linux/mm/slub.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLUB: A slab allocator that limits cache line use instead of queuing
   4 * objects in per cpu and per node lists.
   5 *
   6 * The allocator synchronizes using per slab locks or atomic operatios
   7 * and only uses a centralized lock to manage a pool of partial slabs.
   8 *
   9 * (C) 2007 SGI, Christoph Lameter
  10 * (C) 2011 Linux Foundation, Christoph Lameter
  11 */
  12
  13#include <linux/mm.h>
  14#include <linux/swap.h> /* struct reclaim_state */
  15#include <linux/module.h>
  16#include <linux/bit_spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/bitops.h>
  19#include <linux/slab.h>
  20#include "slab.h"
  21#include <linux/proc_fs.h>
  22#include <linux/notifier.h>
  23#include <linux/seq_file.h>
  24#include <linux/kasan.h>
  25#include <linux/cpu.h>
  26#include <linux/cpuset.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ctype.h>
  29#include <linux/debugobjects.h>
  30#include <linux/kallsyms.h>
  31#include <linux/memory.h>
  32#include <linux/math64.h>
  33#include <linux/fault-inject.h>
  34#include <linux/stacktrace.h>
  35#include <linux/prefetch.h>
  36#include <linux/memcontrol.h>
  37#include <linux/random.h>
  38
  39#include <trace/events/kmem.h>
  40
  41#include "internal.h"
  42
  43/*
  44 * Lock order:
  45 *   1. slab_mutex (Global Mutex)
  46 *   2. node->list_lock
  47 *   3. slab_lock(page) (Only on some arches and for debugging)
  48 *
  49 *   slab_mutex
  50 *
  51 *   The role of the slab_mutex is to protect the list of all the slabs
  52 *   and to synchronize major metadata changes to slab cache structures.
  53 *
  54 *   The slab_lock is only used for debugging and on arches that do not
  55 *   have the ability to do a cmpxchg_double. It only protects the second
  56 *   double word in the page struct. Meaning
  57 *      A. page->freelist       -> List of object free in a page
  58 *      B. page->counters       -> Counters of objects
  59 *      C. page->frozen         -> frozen state
  60 *
  61 *   If a slab is frozen then it is exempt from list management. It is not
  62 *   on any list. The processor that froze the slab is the one who can
  63 *   perform list operations on the page. Other processors may put objects
  64 *   onto the freelist but the processor that froze the slab is the only
  65 *   one that can retrieve the objects from the page's freelist.
  66 *
  67 *   The list_lock protects the partial and full list on each node and
  68 *   the partial slab counter. If taken then no new slabs may be added or
  69 *   removed from the lists nor make the number of partial slabs be modified.
  70 *   (Note that the total number of slabs is an atomic value that may be
  71 *   modified without taking the list lock).
  72 *
  73 *   The list_lock is a centralized lock and thus we avoid taking it as
  74 *   much as possible. As long as SLUB does not have to handle partial
  75 *   slabs, operations can continue without any centralized lock. F.e.
  76 *   allocating a long series of objects that fill up slabs does not require
  77 *   the list lock.
  78 *   Interrupts are disabled during allocation and deallocation in order to
  79 *   make the slab allocator safe to use in the context of an irq. In addition
  80 *   interrupts are disabled to ensure that the processor does not change
  81 *   while handling per_cpu slabs, due to kernel preemption.
  82 *
  83 * SLUB assigns one slab for allocation to each processor.
  84 * Allocations only occur from these slabs called cpu slabs.
  85 *
  86 * Slabs with free elements are kept on a partial list and during regular
  87 * operations no list for full slabs is used. If an object in a full slab is
  88 * freed then the slab will show up again on the partial lists.
  89 * We track full slabs for debugging purposes though because otherwise we
  90 * cannot scan all objects.
  91 *
  92 * Slabs are freed when they become empty. Teardown and setup is
  93 * minimal so we rely on the page allocators per cpu caches for
  94 * fast frees and allocs.
  95 *
  96 * Overloading of page flags that are otherwise used for LRU management.
  97 *
  98 * PageActive           The slab is frozen and exempt from list processing.
  99 *                      This means that the slab is dedicated to a purpose
 100 *                      such as satisfying allocations for a specific
 101 *                      processor. Objects may be freed in the slab while
 102 *                      it is frozen but slab_free will then skip the usual
 103 *                      list operations. It is up to the processor holding
 104 *                      the slab to integrate the slab into the slab lists
 105 *                      when the slab is no longer needed.
 106 *
 107 *                      One use of this flag is to mark slabs that are
 108 *                      used for allocations. Then such a slab becomes a cpu
 109 *                      slab. The cpu slab may be equipped with an additional
 110 *                      freelist that allows lockless access to
 111 *                      free objects in addition to the regular freelist
 112 *                      that requires the slab lock.
 113 *
 114 * PageError            Slab requires special handling due to debug
 115 *                      options set. This moves slab handling out of
 116 *                      the fast path and disables lockless freelists.
 117 */
 118
 119static inline int kmem_cache_debug(struct kmem_cache *s)
 120{
 121#ifdef CONFIG_SLUB_DEBUG
 122        return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 123#else
 124        return 0;
 125#endif
 126}
 127
 128void *fixup_red_left(struct kmem_cache *s, void *p)
 129{
 130        if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
 131                p += s->red_left_pad;
 132
 133        return p;
 134}
 135
 136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 137{
 138#ifdef CONFIG_SLUB_CPU_PARTIAL
 139        return !kmem_cache_debug(s);
 140#else
 141        return false;
 142#endif
 143}
 144
 145/*
 146 * Issues still to be resolved:
 147 *
 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 149 *
 150 * - Variable sizing of the per node arrays
 151 */
 152
 153/* Enable to test recovery from slab corruption on boot */
 154#undef SLUB_RESILIENCY_TEST
 155
 156/* Enable to log cmpxchg failures */
 157#undef SLUB_DEBUG_CMPXCHG
 158
 159/*
 160 * Mininum number of partial slabs. These will be left on the partial
 161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 162 */
 163#define MIN_PARTIAL 5
 164
 165/*
 166 * Maximum number of desirable partial slabs.
 167 * The existence of more partial slabs makes kmem_cache_shrink
 168 * sort the partial list by the number of objects in use.
 169 */
 170#define MAX_PARTIAL 10
 171
 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 173                                SLAB_POISON | SLAB_STORE_USER)
 174
 175/*
 176 * These debug flags cannot use CMPXCHG because there might be consistency
 177 * issues when checking or reading debug information
 178 */
 179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 180                                SLAB_TRACE)
 181
 182
 183/*
 184 * Debugging flags that require metadata to be stored in the slab.  These get
 185 * disabled when slub_debug=O is used and a cache's min order increases with
 186 * metadata.
 187 */
 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 189
 190#define OO_SHIFT        16
 191#define OO_MASK         ((1 << OO_SHIFT) - 1)
 192#define MAX_OBJS_PER_PAGE       32767 /* since page.objects is u15 */
 193
 194/* Internal SLUB flags */
 195/* Poison object */
 196#define __OBJECT_POISON         ((slab_flags_t __force)0x80000000U)
 197/* Use cmpxchg_double */
 198#define __CMPXCHG_DOUBLE        ((slab_flags_t __force)0x40000000U)
 199
 200/*
 201 * Tracking user of a slab.
 202 */
 203#define TRACK_ADDRS_COUNT 16
 204struct track {
 205        unsigned long addr;     /* Called from address */
 206#ifdef CONFIG_STACKTRACE
 207        unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
 208#endif
 209        int cpu;                /* Was running on cpu */
 210        int pid;                /* Pid context */
 211        unsigned long when;     /* When did the operation occur */
 212};
 213
 214enum track_item { TRACK_ALLOC, TRACK_FREE };
 215
 216#ifdef CONFIG_SYSFS
 217static int sysfs_slab_add(struct kmem_cache *);
 218static int sysfs_slab_alias(struct kmem_cache *, const char *);
 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 220static void sysfs_slab_remove(struct kmem_cache *s);
 221#else
 222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 224                                                        { return 0; }
 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
 227#endif
 228
 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
 230{
 231#ifdef CONFIG_SLUB_STATS
 232        /*
 233         * The rmw is racy on a preemptible kernel but this is acceptable, so
 234         * avoid this_cpu_add()'s irq-disable overhead.
 235         */
 236        raw_cpu_inc(s->cpu_slab->stat[si]);
 237#endif
 238}
 239
 240/********************************************************************
 241 *                      Core slab cache functions
 242 *******************************************************************/
 243
 244/*
 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 246 * with an XOR of the address where the pointer is held and a per-cache
 247 * random number.
 248 */
 249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
 250                                 unsigned long ptr_addr)
 251{
 252#ifdef CONFIG_SLAB_FREELIST_HARDENED
 253        return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
 254#else
 255        return ptr;
 256#endif
 257}
 258
 259/* Returns the freelist pointer recorded at location ptr_addr. */
 260static inline void *freelist_dereference(const struct kmem_cache *s,
 261                                         void *ptr_addr)
 262{
 263        return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
 264                            (unsigned long)ptr_addr);
 265}
 266
 267static inline void *get_freepointer(struct kmem_cache *s, void *object)
 268{
 269        return freelist_dereference(s, object + s->offset);
 270}
 271
 272static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 273{
 274        if (object)
 275                prefetch(freelist_dereference(s, object + s->offset));
 276}
 277
 278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 279{
 280        unsigned long freepointer_addr;
 281        void *p;
 282
 283        if (!debug_pagealloc_enabled())
 284                return get_freepointer(s, object);
 285
 286        freepointer_addr = (unsigned long)object + s->offset;
 287        probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
 288        return freelist_ptr(s, p, freepointer_addr);
 289}
 290
 291static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 292{
 293        unsigned long freeptr_addr = (unsigned long)object + s->offset;
 294
 295#ifdef CONFIG_SLAB_FREELIST_HARDENED
 296        BUG_ON(object == fp); /* naive detection of double free or corruption */
 297#endif
 298
 299        *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
 300}
 301
 302/* Loop over all objects in a slab */
 303#define for_each_object(__p, __s, __addr, __objects) \
 304        for (__p = fixup_red_left(__s, __addr); \
 305                __p < (__addr) + (__objects) * (__s)->size; \
 306                __p += (__s)->size)
 307
 308#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
 309        for (__p = fixup_red_left(__s, __addr), __idx = 1; \
 310                __idx <= __objects; \
 311                __p += (__s)->size, __idx++)
 312
 313/* Determine object index from a given position */
 314static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 315{
 316        return (p - addr) / s->size;
 317}
 318
 319static inline int order_objects(int order, unsigned long size, int reserved)
 320{
 321        return ((PAGE_SIZE << order) - reserved) / size;
 322}
 323
 324static inline struct kmem_cache_order_objects oo_make(int order,
 325                unsigned long size, int reserved)
 326{
 327        struct kmem_cache_order_objects x = {
 328                (order << OO_SHIFT) + order_objects(order, size, reserved)
 329        };
 330
 331        return x;
 332}
 333
 334static inline int oo_order(struct kmem_cache_order_objects x)
 335{
 336        return x.x >> OO_SHIFT;
 337}
 338
 339static inline int oo_objects(struct kmem_cache_order_objects x)
 340{
 341        return x.x & OO_MASK;
 342}
 343
 344/*
 345 * Per slab locking using the pagelock
 346 */
 347static __always_inline void slab_lock(struct page *page)
 348{
 349        VM_BUG_ON_PAGE(PageTail(page), page);
 350        bit_spin_lock(PG_locked, &page->flags);
 351}
 352
 353static __always_inline void slab_unlock(struct page *page)
 354{
 355        VM_BUG_ON_PAGE(PageTail(page), page);
 356        __bit_spin_unlock(PG_locked, &page->flags);
 357}
 358
 359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 360{
 361        struct page tmp;
 362        tmp.counters = counters_new;
 363        /*
 364         * page->counters can cover frozen/inuse/objects as well
 365         * as page->_refcount.  If we assign to ->counters directly
 366         * we run the risk of losing updates to page->_refcount, so
 367         * be careful and only assign to the fields we need.
 368         */
 369        page->frozen  = tmp.frozen;
 370        page->inuse   = tmp.inuse;
 371        page->objects = tmp.objects;
 372}
 373
 374/* Interrupts must be disabled (for the fallback code to work right) */
 375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 376                void *freelist_old, unsigned long counters_old,
 377                void *freelist_new, unsigned long counters_new,
 378                const char *n)
 379{
 380        VM_BUG_ON(!irqs_disabled());
 381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 382    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 383        if (s->flags & __CMPXCHG_DOUBLE) {
 384                if (cmpxchg_double(&page->freelist, &page->counters,
 385                                   freelist_old, counters_old,
 386                                   freelist_new, counters_new))
 387                        return true;
 388        } else
 389#endif
 390        {
 391                slab_lock(page);
 392                if (page->freelist == freelist_old &&
 393                                        page->counters == counters_old) {
 394                        page->freelist = freelist_new;
 395                        set_page_slub_counters(page, counters_new);
 396                        slab_unlock(page);
 397                        return true;
 398                }
 399                slab_unlock(page);
 400        }
 401
 402        cpu_relax();
 403        stat(s, CMPXCHG_DOUBLE_FAIL);
 404
 405#ifdef SLUB_DEBUG_CMPXCHG
 406        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 407#endif
 408
 409        return false;
 410}
 411
 412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 413                void *freelist_old, unsigned long counters_old,
 414                void *freelist_new, unsigned long counters_new,
 415                const char *n)
 416{
 417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 418    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 419        if (s->flags & __CMPXCHG_DOUBLE) {
 420                if (cmpxchg_double(&page->freelist, &page->counters,
 421                                   freelist_old, counters_old,
 422                                   freelist_new, counters_new))
 423                        return true;
 424        } else
 425#endif
 426        {
 427                unsigned long flags;
 428
 429                local_irq_save(flags);
 430                slab_lock(page);
 431                if (page->freelist == freelist_old &&
 432                                        page->counters == counters_old) {
 433                        page->freelist = freelist_new;
 434                        set_page_slub_counters(page, counters_new);
 435                        slab_unlock(page);
 436                        local_irq_restore(flags);
 437                        return true;
 438                }
 439                slab_unlock(page);
 440                local_irq_restore(flags);
 441        }
 442
 443        cpu_relax();
 444        stat(s, CMPXCHG_DOUBLE_FAIL);
 445
 446#ifdef SLUB_DEBUG_CMPXCHG
 447        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 448#endif
 449
 450        return false;
 451}
 452
 453#ifdef CONFIG_SLUB_DEBUG
 454/*
 455 * Determine a map of object in use on a page.
 456 *
 457 * Node listlock must be held to guarantee that the page does
 458 * not vanish from under us.
 459 */
 460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 461{
 462        void *p;
 463        void *addr = page_address(page);
 464
 465        for (p = page->freelist; p; p = get_freepointer(s, p))
 466                set_bit(slab_index(p, s, addr), map);
 467}
 468
 469static inline int size_from_object(struct kmem_cache *s)
 470{
 471        if (s->flags & SLAB_RED_ZONE)
 472                return s->size - s->red_left_pad;
 473
 474        return s->size;
 475}
 476
 477static inline void *restore_red_left(struct kmem_cache *s, void *p)
 478{
 479        if (s->flags & SLAB_RED_ZONE)
 480                p -= s->red_left_pad;
 481
 482        return p;
 483}
 484
 485/*
 486 * Debug settings:
 487 */
 488#if defined(CONFIG_SLUB_DEBUG_ON)
 489static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
 490#else
 491static slab_flags_t slub_debug;
 492#endif
 493
 494static char *slub_debug_slabs;
 495static int disable_higher_order_debug;
 496
 497/*
 498 * slub is about to manipulate internal object metadata.  This memory lies
 499 * outside the range of the allocated object, so accessing it would normally
 500 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 501 * to tell kasan that these accesses are OK.
 502 */
 503static inline void metadata_access_enable(void)
 504{
 505        kasan_disable_current();
 506}
 507
 508static inline void metadata_access_disable(void)
 509{
 510        kasan_enable_current();
 511}
 512
 513/*
 514 * Object debugging
 515 */
 516
 517/* Verify that a pointer has an address that is valid within a slab page */
 518static inline int check_valid_pointer(struct kmem_cache *s,
 519                                struct page *page, void *object)
 520{
 521        void *base;
 522
 523        if (!object)
 524                return 1;
 525
 526        base = page_address(page);
 527        object = restore_red_left(s, object);
 528        if (object < base || object >= base + page->objects * s->size ||
 529                (object - base) % s->size) {
 530                return 0;
 531        }
 532
 533        return 1;
 534}
 535
 536static void print_section(char *level, char *text, u8 *addr,
 537                          unsigned int length)
 538{
 539        metadata_access_enable();
 540        print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 541                        length, 1);
 542        metadata_access_disable();
 543}
 544
 545static struct track *get_track(struct kmem_cache *s, void *object,
 546        enum track_item alloc)
 547{
 548        struct track *p;
 549
 550        if (s->offset)
 551                p = object + s->offset + sizeof(void *);
 552        else
 553                p = object + s->inuse;
 554
 555        return p + alloc;
 556}
 557
 558static void set_track(struct kmem_cache *s, void *object,
 559                        enum track_item alloc, unsigned long addr)
 560{
 561        struct track *p = get_track(s, object, alloc);
 562
 563        if (addr) {
 564#ifdef CONFIG_STACKTRACE
 565                struct stack_trace trace;
 566                int i;
 567
 568                trace.nr_entries = 0;
 569                trace.max_entries = TRACK_ADDRS_COUNT;
 570                trace.entries = p->addrs;
 571                trace.skip = 3;
 572                metadata_access_enable();
 573                save_stack_trace(&trace);
 574                metadata_access_disable();
 575
 576                /* See rant in lockdep.c */
 577                if (trace.nr_entries != 0 &&
 578                    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 579                        trace.nr_entries--;
 580
 581                for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 582                        p->addrs[i] = 0;
 583#endif
 584                p->addr = addr;
 585                p->cpu = smp_processor_id();
 586                p->pid = current->pid;
 587                p->when = jiffies;
 588        } else
 589                memset(p, 0, sizeof(struct track));
 590}
 591
 592static void init_tracking(struct kmem_cache *s, void *object)
 593{
 594        if (!(s->flags & SLAB_STORE_USER))
 595                return;
 596
 597        set_track(s, object, TRACK_FREE, 0UL);
 598        set_track(s, object, TRACK_ALLOC, 0UL);
 599}
 600
 601static void print_track(const char *s, struct track *t)
 602{
 603        if (!t->addr)
 604                return;
 605
 606        pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 607               s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 608#ifdef CONFIG_STACKTRACE
 609        {
 610                int i;
 611                for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 612                        if (t->addrs[i])
 613                                pr_err("\t%pS\n", (void *)t->addrs[i]);
 614                        else
 615                                break;
 616        }
 617#endif
 618}
 619
 620static void print_tracking(struct kmem_cache *s, void *object)
 621{
 622        if (!(s->flags & SLAB_STORE_USER))
 623                return;
 624
 625        print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 626        print_track("Freed", get_track(s, object, TRACK_FREE));
 627}
 628
 629static void print_page_info(struct page *page)
 630{
 631        pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 632               page, page->objects, page->inuse, page->freelist, page->flags);
 633
 634}
 635
 636static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 637{
 638        struct va_format vaf;
 639        va_list args;
 640
 641        va_start(args, fmt);
 642        vaf.fmt = fmt;
 643        vaf.va = &args;
 644        pr_err("=============================================================================\n");
 645        pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 646        pr_err("-----------------------------------------------------------------------------\n\n");
 647
 648        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 649        va_end(args);
 650}
 651
 652static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 653{
 654        struct va_format vaf;
 655        va_list args;
 656
 657        va_start(args, fmt);
 658        vaf.fmt = fmt;
 659        vaf.va = &args;
 660        pr_err("FIX %s: %pV\n", s->name, &vaf);
 661        va_end(args);
 662}
 663
 664static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 665{
 666        unsigned int off;       /* Offset of last byte */
 667        u8 *addr = page_address(page);
 668
 669        print_tracking(s, p);
 670
 671        print_page_info(page);
 672
 673        pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 674               p, p - addr, get_freepointer(s, p));
 675
 676        if (s->flags & SLAB_RED_ZONE)
 677                print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
 678                              s->red_left_pad);
 679        else if (p > addr + 16)
 680                print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 681
 682        print_section(KERN_ERR, "Object ", p,
 683                      min_t(unsigned long, s->object_size, PAGE_SIZE));
 684        if (s->flags & SLAB_RED_ZONE)
 685                print_section(KERN_ERR, "Redzone ", p + s->object_size,
 686                        s->inuse - s->object_size);
 687
 688        if (s->offset)
 689                off = s->offset + sizeof(void *);
 690        else
 691                off = s->inuse;
 692
 693        if (s->flags & SLAB_STORE_USER)
 694                off += 2 * sizeof(struct track);
 695
 696        off += kasan_metadata_size(s);
 697
 698        if (off != size_from_object(s))
 699                /* Beginning of the filler is the free pointer */
 700                print_section(KERN_ERR, "Padding ", p + off,
 701                              size_from_object(s) - off);
 702
 703        dump_stack();
 704}
 705
 706void object_err(struct kmem_cache *s, struct page *page,
 707                        u8 *object, char *reason)
 708{
 709        slab_bug(s, "%s", reason);
 710        print_trailer(s, page, object);
 711}
 712
 713static void slab_err(struct kmem_cache *s, struct page *page,
 714                        const char *fmt, ...)
