linux/mm/util.c
<<
>>
Prefs
   1#include <linux/mm.h>
   2#include <linux/slab.h>
   3#include <linux/string.h>
   4#include <linux/compiler.h>
   5#include <linux/export.h>
   6#include <linux/err.h>
   7#include <linux/sched.h>
   8#include <linux/sched/mm.h>
   9#include <linux/sched/task_stack.h>
  10#include <linux/security.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/mman.h>
  14#include <linux/hugetlb.h>
  15#include <linux/vmalloc.h>
  16#include <linux/userfaultfd_k.h>
  17
  18#include <asm/sections.h>
  19#include <linux/uaccess.h>
  20
  21#include "internal.h"
  22
  23static inline int is_kernel_rodata(unsigned long addr)
  24{
  25        return addr >= (unsigned long)__start_rodata &&
  26                addr < (unsigned long)__end_rodata;
  27}
  28
  29/**
  30 * kfree_const - conditionally free memory
  31 * @x: pointer to the memory
  32 *
  33 * Function calls kfree only if @x is not in .rodata section.
  34 */
  35void kfree_const(const void *x)
  36{
  37        if (!is_kernel_rodata((unsigned long)x))
  38                kfree(x);
  39}
  40EXPORT_SYMBOL(kfree_const);
  41
  42/**
  43 * kstrdup - allocate space for and copy an existing string
  44 * @s: the string to duplicate
  45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  46 */
  47char *kstrdup(const char *s, gfp_t gfp)
  48{
  49        size_t len;
  50        char *buf;
  51
  52        if (!s)
  53                return NULL;
  54
  55        len = strlen(s) + 1;
  56        buf = kmalloc_track_caller(len, gfp);
  57        if (buf)
  58                memcpy(buf, s, len);
  59        return buf;
  60}
  61EXPORT_SYMBOL(kstrdup);
  62
  63/**
  64 * kstrdup_const - conditionally duplicate an existing const string
  65 * @s: the string to duplicate
  66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  67 *
  68 * Function returns source string if it is in .rodata section otherwise it
  69 * fallbacks to kstrdup.
  70 * Strings allocated by kstrdup_const should be freed by kfree_const.
  71 */
  72const char *kstrdup_const(const char *s, gfp_t gfp)
  73{
  74        if (is_kernel_rodata((unsigned long)s))
  75                return s;
  76
  77        return kstrdup(s, gfp);
  78}
  79EXPORT_SYMBOL(kstrdup_const);
  80
  81/**
  82 * kstrndup - allocate space for and copy an existing string
  83 * @s: the string to duplicate
  84 * @max: read at most @max chars from @s
  85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  86 *
  87 * Note: Use kmemdup_nul() instead if the size is known exactly.
  88 */
  89char *kstrndup(const char *s, size_t max, gfp_t gfp)
  90{
  91        size_t len;
  92        char *buf;
  93
  94        if (!s)
  95                return NULL;
  96
  97        len = strnlen(s, max);
  98        buf = kmalloc_track_caller(len+1, gfp);
  99        if (buf) {
 100                memcpy(buf, s, len);
 101                buf[len] = '\0';
 102        }
 103        return buf;
 104}
 105EXPORT_SYMBOL(kstrndup);
 106
 107/**
 108 * kmemdup - duplicate region of memory
 109 *
 110 * @src: memory region to duplicate
 111 * @len: memory region length
 112 * @gfp: GFP mask to use
 113 */
 114void *kmemdup(const void *src, size_t len, gfp_t gfp)
 115{
 116        void *p;
 117
 118        p = kmalloc_track_caller(len, gfp);
 119        if (p)
 120                memcpy(p, src, len);
 121        return p;
 122}
 123EXPORT_SYMBOL(kmemdup);
 124
 125/**
 126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 127 * @s: The data to stringify
 128 * @len: The size of the data
 129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 130 */
 131char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 132{
 133        char *buf;
 134
 135        if (!s)
 136                return NULL;
 137
 138        buf = kmalloc_track_caller(len + 1, gfp);
 139        if (buf) {
 140                memcpy(buf, s, len);
 141                buf[len] = '\0';
 142        }
 143        return buf;
 144}
 145EXPORT_SYMBOL(kmemdup_nul);
 146
 147/**
 148 * memdup_user - duplicate memory region from user space
 149 *
 150 * @src: source address in user space
 151 * @len: number of bytes to copy
 152 *
 153 * Returns an ERR_PTR() on failure.  Result is physically
 154 * contiguous, to be freed by kfree().
