linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/notifier.h>
  25#include <linux/rbtree.h>
  26#include <linux/radix-tree.h>
  27#include <linux/rcupdate.h>
  28#include <linux/pfn.h>
  29#include <linux/kmemleak.h>
  30#include <linux/atomic.h>
  31#include <linux/compiler.h>
  32#include <linux/llist.h>
  33#include <linux/bitops.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/tlbflush.h>
  37#include <asm/shmparam.h>
  38
  39#include "internal.h"
  40
  41struct vfree_deferred {
  42        struct llist_head list;
  43        struct work_struct wq;
  44};
  45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  46
  47static void __vunmap(const void *, int);
  48
  49static void free_work(struct work_struct *w)
  50{
  51        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  52        struct llist_node *t, *llnode;
  53
  54        llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  55                __vunmap((void *)llnode, 1);
  56}
  57
  58/*** Page table manipulation functions ***/
  59
  60static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  61{
  62        pte_t *pte;
  63
  64        pte = pte_offset_kernel(pmd, addr);
  65        do {
  66                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  67                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  68        } while (pte++, addr += PAGE_SIZE, addr != end);
  69}
  70
  71static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  72{
  73        pmd_t *pmd;
  74        unsigned long next;
  75
  76        pmd = pmd_offset(pud, addr);
  77        do {
  78                next = pmd_addr_end(addr, end);
  79                if (pmd_clear_huge(pmd))
  80                        continue;
  81                if (pmd_none_or_clear_bad(pmd))
  82                        continue;
  83                vunmap_pte_range(pmd, addr, next);
  84        } while (pmd++, addr = next, addr != end);
  85}
  86
  87static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
  88{
  89        pud_t *pud;
  90        unsigned long next;
  91
  92        pud = pud_offset(p4d, addr);
  93        do {
  94                next = pud_addr_end(addr, end);
  95                if (pud_clear_huge(pud))
  96                        continue;
  97                if (pud_none_or_clear_bad(pud))
  98                        continue;
  99                vunmap_pmd_range(pud, addr, next);
 100        } while (pud++, addr = next, addr != end);
 101}
 102
 103static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 104{
 105        p4d_t *p4d;
 106        unsigned long next;
 107
 108        p4d = p4d_offset(pgd, addr);
 109        do {
 110                next = p4d_addr_end(addr, end);
 111                if (p4d_clear_huge(p4d))
 112                        continue;
 113                if (p4d_none_or_clear_bad(p4d))
 114                        continue;
 115                vunmap_pud_range(p4d, addr, next);
 116        } while (p4d++, addr = next, addr != end);
 117}
 118
 119static void vunmap_page_range(unsigned long addr, unsigned long end)
 120{
 121        pgd_t *pgd;
 122        unsigned long next;
 123
 124        BUG_ON(addr >= end);
 125        pgd = pgd_offset_k(addr);
 126        do {
 127                next = pgd_addr_end(addr, end);
 128                if (pgd_none_or_clear_bad(pgd))
 129                        continue;
 130                vunmap_p4d_range(pgd, addr, next);
 131        } while (pgd++, addr = next, addr != end);
 132}
 133
 134static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 135                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 136{
 137        pte_t *pte;
 138
 139        /*
 140         * nr is a running index into the array which helps higher level
 141         * callers keep track of where we're up to.
 142         */
 143
 144        pte = pte_alloc_kernel(pmd, addr);
 145        if (!pte)
 146                return -ENOMEM;
 147        do {
 148                struct page *page = pages[*nr];
 149
 150                if (WARN_ON(!pte_none(*pte)))
 151                        return -EBUSY;
 152                if (WARN_ON(!page))
 153                        return -ENOMEM;
 154                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 155                (*nr)++;
 156        } while (pte++, addr += PAGE_SIZE, addr != end);
 157        return 0;
 158}
 159
 160static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 161                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 162{
 163        pmd_t *pmd;
 164        unsigned long next;
 165
 166        pmd = pmd_alloc(&init_mm, pud, addr);
 167        if (!pmd)
 168                return -ENOMEM;
 169        do {
 170                next = pmd_addr_end(addr, end);
 171                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 172                        return -ENOMEM;
 173        } while (pmd++, addr = next, addr != end);
 174        return 0;
 175}
 176
 177static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 178                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 179{
 180        pud_t *pud;
 181        unsigned long next;
 182
 183        pud = pud_alloc(&init_mm, p4d, addr);
 184        if (!pud)
 185                return -ENOMEM;
 186        do {
 187                next = pud_addr_end(addr, end);
 188                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 189                        return -ENOMEM;
 190        } while (pud++, addr = next, addr != end);
 191        return 0;
 192}
 193
 194static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 195                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 196{
 197        p4d_t *p4d;
 198        unsigned long next;
 199
 200        p4d = p4d_alloc(&init_mm, pgd, addr);
 201        if (!p4d)
 202                return -ENOMEM;
 203        do {
 204                next = p4d_addr_end(addr, end);
 205                if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 206                        return -ENOMEM;
 207        } while (p4d++, addr = next, addr != end);
 208        return 0;
 209}
 210
 211/*
 212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 213 * will have pfns corresponding to the "pages" array.
 214 *
 215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 216 */
 217static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 218                                   pgprot_t prot, struct page **pages)
 219{
 220        pgd_t *pgd;
 221        unsigned long next;
 222        unsigned long addr = start;
 223        int err = 0;
 224        int nr = 0;
 225
 226        BUG_ON(addr >= end);
 227        pgd = pgd_offset_k(addr);
 228        do {
 229                next = pgd_addr_end(addr, end);
 230                err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 231                if (err)
 232                        return err;
 233        } while (pgd++, addr = next, addr != end);
 234
 235        return nr;
 236}
 237
 238static int vmap_page_range(unsigned long start, unsigned long end,
 239                           pgprot_t prot, struct page **pages)
 240{
 241        int ret;
 242
 243        ret = vmap_page_range_noflush(start, end, prot, pages);
 244        flush_cache_vmap(start, end);
 245        return ret;
 246}
 247
 248int is_vmalloc_or_module_addr(const void *x)
 249{
 250        /*
 251         * ARM, x86-64 and sparc64 put modules in a special place,
 252         * and fall back on vmalloc() if that fails. Others
 253         * just put it in the vmalloc space.
 254         */
 255#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 256        unsigned long addr = (unsigned long)x;
 257        if (addr >= MODULES_VADDR && addr < MODULES_END)
 258                return 1;
 259#endif
 260        return is_vmalloc_addr(x);
 261}
 262
 263/*
 264 * Walk a vmap address to the struct page it maps.