 715{
 716        va_list args;
 717        char buf[100];
 718
 719        va_start(args, fmt);
 720        vsnprintf(buf, sizeof(buf), fmt, args);
 721        va_end(args);
 722        slab_bug(s, "%s", buf);
 723        print_page_info(page);
 724        dump_stack();
 725}
 726
 727static void init_object(struct kmem_cache *s, void *object, u8 val)
 728{
 729        u8 *p = object;
 730
 731        if (s->flags & SLAB_RED_ZONE)
 732                memset(p - s->red_left_pad, val, s->red_left_pad);
 733
 734        if (s->flags & __OBJECT_POISON) {
 735                memset(p, POISON_FREE, s->object_size - 1);
 736                p[s->object_size - 1] = POISON_END;
 737        }
 738
 739        if (s->flags & SLAB_RED_ZONE)
 740                memset(p + s->object_size, val, s->inuse - s->object_size);
 741}
 742
 743static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 744                                                void *from, void *to)
 745{
 746        slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 747        memset(from, data, to - from);
 748}
 749
 750static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 751                        u8 *object, char *what,
 752                        u8 *start, unsigned int value, unsigned int bytes)
 753{
 754        u8 *fault;
 755        u8 *end;
 756
 757        metadata_access_enable();
 758        fault = memchr_inv(start, value, bytes);
 759        metadata_access_disable();
 760        if (!fault)
 761                return 1;
 762
 763        end = start + bytes;
 764        while (end > fault && end[-1] == value)
 765                end--;
 766
 767        slab_bug(s, "%s overwritten", what);
 768        pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 769                                        fault, end - 1, fault[0], value);
 770        print_trailer(s, page, object);
 771
 772        restore_bytes(s, what, value, fault, end);
 773        return 0;
 774}
 775
 776/*
 777 * Object layout:
 778 *
 779 * object address
 780 *      Bytes of the object to be managed.
 781 *      If the freepointer may overlay the object then the free
 782 *      pointer is the first word of the object.
 783 *
 784 *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
 785 *      0xa5 (POISON_END)
 786 *
 787 * object + s->object_size
 788 *      Padding to reach word boundary. This is also used for Redzoning.
 789 *      Padding is extended by another word if Redzoning is enabled and
 790 *      object_size == inuse.
 791 *
 792 *      We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 793 *      0xcc (RED_ACTIVE) for objects in use.
 794 *
 795 * object + s->inuse
 796 *      Meta data starts here.
 797 *
 798 *      A. Free pointer (if we cannot overwrite object on free)
 799 *      B. Tracking data for SLAB_STORE_USER
 800 *      C. Padding to reach required alignment boundary or at mininum
 801 *              one word if debugging is on to be able to detect writes
 802 *              before the word boundary.
 803 *
 804 *      Padding is done using 0x5a (POISON_INUSE)
 805 *
 806 * object + s->size
 807 *      Nothing is used beyond s->size.
 808 *
 809 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 810 * ignored. And therefore no slab options that rely on these boundaries
 811 * may be used with merged slabcaches.
 812 */
 813
 814static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 815{
 816        unsigned long off = s->inuse;   /* The end of info */
 817
 818        if (s->offset)
 819                /* Freepointer is placed after the object. */
 820                off += sizeof(void *);
 821
 822        if (s->flags & SLAB_STORE_USER)
 823                /* We also have user information there */
 824                off += 2 * sizeof(struct track);
 825
 826        off += kasan_metadata_size(s);
 827
 828        if (size_from_object(s) == off)
 829                return 1;
 830
 831        return check_bytes_and_report(s, page, p, "Object padding",
 832                        p + off, POISON_INUSE, size_from_object(s) - off);
 833}
 834
 835/* Check the pad bytes at the end of a slab page */
 836static int slab_pad_check(struct kmem_cache *s, struct page *page)
 837{
 838        u8 *start;
 839        u8 *fault;
 840        u8 *end;
 841        u8 *pad;
 842        int length;
 843        int remainder;
 844
 845        if (!(s->flags & SLAB_POISON))
 846                return 1;
 847
 848        start = page_address(page);
 849        length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 850        end = start + length;
 851        remainder = length % s->size;
 852        if (!remainder)
 853                return 1;
 854
 855        pad = end - remainder;
 856        metadata_access_enable();
 857        fault = memchr_inv(pad, POISON_INUSE, remainder);
 858        metadata_access_disable();
 859        if (!fault)
 860                return 1;
 861        while (end > fault && end[-1] == POISON_INUSE)
 862                end--;
 863
 864        slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 865        print_section(KERN_ERR, "Padding ", pad, remainder);
 866
 867        restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
 868        return 0;
 869}
 870
 871static int check_object(struct kmem_cache *s, struct page *page,
 872                                        void *object, u8 val)
 873{
 874        u8 *p = object;
 875        u8 *endobject = object + s->object_size;
 876
 877        if (s->flags & SLAB_RED_ZONE) {
 878                if (!check_bytes_and_report(s, page, object, "Redzone",
 879                        object - s->red_left_pad, val, s->red_left_pad))
 880                        return 0;
 881
 882                if (!check_bytes_and_report(s, page, object, "Redzone",
 883                        endobject, val, s->inuse - s->object_size))
 884                        return 0;
 885        } else {
 886                if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 887                        check_bytes_and_report(s, page, p, "Alignment padding",
 888                                endobject, POISON_INUSE,
 889                                s->inuse - s->object_size);
 890                }
 891        }
 892
 893        if (s->flags & SLAB_POISON) {
 894                if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 895                        (!check_bytes_and_report(s, page, p, "Poison", p,
 896                                        POISON_FREE, s->object_size - 1) ||
 897                         !check_bytes_and_report(s, page, p, "Poison",
 898                                p + s->object_size - 1, POISON_END, 1)))
 899                        return 0;
 900                /*
 901                 * check_pad_bytes cleans up on its own.
 902                 */
 903                check_pad_bytes(s, page, p);
 904        }
 905
 906        if (!s->offset && val == SLUB_RED_ACTIVE)
 907                /*
 908                 * Object and freepointer overlap. Cannot check
 909                 * freepointer while object is allocated.
 910                 */
 911                return 1;
 912
 913        /* Check free pointer validity */
 914        if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 915                object_err(s, page, p, "Freepointer corrupt");
 916                /*
 917                 * No choice but to zap it and thus lose the remainder
 918                 * of the free objects in this slab. May cause
 919                 * another error because the object count is now wrong.
 920                 */
 921                set_freepointer(s, p, NULL);
 922                return 0;
 923        }
 924        return 1;
 925}
 926
 927static int check_slab(struct kmem_cache *s, struct page *page)
 928{
 929        int maxobj;
 930
 931        VM_BUG_ON(!irqs_disabled());
 932
 933        if (!PageSlab(page)) {
 934                slab_err(s, page, "Not a valid slab page");
 935                return 0;
 936        }
 937
 938        maxobj = order_objects(compound_order(page), s->size, s->reserved);
 939        if (page->objects > maxobj) {
 940                slab_err(s, page, "objects %u > max %u",
 941                        page->objects, maxobj);
 942                return 0;
 943        }
 944        if (page->inuse > page->objects) {
 945                slab_err(s, page, "inuse %u > max %u",
 946                        page->inuse, page->objects);
 947                return 0;
 948        }
 949        /* Slab_pad_check fixes things up after itself */
 950        slab_pad_check(s, page);
 951        return 1;
 952}
 953
 954/*
 955 * Determine if a certain object on a page is on the freelist. Must hold the
 956 * slab lock to guarantee that the chains are in a consistent state.
 957 */
 958static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 959{
 960        int nr = 0;
 961        void *fp;
 962        void *object = NULL;
 963        int max_objects;
 964
 965        fp = page->freelist;
 966        while (fp && nr <= page->objects) {
 967                if (fp == search)
 968                        return 1;
 969                if (!check_valid_pointer(s, page, fp)) {
 970                        if (object) {
 971                                object_err(s, page, object,
 972                                        "Freechain corrupt");
 973                                set_freepointer(s, object, NULL);
 974                        } else {
 975                                slab_err(s, page, "Freepointer corrupt");
 976                                page->freelist = NULL;
 977                                page->inuse = page->objects;
 978                                slab_fix(s, "Freelist cleared");
 979                                return 0;
 980                        }
 981                        break;
 982                }
 983                object = fp;
 984                fp = get_freepointer(s, object);
 985                nr++;
 986        }
 987
 988        max_objects = order_objects(compound_order(page), s->size, s->reserved);
 989        if (max_objects > MAX_OBJS_PER_PAGE)
 990                max_objects = MAX_OBJS_PER_PAGE;
 991
 992        if (page->objects != max_objects) {
 993                slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
 994                         page->objects, max_objects);
 995                page->objects = max_objects;
 996                slab_fix(s, "Number of objects adjusted.");
 997        }
 998        if (page->inuse != page->objects - nr) {
 999                slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1000                         page->inuse, page->objects - nr);
1001                page->inuse = page->objects - nr;
1002                slab_fix(s, "Object count adjusted.");
1003        }
1004        return search == NULL;
1005}
1006
1007static void trace(struct kmem_cache *s, struct page *page, void *object,
1008                                                                int alloc)
1009{
1010        if (s->flags & SLAB_TRACE) {
1011                pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1012                        s->name,
1013                        alloc ? "alloc" : "free",
1014                        object, page->inuse,
1015                        page->freelist);
1016
1017                if (!alloc)
1018                        print_section(KERN_INFO, "Object ", (void *)object,
1019                                        s->object_size);
1020
1021                dump_stack();
1022        }
1023}
1024
1025/*
1026 * Tracking of fully allocated slabs for debugging purposes.
1027 */
1028static void add_full(struct kmem_cache *s,
1029        struct kmem_cache_node *n, struct page *page)
1030{
1031        if (!(s->flags & SLAB_STORE_USER))
1032                return;
1033
1034        lockdep_assert_held(&n->list_lock);
1035        list_add(&page->lru, &n->full);
1036}
1037
1038static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1039{
1040        if (!(s->flags & SLAB_STORE_USER))
1041                return;
1042
1043        lockdep_assert_held(&n->list_lock);
1044        list_del(&page->lru);
1045}
1046
1047/* Tracking of the number of slabs for debugging purposes */
1048static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1049{
1050        struct kmem_cache_node *n = get_node(s, node);
1051
1052        return atomic_long_read(&n->nr_slabs);
1053}
1054
1055static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1056{
1057        return atomic_long_read(&n->nr_slabs);
1058}
1059
1060static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1061{
1062        struct kmem_cache_node *n = get_node(s, node);
1063
1064        /*
1065         * May be called early in order to allocate a slab for the
1066         * kmem_cache_node structure. Solve the chicken-egg
1067         * dilemma by deferring the increment of the count during
1068         * bootstrap (see early_kmem_cache_node_alloc).
1069         */
1070        if (likely(n)) {
1071                atomic_long_inc(&n->nr_slabs);
1072                atomic_long_add(objects, &n->total_objects);
1073        }
1074}
1075static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1076{
1077        struct kmem_cache_node *n = get_node(s, node);
1078
1079        atomic_long_dec(&n->nr_slabs);
1080        atomic_long_sub(objects, &n->total_objects);
1081}
1082
1083/* Object debug checks for alloc/free paths */
1084static void setup_object_debug(struct kmem_cache *s, struct page *page,
1085                                                                void *object)
1086{
1087        if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1088                return;
1089
1090        init_object(s, object, SLUB_RED_INACTIVE);
1091        init_tracking(s, object);
1092}
1093
1094static inline int alloc_consistency_checks(struct kmem_cache *s,
1095                                        struct page *page,
1096                                        void *object, unsigned long addr)
1097{
1098        if (!check_slab(s, page))
1099                return 0;
1100
1101        if (!check_valid_pointer(s, page, object)) {
1102                object_err(s, page, object, "Freelist Pointer check fails");
1103                return 0;
1104        }
1105
1106        if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1107                return 0;
1108
1109        return 1;
1110}
1111
1112static noinline int alloc_debug_processing(struct kmem_cache *s,
1113                                        struct page *page,
1114                                        void *object, unsigned long addr)
1115{
1116        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1117                if (!alloc_consistency_checks(s, page, object, addr))
1118                        goto bad;
1119        }
1120
1121        /* Success perform special debug activities for allocs */
1122        if (s->flags & SLAB_STORE_USER)
1123                set_track(s, object, TRACK_ALLOC, addr);
1124        trace(s, page, object, 1);
1125        init_object(s, object, SLUB_RED_ACTIVE);
1126        return 1;
1127
1128bad:
1129        if (PageSlab(page)) {
1130                /*
1131                 * If this is a slab page then lets do the best we can
1132                 * to avoid issues in the future. Marking all objects
1133                 * as used avoids touching the remaining objects.
1134                 */
1135                slab_fix(s, "Marking all objects used");
1136                page->inuse = page->objects;
1137                page->freelist = NULL;
1138        }
1139        return 0;
1140}
1141
1142static inline int free_consistency_checks(struct kmem_cache *s,
1143                struct page *page, void *object, unsigned long addr)
1144{
1145        if (!check_valid_pointer(s, page, object)) {
1146                slab_err(s, page, "Invalid object pointer 0x%p", object);
1147                return 0;
1148        }
1149
1150        if (on_freelist(s, page, object)) {
1151                object_err(s, page, object, "Object already free");
1152                return 0;
1153        }
1154
1155        if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1156                return 0;
1157
1158        if (unlikely(s != page->slab_cache)) {
1159                if (!PageSlab(page)) {
1160                        slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1161                                 object);
1162                } else if (!page->slab_cache) {
1163                        pr_err("SLUB <none>: no slab for object 0x%p.\n",
1164                               object);
1165                        dump_stack();
1166                } else
1167                        object_err(s, page, object,
1168                                        "page slab pointer corrupt.");
1169                return 0;
1170        }
1171        return 1;
1172}
1173
1174/* Supports checking bulk free of a constructed freelist */
1175static noinline int free_debug_processing(
1176        struct kmem_cache *s, struct page *page,
1177        void *head, void *tail, int bulk_cnt,
1178        unsigned long addr)
1179{
1180        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1181        void *object = head;
1182        int cnt = 0;
1183        unsigned long uninitialized_var(flags);
1184        int ret = 0;
1185
1186        spin_lock_irqsave(&n->list_lock, flags);
1187        slab_lock(page);
1188
1189        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190                if (!check_slab(s, page))
1191                        goto out;
1192        }
1193
1194next_object:
1195        cnt++;
1196
1197        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1198                if (!free_consistency_checks(s, page, object, addr))
1199                        goto out;
1200        }
1201
1202        if (s->flags & SLAB_STORE_USER)
1203                set_track(s, object, TRACK_FREE, addr);
1204        trace(s, page, object, 0);
1205        /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1206        init_object(s, object, SLUB_RED_INACTIVE);
1207
1208        /* Reached end of constructed freelist yet? */
1209        if (object != tail) {
1210                object = get_freepointer(s, object);
1211                goto next_object;
1212        }
1213        ret = 1;
1214
1215out:
1216        if (cnt != bulk_cnt)
1217                slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1218                         bulk_cnt, cnt);
1219
1220        slab_unlock(page);
1221        spin_unlock_irqrestore(&n->list_lock, flags);
1222        if (!ret)
1223                slab_fix(s, "Object at 0x%p not freed", object);
1224        return ret;
1225}
1226
1227static int __init setup_slub_debug(char *str)
1228{
1229        slub_debug = DEBUG_DEFAULT_FLAGS;
1230        if (*str++ != '=' || !*str)
1231                /*
1232                 * No options specified. Switch on full debugging.
1233                 */
1234                goto out;
1235
1236        if (*str == ',')
1237                /*
1238                 * No options but restriction on slabs. This means full
1239                 * debugging for slabs matching a pattern.
1240                 */
1241                goto check_slabs;
1242
1243        slub_debug = 0;
1244        if (*str == '-')
1245                /*
1246                 * Switch off all debugging measures.
1247                 */
1248                goto out;
1249
1250        /*
1251         * Determine which debug features should be switched on
1252         */
1253        for (; *str && *str != ','; str++) {
1254                switch (tolower(*str)) {
1255                case 'f':
1256                        slub_debug |= SLAB_CONSISTENCY_CHECKS;
1257                        break;
1258                case 'z':
1259                        slub_debug |= SLAB_RED_ZONE;
1260                        break;
1261                case 'p':
1262                        slub_debug |= SLAB_POISON;
1263                        break;
1264                case 'u':
1265                        slub_debug |= SLAB_STORE_USER;
1266                        break;
1267                case 't':
1268                        slub_debug |= SLAB_TRACE;
1269                        break;
1270                case 'a':
1271                        slub_debug |= SLAB_FAILSLAB;
1272                        break;
1273                case 'o':
1274                        /*
1275                         * Avoid enabling debugging on caches if its minimum
1276                         * order would increase as a result.
1277                         */
1278                        disable_higher_order_debug = 1;
1279                        break;
1280                default:
1281                        pr_err("slub_debug option '%c' unknown. skipped\n",
1282                               *str);
1283                }
1284        }
1285
1286check_slabs:
1287        if (*str == ',')
1288                slub_debug_slabs = str + 1;
1289out:
1290        return 1;
1291}
1292
1293__setup("slub_debug", setup_slub_debug);
1294
1295slab_flags_t kmem_cache_flags(unsigned long object_size,
1296        slab_flags_t flags, const char *name,
1297        void (*ctor)(void *))
1298{
1299        /*
1300         * Enable debugging if selected on the kernel commandline.
1301         */
1302        if (slub_debug && (!slub_debug_slabs || (name &&
1303                !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1304                flags |= slub_debug;
1305
1306        return flags;
1307}
1308#else /* !CONFIG_SLUB_DEBUG */
1309static inline void setup_object_debug(struct kmem_cache *s,
1310                        struct page *page, void *object) {}
1311
1312static inline int alloc_debug_processing(struct kmem_cache *s,
1313        struct page *page, void *object, unsigned long addr) { return 0; }
1314
1315static inline int free_debug_processing(
1316        struct kmem_cache *s, struct page *page,
1317        void *head, void *tail, int bulk_cnt,
1318        unsigned long addr) { return 0; }
1319
1320static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1321                        { return 1; }
1322static inline int check_object(struct kmem_cache *s, struct page *page,
1323                        void *object, u8 val) { return 1; }
1324static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1325                                        struct page *page) {}
1326static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1327                                        struct page *page) {}
1328slab_flags_t kmem_cache_flags(unsigned long object_size,
1329        slab_flags_t flags, const char *name,
1330        void (*ctor)(void *))
1331{
1332        return flags;
1333}
1334#define slub_debug 0
1335
1336#define disable_higher_order_debug 0
1337
1338static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1339                                                        { return 0; }
1340static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1341                                                        { return 0; }
1342static inline void inc_slabs_node(struct kmem_cache *s, int node,
1343                                                        int objects) {}
1344static inline void dec_slabs_node(struct kmem_cache *s, int node,
1345                                                        int objects) {}
1346
1347#endif /* CONFIG_SLUB_DEBUG */
1348
1349/*
1350 * Hooks for other subsystems that check memory allocations. In a typical
1351 * production configuration these hooks all should produce no code at all.
1352 */
1353static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1354{
1355        kmemleak_alloc(ptr, size, 1, flags);
1356        kasan_kmalloc_large(ptr, size, flags);
1357}
1358
1359static __always_inline void kfree_hook(void *x)
1360{
1361        kmemleak_free(x);
1362        kasan_kfree_large(x, _RET_IP_);
1363}
1364
1365static __always_inline void *slab_free_hook(struct kmem_cache *s, void *x)
1366{
1367        void *freeptr;
1368
1369        kmemleak_free_recursive(x, s->flags);
1370
1371        /*
1372         * Trouble is that we may no longer disable interrupts in the fast path
1373         * So in order to make the debug calls that expect irqs to be
1374         * disabled we need to disable interrupts temporarily.
1375         */
1376#ifdef CONFIG_LOCKDEP
1377        {
1378                unsigned long flags;
1379
1380                local_irq_save(flags);
1381                debug_check_no_locks_freed(x, s->object_size);
1382                local_irq_restore(flags);
1383        }
1384#endif
1385        if (!(s->flags & SLAB_DEBUG_OBJECTS))
1386                debug_check_no_obj_freed(x, s->object_size);
1387
1388        freeptr = get_freepointer(s, x);
1389        /*
1390         * kasan_slab_free() may put x into memory quarantine, delaying its
1391         * reuse. In this case the object's freelist pointer is changed.
1392         */
1393        kasan_slab_free(s, x, _RET_IP_);
1394        return freeptr;
1395}
1396
1397static inline void slab_free_freelist_hook(struct kmem_cache *s,
1398                                           void *head, void *tail)
1399{
1400/*
1401 * Compiler cannot detect this function can be removed if slab_free_hook()
1402 * evaluates to nothing.  Thus, catch all relevant config debug options here.
