604                put_page(virt_to_page(spte));
4605        }
4606        spin_unlock(ptl);
4607out:
4608        pte = (pte_t *)pmd_alloc(mm, pud, addr);
4609        i_mmap_unlock_write(mapping);
4610        return pte;
4611}
4612
4613/*
4614 * unmap huge page backed by shared pte.
4615 *
4616 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4617 * indicated by page_count > 1, unmap is achieved by clearing pud and
4618 * decrementing the ref count. If count == 1, the pte page is not shared.
4619 *
4620 * called with page table lock held.
4621 *
4622 * returns: 1 successfully unmapped a shared pte page
4623 *          0 the underlying pte page is not shared, or it is the last user
4624 */
4625int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4626{
4627        pgd_t *pgd = pgd_offset(mm, *addr);
4628        p4d_t *p4d = p4d_offset(pgd, *addr);
4629        pud_t *pud = pud_offset(p4d, *addr);
4630
4631        BUG_ON(page_count(virt_to_page(ptep)) == 0);
4632        if (page_count(virt_to_page(ptep)) == 1)
4633                return 0;
4634
4635        pud_clear(pud);
4636        put_page(virt_to_page(ptep));
4637        mm_dec_nr_pmds(mm);
4638        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4639        return 1;
4640}
4641#define want_pmd_share()        (1)
4642#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4643pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4644{
4645        return NULL;
4646}
4647
4648int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4649{
4650        return 0;
4651}
4652#define want_pmd_share()        (0)
4653#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4654
4655#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4656pte_t *huge_pte_alloc(struct mm_struct *mm,
4657                        unsigned long addr, unsigned long sz)
4658{
4659        pgd_t *pgd;
4660        p4d_t *p4d;
4661        pud_t *pud;
4662        pte_t *pte = NULL;
4663
4664        pgd = pgd_offset(mm, addr);
4665        p4d = p4d_alloc(mm, pgd, addr);
4666        if (!p4d)
4667                return NULL;
4668        pud = pud_alloc(mm, p4d, addr);
4669        if (pud) {
4670                if (sz == PUD_SIZE) {
4671                        pte = (pte_t *)pud;
4672                } else {
4673                        BUG_ON(sz != PMD_SIZE);
4674                        if (want_pmd_share() && pud_none(*pud))
4675                                pte = huge_pmd_share(mm, addr, pud);
4676                        else
4677                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
4678                }
4679        }
4680        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4681
4682        return pte;
4683}
4684
4685/*
4686 * huge_pte_offset() - Walk the page table to resolve the hugepage
4687 * entry at address @addr
4688 *
4689 * Return: Pointer to page table or swap entry (PUD or PMD) for
4690 * address @addr, or NULL if a p*d_none() entry is encountered and the
4691 * size @sz doesn't match the hugepage size at this level of the page
4692 * table.
4693 */
4694pte_t *huge_pte_offset(struct mm_struct *mm,
4695                       unsigned long addr, unsigned long sz)
4696{
4697        pgd_t *pgd;
4698        p4d_t *p4d;
4699        pud_t *pud;
4700        pmd_t *pmd;
4701
4702        pgd = pgd_offset(mm, addr);
4703        if (!pgd_present(*pgd))
4704                return NULL;
4705        p4d = p4d_offset(pgd, addr);
4706        if (!p4d_present(*p4d))
4707                return NULL;
4708
4709        pud = pud_offset(p4d, addr);
4710        if (sz != PUD_SIZE && pud_none(*pud))
4711                return NULL;
4712        /* hugepage or swap? */
4713        if (pud_huge(*pud) || !pud_present(*pud))
4714                return (pte_t *)pud;
4715
4716        pmd = pmd_offset(pud, addr);
4717        if (sz != PMD_SIZE && pmd_none(*pmd))
4718                return NULL;
4719        /* hugepage or swap? */
4720        if (pmd_huge(*pmd) || !pmd_present(*pmd))
4721                return (pte_t *)pmd;
4722
4723        return NULL;
4724}
4725
4726#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4727
4728/*
4729 * These functions are overwritable if your architecture needs its own
4730 * behavior.