 265 */
 266struct page *vmalloc_to_page(const void *vmalloc_addr)
 267{
 268        unsigned long addr = (unsigned long) vmalloc_addr;
 269        struct page *page = NULL;
 270        pgd_t *pgd = pgd_offset_k(addr);
 271        p4d_t *p4d;
 272        pud_t *pud;
 273        pmd_t *pmd;
 274        pte_t *ptep, pte;
 275
 276        /*
 277         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 278         * architectures that do not vmalloc module space
 279         */
 280        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 281
 282        if (pgd_none(*pgd))
 283                return NULL;
 284        p4d = p4d_offset(pgd, addr);
 285        if (p4d_none(*p4d))
 286                return NULL;
 287        pud = pud_offset(p4d, addr);
 288
 289        /*
 290         * Don't dereference bad PUD or PMD (below) entries. This will also
 291         * identify huge mappings, which we may encounter on architectures
 292         * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 293         * identified as vmalloc addresses by is_vmalloc_addr(), but are
 294         * not [unambiguously] associated with a struct page, so there is
 295         * no correct value to return for them.
 296         */
 297        WARN_ON_ONCE(pud_bad(*pud));
 298        if (pud_none(*pud) || pud_bad(*pud))
 299                return NULL;
 300        pmd = pmd_offset(pud, addr);
 301        WARN_ON_ONCE(pmd_bad(*pmd));
 302        if (pmd_none(*pmd) || pmd_bad(*pmd))
 303                return NULL;
 304
 305        ptep = pte_offset_map(pmd, addr);
 306        pte = *ptep;
 307        if (pte_present(pte))
 308                page = pte_page(pte);
 309        pte_unmap(ptep);
 310        return page;
 311}
 312EXPORT_SYMBOL(vmalloc_to_page);
 313
 314/*
 315 * Map a vmalloc()-space virtual address to the physical page frame number.
 316 */
 317unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 318{
 319        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 320}
 321EXPORT_SYMBOL(vmalloc_to_pfn);
 322
 323
 324/*** Global kva allocator ***/
 325
 326#define VM_LAZY_FREE    0x02
 327#define VM_VM_AREA      0x04
 328
 329static DEFINE_SPINLOCK(vmap_area_lock);
 330/* Export for kexec only */
 331LIST_HEAD(vmap_area_list);
 332static LLIST_HEAD(vmap_purge_list);
 333static struct rb_root vmap_area_root = RB_ROOT;
 334
 335/* The vmap cache globals are protected by vmap_area_lock */
 336static struct rb_node *free_vmap_cache;
 337static unsigned long cached_hole_size;
 338static unsigned long cached_vstart;
 339static unsigned long cached_align;
 340
 341static unsigned long vmap_area_pcpu_hole;
 342
 343static struct vmap_area *__find_vmap_area(unsigned long addr)
 344{
 345        struct rb_node *n = vmap_area_root.rb_node;
 346
 347        while (n) {
 348                struct vmap_area *va;
 349
 350                va = rb_entry(n, struct vmap_area, rb_node);
 351                if (addr < va->va_start)
 352                        n = n->rb_left;
 353                else if (addr >= va->va_end)
 354                        n = n->rb_right;
 355                else
 356                        return va;
 357        }
 358
 359        return NULL;
 360}
 361
 362static void __insert_vmap_area(struct vmap_area *va)
 363{
 364        struct rb_node **p = &vmap_area_root.rb_node;
 365        struct rb_node *parent = NULL;
 366        struct rb_node *tmp;
 367
 368        while (*p) {
 369                struct vmap_area *tmp_va;
 370
 371                parent = *p;
 372                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 373                if (va->va_start < tmp_va->va_end)
 374                        p = &(*p)->rb_left;
 375                else if (va->va_end > tmp_va->va_start)
 376                        p = &(*p)->rb_right;
 377                else
 378                        BUG();
 379        }
 380
 381        rb_link_node(&va->rb_node, parent, p);
 382        rb_insert_color(&va->rb_node, &vmap_area_root);
 383
 384        /* address-sort this list */
 385        tmp = rb_prev(&va->rb_node);
 386        if (tmp) {
 387                struct vmap_area *prev;
 388                prev = rb_entry(tmp, struct vmap_area, rb_node);
 389                list_add_rcu(&va->list, &prev->list);
 390        } else
 391                list_add_rcu(&va->list, &vmap_area_list);
 392}
 393
 394static void purge_vmap_area_lazy(void);
 395
 396static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 397
 398/*
 399 * Allocate a region of KVA of the specified size and alignment, within the
 400 * vstart and vend.
 401 */
 402static struct vmap_area *alloc_vmap_area(unsigned long size,
 403                                unsigned long align,
 404                                unsigned long vstart, unsigned long vend,
 405                                int node, gfp_t gfp_mask)
 406{
 407        struct vmap_area *va;
 408        struct rb_node *n;
 409        unsigned long addr;
 410        int purged = 0;
 411        struct vmap_area *first;
 412
 413        BUG_ON(!size);
 414        BUG_ON(offset_in_page(size));
 415        BUG_ON(!is_power_of_2(align));
 416
 417        might_sleep();
 418
 419        va = kmalloc_node(sizeof(struct vmap_area),
 420                        gfp_mask & GFP_RECLAIM_MASK, node);
 421        if (unlikely(!va))
 422                return ERR_PTR(-ENOMEM);
 423
 424        /*
 425         * Only scan the relevant parts containing pointers to other objects
 426         * to avoid false negatives.
 427         */
 428        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 429
 430retry:
 431        spin_lock(&vmap_area_lock);
 432        /*
 433         * Invalidate cache if we have more permissive parameters.
 434         * cached_hole_size notes the largest hole noticed _below_
 435         * the vmap_area cached in free_vmap_cache: if size fits
 436         * into that hole, we want to scan from vstart to reuse
 437         * the hole instead of allocating above free_vmap_cache.
 438         * Note that __free_vmap_area may update free_vmap_cache
 439         * without updating cached_hole_size or cached_align.