1403 */
1404#if defined(CONFIG_LOCKDEP)     ||              \
1405        defined(CONFIG_DEBUG_KMEMLEAK) ||       \
1406        defined(CONFIG_DEBUG_OBJECTS_FREE) ||   \
1407        defined(CONFIG_KASAN)
1408
1409        void *object = head;
1410        void *tail_obj = tail ? : head;
1411        void *freeptr;
1412
1413        do {
1414                freeptr = slab_free_hook(s, object);
1415        } while ((object != tail_obj) && (object = freeptr));
1416#endif
1417}
1418
1419static void setup_object(struct kmem_cache *s, struct page *page,
1420                                void *object)
1421{
1422        setup_object_debug(s, page, object);
1423        kasan_init_slab_obj(s, object);
1424        if (unlikely(s->ctor)) {
1425                kasan_unpoison_object_data(s, object);
1426                s->ctor(object);
1427                kasan_poison_object_data(s, object);
1428        }
1429}
1430
1431/*
1432 * Slab allocation and freeing
1433 */
1434static inline struct page *alloc_slab_page(struct kmem_cache *s,
1435                gfp_t flags, int node, struct kmem_cache_order_objects oo)
1436{
1437        struct page *page;
1438        int order = oo_order(oo);
1439
1440        if (node == NUMA_NO_NODE)
1441                page = alloc_pages(flags, order);
1442        else
1443                page = __alloc_pages_node(node, flags, order);
1444
1445        if (page && memcg_charge_slab(page, flags, order, s)) {
1446                __free_pages(page, order);
1447                page = NULL;
1448        }
1449
1450        return page;
1451}
1452
1453#ifdef CONFIG_SLAB_FREELIST_RANDOM
1454/* Pre-initialize the random sequence cache */
1455static int init_cache_random_seq(struct kmem_cache *s)
1456{
1457        int err;
1458        unsigned long i, count = oo_objects(s->oo);
1459
1460        /* Bailout if already initialised */
1461        if (s->random_seq)
1462                return 0;
1463
1464        err = cache_random_seq_create(s, count, GFP_KERNEL);
1465        if (err) {
1466                pr_err("SLUB: Unable to initialize free list for %s\n",
1467                        s->name);
1468                return err;
1469        }
1470
1471        /* Transform to an offset on the set of pages */
1472        if (s->random_seq) {
1473                for (i = 0; i < count; i++)
1474                        s->random_seq[i] *= s->size;
1475        }
1476        return 0;
1477}
1478
1479/* Initialize each random sequence freelist per cache */
1480static void __init init_freelist_randomization(void)
1481{
1482        struct kmem_cache *s;
1483
1484        mutex_lock(&slab_mutex);
1485
1486        list_for_each_entry(s, &slab_caches, list)
1487                init_cache_random_seq(s);
1488
1489        mutex_unlock(&slab_mutex);
1490}
1491
1492/* Get the next entry on the pre-computed freelist randomized */
1493static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1494                                unsigned long *pos, void *start,
1495                                unsigned long page_limit,
1496                                unsigned long freelist_count)
1497{
1498        unsigned int idx;
1499
1500        /*
1501         * If the target page allocation failed, the number of objects on the
1502         * page might be smaller than the usual size defined by the cache.
1503         */
1504        do {
1505                idx = s->random_seq[*pos];
1506                *pos += 1;
1507                if (*pos >= freelist_count)
1508                        *pos = 0;
1509        } while (unlikely(idx >= page_limit));
1510
1511        return (char *)start + idx;
1512}
1513
1514/* Shuffle the single linked freelist based on a random pre-computed sequence */
1515static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1516{
1517        void *start;
1518        void *cur;
1519        void *next;
1520        unsigned long idx, pos, page_limit, freelist_count;
1521
1522        if (page->objects < 2 || !s->random_seq)
1523                return false;
1524
1525        freelist_count = oo_objects(s->oo);
1526        pos = get_random_int() % freelist_count;
1527
1528        page_limit = page->objects * s->size;
1529        start = fixup_red_left(s, page_address(page));
1530
1531        /* First entry is used as the base of the freelist */
1532        cur = next_freelist_entry(s, page, &pos, start, page_limit,
1533                                freelist_count);
1534        page->freelist = cur;
1535
1536        for (idx = 1; idx < page->objects; idx++) {
1537                setup_object(s, page, cur);
1538                next = next_freelist_entry(s, page, &pos, start, page_limit,
1539                        freelist_count);
1540                set_freepointer(s, cur, next);
1541                cur = next;
1542        }
1543        setup_object(s, page, cur);
1544        set_freepointer(s, cur, NULL);
1545
1546        return true;
1547}
1548#else
1549static inline int init_cache_random_seq(struct kmem_cache *s)
1550{
1551        return 0;
1552}
1553static inline void init_freelist_randomization(void) { }
1554static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1555{
1556        return false;
1557}
1558#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1559
1560static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1561{
1562        struct page *page;
1563        struct kmem_cache_order_objects oo = s->oo;
1564        gfp_t alloc_gfp;
1565        void *start, *p;
1566        int idx, order;
1567        bool shuffle;
1568
1569        flags &= gfp_allowed_mask;
1570
1571        if (gfpflags_allow_blocking(flags))
1572                local_irq_enable();
1573
1574        flags |= s->allocflags;
1575
1576        /*
1577         * Let the initial higher-order allocation fail under memory pressure
1578         * so we fall-back to the minimum order allocation.
1579         */
1580        alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1581        if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1582                alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1583
1584        page = alloc_slab_page(s, alloc_gfp, node, oo);
1585        if (unlikely(!page)) {
1586                oo = s->min;
1587                alloc_gfp = flags;
1588                /*
1589                 * Allocation may have failed due to fragmentation.
1590                 * Try a lower order alloc if possible
1591                 */
1592                page = alloc_slab_page(s, alloc_gfp, node, oo);
1593                if (unlikely(!page))
1594                        goto out;
1595                stat(s, ORDER_FALLBACK);
1596        }
1597
1598        page->objects = oo_objects(oo);
1599
1600        order = compound_order(page);
1601        page->slab_cache = s;
1602        __SetPageSlab(page);
1603        if (page_is_pfmemalloc(page))
1604                SetPageSlabPfmemalloc(page);
1605
1606        start = page_address(page);
1607
1608        if (unlikely(s->flags & SLAB_POISON))
1609                memset(start, POISON_INUSE, PAGE_SIZE << order);
1610
1611        kasan_poison_slab(page);
1612
1613        shuffle = shuffle_freelist(s, page);
1614
1615        if (!shuffle) {
1616                for_each_object_idx(p, idx, s, start, page->objects) {
1617                        setup_object(s, page, p);
1618                        if (likely(idx < page->objects))
1619                                set_freepointer(s, p, p + s->size);
1620                        else
1621                                set_freepointer(s, p, NULL);
1622                }
1623                page->freelist = fixup_red_left(s, start);
1624        }
1625
1626        page->inuse = page->objects;
1627        page->frozen = 1;
1628
1629out:
1630        if (gfpflags_allow_blocking(flags))
1631                local_irq_disable();
1632        if (!page)
1633                return NULL;
1634
1635        mod_lruvec_page_state(page,
1636                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1637                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1638                1 << oo_order(oo));
1639
1640        inc_slabs_node(s, page_to_nid(page), page->objects);
1641
1642        return page;
1643}
1644
1645static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1646{
1647        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1648                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1649                flags &= ~GFP_SLAB_BUG_MASK;
1650                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1651                                invalid_mask, &invalid_mask, flags, &flags);
1652                dump_stack();
1653        }
1654
1655        return allocate_slab(s,
1656                flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1657}
1658
1659static void __free_slab(struct kmem_cache *s, struct page *page)
1660{
1661        int order = compound_order(page);
1662        int pages = 1 << order;
1663
1664        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1665                void *p;
1666
1667                slab_pad_check(s, page);
1668                for_each_object(p, s, page_address(page),
1669                                                page->objects)
1670                        check_object(s, page, p, SLUB_RED_INACTIVE);
1671        }
1672
1673        mod_lruvec_page_state(page,
1674                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1675                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1676                -pages);
1677
1678        __ClearPageSlabPfmemalloc(page);
1679        __ClearPageSlab(page);
1680
1681        page_mapcount_reset(page);
1682        if (current->reclaim_state)
1683                current->reclaim_state->reclaimed_slab += pages;
1684        memcg_uncharge_slab(page, order, s);
1685        __free_pages(page, order);
1686}
1687
1688#define need_reserve_slab_rcu                                           \
1689        (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1690
1691static void rcu_free_slab(struct rcu_head *h)
1692{
1693        struct page *page;
1694
1695        if (need_reserve_slab_rcu)
1696                page = virt_to_head_page(h);
1697        else
1698                page = container_of((struct list_head *)h, struct page, lru);
1699
1700        __free_slab(page->slab_cache, page);
1701}
1702
1703static void free_slab(struct kmem_cache *s, struct page *page)
1704{
1705        if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1706                struct rcu_head *head;
1707
1708                if (need_reserve_slab_rcu) {
1709                        int order = compound_order(page);
1710                        int offset = (PAGE_SIZE << order) - s->reserved;
1711
1712                        VM_BUG_ON(s->reserved != sizeof(*head));
1713                        head = page_address(page) + offset;
1714                } else {
1715                        head = &page->rcu_head;
1716                }
1717
1718                call_rcu(head, rcu_free_slab);
1719        } else
1720                __free_slab(s, page);
1721}
1722
1723static void discard_slab(struct kmem_cache *s, struct page *page)
1724{
1725        dec_slabs_node(s, page_to_nid(page), page->objects);
1726        free_slab(s, page);
1727}
1728
1729/*
1730 * Management of partially allocated slabs.
1731 */
1732static inline void
1733__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1734{
1735        n->nr_partial++;
1736        if (tail == DEACTIVATE_TO_TAIL)
1737                list_add_tail(&page->lru, &n->partial);
1738        else
1739                list_add(&page->lru, &n->partial);
1740}
1741
1742static inline void add_partial(struct kmem_cache_node *n,
1743                                struct page *page, int tail)
1744{
1745        lockdep_assert_held(&n->list_lock);
1746        __add_partial(n, page, tail);
1747}
1748
1749static inline void remove_partial(struct kmem_cache_node *n,
1750                                        struct page *page)
1751{
1752        lockdep_assert_held(&n->list_lock);
1753        list_del(&page->lru);
1754        n->nr_partial--;
1755}
1756
1757/*
1758 * Remove slab from the partial list, freeze it and
1759 * return the pointer to the freelist.
1760 *
1761 * Returns a list of objects or NULL if it fails.
1762 */
1763static inline void *acquire_slab(struct kmem_cache *s,
1764                struct kmem_cache_node *n, struct page *page,
1765                int mode, int *objects)
1766{
1767        void *freelist;
1768        unsigned long counters;
1769        struct page new;
1770
1771        lockdep_assert_held(&n->list_lock);
1772
1773        /*
1774         * Zap the freelist and set the frozen bit.
1775         * The old freelist is the list of objects for the
1776         * per cpu allocation list.
1777         */
1778        freelist = page->freelist;
1779        counters = page->counters;
1780        new.counters = counters;
1781        *objects = new.objects - new.inuse;
1782        if (mode) {
1783                new.inuse = page->objects;
1784                new.freelist = NULL;
1785        } else {
1786                new.freelist = freelist;
1787        }
1788
1789        VM_BUG_ON(new.frozen);
1790        new.frozen = 1;
1791
1792        if (!__cmpxchg_double_slab(s, page,
1793                        freelist, counters,
1794                        new.freelist, new.counters,
1795                        "acquire_slab"))
1796                return NULL;
1797
1798        remove_partial(n, page);
1799        WARN_ON(!freelist);
1800        return freelist;
1801}
1802
1803static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1804static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1805
1806/*
1807 * Try to allocate a partial slab from a specific node.
1808 */
1809static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1810                                struct kmem_cache_cpu *c, gfp_t flags)
1811{
1812        struct page *page, *page2;
1813        void *object = NULL;
1814        int available = 0;
1815        int objects;
1816
1817        /*
1818         * Racy check. If we mistakenly see no partial slabs then we
1819         * just allocate an empty slab. If we mistakenly try to get a
1820         * partial slab and there is none available then get_partials()
1821         * will return NULL.
1822         */
1823        if (!n || !n->nr_partial)
1824                return NULL;
1825
1826        spin_lock(&n->list_lock);
1827        list_for_each_entry_safe(page, page2, &n->partial, lru) {
1828                void *t;
1829
1830                if (!pfmemalloc_match(page, flags))
1831                        continue;
1832
1833                t = acquire_slab(s, n, page, object == NULL, &objects);
1834                if (!t)
1835                        break;
1836
1837                available += objects;
1838                if (!object) {
1839                        c->page = page;
1840                        stat(s, ALLOC_FROM_PARTIAL);
1841                        object = t;
1842                } else {
1843                        put_cpu_partial(s, page, 0);
1844                        stat(s, CPU_PARTIAL_NODE);
1845                }
1846                if (!kmem_cache_has_cpu_partial(s)
1847                        || available > slub_cpu_partial(s) / 2)
1848                        break;
1849
1850        }
1851        spin_unlock(&n->list_lock);
1852        return object;
1853}
1854
1855/*
1856 * Get a page from somewhere. Search in increasing NUMA distances.
1857 */
1858static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1859                struct kmem_cache_cpu *c)
1860{
1861#ifdef CONFIG_NUMA
1862        struct zonelist *zonelist;
1863        struct zoneref *z;
1864        struct zone *zone;
1865        enum zone_type high_zoneidx = gfp_zone(flags);
1866        void *object;
1867        unsigned int cpuset_mems_cookie;
1868
1869        /*
1870         * The defrag ratio allows a configuration of the tradeoffs between
1871         * inter node defragmentation and node local allocations. A lower
1872         * defrag_ratio increases the tendency to do local allocations
1873         * instead of attempting to obtain partial slabs from other nodes.
1874         *
1875         * If the defrag_ratio is set to 0 then kmalloc() always
1876         * returns node local objects. If the ratio is higher then kmalloc()
1877         * may return off node objects because partial slabs are obtained
1878         * from other nodes and filled up.
1879         *
1880         * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1881         * (which makes defrag_ratio = 1000) then every (well almost)
1882         * allocation will first attempt to defrag slab caches on other nodes.
1883         * This means scanning over all nodes to look for partial slabs which
1884         * may be expensive if we do it every time we are trying to find a slab
1885         * with available objects.
1886         */
1887        if (!s->remote_node_defrag_ratio ||
1888                        get_cycles() % 1024 > s->remote_node_defrag_ratio)
1889                return NULL;
1890
1891        do {
1892                cpuset_mems_cookie = read_mems_allowed_begin();
1893                zonelist = node_zonelist(mempolicy_slab_node(), flags);
1894                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1895                        struct kmem_cache_node *n;
1896
1897                        n = get_node(s, zone_to_nid(zone));
1898
1899                        if (n && cpuset_zone_allowed(zone, flags) &&
1900                                        n->nr_partial > s->min_partial) {
1901                                object = get_partial_node(s, n, c, flags);
1902                                if (object) {
1903                                        /*
1904                                         * Don't check read_mems_allowed_retry()
1905                                         * here - if mems_allowed was updated in
1906                                         * parallel, that was a harmless race
1907                                         * between allocation and the cpuset
1908                                         * update
1909                                         */
1910                                        return object;
1911                                }
1912                        }
1913                }
1914        } while (read_mems_allowed_retry(cpuset_mems_cookie));
1915#endif
1916        return NULL;
1917}
1918
1919/*
1920 * Get a partial page, lock it and return it.
1921 */
1922static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1923                struct kmem_cache_cpu *c)
1924{
1925        void *object;
1926        int searchnode = node;
1927
1928        if (node == NUMA_NO_NODE)
1929                searchnode = numa_mem_id();
1930        else if (!node_present_pages(node))
1931                searchnode = node_to_mem_node(node);
1932
1933        object = get_partial_node(s, get_node(s, searchnode), c, flags);
1934        if (object || node != NUMA_NO_NODE)
1935                return object;
1936
1937        return get_any_partial(s, flags, c);
1938}
1939
1940#ifdef CONFIG_PREEMPT
1941/*
1942 * Calculate the next globally unique transaction for disambiguiation
1943 * during cmpxchg. The transactions start with the cpu number and are then
1944 * incremented by CONFIG_NR_CPUS.
1945 */
1946#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1947#else
1948/*
1949 * No preemption supported therefore also no need to check for
1950 * different cpus.
1951 */
1952#define TID_STEP 1
1953#endif
1954
1955static inline unsigned long next_tid(unsigned long tid)
1956{
1957        return tid + TID_STEP;
1958}
1959
1960static inline unsigned int tid_to_cpu(unsigned long tid)
1961{
1962        return tid % TID_STEP;
1963}
1964
1965static inline unsigned long tid_to_event(unsigned long tid)
1966{
1967        return tid / TID_STEP;
1968}
1969
1970static inline unsigned int init_tid(int cpu)
1971{
1972        return cpu;
1973}
1974
1975static inline void note_cmpxchg_failure(const char *n,
1976                const struct kmem_cache *s, unsigned long tid)
1977{
1978#ifdef SLUB_DEBUG_CMPXCHG
1979        unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1980
1981        pr_info("%s %s: cmpxchg redo ", n, s->name);
1982
1983#ifdef CONFIG_PREEMPT
1984        if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1985                pr_warn("due to cpu change %d -> %d\n",
1986                        tid_to_cpu(tid), tid_to_cpu(actual_tid));
1987        else
1988#endif
1989        if (tid_to_event(tid) != tid_to_event(actual_tid))
1990                pr_warn("due to cpu running other code. Event %ld->%ld\n",
1991                        tid_to_event(tid), tid_to_event(actual_tid));
1992        else
1993                pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1994                        actual_tid, tid, next_tid(tid));
1995#endif
1996        stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1997}
1998
1999static void init_kmem_cache_cpus(struct kmem_cache *s)
2000{
2001        int cpu;
2002
2003        for_each_possible_cpu(cpu)
2004                per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2005}
2006
2007/*
2008 * Remove the cpu slab
2009 */
2010static void deactivate_slab(struct kmem_cache *s, struct page *page,
2011                                void *freelist, struct kmem_cache_cpu *c)
2012{
2013        enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2014        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2015        int lock = 0;
2016        enum slab_modes l = M_NONE, m = M_NONE;
2017        void *nextfree;
2018        int tail = DEACTIVATE_TO_HEAD;
2019        struct page new;
2020        struct page old;
2021
2022        if (page->freelist) {
2023                stat(s, DEACTIVATE_REMOTE_FREES);
2024                tail = DEACTIVATE_TO_TAIL;
2025        }
2026
2027        /*
2028         * Stage one: Free all available per cpu objects back
2029         * to the page freelist while it is still frozen. Leave the
2030         * last one.
2031         *
2032         * There is no need to take the list->lock because the page
2033         * is still frozen.
2034         */
2035        while (freelist && (nextfree = get_freepointer(s, freelist))) {
2036                void *prior;
2037                unsigned long counters;
2038
2039                do {
2040                        prior = page->freelist;
2041                        counters = page->counters;
2042                        set_freepointer(s, freelist, prior);
2043                        new.counters = counters;
2044                        new.inuse--;
2045                        VM_BUG_ON(!new.frozen);
2046
2047                } while (!__cmpxchg_double_slab(s, page,
2048                        prior, counters,
2049                        freelist, new.counters,
2050                        "drain percpu freelist"));
2051
2052                freelist = nextfree;
2053        }
2054
2055        /*
2056         * Stage two: Ensure that the page is unfrozen while the
2057         * list presence reflects the actual number of objects
2058         * during unfreeze.
2059         *
2060         * We setup the list membership and then perform a cmpxchg
2061         * with the count. If there is a mismatch then the page
2062         * is not unfrozen but the page is on the wrong list.
2063         *
2064         * Then we restart the process which may have to remove
2065         * the page from the list that we just put it on again
2066         * because the number of objects in the slab may have
2067         * changed.
2068         */
2069redo:
2070
2071        old.freelist = page->freelist;
2072        old.counters = page->counters;
2073        VM_BUG_ON(!old.frozen);
2074
2075        /* Determine target state of the slab */
2076        new.counters = old.counters;
2077        if (freelist) {
2078                new.inuse--;
2079                set_freepointer(s, freelist, old.freelist);
2080                new.freelist = freelist;
2081        } else
2082                new.freelist = old.freelist;
2083
2084        new.frozen = 0;
2085
2086        if (!new.inuse && n->nr_partial >= s->min_partial)
2087                m = M_FREE;
2088        else if (new.freelist) {
2089                m = M_PARTIAL;
2090                if (!lock) {
2091                        lock = 1;
2092                        /*
2093                         * Taking the spinlock removes the possiblity
2094                         * that acquire_slab() will see a slab page that
2095                         * is frozen
2096                         */
2097                        spin_lock(&n->list_lock);
2098                }
2099        } else {
2100                m = M_FULL;
2101                if (kmem_cache_debug(s) && !lock) {
2102                        lock = 1;
2103                        /*
2104                         * This also ensures that the scanning of full
2105                         * slabs from diagnostic functions will not see
2106                         * any frozen slabs.
2107                         */
2108                        spin_lock(&n->list_lock);
2109                }
2110        }
2111
2112        if (l != m) {
2113
2114                if (l == M_PARTIAL)
2115
2116                        remove_partial(n, page);
2117
2118                else if (l == M_FULL)
2119
2120                        remove_full(s, n, page);
2121
2122                if (m == M_PARTIAL) {
2123
2124                        add_partial(n, page, tail);
2125                        stat(s, tail);
2126
2127                } else if (m == M_FULL) {
2128
2129                        stat(s, DEACTIVATE_FULL);
2130                        add_full(s, n, page);
2131
2132                }
2133        }
2134
2135        l = m;
2136        if (!__cmpxchg_double_slab(s, page,
2137                                old.freelist, old.counters,
2138                                new.freelist, new.counters,
2139                                "unfreezing slab"))
2140                goto redo;
2141
2142        if (lock)
2143                spin_unlock(&n->list_lock);
2144
2145        if (m == M_FREE) {
2146                stat(s, DEACTIVATE_EMPTY);
2147                discard_slab(s, page);
2148                stat(s, FREE_SLAB);
2149        }
2150
2151        c->page = NULL;
2152        c->freelist = NULL;
2153}
2154
2155/*
2156 * Unfreeze all the cpu partial slabs.
2157 *
2158 * This function must be called with interrupts disabled
2159 * for the cpu using c (or some other guarantee must be there
2160 * to guarantee no concurrent accesses).