 155 */
 156void *memdup_user(const void __user *src, size_t len)
 157{
 158        void *p;
 159
 160        p = kmalloc_track_caller(len, GFP_USER);
 161        if (!p)
 162                return ERR_PTR(-ENOMEM);
 163
 164        if (copy_from_user(p, src, len)) {
 165                kfree(p);
 166                return ERR_PTR(-EFAULT);
 167        }
 168
 169        return p;
 170}
 171EXPORT_SYMBOL(memdup_user);
 172
 173/**
 174 * vmemdup_user - duplicate memory region from user space
 175 *
 176 * @src: source address in user space
 177 * @len: number of bytes to copy
 178 *
 179 * Returns an ERR_PTR() on failure.  Result may be not
 180 * physically contiguous.  Use kvfree() to free.
 181 */
 182void *vmemdup_user(const void __user *src, size_t len)
 183{
 184        void *p;
 185
 186        p = kvmalloc(len, GFP_USER);
 187        if (!p)
 188                return ERR_PTR(-ENOMEM);
 189
 190        if (copy_from_user(p, src, len)) {
 191                kvfree(p);
 192                return ERR_PTR(-EFAULT);
 193        }
 194
 195        return p;
 196}
 197EXPORT_SYMBOL(vmemdup_user);
 198
 199/*
 200 * strndup_user - duplicate an existing string from user space
 201 * @s: The string to duplicate
 202 * @n: Maximum number of bytes to copy, including the trailing NUL.
 203 */
 204char *strndup_user(const char __user *s, long n)
 205{
 206        char *p;
 207        long length;
 208
 209        length = strnlen_user(s, n);
 210
 211        if (!length)
 212                return ERR_PTR(-EFAULT);
 213
 214        if (length > n)
 215                return ERR_PTR(-EINVAL);
 216
 217        p = memdup_user(s, length);
 218
 219        if (IS_ERR(p))
 220                return p;
 221
 222        p[length - 1] = '\0';
 223
 224        return p;
 225}
 226EXPORT_SYMBOL(strndup_user);
 227
 228/**
 229 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 230 *
 231 * @src: source address in user space
 232 * @len: number of bytes to copy
 233 *
 234 * Returns an ERR_PTR() on failure.
 235 */
 236void *memdup_user_nul(const void __user *src, size_t len)
 237{
 238        char *p;
 239
 240        /*
 241         * Always use GFP_KERNEL, since copy_from_user() can sleep and
 242         * cause pagefault, which makes it pointless to use GFP_NOFS
 243         * or GFP_ATOMIC.
 244         */
 245        p = kmalloc_track_caller(len + 1, GFP_KERNEL);
 246        if (!p)
 247                return ERR_PTR(-ENOMEM);
 248
 249        if (copy_from_user(p, src, len)) {
 250                kfree(p);
 251                return ERR_PTR(-EFAULT);
 252        }
 253        p[len] = '\0';
 254
 255        return p;
 256}
 257EXPORT_SYMBOL(memdup_user_nul);
 258
 259void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 260                struct vm_area_struct *prev, struct rb_node *rb_parent)
 261{
 262        struct vm_area_struct *next;
 263
 264        vma->vm_prev = prev;
 265        if (prev) {
 266                next = prev->vm_next;
 267                prev->vm_next = vma;
 268        } else {
 269                mm->mmap = vma;
 270                if (rb_parent)
 271                        next = rb_entry(rb_parent,
 272                                        struct vm_area_struct, vm_rb);
 273                else
 274                        next = NULL;
 275        }
 276        vma->vm_next = next;
 277        if (next)
 278                next->vm_prev = vma;
 279}
 280
 281/* Check if the vma is being used as a stack by this task */
 282int vma_is_stack_for_current(struct vm_area_struct *vma)
 283{
 284        struct task_struct * __maybe_unused t = current;
 285
 286        return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 287}
 288
 289#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 290void arch_pick_mmap_layout(struct mm_struct *mm)
 291{
 292        mm->mmap_base = TASK_UNMAPPED_BASE;
 293        mm->get_unmapped_area = arch_get_unmapped_area;
 294}
 295#endif
 296
 297/*
 298 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 299 * back to the regular GUP.
 300 * If the architecture not support this function, simply return with no
 301 * page pinned
 302 */
 303int __weak __get_user_pages_fast(unsigned long start,
 304                                 int nr_pages, int write, struct page **pages)
 305{
 306        return 0;
 307}
 308EXPORT_SYMBOL_GPL(__get_user_pages_fast);
 309
 310/**
 311 * get_user_pages_fast() - pin user pages in memory
 312 * @start:      starting user address
 313 * @nr_pages:   number of pages from start to pin
 314 * @write:      whether pages will be written to
 315 * @pages:      array that receives pointers to the pages pinned.