 440         */
 441        if (!free_vmap_cache ||
 442                        size < cached_hole_size ||
 443                        vstart < cached_vstart ||
 444                        align < cached_align) {
 445nocache:
 446                cached_hole_size = 0;
 447                free_vmap_cache = NULL;
 448        }
 449        /* record if we encounter less permissive parameters */
 450        cached_vstart = vstart;
 451        cached_align = align;
 452
 453        /* find starting point for our search */
 454        if (free_vmap_cache) {
 455                first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 456                addr = ALIGN(first->va_end, align);
 457                if (addr < vstart)
 458                        goto nocache;
 459                if (addr + size < addr)
 460                        goto overflow;
 461
 462        } else {
 463                addr = ALIGN(vstart, align);
 464                if (addr + size < addr)
 465                        goto overflow;
 466
 467                n = vmap_area_root.rb_node;
 468                first = NULL;
 469
 470                while (n) {
 471                        struct vmap_area *tmp;
 472                        tmp = rb_entry(n, struct vmap_area, rb_node);
 473                        if (tmp->va_end >= addr) {
 474                                first = tmp;
 475                                if (tmp->va_start <= addr)
 476                                        break;
 477                                n = n->rb_left;
 478                        } else
 479                                n = n->rb_right;
 480                }
 481
 482                if (!first)
 483                        goto found;
 484        }
 485
 486        /* from the starting point, walk areas until a suitable hole is found */
 487        while (addr + size > first->va_start && addr + size <= vend) {
 488                if (addr + cached_hole_size < first->va_start)
 489                        cached_hole_size = first->va_start - addr;
 490                addr = ALIGN(first->va_end, align);
 491                if (addr + size < addr)
 492                        goto overflow;
 493
 494                if (list_is_last(&first->list, &vmap_area_list))
 495                        goto found;
 496
 497                first = list_next_entry(first, list);
 498        }
 499
 500found:
 501        if (addr + size > vend)
 502                goto overflow;
 503
 504        va->va_start = addr;
 505        va->va_end = addr + size;
 506        va->flags = 0;
 507        __insert_vmap_area(va);
 508        free_vmap_cache = &va->rb_node;
 509        spin_unlock(&vmap_area_lock);
 510
 511        BUG_ON(!IS_ALIGNED(va->va_start, align));
 512        BUG_ON(va->va_start < vstart);
 513        BUG_ON(va->va_end > vend);
 514
 515        return va;
 516
 517overflow:
 518        spin_unlock(&vmap_area_lock);
 519        if (!purged) {
 520                purge_vmap_area_lazy();
 521                purged = 1;
 522                goto retry;
 523        }
 524
 525        if (gfpflags_allow_blocking(gfp_mask)) {
 526                unsigned long freed = 0;
 527                blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 528                if (freed > 0) {
 529                        purged = 0;
 530                        goto retry;
 531                }
 532        }
 533
 534        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
 535                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 536                        size);
 537        kfree(va);
 538        return ERR_PTR(-EBUSY);
 539}
 540
 541int register_vmap_purge_notifier(struct notifier_block *nb)
 542{
 543        return blocking_notifier_chain_register(&vmap_notify_list, nb);
 544}
 545EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 546
 547int unregister_vmap_purge_notifier(struct notifier_block *nb)
 548{
 549        return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 550}
 551EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 552
 553static void __free_vmap_area(struct vmap_area *va)
 554{
 555        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 556
 557        if (free_vmap_cache) {
 558                if (va->va_end < cached_vstart) {
 559                        free_vmap_cache = NULL;
 560                } else {
 561                        struct vmap_area *cache;
 562                        cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 563                        if (va->va_start <= cache->va_start) {
 564                                free_vmap_cache = rb_prev(&va->rb_node);
 565                                /*
 566                                 * We don't try to update cached_hole_size or
 567                                 * cached_align, but it won't go very wrong.
 568                                 */
 569                        }
 570                }
 571        }
 572        rb_erase(&va->rb_node, &vmap_area_root);
 573        RB_CLEAR_NODE(&va->rb_node);
 574        list_del_rcu(&va->list);
 575
 576        /*
 577         * Track the highest possible candidate for pcpu area
 578         * allocation.  Areas outside of vmalloc area can be returned
 579         * here too, consider only end addresses which fall inside
 580         * vmalloc area proper.
 581         */
 582        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 583                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 584
 585        kfree_rcu(va, rcu_head);
 586}
 587
 588/*
 589 * Free a region of KVA allocated by alloc_vmap_area
 590 */
 591static void free_vmap_area(struct vmap_area *va)
 592{
 593        spin_lock(&vmap_area_lock);
 594        __free_vmap_area(va);
 595        spin_unlock(&vmap_area_lock);
 596}
 597
 598/*
 599 * Clear the pagetable entries of a given vmap_area
 600 */
 601static void unmap_vmap_area(struct vmap_area *va)
 602{
 603        vunmap_page_range(va->va_start, va->va_end);
 604}
 605
 606static void vmap_debug_free_range(unsigned long start, unsigned long end)
 607{
 608        /*
 609         * Unmap page tables and force a TLB flush immediately if pagealloc
 610         * debugging is enabled.  This catches use after free bugs similarly to
 611         * those in linear kernel virtual address space after a page has been
 612         * freed.
 613         *
 614         * All the lazy freeing logic is still retained, in order to minimise
 615         * intrusiveness of this debugging feature.
 616         *
 617         * This is going to be *slow* (linear kernel virtual address debugging
 618         * doesn't do a broadcast TLB flush so it is a lot faster).
 619         */
 620        if (debug_pagealloc_enabled()) {
 621                vunmap_page_range(start, end);
 622                flush_tlb_kernel_range(start, end);
 623        }
 624}
 625
 626/*
 627 * lazy_max_pages is the maximum amount of virtual address space we gather up
 628 * before attempting to purge with a TLB flush.
 629 *
 630 * There is a tradeoff here: a larger number will cover more kernel page tables
 631 * and take slightly longer to purge, but it will linearly reduce the number of
 632 * global TLB flushes that must be performed. It would seem natural to scale
 633 * this number up linearly with the number of CPUs (because vmapping activity
 634 * could also scale linearly with the number of CPUs), however it is likely
 635 * that in practice, workloads might be constrained in other ways that mean
 636 * vmap activity will not scale linearly with CPUs. Also, I want to be
 637 * conservative and not introduce a big latency on huge systems, so go with
 638 * a less aggressive log scale. It will still be an improvement over the old
 639 * code, and it will be simple to change the scale factor if we find that it
 640 * becomes a problem on bigger systems.
 641 */
 642static unsigned long lazy_max_pages(void)
 643{
 644        unsigned int log;
 645
 646        log = fls(num_online_cpus());
 647
 648        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 649}
 650
 651static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 652
 653/*
 654 * Serialize vmap purging.  There is no actual criticial section protected
 655 * by this look, but we want to avoid concurrent calls for performance
 656 * reasons and to make the pcpu_get_vm_areas more deterministic.
 657 */
 658static DEFINE_MUTEX(vmap_purge_lock);
 659
 660/* for per-CPU blocks */
 661static void purge_fragmented_blocks_allcpus(void);
 662
 663/*
 664 * called before a call to iounmap() if the caller wants vm_area_struct's
 665 * immediately freed.
 666 */
 667void set_iounmap_nonlazy(void)
 668{
 669        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 670}
 671
 672/*
 673 * Purges all lazily-freed vmap areas.