2161 */
2162static void unfreeze_partials(struct kmem_cache *s,
2163                struct kmem_cache_cpu *c)
2164{
2165#ifdef CONFIG_SLUB_CPU_PARTIAL
2166        struct kmem_cache_node *n = NULL, *n2 = NULL;
2167        struct page *page, *discard_page = NULL;
2168
2169        while ((page = c->partial)) {
2170                struct page new;
2171                struct page old;
2172
2173                c->partial = page->next;
2174
2175                n2 = get_node(s, page_to_nid(page));
2176                if (n != n2) {
2177                        if (n)
2178                                spin_unlock(&n->list_lock);
2179
2180                        n = n2;
2181                        spin_lock(&n->list_lock);
2182                }
2183
2184                do {
2185
2186                        old.freelist = page->freelist;
2187                        old.counters = page->counters;
2188                        VM_BUG_ON(!old.frozen);
2189
2190                        new.counters = old.counters;
2191                        new.freelist = old.freelist;
2192
2193                        new.frozen = 0;
2194
2195                } while (!__cmpxchg_double_slab(s, page,
2196                                old.freelist, old.counters,
2197                                new.freelist, new.counters,
2198                                "unfreezing slab"));
2199
2200                if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2201                        page->next = discard_page;
2202                        discard_page = page;
2203                } else {
2204                        add_partial(n, page, DEACTIVATE_TO_TAIL);
2205                        stat(s, FREE_ADD_PARTIAL);
2206                }
2207        }
2208
2209        if (n)
2210                spin_unlock(&n->list_lock);
2211
2212        while (discard_page) {
2213                page = discard_page;
2214                discard_page = discard_page->next;
2215
2216                stat(s, DEACTIVATE_EMPTY);
2217                discard_slab(s, page);
2218                stat(s, FREE_SLAB);
2219        }
2220#endif
2221}
2222
2223/*
2224 * Put a page that was just frozen (in __slab_free) into a partial page
2225 * slot if available.
2226 *
2227 * If we did not find a slot then simply move all the partials to the
2228 * per node partial list.
2229 */
2230static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2231{
2232#ifdef CONFIG_SLUB_CPU_PARTIAL
2233        struct page *oldpage;
2234        int pages;
2235        int pobjects;
2236
2237        preempt_disable();
2238        do {
2239                pages = 0;
2240                pobjects = 0;
2241                oldpage = this_cpu_read(s->cpu_slab->partial);
2242
2243                if (oldpage) {
2244                        pobjects = oldpage->pobjects;
2245                        pages = oldpage->pages;
2246                        if (drain && pobjects > s->cpu_partial) {
2247                                unsigned long flags;
2248                                /*
2249                                 * partial array is full. Move the existing
2250                                 * set to the per node partial list.
2251                                 */
2252                                local_irq_save(flags);
2253                                unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254                                local_irq_restore(flags);
2255                                oldpage = NULL;
2256                                pobjects = 0;
2257                                pages = 0;
2258                                stat(s, CPU_PARTIAL_DRAIN);
2259                        }
2260                }
2261
2262                pages++;
2263                pobjects += page->objects - page->inuse;
2264
2265                page->pages = pages;
2266                page->pobjects = pobjects;
2267                page->next = oldpage;
2268
2269        } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2270                                                                != oldpage);
2271        if (unlikely(!s->cpu_partial)) {
2272                unsigned long flags;
2273
2274                local_irq_save(flags);
2275                unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2276                local_irq_restore(flags);
2277        }
2278        preempt_enable();
2279#endif
2280}
2281
2282static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2283{
2284        stat(s, CPUSLAB_FLUSH);
2285        deactivate_slab(s, c->page, c->freelist, c);
2286
2287        c->tid = next_tid(c->tid);
2288}
2289
2290/*
2291 * Flush cpu slab.
2292 *
2293 * Called from IPI handler with interrupts disabled.
2294 */
2295static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2296{
2297        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2298
2299        if (likely(c)) {
2300                if (c->page)
2301                        flush_slab(s, c);
2302
2303                unfreeze_partials(s, c);
2304        }
2305}
2306
2307static void flush_cpu_slab(void *d)
2308{
2309        struct kmem_cache *s = d;
2310
2311        __flush_cpu_slab(s, smp_processor_id());
2312}
2313
2314static bool has_cpu_slab(int cpu, void *info)
2315{
2316        struct kmem_cache *s = info;
2317        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2318
2319        return c->page || slub_percpu_partial(c);
2320}
2321
2322static void flush_all(struct kmem_cache *s)
2323{
2324        on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2325}
2326
2327/*
2328 * Use the cpu notifier to insure that the cpu slabs are flushed when
2329 * necessary.
2330 */
2331static int slub_cpu_dead(unsigned int cpu)
2332{
2333        struct kmem_cache *s;
2334        unsigned long flags;
2335
2336        mutex_lock(&slab_mutex);
2337        list_for_each_entry(s, &slab_caches, list) {
2338                local_irq_save(flags);
2339                __flush_cpu_slab(s, cpu);
2340                local_irq_restore(flags);
2341        }
2342        mutex_unlock(&slab_mutex);
2343        return 0;
2344}
2345
2346/*
2347 * Check if the objects in a per cpu structure fit numa
2348 * locality expectations.
2349 */
2350static inline int node_match(struct page *page, int node)
2351{
2352#ifdef CONFIG_NUMA
2353        if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2354                return 0;
2355#endif
2356        return 1;
2357}
2358
2359#ifdef CONFIG_SLUB_DEBUG
2360static int count_free(struct page *page)
2361{
2362        return page->objects - page->inuse;
2363}
2364
2365static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2366{
2367        return atomic_long_read(&n->total_objects);
2368}
2369#endif /* CONFIG_SLUB_DEBUG */
2370
2371#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2372static unsigned long count_partial(struct kmem_cache_node *n,
2373                                        int (*get_count)(struct page *))
2374{
2375        unsigned long flags;
2376        unsigned long x = 0;
2377        struct page *page;
2378
2379        spin_lock_irqsave(&n->list_lock, flags);
2380        list_for_each_entry(page, &n->partial, lru)
2381                x += get_count(page);
2382        spin_unlock_irqrestore(&n->list_lock, flags);
2383        return x;
2384}
2385#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2386
2387static noinline void
2388slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2389{
2390#ifdef CONFIG_SLUB_DEBUG
2391        static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2392                                      DEFAULT_RATELIMIT_BURST);
2393        int node;
2394        struct kmem_cache_node *n;
2395
2396        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2397                return;
2398
2399        pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2400                nid, gfpflags, &gfpflags);
2401        pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2402                s->name, s->object_size, s->size, oo_order(s->oo),
2403                oo_order(s->min));
2404
2405        if (oo_order(s->min) > get_order(s->object_size))
2406                pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2407                        s->name);
2408
2409        for_each_kmem_cache_node(s, node, n) {
2410                unsigned long nr_slabs;
2411                unsigned long nr_objs;
2412                unsigned long nr_free;
2413
2414                nr_free  = count_partial(n, count_free);
2415                nr_slabs = node_nr_slabs(n);
2416                nr_objs  = node_nr_objs(n);
2417
2418                pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2419                        node, nr_slabs, nr_objs, nr_free);
2420        }
2421#endif
2422}
2423
2424static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2425                        int node, struct kmem_cache_cpu **pc)
2426{
2427        void *freelist;
2428        struct kmem_cache_cpu *c = *pc;
2429        struct page *page;
2430
2431        freelist = get_partial(s, flags, node, c);
2432
2433        if (freelist)
2434                return freelist;
2435
2436        page = new_slab(s, flags, node);
2437        if (page) {
2438                c = raw_cpu_ptr(s->cpu_slab);
2439                if (c->page)
2440                        flush_slab(s, c);
2441
2442                /*
2443                 * No other reference to the page yet so we can
2444                 * muck around with it freely without cmpxchg
2445                 */
2446                freelist = page->freelist;
2447                page->freelist = NULL;
2448
2449                stat(s, ALLOC_SLAB);
2450                c->page = page;
2451                *pc = c;
2452        } else
2453                freelist = NULL;
2454
2455        return freelist;
2456}
2457
2458static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2459{
2460        if (unlikely(PageSlabPfmemalloc(page)))
2461                return gfp_pfmemalloc_allowed(gfpflags);
2462
2463        return true;
2464}
2465
2466/*
2467 * Check the page->freelist of a page and either transfer the freelist to the
2468 * per cpu freelist or deactivate the page.
2469 *
2470 * The page is still frozen if the return value is not NULL.
2471 *
2472 * If this function returns NULL then the page has been unfrozen.
2473 *
2474 * This function must be called with interrupt disabled.
2475 */
2476static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2477{
2478        struct page new;
2479        unsigned long counters;
2480        void *freelist;
2481
2482        do {
2483                freelist = page->freelist;
2484                counters = page->counters;
2485
2486                new.counters = counters;
2487                VM_BUG_ON(!new.frozen);
2488
2489                new.inuse = page->objects;
2490                new.frozen = freelist != NULL;
2491
2492        } while (!__cmpxchg_double_slab(s, page,
2493                freelist, counters,
2494                NULL, new.counters,
2495                "get_freelist"));
2496
2497        return freelist;
2498}
2499
2500/*
2501 * Slow path. The lockless freelist is empty or we need to perform
2502 * debugging duties.
2503 *
2504 * Processing is still very fast if new objects have been freed to the
2505 * regular freelist. In that case we simply take over the regular freelist
2506 * as the lockless freelist and zap the regular freelist.
2507 *
2508 * If that is not working then we fall back to the partial lists. We take the
2509 * first element of the freelist as the object to allocate now and move the
2510 * rest of the freelist to the lockless freelist.
2511 *
2512 * And if we were unable to get a new slab from the partial slab lists then
2513 * we need to allocate a new slab. This is the slowest path since it involves
2514 * a call to the page allocator and the setup of a new slab.
2515 *
2516 * Version of __slab_alloc to use when we know that interrupts are
2517 * already disabled (which is the case for bulk allocation).
2518 */
2519static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2520                          unsigned long addr, struct kmem_cache_cpu *c)
2521{
2522        void *freelist;
2523        struct page *page;
2524
2525        page = c->page;
2526        if (!page)
2527                goto new_slab;
2528redo:
2529
2530        if (unlikely(!node_match(page, node))) {
2531                int searchnode = node;
2532
2533                if (node != NUMA_NO_NODE && !node_present_pages(node))
2534                        searchnode = node_to_mem_node(node);
2535
2536                if (unlikely(!node_match(page, searchnode))) {
2537                        stat(s, ALLOC_NODE_MISMATCH);
2538                        deactivate_slab(s, page, c->freelist, c);
2539                        goto new_slab;
2540                }
2541        }
2542
2543        /*
2544         * By rights, we should be searching for a slab page that was
2545         * PFMEMALLOC but right now, we are losing the pfmemalloc
2546         * information when the page leaves the per-cpu allocator
2547         */
2548        if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2549                deactivate_slab(s, page, c->freelist, c);
2550                goto new_slab;
2551        }
2552
2553        /* must check again c->freelist in case of cpu migration or IRQ */
2554        freelist = c->freelist;
2555        if (freelist)
2556                goto load_freelist;
2557
2558        freelist = get_freelist(s, page);
2559
2560        if (!freelist) {
2561                c->page = NULL;
2562                stat(s, DEACTIVATE_BYPASS);
2563                goto new_slab;
2564        }
2565
2566        stat(s, ALLOC_REFILL);
2567
2568load_freelist:
2569        /*
2570         * freelist is pointing to the list of objects to be used.
2571         * page is pointing to the page from which the objects are obtained.
2572         * That page must be frozen for per cpu allocations to work.
2573         */
2574        VM_BUG_ON(!c->page->frozen);
2575        c->freelist = get_freepointer(s, freelist);
2576        c->tid = next_tid(c->tid);
2577        return freelist;
2578
2579new_slab:
2580
2581        if (slub_percpu_partial(c)) {
2582                page = c->page = slub_percpu_partial(c);
2583                slub_set_percpu_partial(c, page);
2584                stat(s, CPU_PARTIAL_ALLOC);
2585                goto redo;
2586        }
2587
2588        freelist = new_slab_objects(s, gfpflags, node, &c);
2589
2590        if (unlikely(!freelist)) {
2591                slab_out_of_memory(s, gfpflags, node);
2592                return NULL;
2593        }
2594
2595        page = c->page;
2596        if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2597                goto load_freelist;
2598
2599        /* Only entered in the debug case */
2600        if (kmem_cache_debug(s) &&
2601                        !alloc_debug_processing(s, page, freelist, addr))
2602                goto new_slab;  /* Slab failed checks. Next slab needed */
2603
2604        deactivate_slab(s, page, get_freepointer(s, freelist), c);
2605        return freelist;
2606}
2607
2608/*
2609 * Another one that disabled interrupt and compensates for possible
2610 * cpu changes by refetching the per cpu area pointer.
2611 */
2612static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2613                          unsigned long addr, struct kmem_cache_cpu *c)
2614{
2615        void *p;
2616        unsigned long flags;
2617
2618        local_irq_save(flags);
2619#ifdef CONFIG_PREEMPT
2620        /*
2621         * We may have been preempted and rescheduled on a different
2622         * cpu before disabling interrupts. Need to reload cpu area
2623         * pointer.
2624         */
2625        c = this_cpu_ptr(s->cpu_slab);
2626#endif
2627
2628        p = ___slab_alloc(s, gfpflags, node, addr, c);
2629        local_irq_restore(flags);
2630        return p;
2631}
2632
2633/*
2634 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2635 * have the fastpath folded into their functions. So no function call
2636 * overhead for requests that can be satisfied on the fastpath.
2637 *
2638 * The fastpath works by first checking if the lockless freelist can be used.
2639 * If not then __slab_alloc is called for slow processing.
2640 *
2641 * Otherwise we can simply pick the next object from the lockless free list.
2642 */
2643static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2644                gfp_t gfpflags, int node, unsigned long addr)
2645{
2646        void *object;
2647        struct kmem_cache_cpu *c;
2648        struct page *page;
2649        unsigned long tid;
2650
2651        s = slab_pre_alloc_hook(s, gfpflags);
2652        if (!s)
2653                return NULL;
2654redo:
2655        /*
2656         * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2657         * enabled. We may switch back and forth between cpus while
2658         * reading from one cpu area. That does not matter as long
2659         * as we end up on the original cpu again when doing the cmpxchg.
2660         *
2661         * We should guarantee that tid and kmem_cache are retrieved on
2662         * the same cpu. It could be different if CONFIG_PREEMPT so we need
2663         * to check if it is matched or not.
2664         */
2665        do {
2666                tid = this_cpu_read(s->cpu_slab->tid);
2667                c = raw_cpu_ptr(s->cpu_slab);
2668        } while (IS_ENABLED(CONFIG_PREEMPT) &&
2669                 unlikely(tid != READ_ONCE(c->tid)));
2670
2671        /*
2672         * Irqless object alloc/free algorithm used here depends on sequence
2673         * of fetching cpu_slab's data. tid should be fetched before anything
2674         * on c to guarantee that object and page associated with previous tid
2675         * won't be used with current tid. If we fetch tid first, object and
2676         * page could be one associated with next tid and our alloc/free
2677         * request will be failed. In this case, we will retry. So, no problem.
2678         */
2679        barrier();
2680
2681        /*
2682         * The transaction ids are globally unique per cpu and per operation on
2683         * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2684         * occurs on the right processor and that there was no operation on the
2685         * linked list in between.
2686         */
2687
2688        object = c->freelist;
2689        page = c->page;
2690        if (unlikely(!object || !node_match(page, node))) {
2691                object = __slab_alloc(s, gfpflags, node, addr, c);
2692                stat(s, ALLOC_SLOWPATH);
2693        } else {
2694                void *next_object = get_freepointer_safe(s, object);
2695
2696                /*
2697                 * The cmpxchg will only match if there was no additional
2698                 * operation and if we are on the right processor.
2699                 *
2700                 * The cmpxchg does the following atomically (without lock
2701                 * semantics!)
2702                 * 1. Relocate first pointer to the current per cpu area.
2703                 * 2. Verify that tid and freelist have not been changed
2704                 * 3. If they were not changed replace tid and freelist
2705                 *
2706                 * Since this is without lock semantics the protection is only
2707                 * against code executing on this cpu *not* from access by
2708                 * other cpus.
2709                 */
2710                if (unlikely(!this_cpu_cmpxchg_double(
2711                                s->cpu_slab->freelist, s->cpu_slab->tid,
2712                                object, tid,
2713                                next_object, next_tid(tid)))) {
2714
2715                        note_cmpxchg_failure("slab_alloc", s, tid);
2716                        goto redo;
2717                }
2718                prefetch_freepointer(s, next_object);
2719                stat(s, ALLOC_FASTPATH);
2720        }
2721
2722        if (unlikely(gfpflags & __GFP_ZERO) && object)
2723                memset(object, 0, s->object_size);
2724
2725        slab_post_alloc_hook(s, gfpflags, 1, &object);
2726
2727        return object;
2728}
2729
2730static __always_inline void *slab_alloc(struct kmem_cache *s,
2731                gfp_t gfpflags, unsigned long addr)
2732{
2733        return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2734}
2735
2736void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2737{
2738        void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2739
2740        trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2741                                s->size, gfpflags);
2742
2743        return ret;
2744}
2745EXPORT_SYMBOL(kmem_cache_alloc);
2746
2747#ifdef CONFIG_TRACING
2748void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2749{
2750        void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2751        trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2752        kasan_kmalloc(s, ret, size, gfpflags);
2753        return ret;
2754}
2755EXPORT_SYMBOL(kmem_cache_alloc_trace);
2756#endif
2757
2758#ifdef CONFIG_NUMA
2759void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2760{
2761        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2762
2763        trace_kmem_cache_alloc_node(_RET_IP_, ret,
2764                                    s->object_size, s->size, gfpflags, node);
2765
2766        return ret;
2767}
2768EXPORT_SYMBOL(kmem_cache_alloc_node);
2769
2770#ifdef CONFIG_TRACING
2771void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2772                                    gfp_t gfpflags,
2773                                    int node, size_t size)
2774{
2775        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2776
2777        trace_kmalloc_node(_RET_IP_, ret,
2778                           size, s->size, gfpflags, node);
2779
2780        kasan_kmalloc(s, ret, size, gfpflags);
2781        return ret;
2782}
2783EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2784#endif
2785#endif
2786
2787/*
2788 * Slow path handling. This may still be called frequently since objects
2789 * have a longer lifetime than the cpu slabs in most processing loads.
2790 *
2791 * So we still attempt to reduce cache line usage. Just take the slab
2792 * lock and free the item. If there is no additional partial page
2793 * handling required then we can return immediately.
2794 */
2795static void __slab_free(struct kmem_cache *s, struct page *page,
2796                        void *head, void *tail, int cnt,
2797                        unsigned long addr)
2798
2799{
2800        void *prior;
2801        int was_frozen;
2802        struct page new;
2803        unsigned long counters;
2804        struct kmem_cache_node *n = NULL;
2805        unsigned long uninitialized_var(flags);
2806
2807        stat(s, FREE_SLOWPATH);
2808
2809        if (kmem_cache_debug(s) &&
2810            !free_debug_processing(s, page, head, tail, cnt, addr))
2811                return;
2812
2813        do {
2814                if (unlikely(n)) {
2815                        spin_unlock_irqrestore(&n->list_lock, flags);
2816                        n = NULL;
2817                }
2818                prior = page->freelist;
2819                counters = page->counters;
2820                set_freepointer(s, tail, prior);
2821                new.counters = counters;
2822                was_frozen = new.frozen;
2823                new.inuse -= cnt;
2824                if ((!new.inuse || !prior) && !was_frozen) {
2825
2826                        if (kmem_cache_has_cpu_partial(s) && !prior) {
2827
2828                                /*
2829                                 * Slab was on no list before and will be
2830                                 * partially empty
2831                                 * We can defer the list move and instead
2832                                 * freeze it.
2833                                 */
2834                                new.frozen = 1;
2835
2836                        } else { /* Needs to be taken off a list */
2837
2838                                n = get_node(s, page_to_nid(page));
2839                                /*
2840                                 * Speculatively acquire the list_lock.
2841                                 * If the cmpxchg does not succeed then we may
2842                                 * drop the list_lock without any processing.
2843                                 *
2844                                 * Otherwise the list_lock will synchronize with
2845                                 * other processors updating the list of slabs.
2846                                 */
2847                                spin_lock_irqsave(&n->list_lock, flags);
2848
2849                        }
2850                }
2851
2852        } while (!cmpxchg_double_slab(s, page,
2853                prior, counters,
2854                head, new.counters,
2855                "__slab_free"));
2856
2857        if (likely(!n)) {
2858
2859                /*
2860                 * If we just froze the page then put it onto the
2861                 * per cpu partial list.
2862                 */
2863                if (new.frozen && !was_frozen) {
2864                        put_cpu_partial(s, page, 1);
2865                        stat(s, CPU_PARTIAL_FREE);
2866                }
2867                /*
2868                 * The list lock was not taken therefore no list
2869                 * activity can be necessary.
2870                 */
2871                if (was_frozen)
2872                        stat(s, FREE_FROZEN);
2873                return;
2874        }
2875
2876        if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2877                goto slab_empty;
2878
2879        /*
2880         * Objects left in the slab. If it was not on the partial list before
2881         * then add it.
2882         */
2883        if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2884                if (kmem_cache_debug(s))
2885                        remove_full(s, n, page);
2886                add_partial(n, page, DEACTIVATE_TO_TAIL);
2887                stat(s, FREE_ADD_PARTIAL);
2888        }
2889        spin_unlock_irqrestore(&n->list_lock, flags);
2890        return;
2891
2892slab_empty:
2893        if (prior) {
2894                /*
2895                 * Slab on the partial list.
2896                 */
2897                remove_partial(n, page);
2898                stat(s, FREE_REMOVE_PARTIAL);
2899        } else {
2900                /* Slab must be on the full list */
2901                remove_full(s, n, page);
2902        }
2903
2904        spin_unlock_irqrestore(&n->list_lock, flags);
2905        stat(s, FREE_SLAB);
2906        discard_slab(s, page);
2907}
2908
2909/*
2910 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2911 * can perform fastpath freeing without additional function calls.
2912 *
2913 * The fastpath is only possible if we are freeing to the current cpu slab
2914 * of this processor. This typically the case if we have just allocated
2915 * the item before.
2916 *
2917 * If fastpath is not possible then fall back to __slab_free where we deal
2918 * with all sorts of special processing.
2919 *
2920 * Bulk free of a freelist with several objects (all pointing to the
2921 * same page) possible by specifying head and tail ptr, plus objects
2922 * count (cnt). Bulk free indicated by tail pointer being set.