 316 *              Should be at least nr_pages long.
 317 *
 318 * Returns number of pages pinned. This may be fewer than the number
 319 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 320 * were pinned, returns -errno.
 321 *
 322 * get_user_pages_fast provides equivalent functionality to get_user_pages,
 323 * operating on current and current->mm, with force=0 and vma=NULL. However
 324 * unlike get_user_pages, it must be called without mmap_sem held.
 325 *
 326 * get_user_pages_fast may take mmap_sem and page table locks, so no
 327 * assumptions can be made about lack of locking. get_user_pages_fast is to be
 328 * implemented in a way that is advantageous (vs get_user_pages()) when the
 329 * user memory area is already faulted in and present in ptes. However if the
 330 * pages have to be faulted in, it may turn out to be slightly slower so
 331 * callers need to carefully consider what to use. On many architectures,
 332 * get_user_pages_fast simply falls back to get_user_pages.
 333 */
 334int __weak get_user_pages_fast(unsigned long start,
 335                                int nr_pages, int write, struct page **pages)
 336{
 337        return get_user_pages_unlocked(start, nr_pages, pages,
 338                                       write ? FOLL_WRITE : 0);
 339}
 340EXPORT_SYMBOL_GPL(get_user_pages_fast);
 341
 342unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 343        unsigned long len, unsigned long prot,
 344        unsigned long flag, unsigned long pgoff)
 345{
 346        unsigned long ret;
 347        struct mm_struct *mm = current->mm;
 348        unsigned long populate;
 349        LIST_HEAD(uf);
 350
 351        ret = security_mmap_file(file, prot, flag);
 352        if (!ret) {
 353                if (down_write_killable(&mm->mmap_sem))
 354                        return -EINTR;
 355                ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
 356                                    &populate, &uf);
 357                up_write(&mm->mmap_sem);
 358                userfaultfd_unmap_complete(mm, &uf);
 359                if (populate)
 360                        mm_populate(ret, populate);
 361        }
 362        return ret;
 363}
 364
 365unsigned long vm_mmap(struct file *file, unsigned long addr,
 366        unsigned long len, unsigned long prot,
 367        unsigned long flag, unsigned long offset)
 368{
 369        if (unlikely(offset + PAGE_ALIGN(len) < offset))
 370                return -EINVAL;
 371        if (unlikely(offset_in_page(offset)))
 372                return -EINVAL;
 373
 374        return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 375}
 376EXPORT_SYMBOL(vm_mmap);
 377
 378/**
 379 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 380 * failure, fall back to non-contiguous (vmalloc) allocation.
 381 * @size: size of the request.
 382 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 383 * @node: numa node to allocate from
 384 *
 385 * Uses kmalloc to get the memory but if the allocation fails then falls back
 386 * to the vmalloc allocator. Use kvfree for freeing the memory.
 387 *
 388 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 389 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 390 * preferable to the vmalloc fallback, due to visible performance drawbacks.
 391 *
 392 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
 393 */
 394void *kvmalloc_node(size_t size, gfp_t flags, int node)
 395{
 396        gfp_t kmalloc_flags = flags;
 397        void *ret;
 398
 399        /*
 400         * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
 401         * so the given set of flags has to be compatible.
 402         */
 403        WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
 404
 405        /*
 406         * We want to attempt a large physically contiguous block first because
 407         * it is less likely to fragment multiple larger blocks and therefore
 408         * contribute to a long term fragmentation less than vmalloc fallback.
 409         * However make sure that larger requests are not too disruptive - no
 410         * OOM killer and no allocation failure warnings as we have a fallback.
 411         */
 412        if (size > PAGE_SIZE) {
 413                kmalloc_flags |= __GFP_NOWARN;
 414
 415                if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
 416                        kmalloc_flags |= __GFP_NORETRY;
 417        }
 418
 419        ret = kmalloc_node(size, kmalloc_flags, node);
 420
 421        /*
 422         * It doesn't really make sense to fallback to vmalloc for sub page
 423         * requests
 424         */
 425        if (ret || size <= PAGE_SIZE)
 426                return ret;
 427
 428        return __vmalloc_node_flags_caller(size, node, flags,
 429                        __builtin_return_address(0));
 430}
 431EXPORT_SYMBOL(kvmalloc_node);
 432
 433void kvfree(const void *addr)
 434{
 435        if (is_vmalloc_addr(addr))
 436                vfree(addr);
 437        else
 438                kfree(addr);
 439}
 440EXPORT_SYMBOL(kvfree);
 441
 442static inline void *__page_rmapping(struct page *page)
 443{
 444        unsigned long mapping;
 445
 446        mapping = (unsigned long)page->mapping;
 447        mapping &= ~PAGE_MAPPING_FLAGS;
 448
 449        return (void *)mapping;
 450}
 451
 452/* Neutral page->mapping pointer to address_space or anon_vma or other */
 453void *page_rmapping(struct page *page)
 454{
 455        page = compound_head(page);
 456        return __page_rmapping(page);
 457}
 458
 459/*
 460 * Return true if this page is mapped into pagetables.