 674 */
 675static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 676{
 677        struct llist_node *valist;
 678        struct vmap_area *va;
 679        struct vmap_area *n_va;
 680        bool do_free = false;
 681
 682        lockdep_assert_held(&vmap_purge_lock);
 683
 684        valist = llist_del_all(&vmap_purge_list);
 685        llist_for_each_entry(va, valist, purge_list) {
 686                if (va->va_start < start)
 687                        start = va->va_start;
 688                if (va->va_end > end)
 689                        end = va->va_end;
 690                do_free = true;
 691        }
 692
 693        if (!do_free)
 694                return false;
 695
 696        flush_tlb_kernel_range(start, end);
 697
 698        spin_lock(&vmap_area_lock);
 699        llist_for_each_entry_safe(va, n_va, valist, purge_list) {
 700                int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 701
 702                __free_vmap_area(va);
 703                atomic_sub(nr, &vmap_lazy_nr);
 704                cond_resched_lock(&vmap_area_lock);
 705        }
 706        spin_unlock(&vmap_area_lock);
 707        return true;
 708}
 709
 710/*
 711 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 712 * is already purging.
 713 */
 714static void try_purge_vmap_area_lazy(void)
 715{
 716        if (mutex_trylock(&vmap_purge_lock)) {
 717                __purge_vmap_area_lazy(ULONG_MAX, 0);
 718                mutex_unlock(&vmap_purge_lock);
 719        }
 720}
 721
 722/*
 723 * Kick off a purge of the outstanding lazy areas.
 724 */
 725static void purge_vmap_area_lazy(void)
 726{
 727        mutex_lock(&vmap_purge_lock);
 728        purge_fragmented_blocks_allcpus();
 729        __purge_vmap_area_lazy(ULONG_MAX, 0);
 730        mutex_unlock(&vmap_purge_lock);
 731}
 732
 733/*
 734 * Free a vmap area, caller ensuring that the area has been unmapped
 735 * and flush_cache_vunmap had been called for the correct range
 736 * previously.
 737 */
 738static void free_vmap_area_noflush(struct vmap_area *va)
 739{
 740        int nr_lazy;
 741
 742        nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
 743                                    &vmap_lazy_nr);
 744
 745        /* After this point, we may free va at any time */
 746        llist_add(&va->purge_list, &vmap_purge_list);
 747
 748        if (unlikely(nr_lazy > lazy_max_pages()))
 749                try_purge_vmap_area_lazy();
 750}
 751
 752/*
 753 * Free and unmap a vmap area
 754 */
 755static void free_unmap_vmap_area(struct vmap_area *va)
 756{
 757        flush_cache_vunmap(va->va_start, va->va_end);
 758        unmap_vmap_area(va);
 759        free_vmap_area_noflush(va);
 760}
 761
 762static struct vmap_area *find_vmap_area(unsigned long addr)
 763{
 764        struct vmap_area *va;
 765
 766        spin_lock(&vmap_area_lock);
 767        va = __find_vmap_area(addr);
 768        spin_unlock(&vmap_area_lock);
 769
 770        return va;
 771}
 772
 773/*** Per cpu kva allocator ***/
 774
 775/*
 776 * vmap space is limited especially on 32 bit architectures. Ensure there is
 777 * room for at least 16 percpu vmap blocks per CPU.
 778 */
 779/*
 780 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 781 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 782 * instead (we just need a rough idea)
 783 */
 784#if BITS_PER_LONG == 32
 785#define VMALLOC_SPACE           (128UL*1024*1024)
 786#else
 787#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 788#endif
 789
 790#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 791#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 792#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 793#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 794#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 795#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 796#define VMAP_BBMAP_BITS         \
 797                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
 798                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 799                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 800
 801#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 802
 803static bool vmap_initialized __read_mostly = false;
 804
 805struct vmap_block_queue {
 806        spinlock_t lock;
 807        struct list_head free;
 808};
 809
 810struct vmap_block {
 811        spinlock_t lock;
 812        struct vmap_area *va;
 813        unsigned long free, dirty;
 814        unsigned long dirty_min, dirty_max; /*< dirty range */
 815        struct list_head free_list;
 816        struct rcu_head rcu_head;
 817        struct list_head purge;
 818};
 819
 820/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 821static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 822
 823/*
 824 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 825 * in the free path. Could get rid of this if we change the API to return a
 826 * "cookie" from alloc, to be passed to free. But no big deal yet.
 827 */
 828static DEFINE_SPINLOCK(vmap_block_tree_lock);
 829static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 830
 831/*
 832 * We should probably have a fallback mechanism to allocate virtual memory
 833 * out of partially filled vmap blocks. However vmap block sizing should be
 834 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 835 * big problem.
 836 */
 837
 838static unsigned long addr_to_vb_idx(unsigned long addr)
 839{
 840        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 841        addr /= VMAP_BLOCK_SIZE;
 842        return addr;
 843}
 844
 845static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 846{
 847        unsigned long addr;
 848
 849        addr = va_start + (pages_off << PAGE_SHIFT);
 850        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 851        return (void *)addr;
 852}
 853
 854/**
 855 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 856 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 857 * @order:    how many 2^order pages should be occupied in newly allocated block
 858 * @gfp_mask: flags for the page level allocator
 859 *
 860 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 861 */
 862static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 863{
 864        struct vmap_block_queue *vbq;
 865        struct vmap_block *vb;
 866        struct vmap_area *va;
 867        unsigned long vb_idx;
 868        int node, err;
 869        void *vaddr;
 870
 871        node = numa_node_id();
 872
 873        vb = kmalloc_node(sizeof(struct vmap_block),
 874                        gfp_mask & GFP_RECLAIM_MASK, node);
 875        if (unlikely(!vb))
 876                return ERR_PTR(-ENOMEM);
 877
 878        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 879                                        VMALLOC_START, VMALLOC_END,
 880                                        node, gfp_mask);
 881        if (IS_ERR(va)) {
 882                kfree(vb);
 883                return ERR_CAST(va);
 884        }
 885
 886        err = radix_tree_preload(gfp_mask);
 887        if (unlikely(err)) {
 888                kfree(vb);
 889                free_vmap_area(va);
 890                return ERR_PTR(err);
 891        }
 892
 893        vaddr = vmap_block_vaddr(va->va_start, 0);
 894        spin_lock_init(&vb->lock);
 895        vb->va = va;
 896        /* At least something should be left free */
 897        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 898        vb->free = VMAP_BBMAP_BITS - (1UL << order);
 899        vb->dirty = 0;
 900        vb->dirty_min = VMAP_BBMAP_BITS;
 901        vb->dirty_max = 0;
 902        INIT_LIST_HEAD(&vb->free_list);
 903
 904        vb_idx = addr_to_vb_idx(va->va_start);
 905        spin_lock(&vmap_block_tree_lock);
 906        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 907        spin_unlock(&vmap_block_tree_lock);
 908        BUG_ON(err);
 909        radix_tree_preload_end();
 910
 911        vbq = &get_cpu_var(vmap_block_queue);
 912        spin_lock(&vbq->lock);
 913        list_add_tail_rcu(&vb->free_list, &vbq->free);
 914        spin_unlock(&vbq->lock);
 915        put_cpu_var(vmap_block_queue);
 916
 917        return vaddr;
 918}
 919
 920static void free_vmap_block(struct vmap_block *vb)
 921{
 922        struct vmap_block *tmp;
 923        unsigned long vb_idx;
 924
 925        vb_idx = addr_to_vb_idx(vb->va->va_start);
 926        spin_lock(&vmap_block_tree_lock);
 927        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 928        spin_unlock(&vmap_block_tree_lock);
 929        BUG_ON(tmp != vb);
 930