2923 */
2924static __always_inline void do_slab_free(struct kmem_cache *s,
2925                                struct page *page, void *head, void *tail,
2926                                int cnt, unsigned long addr)
2927{
2928        void *tail_obj = tail ? : head;
2929        struct kmem_cache_cpu *c;
2930        unsigned long tid;
2931redo:
2932        /*
2933         * Determine the currently cpus per cpu slab.
2934         * The cpu may change afterward. However that does not matter since
2935         * data is retrieved via this pointer. If we are on the same cpu
2936         * during the cmpxchg then the free will succeed.
2937         */
2938        do {
2939                tid = this_cpu_read(s->cpu_slab->tid);
2940                c = raw_cpu_ptr(s->cpu_slab);
2941        } while (IS_ENABLED(CONFIG_PREEMPT) &&
2942                 unlikely(tid != READ_ONCE(c->tid)));
2943
2944        /* Same with comment on barrier() in slab_alloc_node() */
2945        barrier();
2946
2947        if (likely(page == c->page)) {
2948                set_freepointer(s, tail_obj, c->freelist);
2949
2950                if (unlikely(!this_cpu_cmpxchg_double(
2951                                s->cpu_slab->freelist, s->cpu_slab->tid,
2952                                c->freelist, tid,
2953                                head, next_tid(tid)))) {
2954
2955                        note_cmpxchg_failure("slab_free", s, tid);
2956                        goto redo;
2957                }
2958                stat(s, FREE_FASTPATH);
2959        } else
2960                __slab_free(s, page, head, tail_obj, cnt, addr);
2961
2962}
2963
2964static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2965                                      void *head, void *tail, int cnt,
2966                                      unsigned long addr)
2967{
2968        slab_free_freelist_hook(s, head, tail);
2969        /*
2970         * slab_free_freelist_hook() could have put the items into quarantine.
2971         * If so, no need to free them.
2972         */
2973        if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2974                return;
2975        do_slab_free(s, page, head, tail, cnt, addr);
2976}
2977
2978#ifdef CONFIG_KASAN
2979void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2980{
2981        do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2982}
2983#endif
2984
2985void kmem_cache_free(struct kmem_cache *s, void *x)
2986{
2987        s = cache_from_obj(s, x);
2988        if (!s)
2989                return;
2990        slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2991        trace_kmem_cache_free(_RET_IP_, x);
2992}
2993EXPORT_SYMBOL(kmem_cache_free);
2994
2995struct detached_freelist {
2996        struct page *page;
2997        void *tail;
2998        void *freelist;
2999        int cnt;
3000        struct kmem_cache *s;
3001};
3002
3003/*
3004 * This function progressively scans the array with free objects (with
3005 * a limited look ahead) and extract objects belonging to the same
3006 * page.  It builds a detached freelist directly within the given
3007 * page/objects.  This can happen without any need for
3008 * synchronization, because the objects are owned by running process.
3009 * The freelist is build up as a single linked list in the objects.
3010 * The idea is, that this detached freelist can then be bulk
3011 * transferred to the real freelist(s), but only requiring a single
3012 * synchronization primitive.  Look ahead in the array is limited due
3013 * to performance reasons.
3014 */
3015static inline
3016int build_detached_freelist(struct kmem_cache *s, size_t size,
3017                            void **p, struct detached_freelist *df)
3018{
3019        size_t first_skipped_index = 0;
3020        int lookahead = 3;
3021        void *object;
3022        struct page *page;
3023
3024        /* Always re-init detached_freelist */
3025        df->page = NULL;
3026
3027        do {
3028                object = p[--size];
3029                /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3030        } while (!object && size);
3031
3032        if (!object)
3033                return 0;
3034
3035        page = virt_to_head_page(object);
3036        if (!s) {
3037                /* Handle kalloc'ed objects */
3038                if (unlikely(!PageSlab(page))) {
3039                        BUG_ON(!PageCompound(page));
3040                        kfree_hook(object);
3041                        __free_pages(page, compound_order(page));
3042                        p[size] = NULL; /* mark object processed */
3043                        return size;
3044                }
3045                /* Derive kmem_cache from object */
3046                df->s = page->slab_cache;
3047        } else {
3048                df->s = cache_from_obj(s, object); /* Support for memcg */
3049        }
3050
3051        /* Start new detached freelist */
3052        df->page = page;
3053        set_freepointer(df->s, object, NULL);
3054        df->tail = object;
3055        df->freelist = object;
3056        p[size] = NULL; /* mark object processed */
3057        df->cnt = 1;
3058
3059        while (size) {
3060                object = p[--size];
3061                if (!object)
3062                        continue; /* Skip processed objects */
3063
3064                /* df->page is always set at this point */
3065                if (df->page == virt_to_head_page(object)) {
3066                        /* Opportunity build freelist */
3067                        set_freepointer(df->s, object, df->freelist);
3068                        df->freelist = object;
3069                        df->cnt++;
3070                        p[size] = NULL; /* mark object processed */
3071
3072                        continue;
3073                }
3074
3075                /* Limit look ahead search */
3076                if (!--lookahead)
3077                        break;
3078
3079                if (!first_skipped_index)
3080                        first_skipped_index = size + 1;
3081        }
3082
3083        return first_skipped_index;
3084}
3085
3086/* Note that interrupts must be enabled when calling this function. */
3087void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3088{
3089        if (WARN_ON(!size))
3090                return;
3091
3092        do {
3093                struct detached_freelist df;
3094
3095                size = build_detached_freelist(s, size, p, &df);
3096                if (!df.page)
3097                        continue;
3098
3099                slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3100        } while (likely(size));
3101}
3102EXPORT_SYMBOL(kmem_cache_free_bulk);
3103
3104/* Note that interrupts must be enabled when calling this function. */
3105int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3106                          void **p)
3107{
3108        struct kmem_cache_cpu *c;
3109        int i;
3110
3111        /* memcg and kmem_cache debug support */
3112        s = slab_pre_alloc_hook(s, flags);
3113        if (unlikely(!s))
3114                return false;
3115        /*
3116         * Drain objects in the per cpu slab, while disabling local
3117         * IRQs, which protects against PREEMPT and interrupts
3118         * handlers invoking normal fastpath.
3119         */
3120        local_irq_disable();
3121        c = this_cpu_ptr(s->cpu_slab);
3122
3123        for (i = 0; i < size; i++) {
3124                void *object = c->freelist;
3125
3126                if (unlikely(!object)) {
3127                        /*
3128                         * Invoking slow path likely have side-effect
3129                         * of re-populating per CPU c->freelist
3130                         */
3131                        p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3132                                            _RET_IP_, c);
3133                        if (unlikely(!p[i]))
3134                                goto error;
3135
3136                        c = this_cpu_ptr(s->cpu_slab);
3137                        continue; /* goto for-loop */
3138                }
3139                c->freelist = get_freepointer(s, object);
3140                p[i] = object;
3141        }
3142        c->tid = next_tid(c->tid);
3143        local_irq_enable();
3144
3145        /* Clear memory outside IRQ disabled fastpath loop */
3146        if (unlikely(flags & __GFP_ZERO)) {
3147                int j;
3148
3149                for (j = 0; j < i; j++)
3150                        memset(p[j], 0, s->object_size);
3151        }
3152
3153        /* memcg and kmem_cache debug support */
3154        slab_post_alloc_hook(s, flags, size, p);
3155        return i;
3156error:
3157        local_irq_enable();
3158        slab_post_alloc_hook(s, flags, i, p);
3159        __kmem_cache_free_bulk(s, i, p);
3160        return 0;
3161}
3162EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3163
3164
3165/*
3166 * Object placement in a slab is made very easy because we always start at
3167 * offset 0. If we tune the size of the object to the alignment then we can
3168 * get the required alignment by putting one properly sized object after
3169 * another.
3170 *
3171 * Notice that the allocation order determines the sizes of the per cpu
3172 * caches. Each processor has always one slab available for allocations.
3173 * Increasing the allocation order reduces the number of times that slabs
3174 * must be moved on and off the partial lists and is therefore a factor in
3175 * locking overhead.
3176 */
3177
3178/*
3179 * Mininum / Maximum order of slab pages. This influences locking overhead
3180 * and slab fragmentation. A higher order reduces the number of partial slabs
3181 * and increases the number of allocations possible without having to
3182 * take the list_lock.
3183 */
3184static int slub_min_order;
3185static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3186static int slub_min_objects;
3187
3188/*
3189 * Calculate the order of allocation given an slab object size.
3190 *
3191 * The order of allocation has significant impact on performance and other
3192 * system components. Generally order 0 allocations should be preferred since
3193 * order 0 does not cause fragmentation in the page allocator. Larger objects
3194 * be problematic to put into order 0 slabs because there may be too much
3195 * unused space left. We go to a higher order if more than 1/16th of the slab
3196 * would be wasted.
3197 *
3198 * In order to reach satisfactory performance we must ensure that a minimum
3199 * number of objects is in one slab. Otherwise we may generate too much
3200 * activity on the partial lists which requires taking the list_lock. This is
3201 * less a concern for large slabs though which are rarely used.
3202 *
3203 * slub_max_order specifies the order where we begin to stop considering the
3204 * number of objects in a slab as critical. If we reach slub_max_order then
3205 * we try to keep the page order as low as possible. So we accept more waste
3206 * of space in favor of a small page order.
3207 *
3208 * Higher order allocations also allow the placement of more objects in a
3209 * slab and thereby reduce object handling overhead. If the user has
3210 * requested a higher mininum order then we start with that one instead of
3211 * the smallest order which will fit the object.
3212 */
3213static inline int slab_order(int size, int min_objects,
3214                                int max_order, int fract_leftover, int reserved)
3215{
3216        int order;
3217        int rem;
3218        int min_order = slub_min_order;
3219
3220        if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3221                return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3222
3223        for (order = max(min_order, get_order(min_objects * size + reserved));
3224                        order <= max_order; order++) {
3225
3226                unsigned long slab_size = PAGE_SIZE << order;
3227
3228                rem = (slab_size - reserved) % size;
3229
3230                if (rem <= slab_size / fract_leftover)
3231                        break;
3232        }
3233
3234        return order;
3235}
3236
3237static inline int calculate_order(int size, int reserved)
3238{
3239        int order;
3240        int min_objects;
3241        int fraction;
3242        int max_objects;
3243
3244        /*
3245         * Attempt to find best configuration for a slab. This
3246         * works by first attempting to generate a layout with
3247         * the best configuration and backing off gradually.
3248         *
3249         * First we increase the acceptable waste in a slab. Then
3250         * we reduce the minimum objects required in a slab.
3251         */
3252        min_objects = slub_min_objects;
3253        if (!min_objects)
3254                min_objects = 4 * (fls(nr_cpu_ids) + 1);
3255        max_objects = order_objects(slub_max_order, size, reserved);
3256        min_objects = min(min_objects, max_objects);
3257
3258        while (min_objects > 1) {
3259                fraction = 16;
3260                while (fraction >= 4) {
3261                        order = slab_order(size, min_objects,
3262                                        slub_max_order, fraction, reserved);
3263                        if (order <= slub_max_order)
3264                                return order;
3265                        fraction /= 2;
3266                }
3267                min_objects--;
3268        }
3269
3270        /*
3271         * We were unable to place multiple objects in a slab. Now
3272         * lets see if we can place a single object there.
3273         */
3274        order = slab_order(size, 1, slub_max_order, 1, reserved);
3275        if (order <= slub_max_order)
3276                return order;
3277
3278        /*
3279         * Doh this slab cannot be placed using slub_max_order.
3280         */
3281        order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3282        if (order < MAX_ORDER)
3283                return order;
3284        return -ENOSYS;
3285}
3286
3287static void
3288init_kmem_cache_node(struct kmem_cache_node *n)
3289{
3290        n->nr_partial = 0;
3291        spin_lock_init(&n->list_lock);
3292        INIT_LIST_HEAD(&n->partial);
3293#ifdef CONFIG_SLUB_DEBUG
3294        atomic_long_set(&n->nr_slabs, 0);
3295        atomic_long_set(&n->total_objects, 0);
3296        INIT_LIST_HEAD(&n->full);
3297#endif
3298}
3299
3300static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3301{
3302        BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3303                        KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3304
3305        /*
3306         * Must align to double word boundary for the double cmpxchg
3307         * instructions to work; see __pcpu_double_call_return_bool().
3308         */
3309        s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3310                                     2 * sizeof(void *));
3311
3312        if (!s->cpu_slab)
3313                return 0;
3314
3315        init_kmem_cache_cpus(s);
3316
3317        return 1;
3318}
3319
3320static struct kmem_cache *kmem_cache_node;
3321
3322/*
3323 * No kmalloc_node yet so do it by hand. We know that this is the first
3324 * slab on the node for this slabcache. There are no concurrent accesses
3325 * possible.
3326 *
3327 * Note that this function only works on the kmem_cache_node
3328 * when allocating for the kmem_cache_node. This is used for bootstrapping
3329 * memory on a fresh node that has no slab structures yet.
3330 */
3331static void early_kmem_cache_node_alloc(int node)
3332{
3333        struct page *page;
3334        struct kmem_cache_node *n;
3335
3336        BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3337
3338        page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3339
3340        BUG_ON(!page);
3341        if (page_to_nid(page) != node) {
3342                pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3343                pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3344        }
3345
3346        n = page->freelist;
3347        BUG_ON(!n);
3348        page->freelist = get_freepointer(kmem_cache_node, n);
3349        page->inuse = 1;
3350        page->frozen = 0;
3351        kmem_cache_node->node[node] = n;
3352#ifdef CONFIG_SLUB_DEBUG
3353        init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3354        init_tracking(kmem_cache_node, n);
3355#endif
3356        kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3357                      GFP_KERNEL);
3358        init_kmem_cache_node(n);
3359        inc_slabs_node(kmem_cache_node, node, page->objects);
3360
3361        /*
3362         * No locks need to be taken here as it has just been
3363         * initialized and there is no concurrent access.
3364         */
3365        __add_partial(n, page, DEACTIVATE_TO_HEAD);
3366}
3367
3368static void free_kmem_cache_nodes(struct kmem_cache *s)
3369{
3370        int node;
3371        struct kmem_cache_node *n;
3372
3373        for_each_kmem_cache_node(s, node, n) {
3374                s->node[node] = NULL;
3375                kmem_cache_free(kmem_cache_node, n);
3376        }
3377}
3378
3379void __kmem_cache_release(struct kmem_cache *s)
3380{
3381        cache_random_seq_destroy(s);
3382        free_percpu(s->cpu_slab);
3383        free_kmem_cache_nodes(s);
3384}
3385
3386static int init_kmem_cache_nodes(struct kmem_cache *s)
3387{
3388        int node;
3389
3390        for_each_node_state(node, N_NORMAL_MEMORY) {
3391                struct kmem_cache_node *n;
3392
3393                if (slab_state == DOWN) {
3394                        early_kmem_cache_node_alloc(node);
3395                        continue;
3396                }
3397                n = kmem_cache_alloc_node(kmem_cache_node,
3398                                                GFP_KERNEL, node);
3399
3400                if (!n) {
3401                        free_kmem_cache_nodes(s);
3402                        return 0;
3403                }
3404
3405                init_kmem_cache_node(n);
3406                s->node[node] = n;
3407        }
3408        return 1;
3409}
3410
3411static void set_min_partial(struct kmem_cache *s, unsigned long min)
3412{
3413        if (min < MIN_PARTIAL)
3414                min = MIN_PARTIAL;
3415        else if (min > MAX_PARTIAL)
3416                min = MAX_PARTIAL;
3417        s->min_partial = min;
3418}
3419
3420static void set_cpu_partial(struct kmem_cache *s)
3421{
3422#ifdef CONFIG_SLUB_CPU_PARTIAL
3423        /*
3424         * cpu_partial determined the maximum number of objects kept in the
3425         * per cpu partial lists of a processor.
3426         *
3427         * Per cpu partial lists mainly contain slabs that just have one
3428         * object freed. If they are used for allocation then they can be
3429         * filled up again with minimal effort. The slab will never hit the
3430         * per node partial lists and therefore no locking will be required.
3431         *
3432         * This setting also determines
3433         *
3434         * A) The number of objects from per cpu partial slabs dumped to the
3435         *    per node list when we reach the limit.
3436         * B) The number of objects in cpu partial slabs to extract from the
3437         *    per node list when we run out of per cpu objects. We only fetch
3438         *    50% to keep some capacity around for frees.
3439         */
3440        if (!kmem_cache_has_cpu_partial(s))
3441                s->cpu_partial = 0;
3442        else if (s->size >= PAGE_SIZE)
3443                s->cpu_partial = 2;
3444        else if (s->size >= 1024)
3445                s->cpu_partial = 6;
3446        else if (s->size >= 256)
3447                s->cpu_partial = 13;
3448        else
3449                s->cpu_partial = 30;
3450#endif
3451}
3452
3453/*
3454 * calculate_sizes() determines the order and the distribution of data within
3455 * a slab object.
3456 */
3457static int calculate_sizes(struct kmem_cache *s, int forced_order)
3458{
3459        slab_flags_t flags = s->flags;
3460        size_t size = s->object_size;
3461        int order;
3462
3463        /*
3464         * Round up object size to the next word boundary. We can only
3465         * place the free pointer at word boundaries and this determines
3466         * the possible location of the free pointer.
3467         */
3468        size = ALIGN(size, sizeof(void *));
3469
3470#ifdef CONFIG_SLUB_DEBUG
3471        /*
3472         * Determine if we can poison the object itself. If the user of
3473         * the slab may touch the object after free or before allocation
3474         * then we should never poison the object itself.
3475         */
3476        if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3477                        !s->ctor)
3478                s->flags |= __OBJECT_POISON;
3479        else
3480                s->flags &= ~__OBJECT_POISON;
3481
3482
3483        /*
3484         * If we are Redzoning then check if there is some space between the
3485         * end of the object and the free pointer. If not then add an
3486         * additional word to have some bytes to store Redzone information.
3487         */
3488        if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3489                size += sizeof(void *);
3490#endif
3491
3492        /*
3493         * With that we have determined the number of bytes in actual use
3494         * by the object. This is the potential offset to the free pointer.
3495         */
3496        s->inuse = size;
3497
3498        if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3499                s->ctor)) {
3500                /*
3501                 * Relocate free pointer after the object if it is not
3502                 * permitted to overwrite the first word of the object on
3503                 * kmem_cache_free.
3504                 *
3505                 * This is the case if we do RCU, have a constructor or
3506                 * destructor or are poisoning the objects.
3507                 */
3508                s->offset = size;
3509                size += sizeof(void *);
3510        }
3511
3512#ifdef CONFIG_SLUB_DEBUG
3513        if (flags & SLAB_STORE_USER)
3514                /*
3515                 * Need to store information about allocs and frees after
3516                 * the object.
3517                 */
3518                size += 2 * sizeof(struct track);
3519#endif
3520
3521        kasan_cache_create(s, &size, &s->flags);
3522#ifdef CONFIG_SLUB_DEBUG
3523        if (flags & SLAB_RED_ZONE) {
3524                /*
3525                 * Add some empty padding so that we can catch
3526                 * overwrites from earlier objects rather than let
3527                 * tracking information or the free pointer be
3528                 * corrupted if a user writes before the start
3529                 * of the object.
3530                 */
3531                size += sizeof(void *);
3532
3533                s->red_left_pad = sizeof(void *);
3534                s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3535                size += s->red_left_pad;
3536        }
3537#endif
3538
3539        /*
3540         * SLUB stores one object immediately after another beginning from
3541         * offset 0. In order to align the objects we have to simply size
3542         * each object to conform to the alignment.
3543         */
3544        size = ALIGN(size, s->align);
3545        s->size = size;
3546        if (forced_order >= 0)
3547                order = forced_order;
3548        else
3549                order = calculate_order(size, s->reserved);
3550
3551        if (order < 0)
3552                return 0;
3553
3554        s->allocflags = 0;
3555        if (order)
3556                s->allocflags |= __GFP_COMP;
3557
3558        if (s->flags & SLAB_CACHE_DMA)
3559                s->allocflags |= GFP_DMA;
3560
3561        if (s->flags & SLAB_RECLAIM_ACCOUNT)
3562                s->allocflags |= __GFP_RECLAIMABLE;
3563
3564        /*
3565         * Determine the number of objects per slab
3566         */
3567        s->oo = oo_make(order, size, s->reserved);
3568        s->min = oo_make(get_order(size), size, s->reserved);
3569        if (oo_objects(s->oo) > oo_objects(s->max))
3570                s->max = s->oo;
3571
3572        return !!oo_objects(s->oo);
3573}
3574
3575static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3576{
3577        s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3578        s->reserved = 0;
3579#ifdef CONFIG_SLAB_FREELIST_HARDENED
3580        s->random = get_random_long();
3581#endif
3582
3583        if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3584                s->reserved = sizeof(struct rcu_head);
3585
3586        if (!calculate_sizes(s, -1))
3587                goto error;
3588        if (disable_higher_order_debug) {
3589                /*
3590                 * Disable debugging flags that store metadata if the min slab
3591                 * order increased.
3592                 */
3593                if (get_order(s->size) > get_order(s->object_size)) {
3594                        s->flags &= ~DEBUG_METADATA_FLAGS;
3595                        s->offset = 0;
3596                        if (!calculate_sizes(s, -1))
3597                                goto error;
3598                }
3599        }
3600
3601#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3602    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3603        if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3604                /* Enable fast mode */
3605                s->flags |= __CMPXCHG_DOUBLE;
3606#endif
3607
3608        /*
3609         * The larger the object size is, the more pages we want on the partial
3610         * list to avoid pounding the page allocator excessively.