4731 */
4732struct page * __weak
4733follow_huge_addr(struct mm_struct *mm, unsigned long address,
4734                              int write)
4735{
4736        return ERR_PTR(-EINVAL);
4737}
4738
4739struct page * __weak
4740follow_huge_pd(struct vm_area_struct *vma,
4741               unsigned long address, hugepd_t hpd, int flags, int pdshift)
4742{
4743        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4744        return NULL;
4745}
4746
4747struct page * __weak
4748follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4749                pmd_t *pmd, int flags)
4750{
4751        struct page *page = NULL;
4752        spinlock_t *ptl;
4753        pte_t pte;
4754retry:
4755        ptl = pmd_lockptr(mm, pmd);
4756        spin_lock(ptl);
4757        /*
4758         * make sure that the address range covered by this pmd is not
4759         * unmapped from other threads.
4760         */
4761        if (!pmd_huge(*pmd))
4762                goto out;
4763        pte = huge_ptep_get((pte_t *)pmd);
4764        if (pte_present(pte)) {
4765                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4766                if (flags & FOLL_GET)
4767                        get_page(page);
4768        } else {
4769                if (is_hugetlb_entry_migration(pte)) {
4770                        spin_unlock(ptl);
4771                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4772                        goto retry;
4773                }
4774                /*
4775                 * hwpoisoned entry is treated as no_page_table in
4776                 * follow_page_mask().
4777                 */
4778        }
4779out:
4780        spin_unlock(ptl);
4781        return page;
4782}
4783
4784struct page * __weak
4785follow_huge_pud(struct mm_struct *mm, unsigned long address,
4786                pud_t *pud, int flags)
4787{
4788        if (flags & FOLL_GET)
4789                return NULL;
4790
4791        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4792}
4793
4794struct page * __weak
4795follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4796{
4797        if (flags & FOLL_GET)
4798                return NULL;
4799
4800        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4801}
4802
4803bool isolate_huge_page(struct page *page, struct list_head *list)
4804{
4805        bool ret = true;
4806
4807        VM_BUG_ON_PAGE(!PageHead(page), page);
4808        spin_lock(&hugetlb_lock);
4809        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4810                ret = false;
4811                goto unlock;
4812        }
4813        clear_page_huge_active(page);
4814        list_move_tail(&page->lru, list);
4815unlock:
4816        spin_unlock(&hugetlb_lock);
4817        return ret;
4818}
4819
4820void putback_active_hugepage(struct page *page)
4821{
4822        VM_BUG_ON_PAGE(!PageHead(page), page);
4823        spin_lock(&hugetlb_lock);
4824        set_page_huge_active(page);
4825        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4826        spin_unlock(&hugetlb_lock);
4827        put_page(page);
4828}
4829
4830void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4831{
4832        struct hstate *h = page_hstate(oldpage);
4833
4834        hugetlb_cgroup_migrate(oldpage, newpage);
4835        set_page_owner_migrate_reason(newpage, reason);
4836
4837        /*
4838         * transfer temporary state of the new huge page. This is
4839         * reverse to other transitions because the newpage is going to
4840         * be final while the old one will be freed so it takes over
4841         * the temporary status.
4842         *
4843         * Also note that we have to transfer the per-node surplus state
4844         * here as well otherwise the global surplus count will not match
4845         * the per-node's.
4846         */
4847        if (PageHugeTemporary(newpage)) {
4848                int old_nid = page_to_nid(oldpage);
4849                int new_nid = page_to_nid(newpage);
4850
4851                SetPageHugeTemporary(oldpage);
4852                ClearPageHugeTemporary(newpage);
4853
4854                spin_lock(&hugetlb_lock);
4855                if (h->surplus_huge_pages_node[old_nid]) {
4856                        h->surplus_huge_pages_node[old_nid]--;
4857                        h->surplus_huge_pages_node[new_nid]++;
4858                }
4859                spin_unlock(&hugetlb_lock);
4860        }
4861}
4862