 931        free_vmap_area_noflush(vb->va);
 932        kfree_rcu(vb, rcu_head);
 933}
 934
 935static void purge_fragmented_blocks(int cpu)
 936{
 937        LIST_HEAD(purge);
 938        struct vmap_block *vb;
 939        struct vmap_block *n_vb;
 940        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 941
 942        rcu_read_lock();
 943        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 944
 945                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 946                        continue;
 947
 948                spin_lock(&vb->lock);
 949                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 950                        vb->free = 0; /* prevent further allocs after releasing lock */
 951                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 952                        vb->dirty_min = 0;
 953                        vb->dirty_max = VMAP_BBMAP_BITS;
 954                        spin_lock(&vbq->lock);
 955                        list_del_rcu(&vb->free_list);
 956                        spin_unlock(&vbq->lock);
 957                        spin_unlock(&vb->lock);
 958                        list_add_tail(&vb->purge, &purge);
 959                } else
 960                        spin_unlock(&vb->lock);
 961        }
 962        rcu_read_unlock();
 963
 964        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 965                list_del(&vb->purge);
 966                free_vmap_block(vb);
 967        }
 968}
 969
 970static void purge_fragmented_blocks_allcpus(void)
 971{
 972        int cpu;
 973
 974        for_each_possible_cpu(cpu)
 975                purge_fragmented_blocks(cpu);
 976}
 977
 978static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 979{
 980        struct vmap_block_queue *vbq;
 981        struct vmap_block *vb;
 982        void *vaddr = NULL;
 983        unsigned int order;
 984
 985        BUG_ON(offset_in_page(size));
 986        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 987        if (WARN_ON(size == 0)) {
 988                /*
 989                 * Allocating 0 bytes isn't what caller wants since
 990                 * get_order(0) returns funny result. Just warn and terminate
 991                 * early.
 992                 */
 993                return NULL;
 994        }
 995        order = get_order(size);
 996
 997        rcu_read_lock();
 998        vbq = &get_cpu_var(vmap_block_queue);
 999        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1000                unsigned long pages_off;
1001
1002                spin_lock(&vb->lock);
1003                if (vb->free < (1UL << order)) {
1004                        spin_unlock(&vb->lock);
1005                        continue;
1006                }
1007
1008                pages_off = VMAP_BBMAP_BITS - vb->free;
1009                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1010                vb->free -= 1UL << order;
1011                if (vb->free == 0) {
1012                        spin_lock(&vbq->lock);
1013                        list_del_rcu(&vb->free_list);
1014                        spin_unlock(&vbq->lock);
1015                }
1016
1017                spin_unlock(&vb->lock);
1018                break;
1019        }
1020
1021        put_cpu_var(vmap_block_queue);
1022        rcu_read_unlock();
1023
1024        /* Allocate new block if nothing was found */
1025        if (!vaddr)
1026                vaddr = new_vmap_block(order, gfp_mask);
1027
1028        return vaddr;
1029}
1030
1031static void vb_free(const void *addr, unsigned long size)
1032{
1033        unsigned long offset;
1034        unsigned long vb_idx;
1035        unsigned int order;
1036        struct vmap_block *vb;
1037
1038        BUG_ON(offset_in_page(size));
1039        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1040
1041        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1042
1043        order = get_order(size);
1044
1045        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1046        offset >>= PAGE_SHIFT;
1047
1048        vb_idx = addr_to_vb_idx((unsigned long)addr);
1049        rcu_read_lock();
1050        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1051        rcu_read_unlock();
1052        BUG_ON(!vb);
1053
1054        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1055
1056        spin_lock(&vb->lock);
1057
1058        /* Expand dirty range */
1059        vb->dirty_min = min(vb->dirty_min, offset);
1060        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1061
1062        vb->dirty += 1UL << order;
1063        if (vb->dirty == VMAP_BBMAP_BITS) {
1064                BUG_ON(vb->free);
1065                spin_unlock(&vb->lock);
1066                free_vmap_block(vb);
1067        } else
1068                spin_unlock(&vb->lock);
1069}
1070
1071/**
1072 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1073 *
1074 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1075 * to amortize TLB flushing overheads. What this means is that any page you
1076 * have now, may, in a former life, have been mapped into kernel virtual
1077 * address by the vmap layer and so there might be some CPUs with TLB entries
1078 * still referencing that page (additional to the regular 1:1 kernel mapping).
1079 *
1080 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1081 * be sure that none of the pages we have control over will have any aliases
1082 * from the vmap layer.
1083 */
1084void vm_unmap_aliases(void)
1085{
1086        unsigned long start = ULONG_MAX, end = 0;
1087        int cpu;
1088        int flush = 0;
1089
1090        if (unlikely(!vmap_initialized))
1091                return;
1092
1093        might_sleep();
1094
1095        for_each_possible_cpu(cpu) {
1096                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1097                struct vmap_block *vb;
1098
1099                rcu_read_lock();
1100                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1101                        spin_lock(&vb->lock);
1102                        if (vb->dirty) {
1103                                unsigned long va_start = vb->va->va_start;
1104                                unsigned long s, e;
1105
1106                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
1107                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
1108
1109                                start = min(s, start);
1110                                end   = max(e, end);
1111
1112                                flush = 1;
1113                        }
1114                        spin_unlock(&vb->lock);
1115                }
1116                rcu_read_unlock();
1117        }
1118
1119        mutex_lock(&vmap_purge_lock);
1120        purge_fragmented_blocks_allcpus();
1121        if (!__purge_vmap_area_lazy(start, end) && flush)
1122                flush_tlb_kernel_range(start, end);
1123        mutex_unlock(&vmap_purge_lock);
1124}
1125EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1126
1127/**
1128 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1129 * @mem: the pointer returned by vm_map_ram
1130 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1131 */
1132void vm_unmap_ram(const void *mem, unsigned int count)
1133{
1134        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1135        unsigned long addr = (unsigned long)mem;
1136        struct vmap_area *va;
1137
1138        might_sleep();
1139        BUG_ON(!addr);
1140        BUG_ON(addr < VMALLOC_START);
1141        BUG_ON(addr > VMALLOC_END);
1142        BUG_ON(!PAGE_ALIGNED(addr));
1143
1144        debug_check_no_locks_freed(mem, size);
1145        vmap_debug_free_range(addr, addr+size);
1146
1147        if (likely(count <= VMAP_MAX_ALLOC)) {
1148                vb_free(mem, size);
1149                return;
1150        }
1151
1152        va = find_vmap_area(addr);
1153        BUG_ON(!va);
1154        free_unmap_vmap_area(va);
1155}
1156EXPORT_SYMBOL(vm_unmap_ram);
1157
1158/**
1159 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1160 * @pages: an array of pointers to the pages to be mapped
1161 * @count: number of pages
1162 * @node: prefer to allocate data structures on this node
1163 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1164 *
1165 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1166 * faster than vmap so it's good.  But if you mix long-life and short-life
1167 * objects with vm_map_ram(), it could consume lots of address space through
1168 * fragmentation (especially on a 32bit machine).  You could see failures in
1169 * the end.  Please use this function for short-lived objects.