3611         */
3612        set_min_partial(s, ilog2(s->size) / 2);
3613
3614        set_cpu_partial(s);
3615
3616#ifdef CONFIG_NUMA
3617        s->remote_node_defrag_ratio = 1000;
3618#endif
3619
3620        /* Initialize the pre-computed randomized freelist if slab is up */
3621        if (slab_state >= UP) {
3622                if (init_cache_random_seq(s))
3623                        goto error;
3624        }
3625
3626        if (!init_kmem_cache_nodes(s))
3627                goto error;
3628
3629        if (alloc_kmem_cache_cpus(s))
3630                return 0;
3631
3632        free_kmem_cache_nodes(s);
3633error:
3634        if (flags & SLAB_PANIC)
3635                panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3636                      s->name, (unsigned long)s->size, s->size,
3637                      oo_order(s->oo), s->offset, (unsigned long)flags);
3638        return -EINVAL;
3639}
3640
3641static void list_slab_objects(struct kmem_cache *s, struct page *page,
3642                                                        const char *text)
3643{
3644#ifdef CONFIG_SLUB_DEBUG
3645        void *addr = page_address(page);
3646        void *p;
3647        unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3648                                     sizeof(long), GFP_ATOMIC);
3649        if (!map)
3650                return;
3651        slab_err(s, page, text, s->name);
3652        slab_lock(page);
3653
3654        get_map(s, page, map);
3655        for_each_object(p, s, addr, page->objects) {
3656
3657                if (!test_bit(slab_index(p, s, addr), map)) {
3658                        pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3659                        print_tracking(s, p);
3660                }
3661        }
3662        slab_unlock(page);
3663        kfree(map);
3664#endif
3665}
3666
3667/*
3668 * Attempt to free all partial slabs on a node.
3669 * This is called from __kmem_cache_shutdown(). We must take list_lock
3670 * because sysfs file might still access partial list after the shutdowning.
3671 */
3672static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3673{
3674        LIST_HEAD(discard);
3675        struct page *page, *h;
3676
3677        BUG_ON(irqs_disabled());
3678        spin_lock_irq(&n->list_lock);
3679        list_for_each_entry_safe(page, h, &n->partial, lru) {
3680                if (!page->inuse) {
3681                        remove_partial(n, page);
3682                        list_add(&page->lru, &discard);
3683                } else {
3684                        list_slab_objects(s, page,
3685                        "Objects remaining in %s on __kmem_cache_shutdown()");
3686                }
3687        }
3688        spin_unlock_irq(&n->list_lock);
3689
3690        list_for_each_entry_safe(page, h, &discard, lru)
3691                discard_slab(s, page);
3692}
3693
3694/*
3695 * Release all resources used by a slab cache.
3696 */
3697int __kmem_cache_shutdown(struct kmem_cache *s)
3698{
3699        int node;
3700        struct kmem_cache_node *n;
3701
3702        flush_all(s);
3703        /* Attempt to free all objects */
3704        for_each_kmem_cache_node(s, node, n) {
3705                free_partial(s, n);
3706                if (n->nr_partial || slabs_node(s, node))
3707                        return 1;
3708        }
3709        sysfs_slab_remove(s);
3710        return 0;
3711}
3712
3713/********************************************************************
3714 *              Kmalloc subsystem
3715 *******************************************************************/
3716
3717static int __init setup_slub_min_order(char *str)
3718{
3719        get_option(&str, &slub_min_order);
3720
3721        return 1;
3722}
3723
3724__setup("slub_min_order=", setup_slub_min_order);
3725
3726static int __init setup_slub_max_order(char *str)
3727{
3728        get_option(&str, &slub_max_order);
3729        slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3730
3731        return 1;
3732}
3733
3734__setup("slub_max_order=", setup_slub_max_order);
3735
3736static int __init setup_slub_min_objects(char *str)
3737{
3738        get_option(&str, &slub_min_objects);
3739
3740        return 1;
3741}
3742
3743__setup("slub_min_objects=", setup_slub_min_objects);
3744
3745void *__kmalloc(size_t size, gfp_t flags)
3746{
3747        struct kmem_cache *s;
3748        void *ret;
3749
3750        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3751                return kmalloc_large(size, flags);
3752
3753        s = kmalloc_slab(size, flags);
3754
3755        if (unlikely(ZERO_OR_NULL_PTR(s)))
3756                return s;
3757
3758        ret = slab_alloc(s, flags, _RET_IP_);
3759
3760        trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3761
3762        kasan_kmalloc(s, ret, size, flags);
3763
3764        return ret;
3765}
3766EXPORT_SYMBOL(__kmalloc);
3767
3768#ifdef CONFIG_NUMA
3769static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3770{
3771        struct page *page;
3772        void *ptr = NULL;
3773
3774        flags |= __GFP_COMP;
3775        page = alloc_pages_node(node, flags, get_order(size));
3776        if (page)
3777                ptr = page_address(page);
3778
3779        kmalloc_large_node_hook(ptr, size, flags);
3780        return ptr;
3781}
3782
3783void *__kmalloc_node(size_t size, gfp_t flags, int node)
3784{
3785        struct kmem_cache *s;
3786        void *ret;
3787
3788        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3789                ret = kmalloc_large_node(size, flags, node);
3790
3791                trace_kmalloc_node(_RET_IP_, ret,
3792                                   size, PAGE_SIZE << get_order(size),
3793                                   flags, node);
3794
3795                return ret;
3796        }
3797
3798        s = kmalloc_slab(size, flags);
3799
3800        if (unlikely(ZERO_OR_NULL_PTR(s)))
3801                return s;
3802
3803        ret = slab_alloc_node(s, flags, node, _RET_IP_);
3804
3805        trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3806
3807        kasan_kmalloc(s, ret, size, flags);
3808
3809        return ret;
3810}
3811EXPORT_SYMBOL(__kmalloc_node);
3812#endif
3813
3814#ifdef CONFIG_HARDENED_USERCOPY
3815/*
3816 * Rejects incorrectly sized objects and objects that are to be copied
3817 * to/from userspace but do not fall entirely within the containing slab
3818 * cache's usercopy region.
3819 *
3820 * Returns NULL if check passes, otherwise const char * to name of cache
3821 * to indicate an error.
3822 */
3823void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3824                         bool to_user)
3825{
3826        struct kmem_cache *s;
3827        unsigned long offset;
3828        size_t object_size;
3829
3830        /* Find object and usable object size. */
3831        s = page->slab_cache;
3832
3833        /* Reject impossible pointers. */
3834        if (ptr < page_address(page))
3835                usercopy_abort("SLUB object not in SLUB page?!", NULL,
3836                               to_user, 0, n);
3837
3838        /* Find offset within object. */
3839        offset = (ptr - page_address(page)) % s->size;
3840
3841        /* Adjust for redzone and reject if within the redzone. */
3842        if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3843                if (offset < s->red_left_pad)
3844                        usercopy_abort("SLUB object in left red zone",
3845                                       s->name, to_user, offset, n);
3846                offset -= s->red_left_pad;
3847        }
3848
3849        /* Allow address range falling entirely within usercopy region. */
3850        if (offset >= s->useroffset &&
3851            offset - s->useroffset <= s->usersize &&
3852            n <= s->useroffset - offset + s->usersize)
3853                return;
3854
3855        /*
3856         * If the copy is still within the allocated object, produce
3857         * a warning instead of rejecting the copy. This is intended
3858         * to be a temporary method to find any missing usercopy
3859         * whitelists.
3860         */
3861        object_size = slab_ksize(s);
3862        if (usercopy_fallback &&
3863            offset <= object_size && n <= object_size - offset) {
3864                usercopy_warn("SLUB object", s->name, to_user, offset, n);
3865                return;
3866        }
3867
3868        usercopy_abort("SLUB object", s->name, to_user, offset, n);
3869}
3870#endif /* CONFIG_HARDENED_USERCOPY */
3871
3872static size_t __ksize(const void *object)
3873{
3874        struct page *page;
3875
3876        if (unlikely(object == ZERO_SIZE_PTR))
3877                return 0;
3878
3879        page = virt_to_head_page(object);
3880
3881        if (unlikely(!PageSlab(page))) {
3882                WARN_ON(!PageCompound(page));
3883                return PAGE_SIZE << compound_order(page);
3884        }
3885
3886        return slab_ksize(page->slab_cache);
3887}
3888
3889size_t ksize(const void *object)
3890{
3891        size_t size = __ksize(object);
3892        /* We assume that ksize callers could use whole allocated area,
3893         * so we need to unpoison this area.
3894         */
3895        kasan_unpoison_shadow(object, size);
3896        return size;
3897}
3898EXPORT_SYMBOL(ksize);
3899
3900void kfree(const void *x)
3901{
3902        struct page *page;
3903        void *object = (void *)x;
3904
3905        trace_kfree(_RET_IP_, x);
3906
3907        if (unlikely(ZERO_OR_NULL_PTR(x)))
3908                return;
3909
3910        page = virt_to_head_page(x);
3911        if (unlikely(!PageSlab(page))) {
3912                BUG_ON(!PageCompound(page));
3913                kfree_hook(object);
3914                __free_pages(page, compound_order(page));
3915                return;
3916        }
3917        slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3918}
3919EXPORT_SYMBOL(kfree);
3920
3921#define SHRINK_PROMOTE_MAX 32
3922
3923/*
3924 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3925 * up most to the head of the partial lists. New allocations will then
3926 * fill those up and thus they can be removed from the partial lists.
3927 *
3928 * The slabs with the least items are placed last. This results in them
3929 * being allocated from last increasing the chance that the last objects
3930 * are freed in them.
3931 */
3932int __kmem_cache_shrink(struct kmem_cache *s)
3933{
3934        int node;
3935        int i;
3936        struct kmem_cache_node *n;
3937        struct page *page;
3938        struct page *t;
3939        struct list_head discard;
3940        struct list_head promote[SHRINK_PROMOTE_MAX];
3941        unsigned long flags;
3942        int ret = 0;
3943
3944        flush_all(s);
3945        for_each_kmem_cache_node(s, node, n) {
3946                INIT_LIST_HEAD(&discard);
3947                for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3948                        INIT_LIST_HEAD(promote + i);
3949
3950                spin_lock_irqsave(&n->list_lock, flags);
3951
3952                /*
3953                 * Build lists of slabs to discard or promote.
3954                 *
3955                 * Note that concurrent frees may occur while we hold the
3956                 * list_lock. page->inuse here is the upper limit.
3957                 */
3958                list_for_each_entry_safe(page, t, &n->partial, lru) {
3959                        int free = page->objects - page->inuse;
3960
3961                        /* Do not reread page->inuse */
3962                        barrier();
3963
3964                        /* We do not keep full slabs on the list */
3965                        BUG_ON(free <= 0);
3966
3967                        if (free == page->objects) {
3968                                list_move(&page->lru, &discard);
3969                                n->nr_partial--;
3970                        } else if (free <= SHRINK_PROMOTE_MAX)
3971                                list_move(&page->lru, promote + free - 1);
3972                }
3973
3974                /*
3975                 * Promote the slabs filled up most to the head of the
3976                 * partial list.
3977                 */
3978                for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3979                        list_splice(promote + i, &n->partial);
3980
3981                spin_unlock_irqrestore(&n->list_lock, flags);
3982
3983                /* Release empty slabs */
3984                list_for_each_entry_safe(page, t, &discard, lru)
3985                        discard_slab(s, page);
3986
3987                if (slabs_node(s, node))
3988                        ret = 1;
3989        }
3990
3991        return ret;
3992}
3993
3994#ifdef CONFIG_MEMCG
3995static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3996{
3997        /*
3998         * Called with all the locks held after a sched RCU grace period.
3999         * Even if @s becomes empty after shrinking, we can't know that @s
4000         * doesn't have allocations already in-flight and thus can't
4001         * destroy @s until the associated memcg is released.
4002         *
4003         * However, let's remove the sysfs files for empty caches here.
4004         * Each cache has a lot of interface files which aren't
4005         * particularly useful for empty draining caches; otherwise, we can
4006         * easily end up with millions of unnecessary sysfs files on
4007         * systems which have a lot of memory and transient cgroups.
4008         */
4009        if (!__kmem_cache_shrink(s))
4010                sysfs_slab_remove(s);
4011}
4012
4013void __kmemcg_cache_deactivate(struct kmem_cache *s)
4014{
4015        /*
4016         * Disable empty slabs caching. Used to avoid pinning offline
4017         * memory cgroups by kmem pages that can be freed.
4018         */
4019        slub_set_cpu_partial(s, 0);
4020        s->min_partial = 0;
4021
4022        /*
4023         * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4024         * we have to make sure the change is visible before shrinking.
4025         */
4026        slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4027}
4028#endif
4029
4030static int slab_mem_going_offline_callback(void *arg)
4031{
4032        struct kmem_cache *s;
4033
4034        mutex_lock(&slab_mutex);
4035        list_for_each_entry(s, &slab_caches, list)
4036                __kmem_cache_shrink(s);
4037        mutex_unlock(&slab_mutex);
4038
4039        return 0;
4040}
4041
4042static void slab_mem_offline_callback(void *arg)
4043{
4044        struct kmem_cache_node *n;
4045        struct kmem_cache *s;
4046        struct memory_notify *marg = arg;
4047        int offline_node;
4048
4049        offline_node = marg->status_change_nid_normal;
4050
4051        /*
4052         * If the node still has available memory. we need kmem_cache_node
4053         * for it yet.
4054         */
4055        if (offline_node < 0)
4056                return;
4057
4058        mutex_lock(&slab_mutex);
4059        list_for_each_entry(s, &slab_caches, list) {
4060                n = get_node(s, offline_node);
4061                if (n) {
4062                        /*
4063                         * if n->nr_slabs > 0, slabs still exist on the node
4064                         * that is going down. We were unable to free them,
4065                         * and offline_pages() function shouldn't call this
4066                         * callback. So, we must fail.
4067                         */
4068                        BUG_ON(slabs_node(s, offline_node));
4069
4070                        s->node[offline_node] = NULL;
4071                        kmem_cache_free(kmem_cache_node, n);
4072                }
4073        }
4074        mutex_unlock(&slab_mutex);
4075}
4076
4077static int slab_mem_going_online_callback(void *arg)
4078{
4079        struct kmem_cache_node *n;
4080        struct kmem_cache *s;
4081        struct memory_notify *marg = arg;
4082        int nid = marg->status_change_nid_normal;
4083        int ret = 0;
4084
4085        /*
4086         * If the node's memory is already available, then kmem_cache_node is
4087         * already created. Nothing to do.
4088         */
4089        if (nid < 0)
4090                return 0;
4091
4092        /*
4093         * We are bringing a node online. No memory is available yet. We must
4094         * allocate a kmem_cache_node structure in order to bring the node
4095         * online.
4096         */
4097        mutex_lock(&slab_mutex);
4098        list_for_each_entry(s, &slab_caches, list) {
4099                /*
4100                 * XXX: kmem_cache_alloc_node will fallback to other nodes
4101                 *      since memory is not yet available from the node that
4102                 *      is brought up.
4103                 */
4104                n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4105                if (!n) {
4106                        ret = -ENOMEM;
4107                        goto out;
4108                }
4109                init_kmem_cache_node(n);
4110                s->node[nid] = n;
4111        }
4112out:
4113        mutex_unlock(&slab_mutex);
4114        return ret;
4115}
4116
4117static int slab_memory_callback(struct notifier_block *self,
4118                                unsigned long action, void *arg)
4119{
4120        int ret = 0;
4121
4122        switch (action) {
4123        case MEM_GOING_ONLINE:
4124                ret = slab_mem_going_online_callback(arg);
4125                break;
4126        case MEM_GOING_OFFLINE:
4127                ret = slab_mem_going_offline_callback(arg);
4128                break;
4129        case MEM_OFFLINE:
4130        case MEM_CANCEL_ONLINE:
4131                slab_mem_offline_callback(arg);
4132                break;
4133        case MEM_ONLINE:
4134        case MEM_CANCEL_OFFLINE:
4135                break;
4136        }
4137        if (ret)
4138                ret = notifier_from_errno(ret);
4139        else
4140                ret = NOTIFY_OK;
4141        return ret;
4142}
4143
4144static struct notifier_block slab_memory_callback_nb = {
4145        .notifier_call = slab_memory_callback,
4146        .priority = SLAB_CALLBACK_PRI,
4147};
4148
4149/********************************************************************
4150 *                      Basic setup of slabs
4151 *******************************************************************/
4152
4153/*
4154 * Used for early kmem_cache structures that were allocated using
4155 * the page allocator. Allocate them properly then fix up the pointers
4156 * that may be pointing to the wrong kmem_cache structure.
4157 */
4158
4159static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4160{
4161        int node;
4162        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4163        struct kmem_cache_node *n;
4164
4165        memcpy(s, static_cache, kmem_cache->object_size);
4166
4167        /*
4168         * This runs very early, and only the boot processor is supposed to be
4169         * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4170         * IPIs around.
4171         */
4172        __flush_cpu_slab(s, smp_processor_id());
4173        for_each_kmem_cache_node(s, node, n) {
4174                struct page *p;
4175
4176                list_for_each_entry(p, &n->partial, lru)
4177                        p->slab_cache = s;
4178
4179#ifdef CONFIG_SLUB_DEBUG
4180                list_for_each_entry(p, &n->full, lru)
4181                        p->slab_cache = s;
4182#endif
4183        }
4184        slab_init_memcg_params(s);
4185        list_add(&s->list, &slab_caches);
4186        memcg_link_cache(s);
4187        return s;
4188}
4189
4190void __init kmem_cache_init(void)
4191{
4192        static __initdata struct kmem_cache boot_kmem_cache,
4193                boot_kmem_cache_node;
4194
4195        if (debug_guardpage_minorder())
4196                slub_max_order = 0;
4197
4198        kmem_cache_node = &boot_kmem_cache_node;
4199        kmem_cache = &boot_kmem_cache;
4200
4201        create_boot_cache(kmem_cache_node, "kmem_cache_node",
4202                sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4203
4204        register_hotmemory_notifier(&slab_memory_callback_nb);
4205
4206        /* Able to allocate the per node structures */
4207        slab_state = PARTIAL;
4208
4209        create_boot_cache(kmem_cache, "kmem_cache",
4210                        offsetof(struct kmem_cache, node) +
4211                                nr_node_ids * sizeof(struct kmem_cache_node *),
4212                       SLAB_HWCACHE_ALIGN, 0, 0);
4213
4214        kmem_cache = bootstrap(&boot_kmem_cache);
4215
4216        /*
4217         * Allocate kmem_cache_node properly from the kmem_cache slab.
4218         * kmem_cache_node is separately allocated so no need to
4219         * update any list pointers.
4220         */
4221        kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4222
4223        /* Now we can use the kmem_cache to allocate kmalloc slabs */
4224        setup_kmalloc_cache_index_table();
4225        create_kmalloc_caches(0);
4226
4227        /* Setup random freelists for each cache */
4228        init_freelist_randomization();
4229
4230        cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4231                                  slub_cpu_dead);
4232
4233        pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4234                cache_line_size(),
4235                slub_min_order, slub_max_order, slub_min_objects,
4236                nr_cpu_ids, nr_node_ids);
4237}
4238
4239void __init kmem_cache_init_late(void)
4240{
4241}
4242
4243struct kmem_cache *
4244__kmem_cache_alias(const char *name, size_t size, size_t align,
4245                   slab_flags_t flags, void (*ctor)(void *))
4246{
4247        struct kmem_cache *s, *c;
4248
4249        s = find_mergeable(size, align, flags, name, ctor);
4250        if (s) {
4251                s->refcount++;
4252
4253                /*
4254                 * Adjust the object sizes so that we clear
4255                 * the complete object on kzalloc.
4256                 */
4257                s->object_size = max(s->object_size, (int)size);
4258                s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4259
4260                for_each_memcg_cache(c, s) {
4261                        c->object_size = s->object_size;
4262                        c->inuse = max_t(int, c->inuse,
4263                                         ALIGN(size, sizeof(void *)));
4264                }
4265
4266                if (sysfs_slab_alias(s, name)) {
4267                        s->refcount--;
4268                        s = NULL;
4269                }
4270        }
4271
4272        return s;
4273}
4274
4275int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4276{
4277        int err;
4278
4279        err = kmem_cache_open(s, flags);
4280        if (err)
4281                return err;
4282
4283        /* Mutex is not taken during early boot */
4284        if (slab_state <= UP)
4285                return 0;
4286
4287        memcg_propagate_slab_attrs(s);
4288        err = sysfs_slab_add(s);
4289        if (err)
4290                __kmem_cache_release(s);
4291
4292        return err;
4293}
4294
4295void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4296{
4297        struct kmem_cache *s;
4298        void *ret;
4299
4300        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4301                return kmalloc_large(size, gfpflags);
4302
4303        s = kmalloc_slab(size, gfpflags);
4304
4305        if (unlikely(ZERO_OR_NULL_PTR(s)))
4306                return s;
4307
4308        ret = slab_alloc(s, gfpflags, caller);
4309
4310        /* Honor the call site pointer we received. */
4311        trace_kmalloc(caller, ret, size, s->size, gfpflags);
4312
4313        return ret;
4314}
4315
4316#ifdef CONFIG_NUMA
4317void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4318                                        int node, unsigned long caller)
4319{
4320        struct kmem_cache *s;
4321        void *ret;
4322
4323        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4324                ret = kmalloc_large_node(size, gfpflags, node);
4325
4326                trace_kmalloc_node(caller, ret,
4327                                   size, PAGE_SIZE << get_order(size),
4328                                   gfpflags, node);
4329
4330                return ret;
4331        }
4332
4333        s = kmalloc_slab(size, gfpflags);
4334
4335        if (unlikely(ZERO_OR_NULL_PTR(s)))
4336                return s;
4337
4338        ret = slab_alloc_node(s, gfpflags, node, caller);
4339
4340        /* Honor the call site pointer we received. */
4341        trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4342
4343        return ret;
4344}
4345#endif
4346
4347#ifdef CONFIG_SYSFS
4348static int count_inuse(struct page *page)
4349{
4350        return page->inuse;
4351}
4352
4353static int count_total(struct page *page)
4354{
4355        return page->objects;
4356}
4357#endif
4358
4359#ifdef CONFIG_SLUB_DEBUG
4360static int validate_slab(struct kmem_cache *s, struct page *page,
4361                                                unsigned long *map)
4362{
4363        void *p;
4364        void *addr = page_address(page);
4365
4366        if (!check_slab(s, page) ||
4367                        !on_freelist(s, page, NULL))
4368                return 0;
4369
4370        /* Now we know that a valid freelist exists */
4371        bitmap_zero(map, page->objects);
4372
4373        get_map(s, page, map);
4374        for_each_object(p, s, addr, page->objects) {
4375                if (test_bit(slab_index(p, s, addr), map))
4376                        if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4377                                return 0;
4378        }
4379
4380        for_each_object(p, s, addr, page->objects)
4381                if (!test_bit(slab_index(p, s, addr), map))
4382                        if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4383                                return 0;
4384        return 1;
4385}
4386
4387static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4388                                                unsigned long *map)
4389{
4390        slab_lock(page);
4391        validate_slab(s, page, map);
4392        slab_unlock(page);
4393}
4394
4395static int validate_slab_node(struct kmem_cache *s,
4396                struct kmem_cache_node *n, unsigned long *map)
4397{
4398        unsigned long count = 0;
4399        struct page *page;
4400        unsigned long flags;
4401
4402        spin_lock_irqsave(&n->list_lock, flags);
4403
4404        list_for_each_entry(page, &n->partial, lru) {
4405                validate_slab_slab(s, page, map);
4406                count++;
4407        }
4408        if (count != n->nr_partial)
4409                pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4410                       s->name, count, n->nr_partial);
4411
4412        if (!(s->flags & SLAB_STORE_USER))
4413                goto out;
4414
4415        list_for_each_entry(page, &n->full, lru) {
4416                validate_slab_slab(s, page, map);
4417                count++;
4418        }
4419        if (count != atomic_long_read(&n->nr_slabs))
4420                pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4421                       s->name, count, atomic_long_read(&n->nr_slabs));
4422
4423out:
4424        spin_unlock_irqrestore(&n->list_lock, flags);
4425        return count;
4426}
4427
4428static long validate_slab_cache(struct kmem_cache *s)
4429{
4430        int node;
4431        unsigned long count = 0;
4432        unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4433                                sizeof(unsigned long), GFP_KERNEL);
4434        struct kmem_cache_node *n;
4435
4436        if (!map)
4437                return -ENOMEM;
4438
4439        flush_all(s);
4440        for_each_kmem_cache_node(s, node, n)
4441                count += validate_slab_node(s, n, map);
4442        kfree(map);
4443        return count;
4444}
4445/*
4446 * Generate lists of code addresses where slabcache objects are allocated
4447 * and freed.