 461 * For compound page it returns true if any subpage of compound page is mapped.
 462 */
 463bool page_mapped(struct page *page)
 464{
 465        int i;
 466
 467        if (likely(!PageCompound(page)))
 468                return atomic_read(&page->_mapcount) >= 0;
 469        page = compound_head(page);
 470        if (atomic_read(compound_mapcount_ptr(page)) >= 0)
 471                return true;
 472        if (PageHuge(page))
 473                return false;
 474        for (i = 0; i < hpage_nr_pages(page); i++) {
 475                if (atomic_read(&page[i]._mapcount) >= 0)
 476                        return true;
 477        }
 478        return false;
 479}
 480EXPORT_SYMBOL(page_mapped);
 481
 482struct anon_vma *page_anon_vma(struct page *page)
 483{
 484        unsigned long mapping;
 485
 486        page = compound_head(page);
 487        mapping = (unsigned long)page->mapping;
 488        if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 489                return NULL;
 490        return __page_rmapping(page);
 491}
 492
 493struct address_space *page_mapping(struct page *page)
 494{
 495        struct address_space *mapping;
 496
 497        page = compound_head(page);
 498
 499        /* This happens if someone calls flush_dcache_page on slab page */
 500        if (unlikely(PageSlab(page)))
 501                return NULL;
 502
 503        if (unlikely(PageSwapCache(page))) {
 504                swp_entry_t entry;
 505
 506                entry.val = page_private(page);
 507                return swap_address_space(entry);
 508        }
 509
 510        mapping = page->mapping;
 511        if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 512                return NULL;
 513
 514        return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
 515}
 516EXPORT_SYMBOL(page_mapping);
 517
 518/* Slow path of page_mapcount() for compound pages */
 519int __page_mapcount(struct page *page)
 520{
 521        int ret;
 522
 523        ret = atomic_read(&page->_mapcount) + 1;
 524        /*
 525         * For file THP page->_mapcount contains total number of mapping
 526         * of the page: no need to look into compound_mapcount.
 527         */
 528        if (!PageAnon(page) && !PageHuge(page))
 529                return ret;
 530        page = compound_head(page);
 531        ret += atomic_read(compound_mapcount_ptr(page)) + 1;
 532        if (PageDoubleMap(page))
 533                ret--;
 534        return ret;
 535}
 536EXPORT_SYMBOL_GPL(__page_mapcount);
 537
 538int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 539int sysctl_overcommit_ratio __read_mostly = 50;
 540unsigned long sysctl_overcommit_kbytes __read_mostly;
 541int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 542unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 543unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 544
 545int overcommit_ratio_handler(struct ctl_table *table, int write,
 546                             void __user *buffer, size_t *lenp,
 547                             loff_t *ppos)
 548{
 549        int ret;
 550
 551        ret = proc_dointvec(table, write, buffer, lenp, ppos);
 552        if (ret == 0 && write)
 553                sysctl_overcommit_kbytes = 0;
 554        return ret;
 555}
 556
 557int overcommit_kbytes_handler(struct ctl_table *table, int write,
 558                             void __user *buffer, size_t *lenp,
 559                             loff_t *ppos)
 560{
 561        int ret;
 562
 563        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 564        if (ret == 0 && write)
 565                sysctl_overcommit_ratio = 0;
 566        return ret;
 567}
 568
 569/*
 570 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 571 */
 572unsigned long vm_commit_limit(void)
 573{
 574        unsigned long allowed;
 575
 576        if (sysctl_overcommit_kbytes)
 577                allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 578        else
 579                allowed = ((totalram_pages - hugetlb_total_pages())
 580                           * sysctl_overcommit_ratio / 100);
 581        allowed += total_swap_pages;
 582
 583        return allowed;
 584}
 585
 586/*
 587 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 588 * other variables. It can be updated by several CPUs frequently.
 589 */
 590struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 591
 592/*
 593 * The global memory commitment made in the system can be a metric
 594 * that can be used to drive ballooning decisions when Linux is hosted
 595 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 596 * balancing memory across competing virtual machines that are hosted.
 597 * Several metrics drive this policy engine including the guest reported
 598 * memory commitment.