1170 *
1171 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1172 */
1173void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1174{
1175        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1176        unsigned long addr;
1177        void *mem;
1178
1179        if (likely(count <= VMAP_MAX_ALLOC)) {
1180                mem = vb_alloc(size, GFP_KERNEL);
1181                if (IS_ERR(mem))
1182                        return NULL;
1183                addr = (unsigned long)mem;
1184        } else {
1185                struct vmap_area *va;
1186                va = alloc_vmap_area(size, PAGE_SIZE,
1187                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1188                if (IS_ERR(va))
1189                        return NULL;
1190
1191                addr = va->va_start;
1192                mem = (void *)addr;
1193        }
1194        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1195                vm_unmap_ram(mem, count);
1196                return NULL;
1197        }
1198        return mem;
1199}
1200EXPORT_SYMBOL(vm_map_ram);
1201
1202static struct vm_struct *vmlist __initdata;
1203/**
1204 * vm_area_add_early - add vmap area early during boot
1205 * @vm: vm_struct to add
1206 *
1207 * This function is used to add fixed kernel vm area to vmlist before
1208 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1209 * should contain proper values and the other fields should be zero.
1210 *
1211 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1212 */
1213void __init vm_area_add_early(struct vm_struct *vm)
1214{
1215        struct vm_struct *tmp, **p;
1216
1217        BUG_ON(vmap_initialized);
1218        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1219                if (tmp->addr >= vm->addr) {
1220                        BUG_ON(tmp->addr < vm->addr + vm->size);
1221                        break;
1222                } else
1223                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1224        }
1225        vm->next = *p;
1226        *p = vm;
1227}
1228
1229/**
1230 * vm_area_register_early - register vmap area early during boot
1231 * @vm: vm_struct to register
1232 * @align: requested alignment
1233 *
1234 * This function is used to register kernel vm area before
1235 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1236 * proper values on entry and other fields should be zero.  On return,
1237 * vm->addr contains the allocated address.
1238 *
1239 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1240 */
1241void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1242{
1243        static size_t vm_init_off __initdata;
1244        unsigned long addr;
1245
1246        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1247        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1248
1249        vm->addr = (void *)addr;
1250
1251        vm_area_add_early(vm);
1252}
1253
1254void __init vmalloc_init(void)
1255{
1256        struct vmap_area *va;
1257        struct vm_struct *tmp;
1258        int i;
1259
1260        for_each_possible_cpu(i) {
1261                struct vmap_block_queue *vbq;
1262                struct vfree_deferred *p;
1263
1264                vbq = &per_cpu(vmap_block_queue, i);
1265                spin_lock_init(&vbq->lock);
1266                INIT_LIST_HEAD(&vbq->free);
1267                p = &per_cpu(vfree_deferred, i);
1268                init_llist_head(&p->list);
1269                INIT_WORK(&p->wq, free_work);
1270        }
1271
1272        /* Import existing vmlist entries. */
1273        for (tmp = vmlist; tmp; tmp = tmp->next) {
1274                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1275                va->flags = VM_VM_AREA;
1276                va->va_start = (unsigned long)tmp->addr;
1277                va->va_end = va->va_start + tmp->size;
1278                va->vm = tmp;
1279                __insert_vmap_area(va);
1280        }
1281
1282        vmap_area_pcpu_hole = VMALLOC_END;
1283
1284        vmap_initialized = true;
1285}
1286
1287/**
1288 * map_kernel_range_noflush - map kernel VM area with the specified pages
1289 * @addr: start of the VM area to map
1290 * @size: size of the VM area to map
1291 * @prot: page protection flags to use
1292 * @pages: pages to map
1293 *
1294 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1295 * specify should have been allocated using get_vm_area() and its
1296 * friends.
1297 *
1298 * NOTE:
1299 * This function does NOT do any cache flushing.  The caller is
1300 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1301 * before calling this function.
1302 *
1303 * RETURNS:
1304 * The number of pages mapped on success, -errno on failure.
1305 */
1306int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1307                             pgprot_t prot, struct page **pages)
1308{
1309        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1310}
1311
1312/**
1313 * unmap_kernel_range_noflush - unmap kernel VM area
1314 * @addr: start of the VM area to unmap
1315 * @size: size of the VM area to unmap
1316 *
1317 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1318 * specify should have been allocated using get_vm_area() and its
1319 * friends.
1320 *
1321 * NOTE:
1322 * This function does NOT do any cache flushing.  The caller is
1323 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1324 * before calling this function and flush_tlb_kernel_range() after.
1325 */
1326void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1327{
1328        vunmap_page_range(addr, addr + size);
1329}
1330EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1331
1332/**
1333 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1334 * @addr: start of the VM area to unmap
1335 * @size: size of the VM area to unmap
1336 *
1337 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1338 * the unmapping and tlb after.
1339 */
1340void unmap_kernel_range(unsigned long addr, unsigned long size)
1341{
1342        unsigned long end = addr + size;
1343
1344        flush_cache_vunmap(addr, end);
1345        vunmap_page_range(addr, end);
1346        flush_tlb_kernel_range(addr, end);
1347}
1348EXPORT_SYMBOL_GPL(unmap_kernel_range);
1349
1350int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1351{
1352        unsigned long addr = (unsigned long)area->addr;
1353        unsigned long end = addr + get_vm_area_size(area);
1354        int err;
1355
1356        err = vmap_page_range(addr, end, prot, pages);
1357
1358        return err > 0 ? 0 : err;
1359}
1360EXPORT_SYMBOL_GPL(map_vm_area);
1361
1362static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1363                              unsigned long flags, const void *caller)
1364{
1365        spin_lock(&vmap_area_lock);
1366        vm->flags = flags;
1367        vm->addr = (void *)va->va_start;
1368        vm->size = va->va_end - va->va_start;
1369        vm->caller = caller;
1370        va->vm = vm;
1371        va->flags |= VM_VM_AREA;
1372        spin_unlock(&vmap_area_lock);
1373}
1374
1375static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1376{
1377        /*
1378         * Before removing VM_UNINITIALIZED,
1379         * we should make sure that vm has proper values.