4448 */
4449
4450struct location {
4451        unsigned long count;
4452        unsigned long addr;
4453        long long sum_time;
4454        long min_time;
4455        long max_time;
4456        long min_pid;
4457        long max_pid;
4458        DECLARE_BITMAP(cpus, NR_CPUS);
4459        nodemask_t nodes;
4460};
4461
4462struct loc_track {
4463        unsigned long max;
4464        unsigned long count;
4465        struct location *loc;
4466};
4467
4468static void free_loc_track(struct loc_track *t)
4469{
4470        if (t->max)
4471                free_pages((unsigned long)t->loc,
4472                        get_order(sizeof(struct location) * t->max));
4473}
4474
4475static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4476{
4477        struct location *l;
4478        int order;
4479
4480        order = get_order(sizeof(struct location) * max);
4481
4482        l = (void *)__get_free_pages(flags, order);
4483        if (!l)
4484                return 0;
4485
4486        if (t->count) {
4487                memcpy(l, t->loc, sizeof(struct location) * t->count);
4488                free_loc_track(t);
4489        }
4490        t->max = max;
4491        t->loc = l;
4492        return 1;
4493}
4494
4495static int add_location(struct loc_track *t, struct kmem_cache *s,
4496                                const struct track *track)
4497{
4498        long start, end, pos;
4499        struct location *l;
4500        unsigned long caddr;
4501        unsigned long age = jiffies - track->when;
4502
4503        start = -1;
4504        end = t->count;
4505
4506        for ( ; ; ) {
4507                pos = start + (end - start + 1) / 2;
4508
4509                /*
4510                 * There is nothing at "end". If we end up there
4511                 * we need to add something to before end.
4512                 */
4513                if (pos == end)
4514                        break;
4515
4516                caddr = t->loc[pos].addr;
4517                if (track->addr == caddr) {
4518
4519                        l = &t->loc[pos];
4520                        l->count++;
4521                        if (track->when) {
4522                                l->sum_time += age;
4523                                if (age < l->min_time)
4524                                        l->min_time = age;
4525                                if (age > l->max_time)
4526                                        l->max_time = age;
4527
4528                                if (track->pid < l->min_pid)
4529                                        l->min_pid = track->pid;
4530                                if (track->pid > l->max_pid)
4531                                        l->max_pid = track->pid;
4532
4533                                cpumask_set_cpu(track->cpu,
4534                                                to_cpumask(l->cpus));
4535                        }
4536                        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4537                        return 1;
4538                }
4539
4540                if (track->addr < caddr)
4541                        end = pos;
4542                else
4543                        start = pos;
4544        }
4545
4546        /*
4547         * Not found. Insert new tracking element.
4548         */
4549        if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4550                return 0;
4551
4552        l = t->loc + pos;
4553        if (pos < t->count)
4554                memmove(l + 1, l,
4555                        (t->count - pos) * sizeof(struct location));
4556        t->count++;
4557        l->count = 1;
4558        l->addr = track->addr;
4559        l->sum_time = age;
4560        l->min_time = age;
4561        l->max_time = age;
4562        l->min_pid = track->pid;
4563        l->max_pid = track->pid;
4564        cpumask_clear(to_cpumask(l->cpus));
4565        cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4566        nodes_clear(l->nodes);
4567        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4568        return 1;
4569}
4570
4571static void process_slab(struct loc_track *t, struct kmem_cache *s,
4572                struct page *page, enum track_item alloc,
4573                unsigned long *map)
4574{
4575        void *addr = page_address(page);
4576        void *p;
4577
4578        bitmap_zero(map, page->objects);
4579        get_map(s, page, map);
4580
4581        for_each_object(p, s, addr, page->objects)
4582                if (!test_bit(slab_index(p, s, addr), map))
4583                        add_location(t, s, get_track(s, p, alloc));
4584}
4585
4586static int list_locations(struct kmem_cache *s, char *buf,
4587                                        enum track_item alloc)
4588{
4589        int len = 0;
4590        unsigned long i;
4591        struct loc_track t = { 0, 0, NULL };
4592        int node;
4593        unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4594                                     sizeof(unsigned long), GFP_KERNEL);
4595        struct kmem_cache_node *n;
4596
4597        if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4598                                     GFP_KERNEL)) {
4599                kfree(map);
4600                return sprintf(buf, "Out of memory\n");
4601        }
4602        /* Push back cpu slabs */
4603        flush_all(s);
4604
4605        for_each_kmem_cache_node(s, node, n) {
4606                unsigned long flags;
4607                struct page *page;
4608
4609                if (!atomic_long_read(&n->nr_slabs))
4610                        continue;
4611
4612                spin_lock_irqsave(&n->list_lock, flags);
4613                list_for_each_entry(page, &n->partial, lru)
4614                        process_slab(&t, s, page, alloc, map);
4615                list_for_each_entry(page, &n->full, lru)
4616                        process_slab(&t, s, page, alloc, map);
4617                spin_unlock_irqrestore(&n->list_lock, flags);
4618        }
4619
4620        for (i = 0; i < t.count; i++) {
4621                struct location *l = &t.loc[i];
4622
4623                if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4624                        break;
4625                len += sprintf(buf + len, "%7ld ", l->count);
4626
4627                if (l->addr)
4628                        len += sprintf(buf + len, "%pS", (void *)l->addr);
4629                else
4630                        len += sprintf(buf + len, "<not-available>");
4631
4632                if (l->sum_time != l->min_time) {
4633                        len += sprintf(buf + len, " age=%ld/%ld/%ld",
4634                                l->min_time,
4635                                (long)div_u64(l->sum_time, l->count),
4636                                l->max_time);
4637                } else
4638                        len += sprintf(buf + len, " age=%ld",
4639                                l->min_time);
4640
4641                if (l->min_pid != l->max_pid)
4642                        len += sprintf(buf + len, " pid=%ld-%ld",
4643                                l->min_pid, l->max_pid);
4644                else
4645                        len += sprintf(buf + len, " pid=%ld",
4646                                l->min_pid);
4647
4648                if (num_online_cpus() > 1 &&
4649                                !cpumask_empty(to_cpumask(l->cpus)) &&
4650                                len < PAGE_SIZE - 60)
4651                        len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4652                                         " cpus=%*pbl",
4653                                         cpumask_pr_args(to_cpumask(l->cpus)));
4654
4655                if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4656                                len < PAGE_SIZE - 60)
4657                        len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4658                                         " nodes=%*pbl",
4659                                         nodemask_pr_args(&l->nodes));
4660
4661                len += sprintf(buf + len, "\n");
4662        }
4663
4664        free_loc_track(&t);
4665        kfree(map);
4666        if (!t.count)
4667                len += sprintf(buf, "No data\n");
4668        return len;
4669}
4670#endif
4671
4672#ifdef SLUB_RESILIENCY_TEST
4673static void __init resiliency_test(void)
4674{
4675        u8 *p;
4676
4677        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4678
4679        pr_err("SLUB resiliency testing\n");
4680        pr_err("-----------------------\n");
4681        pr_err("A. Corruption after allocation\n");
4682
4683        p = kzalloc(16, GFP_KERNEL);
4684        p[16] = 0x12;
4685        pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4686               p + 16);
4687
4688        validate_slab_cache(kmalloc_caches[4]);
4689
4690        /* Hmmm... The next two are dangerous */
4691        p = kzalloc(32, GFP_KERNEL);
4692        p[32 + sizeof(void *)] = 0x34;
4693        pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4694               p);
4695        pr_err("If allocated object is overwritten then not detectable\n\n");
4696
4697        validate_slab_cache(kmalloc_caches[5]);
4698        p = kzalloc(64, GFP_KERNEL);
4699        p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4700        *p = 0x56;
4701        pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4702               p);
4703        pr_err("If allocated object is overwritten then not detectable\n\n");
4704        validate_slab_cache(kmalloc_caches[6]);
4705
4706        pr_err("\nB. Corruption after free\n");
4707        p = kzalloc(128, GFP_KERNEL);
4708        kfree(p);
4709        *p = 0x78;
4710        pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4711        validate_slab_cache(kmalloc_caches[7]);
4712
4713        p = kzalloc(256, GFP_KERNEL);
4714        kfree(p);
4715        p[50] = 0x9a;
4716        pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4717        validate_slab_cache(kmalloc_caches[8]);
4718
4719        p = kzalloc(512, GFP_KERNEL);
4720        kfree(p);
4721        p[512] = 0xab;
4722        pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4723        validate_slab_cache(kmalloc_caches[9]);
4724}
4725#else
4726#ifdef CONFIG_SYSFS
4727static void resiliency_test(void) {};
4728#endif
4729#endif
4730
4731#ifdef CONFIG_SYSFS
4732enum slab_stat_type {
4733        SL_ALL,                 /* All slabs */
4734        SL_PARTIAL,             /* Only partially allocated slabs */
4735        SL_CPU,                 /* Only slabs used for cpu caches */
4736        SL_OBJECTS,             /* Determine allocated objects not slabs */
4737        SL_TOTAL                /* Determine object capacity not slabs */
4738};
4739
4740#define SO_ALL          (1 << SL_ALL)
4741#define SO_PARTIAL      (1 << SL_PARTIAL)
4742#define SO_CPU          (1 << SL_CPU)
4743#define SO_OBJECTS      (1 << SL_OBJECTS)
4744#define SO_TOTAL        (1 << SL_TOTAL)
4745
4746#ifdef CONFIG_MEMCG
4747static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4748
4749static int __init setup_slub_memcg_sysfs(char *str)
4750{
4751        int v;
4752
4753        if (get_option(&str, &v) > 0)
4754                memcg_sysfs_enabled = v;
4755
4756        return 1;
4757}
4758
4759__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4760#endif
4761
4762static ssize_t show_slab_objects(struct kmem_cache *s,
4763                            char *buf, unsigned long flags)
4764{
4765        unsigned long total = 0;
4766        int node;
4767        int x;
4768        unsigned long *nodes;
4769
4770        nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4771        if (!nodes)
4772                return -ENOMEM;
4773
4774        if (flags & SO_CPU) {
4775                int cpu;
4776
4777                for_each_possible_cpu(cpu) {
4778                        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4779                                                               cpu);
4780                        int node;
4781                        struct page *page;
4782
4783                        page = READ_ONCE(c->page);
4784                        if (!page)
4785                                continue;
4786
4787                        node = page_to_nid(page);
4788                        if (flags & SO_TOTAL)
4789                                x = page->objects;
4790                        else if (flags & SO_OBJECTS)
4791                                x = page->inuse;
4792                        else
4793                                x = 1;
4794
4795                        total += x;
4796                        nodes[node] += x;
4797
4798                        page = slub_percpu_partial_read_once(c);
4799                        if (page) {
4800                                node = page_to_nid(page);
4801                                if (flags & SO_TOTAL)
4802                                        WARN_ON_ONCE(1);
4803                                else if (flags & SO_OBJECTS)
4804                                        WARN_ON_ONCE(1);
4805                                else
4806                                        x = page->pages;
4807                                total += x;
4808                                nodes[node] += x;
4809                        }
4810                }
4811        }
4812
4813        get_online_mems();
4814#ifdef CONFIG_SLUB_DEBUG
4815        if (flags & SO_ALL) {
4816                struct kmem_cache_node *n;
4817
4818                for_each_kmem_cache_node(s, node, n) {
4819
4820                        if (flags & SO_TOTAL)
4821                                x = atomic_long_read(&n->total_objects);
4822                        else if (flags & SO_OBJECTS)
4823                                x = atomic_long_read(&n->total_objects) -
4824                                        count_partial(n, count_free);
4825                        else
4826                                x = atomic_long_read(&n->nr_slabs);
4827                        total += x;
4828                        nodes[node] += x;
4829                }
4830
4831        } else
4832#endif
4833        if (flags & SO_PARTIAL) {
4834                struct kmem_cache_node *n;
4835
4836                for_each_kmem_cache_node(s, node, n) {
4837                        if (flags & SO_TOTAL)
4838                                x = count_partial(n, count_total);
4839                        else if (flags & SO_OBJECTS)
4840                                x = count_partial(n, count_inuse);
4841                        else
4842                                x = n->nr_partial;
4843                        total += x;
4844                        nodes[node] += x;
4845                }
4846        }
4847        x = sprintf(buf, "%lu", total);
4848#ifdef CONFIG_NUMA
4849        for (node = 0; node < nr_node_ids; node++)
4850                if (nodes[node])
4851                        x += sprintf(buf + x, " N%d=%lu",
4852                                        node, nodes[node]);
4853#endif
4854        put_online_mems();
4855        kfree(nodes);
4856        return x + sprintf(buf + x, "\n");
4857}
4858
4859#ifdef CONFIG_SLUB_DEBUG
4860static int any_slab_objects(struct kmem_cache *s)
4861{
4862        int node;
4863        struct kmem_cache_node *n;
4864
4865        for_each_kmem_cache_node(s, node, n)
4866                if (atomic_long_read(&n->total_objects))
4867                        return 1;
4868
4869        return 0;
4870}
4871#endif
4872
4873#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4874#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4875
4876struct slab_attribute {
4877        struct attribute attr;
4878        ssize_t (*show)(struct kmem_cache *s, char *buf);
4879        ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4880};
4881
4882#define SLAB_ATTR_RO(_name) \
4883        static struct slab_attribute _name##_attr = \
4884        __ATTR(_name, 0400, _name##_show, NULL)
4885
4886#define SLAB_ATTR(_name) \
4887        static struct slab_attribute _name##_attr =  \
4888        __ATTR(_name, 0600, _name##_show, _name##_store)
4889
4890static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4891{
4892        return sprintf(buf, "%d\n", s->size);
4893}
4894SLAB_ATTR_RO(slab_size);
4895
4896static ssize_t align_show(struct kmem_cache *s, char *buf)
4897{
4898        return sprintf(buf, "%d\n", s->align);
4899}
4900SLAB_ATTR_RO(align);
4901
4902static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4903{
4904        return sprintf(buf, "%d\n", s->object_size);
4905}
4906SLAB_ATTR_RO(object_size);
4907
4908static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4909{
4910        return sprintf(buf, "%d\n", oo_objects(s->oo));
4911}
4912SLAB_ATTR_RO(objs_per_slab);
4913
4914static ssize_t order_store(struct kmem_cache *s,
4915                                const char *buf, size_t length)
4916{
4917        unsigned long order;
4918        int err;
4919
4920        err = kstrtoul(buf, 10, &order);
4921        if (err)
4922                return err;
4923
4924        if (order > slub_max_order || order < slub_min_order)
4925                return -EINVAL;
4926
4927        calculate_sizes(s, order);
4928        return length;
4929}
4930
4931static ssize_t order_show(struct kmem_cache *s, char *buf)
4932{
4933        return sprintf(buf, "%d\n", oo_order(s->oo));
4934}
4935SLAB_ATTR(order);
4936
4937static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4938{
4939        return sprintf(buf, "%lu\n", s->min_partial);
4940}
4941
4942static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4943                                 size_t length)
4944{
4945        unsigned long min;
4946        int err;
4947
4948        err = kstrtoul(buf, 10, &min);
4949        if (err)
4950                return err;
4951
4952        set_min_partial(s, min);
4953        return length;
4954}
4955SLAB_ATTR(min_partial);
4956
4957static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4958{
4959        return sprintf(buf, "%u\n", slub_cpu_partial(s));
4960}
4961
4962static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4963                                 size_t length)
4964{
4965        unsigned long objects;
4966        int err;
4967
4968        err = kstrtoul(buf, 10, &objects);
4969        if (err)
4970                return err;
4971        if (objects && !kmem_cache_has_cpu_partial(s))
4972                return -EINVAL;
4973
4974        slub_set_cpu_partial(s, objects);
4975        flush_all(s);
4976        return length;
4977}
4978SLAB_ATTR(cpu_partial);
4979
4980static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4981{
4982        if (!s->ctor)
4983                return 0;
4984        return sprintf(buf, "%pS\n", s->ctor);
4985}
4986SLAB_ATTR_RO(ctor);
4987
4988static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4989{
4990        return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4991}
4992SLAB_ATTR_RO(aliases);
4993
4994static ssize_t partial_show(struct kmem_cache *s, char *buf)
4995{
4996        return show_slab_objects(s, buf, SO_PARTIAL);
4997}
4998SLAB_ATTR_RO(partial);
4999
5000static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5001{
5002        return show_slab_objects(s, buf, SO_CPU);
5003}
5004SLAB_ATTR_RO(cpu_slabs);
5005
5006static ssize_t objects_show(struct kmem_cache *s, char *buf)
5007{
5008        return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5009}
5010SLAB_ATTR_RO(objects);
5011
5012static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5013{
5014        return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5015}
5016SLAB_ATTR_RO(objects_partial);
5017
5018static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5019{
5020        int objects = 0;
5021        int pages = 0;
5022        int cpu;
5023        int len;
5024
5025        for_each_online_cpu(cpu) {
5026                struct page *page;
5027
5028                page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5029
5030                if (page) {
5031                        pages += page->pages;
5032                        objects += page->pobjects;
5033                }
5034        }
5035
5036        len = sprintf(buf, "%d(%d)", objects, pages);
5037
5038#ifdef CONFIG_SMP
5039        for_each_online_cpu(cpu) {
5040                struct page *page;
5041
5042                page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5043
5044                if (page && len < PAGE_SIZE - 20)
5045                        len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5046                                page->pobjects, page->pages);
5047        }
5048#endif
5049        return len + sprintf(buf + len, "\n");
5050}
5051SLAB_ATTR_RO(slabs_cpu_partial);
5052
5053static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5054{
5055        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5056}
5057
5058static ssize_t reclaim_account_store(struct kmem_cache *s,
5059                                const char *buf, size_t length)
5060{
5061        s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5062        if (buf[0] == '1')
5063                s->flags |= SLAB_RECLAIM_ACCOUNT;
5064        return length;
5065}
5066SLAB_ATTR(reclaim_account);
5067
5068static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5069{
5070        return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5071}
5072SLAB_ATTR_RO(hwcache_align);
5073
5074#ifdef CONFIG_ZONE_DMA
5075static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5076{
5077        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5078}
5079SLAB_ATTR_RO(cache_dma);
5080#endif
5081
5082static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5083{
5084        return sprintf(buf, "%zu\n", s->usersize);
5085}
5086SLAB_ATTR_RO(usersize);
5087
5088static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5089{
5090        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5091}
5092SLAB_ATTR_RO(destroy_by_rcu);
5093
5094static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5095{
5096        return sprintf(buf, "%d\n", s->reserved);
5097}
5098SLAB_ATTR_RO(reserved);
5099
5100#ifdef CONFIG_SLUB_DEBUG
5101static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5102{
5103        return show_slab_objects(s, buf, SO_ALL);
5104}
5105SLAB_ATTR_RO(slabs);
5106
5107static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5108{
5109        return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5110}
5111SLAB_ATTR_RO(total_objects);
5112
5113static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5114{
5115        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5116}
5117
5118static ssize_t sanity_checks_store(struct kmem_cache *s,
5119                                const char *buf, size_t length)
5120{
5121        s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5122        if (buf[0] == '1') {
5123                s->flags &= ~__CMPXCHG_DOUBLE;
5124                s->flags |= SLAB_CONSISTENCY_CHECKS;
5125        }
5126        return length;
5127}
5128SLAB_ATTR(sanity_checks);
5129
5130static ssize_t trace_show(struct kmem_cache *s, char *buf)
5131{
5132        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5133}
5134
5135static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5136                                                        size_t length)
5137{
5138        /*
5139         * Tracing a merged cache is going to give confusing results
5140         * as well as cause other issues like converting a mergeable
5141         * cache into an umergeable one.