 599 */
 600unsigned long vm_memory_committed(void)
 601{
 602        return percpu_counter_read_positive(&vm_committed_as);
 603}
 604EXPORT_SYMBOL_GPL(vm_memory_committed);
 605
 606/*
 607 * Check that a process has enough memory to allocate a new virtual
 608 * mapping. 0 means there is enough memory for the allocation to
 609 * succeed and -ENOMEM implies there is not.
 610 *
 611 * We currently support three overcommit policies, which are set via the
 612 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 613 *
 614 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 615 * Additional code 2002 Jul 20 by Robert Love.
 616 *
 617 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 618 *
 619 * Note this is a helper function intended to be used by LSMs which
 620 * wish to use this logic.
 621 */
 622int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 623{
 624        long free, allowed, reserve;
 625
 626        VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
 627                        -(s64)vm_committed_as_batch * num_online_cpus(),
 628                        "memory commitment underflow");
 629
 630        vm_acct_memory(pages);
 631
 632        /*
 633         * Sometimes we want to use more memory than we have
 634         */
 635        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 636                return 0;
 637
 638        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 639                free = global_zone_page_state(NR_FREE_PAGES);
 640                free += global_node_page_state(NR_FILE_PAGES);
 641
 642                /*
 643                 * shmem pages shouldn't be counted as free in this
 644                 * case, they can't be purged, only swapped out, and
 645                 * that won't affect the overall amount of available
 646                 * memory in the system.
 647                 */
 648                free -= global_node_page_state(NR_SHMEM);
 649
 650                free += get_nr_swap_pages();
 651
 652                /*
 653                 * Any slabs which are created with the
 654                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 655                 * which are reclaimable, under pressure.  The dentry
 656                 * cache and most inode caches should fall into this
 657                 */
 658                free += global_node_page_state(NR_SLAB_RECLAIMABLE);
 659
 660                /*
 661                 * Leave reserved pages. The pages are not for anonymous pages.
 662                 */
 663                if (free <= totalreserve_pages)
 664                        goto error;
 665                else
 666                        free -= totalreserve_pages;
 667
 668                /*
 669                 * Reserve some for root
 670                 */
 671                if (!cap_sys_admin)
 672                        free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 673
 674                if (free > pages)
 675                        return 0;
 676
 677                goto error;
 678        }
 679
 680        allowed = vm_commit_limit();
 681        /*
 682         * Reserve some for root
 683         */
 684        if (!cap_sys_admin)
 685                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 686
 687        /*
 688         * Don't let a single process grow so big a user can't recover
 689         */
 690        if (mm) {
 691                reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 692                allowed -= min_t(long, mm->total_vm / 32, reserve);
 693        }
 694
 695        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 696                return 0;
 697error:
 698        vm_unacct_memory(pages);
 699
 700        return -ENOMEM;
 701}
 702
 703/**
 704 * get_cmdline() - copy the cmdline value to a buffer.
 705 * @task:     the task whose cmdline value to copy.
 706 * @buffer:   the buffer to copy to.
 707 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 708 *            to this length.
 709 * Returns the size of the cmdline field copied. Note that the copy does
 710 * not guarantee an ending NULL byte.
 711 */
 712int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 713{
 714        int res = 0;
 715        unsigned int len;
 716        struct mm_struct *mm = get_task_mm(task);
 717        unsigned long arg_start, arg_end, env_start, env_end;
 718        if (!mm)
 719                goto out;
 720        if (!mm->arg_end)
 721                goto out_mm;    /* Shh! No looking before we're done */
 722
 723        down_read(&mm->mmap_sem);
 724        arg_start = mm->arg_start;
 725        arg_end = mm->arg_end;
 726        env_start = mm->env_start;
 727        env_end = mm->env_end;
 728        up_read(&mm->mmap_sem);
 729
 730        len = arg_end - arg_start;
 731
 732        if (len > buflen)
 733                len = buflen;
 734
 735        res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 736
 737        /*
 738         * If the nul at the end of args has been overwritten, then
 739         * assume application is using setproctitle(3).
 740         */
 741        if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 742                len = strnlen(buffer, res);
 743                if (len < res) {
 744                        res = len;
 745                } else {
 746                        len = env_end - env_start;
 747                        if (len > buflen - res)
 748                                len = buflen - res;
 749                        res += access_process_vm(task, env_start,
 750                                                 buffer+res, len,
 751                                                 FOLL_FORCE);
 752                        res = strnlen(buffer, res);
 753                }
 754        }
 755out_mm:
 756        mmput(mm);
 757out:
 758        return res;
 759}
 760