1380         * Pair with smp_rmb() in show_numa_info().
1381         */
1382        smp_wmb();
1383        vm->flags &= ~VM_UNINITIALIZED;
1384}
1385
1386static struct vm_struct *__get_vm_area_node(unsigned long size,
1387                unsigned long align, unsigned long flags, unsigned long start,
1388                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1389{
1390        struct vmap_area *va;
1391        struct vm_struct *area;
1392
1393        BUG_ON(in_interrupt());
1394        size = PAGE_ALIGN(size);
1395        if (unlikely(!size))
1396                return NULL;
1397
1398        if (flags & VM_IOREMAP)
1399                align = 1ul << clamp_t(int, get_count_order_long(size),
1400                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1401
1402        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1403        if (unlikely(!area))
1404                return NULL;
1405
1406        if (!(flags & VM_NO_GUARD))
1407                size += PAGE_SIZE;
1408
1409        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1410        if (IS_ERR(va)) {
1411                kfree(area);
1412                return NULL;
1413        }
1414
1415        setup_vmalloc_vm(area, va, flags, caller);
1416
1417        return area;
1418}
1419
1420struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1421                                unsigned long start, unsigned long end)
1422{
1423        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1424                                  GFP_KERNEL, __builtin_return_address(0));
1425}
1426EXPORT_SYMBOL_GPL(__get_vm_area);
1427
1428struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1429                                       unsigned long start, unsigned long end,
1430                                       const void *caller)
1431{
1432        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1433                                  GFP_KERNEL, caller);
1434}
1435
1436/**
1437 *      get_vm_area  -  reserve a contiguous kernel virtual area
1438 *      @size:          size of the area
1439 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1440 *
1441 *      Search an area of @size in the kernel virtual mapping area,
1442 *      and reserved it for out purposes.  Returns the area descriptor
1443 *      on success or %NULL on failure.
1444 */
1445struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1446{
1447        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1448                                  NUMA_NO_NODE, GFP_KERNEL,
1449                                  __builtin_return_address(0));
1450}
1451
1452struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1453                                const void *caller)
1454{
1455        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1456                                  NUMA_NO_NODE, GFP_KERNEL, caller);
1457}
1458
1459/**
1460 *      find_vm_area  -  find a continuous kernel virtual area
1461 *      @addr:          base address
1462 *
1463 *      Search for the kernel VM area starting at @addr, and return it.
1464 *      It is up to the caller to do all required locking to keep the returned
1465 *      pointer valid.
1466 */
1467struct vm_struct *find_vm_area(const void *addr)
1468{
1469        struct vmap_area *va;
1470
1471        va = find_vmap_area((unsigned long)addr);
1472        if (va && va->flags & VM_VM_AREA)
1473                return va->vm;
1474
1475        return NULL;
1476}
1477
1478/**
1479 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1480 *      @addr:          base address
1481 *
1482 *      Search for the kernel VM area starting at @addr, and remove it.
1483 *      This function returns the found VM area, but using it is NOT safe
1484 *      on SMP machines, except for its size or flags.
1485 */
1486struct vm_struct *remove_vm_area(const void *addr)
1487{
1488        struct vmap_area *va;
1489
1490        might_sleep();
1491
1492        va = find_vmap_area((unsigned long)addr);
1493        if (va && va->flags & VM_VM_AREA) {
1494                struct vm_struct *vm = va->vm;
1495
1496                spin_lock(&vmap_area_lock);
1497                va->vm = NULL;
1498                va->flags &= ~VM_VM_AREA;
1499                va->flags |= VM_LAZY_FREE;
1500                spin_unlock(&vmap_area_lock);
1501
1502                vmap_debug_free_range(va->va_start, va->va_end);
1503                kasan_free_shadow(vm);
1504                free_unmap_vmap_area(va);
1505
1506                return vm;
1507        }
1508        return NULL;
1509}
1510
1511static void __vunmap(const void *addr, int deallocate_pages)
1512{
1513        struct vm_struct *area;
1514
1515        if (!addr)
1516                return;
1517
1518        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1519                        addr))
1520                return;
1521
1522        area = remove_vm_area(addr);
1523        if (unlikely(!area)) {
1524                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1525                                addr);
1526                return;
1527        }
1528
1529        debug_check_no_locks_freed(addr, get_vm_area_size(area));
1530        debug_check_no_obj_freed(addr, get_vm_area_size(area));
1531
1532        if (deallocate_pages) {
1533                int i;
1534
1535                for (i = 0; i < area->nr_pages; i++) {
1536                        struct page *page = area->pages[i];
1537
1538                        BUG_ON(!page);
1539                        __free_pages(page, 0);
1540                }
1541
1542                kvfree(area->pages);
1543        }
1544
1545        kfree(area);
1546        return;
1547}
1548
1549static inline void __vfree_deferred(const void *addr)
1550{
1551        /*
1552         * Use raw_cpu_ptr() because this can be called from preemptible
1553         * context. Preemption is absolutely fine here, because the llist_add()
1554         * implementation is lockless, so it works even if we are adding to
1555         * nother cpu's list.  schedule_work() should be fine with this too.
1556         */
1557        struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1558
1559        if (llist_add((struct llist_node *)addr, &p->list))
1560                schedule_work(&p->wq);
1561}
1562
1563/**
1564 *      vfree_atomic  -  release memory allocated by vmalloc()
1565 *      @addr:          memory base address
1566 *
1567 *      This one is just like vfree() but can be called in any atomic context
1568 *      except NMIs.
1569 */
1570void vfree_atomic(const void *addr)
1571{
1572        BUG_ON(in_nmi());
1573
1574        kmemleak_free(addr);
1575
1576        if (!addr)
1577                return;
1578        __vfree_deferred(addr);
1579}
1580
1581/**
1582 *      vfree  -  release memory allocated by vmalloc()
1583 *      @addr:          memory base address
1584 *
1585 *      Free the virtually continuous memory area starting at @addr, as
1586 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1587 *      NULL, no operation is performed.