5142         */
5143        if (s->refcount > 1)
5144                return -EINVAL;
5145
5146        s->flags &= ~SLAB_TRACE;
5147        if (buf[0] == '1') {
5148                s->flags &= ~__CMPXCHG_DOUBLE;
5149                s->flags |= SLAB_TRACE;
5150        }
5151        return length;
5152}
5153SLAB_ATTR(trace);
5154
5155static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5156{
5157        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5158}
5159
5160static ssize_t red_zone_store(struct kmem_cache *s,
5161                                const char *buf, size_t length)
5162{
5163        if (any_slab_objects(s))
5164                return -EBUSY;
5165
5166        s->flags &= ~SLAB_RED_ZONE;
5167        if (buf[0] == '1') {
5168                s->flags |= SLAB_RED_ZONE;
5169        }
5170        calculate_sizes(s, -1);
5171        return length;
5172}
5173SLAB_ATTR(red_zone);
5174
5175static ssize_t poison_show(struct kmem_cache *s, char *buf)
5176{
5177        return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5178}
5179
5180static ssize_t poison_store(struct kmem_cache *s,
5181                                const char *buf, size_t length)
5182{
5183        if (any_slab_objects(s))
5184                return -EBUSY;
5185
5186        s->flags &= ~SLAB_POISON;
5187        if (buf[0] == '1') {
5188                s->flags |= SLAB_POISON;
5189        }
5190        calculate_sizes(s, -1);
5191        return length;
5192}
5193SLAB_ATTR(poison);
5194
5195static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5196{
5197        return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5198}
5199
5200static ssize_t store_user_store(struct kmem_cache *s,
5201                                const char *buf, size_t length)
5202{
5203        if (any_slab_objects(s))
5204                return -EBUSY;
5205
5206        s->flags &= ~SLAB_STORE_USER;
5207        if (buf[0] == '1') {
5208                s->flags &= ~__CMPXCHG_DOUBLE;
5209                s->flags |= SLAB_STORE_USER;
5210        }
5211        calculate_sizes(s, -1);
5212        return length;
5213}
5214SLAB_ATTR(store_user);
5215
5216static ssize_t validate_show(struct kmem_cache *s, char *buf)
5217{
5218        return 0;
5219}
5220
5221static ssize_t validate_store(struct kmem_cache *s,
5222                        const char *buf, size_t length)
5223{
5224        int ret = -EINVAL;
5225
5226        if (buf[0] == '1') {
5227                ret = validate_slab_cache(s);
5228                if (ret >= 0)
5229                        ret = length;
5230        }
5231        return ret;
5232}
5233SLAB_ATTR(validate);
5234
5235static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5236{
5237        if (!(s->flags & SLAB_STORE_USER))
5238                return -ENOSYS;
5239        return list_locations(s, buf, TRACK_ALLOC);
5240}
5241SLAB_ATTR_RO(alloc_calls);
5242
5243static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5244{
5245        if (!(s->flags & SLAB_STORE_USER))
5246                return -ENOSYS;
5247        return list_locations(s, buf, TRACK_FREE);
5248}
5249SLAB_ATTR_RO(free_calls);
5250#endif /* CONFIG_SLUB_DEBUG */
5251
5252#ifdef CONFIG_FAILSLAB
5253static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5254{
5255        return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5256}
5257
5258static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5259                                                        size_t length)
5260{
5261        if (s->refcount > 1)
5262                return -EINVAL;
5263
5264        s->flags &= ~SLAB_FAILSLAB;
5265        if (buf[0] == '1')
5266                s->flags |= SLAB_FAILSLAB;
5267        return length;
5268}
5269SLAB_ATTR(failslab);
5270#endif
5271
5272static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5273{
5274        return 0;
5275}
5276
5277static ssize_t shrink_store(struct kmem_cache *s,
5278                        const char *buf, size_t length)
5279{
5280        if (buf[0] == '1')
5281                kmem_cache_shrink(s);
5282        else
5283                return -EINVAL;
5284        return length;
5285}
5286SLAB_ATTR(shrink);
5287
5288#ifdef CONFIG_NUMA
5289static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5290{
5291        return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5292}
5293
5294static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5295                                const char *buf, size_t length)
5296{
5297        unsigned long ratio;
5298        int err;
5299
5300        err = kstrtoul(buf, 10, &ratio);
5301        if (err)
5302                return err;
5303
5304        if (ratio <= 100)
5305                s->remote_node_defrag_ratio = ratio * 10;
5306
5307        return length;
5308}
5309SLAB_ATTR(remote_node_defrag_ratio);
5310#endif
5311
5312#ifdef CONFIG_SLUB_STATS
5313static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5314{
5315        unsigned long sum  = 0;
5316        int cpu;
5317        int len;
5318        int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5319
5320        if (!data)
5321                return -ENOMEM;
5322
5323        for_each_online_cpu(cpu) {
5324                unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5325
5326                data[cpu] = x;
5327                sum += x;
5328        }
5329
5330        len = sprintf(buf, "%lu", sum);
5331
5332#ifdef CONFIG_SMP
5333        for_each_online_cpu(cpu) {
5334                if (data[cpu] && len < PAGE_SIZE - 20)
5335                        len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5336        }
5337#endif
5338        kfree(data);
5339        return len + sprintf(buf + len, "\n");
5340}
5341
5342static void clear_stat(struct kmem_cache *s, enum stat_item si)
5343{
5344        int cpu;
5345
5346        for_each_online_cpu(cpu)
5347                per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5348}
5349
5350#define STAT_ATTR(si, text)                                     \
5351static ssize_t text##_show(struct kmem_cache *s, char *buf)     \
5352{                                                               \
5353        return show_stat(s, buf, si);                           \
5354}                                                               \
5355static ssize_t text##_store(struct kmem_cache *s,               \
5356                                const char *buf, size_t length) \
5357{                                                               \
5358        if (buf[0] != '0')                                      \
5359                return -EINVAL;                                 \
5360        clear_stat(s, si);                                      \
5361        return length;                                          \
5362}                                                               \
5363SLAB_ATTR(text);                                                \
5364
5365STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5366STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5367STAT_ATTR(FREE_FASTPATH, free_fastpath);
5368STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5369STAT_ATTR(FREE_FROZEN, free_frozen);
5370STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5371STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5372STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5373STAT_ATTR(ALLOC_SLAB, alloc_slab);
5374STAT_ATTR(ALLOC_REFILL, alloc_refill);
5375STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5376STAT_ATTR(FREE_SLAB, free_slab);
5377STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5378STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5379STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5380STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5381STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5382STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5383STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5384STAT_ATTR(ORDER_FALLBACK, order_fallback);
5385STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5386STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5387STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5388STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5389STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5390STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5391#endif
5392
5393static struct attribute *slab_attrs[] = {
5394        &slab_size_attr.attr,
5395        &object_size_attr.attr,
5396        &objs_per_slab_attr.attr,
5397        &order_attr.attr,
5398        &min_partial_attr.attr,
5399        &cpu_partial_attr.attr,
5400        &objects_attr.attr,
5401        &objects_partial_attr.attr,
5402        &partial_attr.attr,
5403        &cpu_slabs_attr.attr,
5404        &ctor_attr.attr,
5405        &aliases_attr.attr,
5406        &align_attr.attr,
5407        &hwcache_align_attr.attr,
5408        &reclaim_account_attr.attr,
5409        &destroy_by_rcu_attr.attr,
5410        &shrink_attr.attr,
5411        &reserved_attr.attr,
5412        &slabs_cpu_partial_attr.attr,
5413#ifdef CONFIG_SLUB_DEBUG
5414        &total_objects_attr.attr,
5415        &slabs_attr.attr,
5416        &sanity_checks_attr.attr,
5417        &trace_attr.attr,
5418        &red_zone_attr.attr,
5419        &poison_attr.attr,
5420        &store_user_attr.attr,
5421        &validate_attr.attr,
5422        &alloc_calls_attr.attr,
5423        &free_calls_attr.attr,
5424#endif
5425#ifdef CONFIG_ZONE_DMA
5426        &cache_dma_attr.attr,
5427#endif
5428#ifdef CONFIG_NUMA
5429        &remote_node_defrag_ratio_attr.attr,
5430#endif
5431#ifdef CONFIG_SLUB_STATS
5432        &alloc_fastpath_attr.attr,
5433        &alloc_slowpath_attr.attr,
5434        &free_fastpath_attr.attr,
5435        &free_slowpath_attr.attr,
5436        &free_frozen_attr.attr,
5437        &free_add_partial_attr.attr,
5438        &free_remove_partial_attr.attr,
5439        &alloc_from_partial_attr.attr,
5440        &alloc_slab_attr.attr,
5441        &alloc_refill_attr.attr,
5442        &alloc_node_mismatch_attr.attr,
5443        &free_slab_attr.attr,
5444        &cpuslab_flush_attr.attr,
5445        &deactivate_full_attr.attr,
5446        &deactivate_empty_attr.attr,
5447        &deactivate_to_head_attr.attr,
5448        &deactivate_to_tail_attr.attr,
5449        &deactivate_remote_frees_attr.attr,
5450        &deactivate_bypass_attr.attr,
5451        &order_fallback_attr.attr,
5452        &cmpxchg_double_fail_attr.attr,
5453        &cmpxchg_double_cpu_fail_attr.attr,
5454        &cpu_partial_alloc_attr.attr,
5455        &cpu_partial_free_attr.attr,
5456        &cpu_partial_node_attr.attr,
5457        &cpu_partial_drain_attr.attr,
5458#endif
5459#ifdef CONFIG_FAILSLAB
5460        &failslab_attr.attr,
5461#endif
5462        &usersize_attr.attr,
5463
5464        NULL
5465};
5466
5467static const struct attribute_group slab_attr_group = {
5468        .attrs = slab_attrs,
5469};
5470
5471static ssize_t slab_attr_show(struct kobject *kobj,
5472                                struct attribute *attr,
5473                                char *buf)
5474{
5475        struct slab_attribute *attribute;
5476        struct kmem_cache *s;
5477        int err;
5478
5479        attribute = to_slab_attr(attr);
5480        s = to_slab(kobj);
5481
5482        if (!attribute->show)
5483                return -EIO;
5484
5485        err = attribute->show(s, buf);
5486
5487        return err;
5488}
5489
5490static ssize_t slab_attr_store(struct kobject *kobj,
5491                                struct attribute *attr,
5492                                const char *buf, size_t len)
5493{
5494        struct slab_attribute *attribute;
5495        struct kmem_cache *s;
5496        int err;
5497
5498        attribute = to_slab_attr(attr);
5499        s = to_slab(kobj);
5500
5501        if (!attribute->store)
5502                return -EIO;
5503
5504        err = attribute->store(s, buf, len);
5505#ifdef CONFIG_MEMCG
5506        if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5507                struct kmem_cache *c;
5508
5509                mutex_lock(&slab_mutex);
5510                if (s->max_attr_size < len)
5511                        s->max_attr_size = len;
5512
5513                /*
5514                 * This is a best effort propagation, so this function's return
5515                 * value will be determined by the parent cache only. This is
5516                 * basically because not all attributes will have a well
5517                 * defined semantics for rollbacks - most of the actions will
5518                 * have permanent effects.
5519                 *
5520                 * Returning the error value of any of the children that fail
5521                 * is not 100 % defined, in the sense that users seeing the
5522                 * error code won't be able to know anything about the state of
5523                 * the cache.
5524                 *
5525                 * Only returning the error code for the parent cache at least
5526                 * has well defined semantics. The cache being written to
5527                 * directly either failed or succeeded, in which case we loop
5528                 * through the descendants with best-effort propagation.
5529                 */
5530                for_each_memcg_cache(c, s)
5531                        attribute->store(c, buf, len);
5532                mutex_unlock(&slab_mutex);
5533        }
5534#endif
5535        return err;
5536}
5537
5538static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5539{
5540#ifdef CONFIG_MEMCG
5541        int i;
5542        char *buffer = NULL;
5543        struct kmem_cache *root_cache;
5544
5545        if (is_root_cache(s))
5546                return;
5547
5548        root_cache = s->memcg_params.root_cache;
5549
5550        /*
5551         * This mean this cache had no attribute written. Therefore, no point
5552         * in copying default values around
5553         */
5554        if (!root_cache->max_attr_size)
5555                return;
5556
5557        for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5558                char mbuf[64];
5559                char *buf;
5560                struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5561                ssize_t len;
5562
5563                if (!attr || !attr->store || !attr->show)
5564                        continue;
5565
5566                /*
5567                 * It is really bad that we have to allocate here, so we will
5568                 * do it only as a fallback. If we actually allocate, though,
5569                 * we can just use the allocated buffer until the end.
5570                 *
5571                 * Most of the slub attributes will tend to be very small in
5572                 * size, but sysfs allows buffers up to a page, so they can
5573                 * theoretically happen.
5574                 */
5575                if (buffer)
5576                        buf = buffer;
5577                else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5578                        buf = mbuf;
5579                else {
5580                        buffer = (char *) get_zeroed_page(GFP_KERNEL);
5581                        if (WARN_ON(!buffer))
5582                                continue;
5583                        buf = buffer;
5584                }
5585
5586                len = attr->show(root_cache, buf);
5587                if (len > 0)
5588                        attr->store(s, buf, len);
5589        }
5590
5591        if (buffer)
5592                free_page((unsigned long)buffer);
5593#endif
5594}
5595
5596static void kmem_cache_release(struct kobject *k)
5597{
5598        slab_kmem_cache_release(to_slab(k));
5599}
5600
5601static const struct sysfs_ops slab_sysfs_ops = {
5602        .show = slab_attr_show,
5603        .store = slab_attr_store,
5604};
5605
5606static struct kobj_type slab_ktype = {
5607        .sysfs_ops = &slab_sysfs_ops,
5608        .release = kmem_cache_release,
5609};
5610
5611static int uevent_filter(struct kset *kset, struct kobject *kobj)
5612{
5613        struct kobj_type *ktype = get_ktype(kobj);
5614
5615        if (ktype == &slab_ktype)
5616                return 1;
5617        return 0;
5618}
5619
5620static const struct kset_uevent_ops slab_uevent_ops = {
5621        .filter = uevent_filter,
5622};
5623
5624static struct kset *slab_kset;
5625
5626static inline struct kset *cache_kset(struct kmem_cache *s)
5627{
5628#ifdef CONFIG_MEMCG
5629        if (!is_root_cache(s))
5630                return s->memcg_params.root_cache->memcg_kset;
5631#endif
5632        return slab_kset;
5633}
5634
5635#define ID_STR_LENGTH 64
5636
5637/* Create a unique string id for a slab cache:
5638 *
5639 * Format       :[flags-]size
5640 */
5641static char *create_unique_id(struct kmem_cache *s)
5642{
5643        char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5644        char *p = name;
5645
5646        BUG_ON(!name);
5647
5648        *p++ = ':';
5649        /*
5650         * First flags affecting slabcache operations. We will only
5651         * get here for aliasable slabs so we do not need to support
5652         * too many flags. The flags here must cover all flags that
5653         * are matched during merging to guarantee that the id is
5654         * unique.
5655         */
5656        if (s->flags & SLAB_CACHE_DMA)
5657                *p++ = 'd';
5658        if (s->flags & SLAB_RECLAIM_ACCOUNT)
5659                *p++ = 'a';
5660        if (s->flags & SLAB_CONSISTENCY_CHECKS)
5661                *p++ = 'F';
5662        if (s->flags & SLAB_ACCOUNT)
5663                *p++ = 'A';
5664        if (p != name + 1)
5665                *p++ = '-';
5666        p += sprintf(p, "%07d", s->size);
5667
5668        BUG_ON(p > name + ID_STR_LENGTH - 1);
5669        return name;
5670}
5671
5672static void sysfs_slab_remove_workfn(struct work_struct *work)
5673{
5674        struct kmem_cache *s =
5675                container_of(work, struct kmem_cache, kobj_remove_work);
5676
5677        if (!s->kobj.state_in_sysfs)
5678                /*
5679                 * For a memcg cache, this may be called during
5680                 * deactivation and again on shutdown.  Remove only once.
5681                 * A cache is never shut down before deactivation is
5682                 * complete, so no need to worry about synchronization.
5683                 */
5684                goto out;
5685
5686#ifdef CONFIG_MEMCG
5687        kset_unregister(s->memcg_kset);
5688#endif
5689        kobject_uevent(&s->kobj, KOBJ_REMOVE);
5690        kobject_del(&s->kobj);
5691out:
5692        kobject_put(&s->kobj);
5693}
5694
5695static int sysfs_slab_add(struct kmem_cache *s)
5696{
5697        int err;
5698        const char *name;
5699        struct kset *kset = cache_kset(s);
5700        int unmergeable = slab_unmergeable(s);
5701
5702        INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5703
5704        if (!kset) {
5705                kobject_init(&s->kobj, &slab_ktype);
5706                return 0;
5707        }
5708
5709        if (!unmergeable && disable_higher_order_debug &&
5710                        (slub_debug & DEBUG_METADATA_FLAGS))
5711                unmergeable = 1;
5712
5713        if (unmergeable) {
5714                /*
5715                 * Slabcache can never be merged so we can use the name proper.
5716                 * This is typically the case for debug situations. In that
5717                 * case we can catch duplicate names easily.
5718                 */
5719                sysfs_remove_link(&slab_kset->kobj, s->name);
5720                name = s->name;
5721        } else {
5722                /*
5723                 * Create a unique name for the slab as a target
5724                 * for the symlinks.
5725                 */
5726                name = create_unique_id(s);
5727        }
5728
5729        s->kobj.kset = kset;
5730        err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5731        if (err)
5732                goto out;
5733
5734        err = sysfs_create_group(&s->kobj, &slab_attr_group);
5735        if (err)
5736                goto out_del_kobj;
5737
5738#ifdef CONFIG_MEMCG
5739        if (is_root_cache(s) && memcg_sysfs_enabled) {
5740                s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5741                if (!s->memcg_kset) {
5742                        err = -ENOMEM;
5743                        goto out_del_kobj;
5744                }
5745        }
5746#endif
5747
5748        kobject_uevent(&s->kobj, KOBJ_ADD);
5749        if (!unmergeable) {
5750                /* Setup first alias */
5751                sysfs_slab_alias(s, s->name);
5752        }
5753out:
5754        if (!unmergeable)
5755                kfree(name);
5756        return err;
5757out_del_kobj:
5758        kobject_del(&s->kobj);
5759        goto out;
5760}
5761
5762static void sysfs_slab_remove(struct kmem_cache *s)
5763{
5764        if (slab_state < FULL)
5765                /*
5766                 * Sysfs has not been setup yet so no need to remove the
5767                 * cache from sysfs.
5768                 */
5769                return;
5770
5771        kobject_get(&s->kobj);
5772        schedule_work(&s->kobj_remove_work);
5773}
5774
5775void sysfs_slab_release(struct kmem_cache *s)
5776{
5777        if (slab_state >= FULL)
5778                kobject_put(&s->kobj);
5779}
5780
5781/*
5782 * Need to buffer aliases during bootup until sysfs becomes
5783 * available lest we lose that information.
5784 */
5785struct saved_alias {
5786        struct kmem_cache *s;
5787        const char *name;
5788        struct saved_alias *next;
5789};
5790
5791static struct saved_alias *alias_list;
5792
5793static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5794{
5795        struct saved_alias *al;
5796
5797        if (slab_state == FULL) {
5798                /*
5799                 * If we have a leftover link then remove it.
5800                 */
5801                sysfs_remove_link(&slab_kset->kobj, name);
5802                return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5803        }
5804
5805        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5806        if (!al)
5807                return -ENOMEM;
5808
5809        al->s = s;
5810        al->name = name;
5811        al->next = alias_list;
5812        alias_list = al;
5813        return 0;
5814}
5815
5816static int __init slab_sysfs_init(void)
5817{
5818        struct kmem_cache *s;
5819        int err;
5820
5821        mutex_lock(&slab_mutex);
5822
5823        slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5824        if (!slab_kset) {
5825                mutex_unlock(&slab_mutex);
5826                pr_err("Cannot register slab subsystem.\n");
5827                return -ENOSYS;
5828        }
5829
5830        slab_state = FULL;
5831
5832        list_for_each_entry(s, &slab_caches, list) {
5833                err = sysfs_slab_add(s);
5834                if (err)
5835                        pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5836                               s->name);
5837        }
5838
5839        while (alias_list) {
5840                struct saved_alias *al = alias_list;
5841
5842                alias_list = alias_list->next;
5843                err = sysfs_slab_alias(al->s, al->name);
5844                if (err)
5845                        pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5846                               al->name);
5847                kfree(al);
5848        }
5849
5850        mutex_unlock(&slab_mutex);
5851        resiliency_test();
5852        return 0;
5853}
5854
5855__initcall(slab_sysfs_init);
5856#endif /* CONFIG_SYSFS */
5857
5858/*
5859 * The /proc/slabinfo ABI
5860 */
5861#ifdef CONFIG_SLUB_DEBUG
5862void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5863{
5864        unsigned long nr_slabs = 0;
5865        unsigned long nr_objs = 0;
5866        unsigned long nr_free = 0;
5867        int node;
5868        struct kmem_cache_node *n;
5869
5870        for_each_kmem_cache_node(s, node, n) {
5871                nr_slabs += node_nr_slabs(n);
5872                nr_objs += node_nr_objs(n);
5873                nr_free += count_partial(n, count_free);
5874        }
5875
5876        sinfo->active_objs = nr_objs - nr_free;
5877        sinfo->num_objs = nr_objs;
5878        sinfo->active_slabs = nr_slabs;
5879        sinfo->num_slabs = nr_slabs;
5880        sinfo->objects_per_slab = oo_objects(s->oo);
5881        sinfo->cache_order = oo_order(s->oo);
5882}
5883
5884void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5885{
5886}
5887
5888ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5889                       size_t count, loff_t *ppos)
5890{
5891        return -EIO;
5892}
5893#endif /* CONFIG_SLUB_DEBUG */
5894