1588 *
1589 *      Must not be called in NMI context (strictly speaking, only if we don't
1590 *      have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1591 *      conventions for vfree() arch-depenedent would be a really bad idea)
1592 *
1593 *      NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1594 */
1595void vfree(const void *addr)
1596{
1597        BUG_ON(in_nmi());
1598
1599        kmemleak_free(addr);
1600
1601        if (!addr)
1602                return;
1603        if (unlikely(in_interrupt()))
1604                __vfree_deferred(addr);
1605        else
1606                __vunmap(addr, 1);
1607}
1608EXPORT_SYMBOL(vfree);
1609
1610/**
1611 *      vunmap  -  release virtual mapping obtained by vmap()
1612 *      @addr:          memory base address
1613 *
1614 *      Free the virtually contiguous memory area starting at @addr,
1615 *      which was created from the page array passed to vmap().
1616 *
1617 *      Must not be called in interrupt context.
1618 */
1619void vunmap(const void *addr)
1620{
1621        BUG_ON(in_interrupt());
1622        might_sleep();
1623        if (addr)
1624                __vunmap(addr, 0);
1625}
1626EXPORT_SYMBOL(vunmap);
1627
1628/**
1629 *      vmap  -  map an array of pages into virtually contiguous space
1630 *      @pages:         array of page pointers
1631 *      @count:         number of pages to map
1632 *      @flags:         vm_area->flags
1633 *      @prot:          page protection for the mapping
1634 *
1635 *      Maps @count pages from @pages into contiguous kernel virtual
1636 *      space.
1637 */
1638void *vmap(struct page **pages, unsigned int count,
1639                unsigned long flags, pgprot_t prot)
1640{
1641        struct vm_struct *area;
1642        unsigned long size;             /* In bytes */
1643
1644        might_sleep();
1645
1646        if (count > totalram_pages)
1647                return NULL;
1648
1649        size = (unsigned long)count << PAGE_SHIFT;
1650        area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1651        if (!area)
1652                return NULL;
1653
1654        if (map_vm_area(area, prot, pages)) {
1655                vunmap(area->addr);
1656                return NULL;
1657        }
1658
1659        return area->addr;
1660}
1661EXPORT_SYMBOL(vmap);
1662
1663static void *__vmalloc_node(unsigned long size, unsigned long align,
1664                            gfp_t gfp_mask, pgprot_t prot,
1665                            int node, const void *caller);
1666static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1667                                 pgprot_t prot, int node)
1668{
1669        struct page **pages;
1670        unsigned int nr_pages, array_size, i;
1671        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1672        const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1673        const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1674                                        0 :
1675                                        __GFP_HIGHMEM;
1676
1677        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1678        array_size = (nr_pages * sizeof(struct page *));
1679
1680        area->nr_pages = nr_pages;
1681        /* Please note that the recursion is strictly bounded. */
1682        if (array_size > PAGE_SIZE) {
1683                pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1684                                PAGE_KERNEL, node, area->caller);
1685        } else {
1686                pages = kmalloc_node(array_size, nested_gfp, node);
1687        }
1688        area->pages = pages;
1689        if (!area->pages) {
1690                remove_vm_area(area->addr);
1691                kfree(area);
1692                return NULL;
1693        }
1694
1695        for (i = 0; i < area->nr_pages; i++) {
1696                struct page *page;
1697
1698                if (node == NUMA_NO_NODE)
1699                        page = alloc_page(alloc_mask|highmem_mask);
1700                else
1701                        page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1702
1703                if (unlikely(!page)) {
1704                        /* Successfully allocated i pages, free them in __vunmap() */
1705                        area->nr_pages = i;
1706                        goto fail;
1707                }
1708                area->pages[i] = page;
1709                if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1710                        cond_resched();
1711        }
1712
1713        if (map_vm_area(area, prot, pages))
1714                goto fail;
1715        return area->addr;
1716
1717fail:
1718        warn_alloc(gfp_mask, NULL,
1719                          "vmalloc: allocation failure, allocated %ld of %ld bytes",
1720                          (area->nr_pages*PAGE_SIZE), area->size);
1721        vfree(area->addr);
1722        return NULL;
1723}
1724
1725/**
1726 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1727 *      @size:          allocation size
1728 *      @align:         desired alignment
1729 *      @start:         vm area range start
1730 *      @end:           vm area range end
1731 *      @gfp_mask:      flags for the page level allocator
1732 *      @prot:          protection mask for the allocated pages
1733 *      @vm_flags:      additional vm area flags (e.g. %VM_NO_GUARD)
1734 *      @node:          node to use for allocation or NUMA_NO_NODE
1735 *      @caller:        caller's return address
1736 *
1737 *      Allocate enough pages to cover @size from the page level
1738 *      allocator with @gfp_mask flags.  Map them into contiguous
1739 *      kernel virtual space, using a pagetable protection of @prot.
1740 */
1741void *__vmalloc_node_range(unsigned long size, unsigned long align,
1742                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1743                        pgprot_t prot, unsigned long vm_flags, int node,
1744                        const void *caller)
1745{
1746        struct vm_struct *area;
1747        void *addr;
1748        unsigned long real_size = size;
1749
1750        size = PAGE_ALIGN(size);
1751        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1752                goto fail;
1753
1754        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1755                                vm_flags, start, end, node, gfp_mask, caller);
1756        if (!area)
1757                goto fail;
1758
1759        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1760        if (!addr)
1761                return NULL;
1762
1763        /*
1764         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1765         * flag. It means that vm_struct is not fully initialized.
1766         * Now, it is fully initialized, so remove this flag here.
1767         */
1768        clear_vm_uninitialized_flag(area);
1769
1770        kmemleak_vmalloc(area, size, gfp_mask);
1771
1772        return addr;
1773
1774fail:
1775        warn_alloc(gfp_mask, NULL,
1776                          "vmalloc: allocation failure: %lu bytes", real_size);
1777        return NULL;
1778}
1779
1780/**
1781 *      __vmalloc_node  -  allocate virtually contiguous memory
1782 *      @size:          allocation size
1783 *      @align:         desired alignment
1784 *      @gfp_mask:      flags for the page level allocator
1785 *      @prot:          protection mask for the allocated pages
1786 *      @node:          node to use for allocation or NUMA_NO_NODE
1787 *      @caller:        caller's return address
1788 *
1789 *      Allocate enough pages to cover @size from the page level
1790 *      allocator with @gfp_mask flags.  Map them into contiguous
1791 *      kernel virtual space, using a pagetable protection of @prot.
1792 *
1793 *      Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1794 *      and __GFP_NOFAIL are not supported
1795 *
1796 *      Any use of gfp flags outside of GFP_KERNEL should be consulted
1797 *      with mm people.
1798 *
1799 */
1800static void *__vmalloc_node(unsigned long size, unsigned long align,
1801                            gfp_t gfp_mask, pgprot_t prot,
1802                            int node, const void *caller)
1803{
1804        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1805                                gfp_mask, prot, 0, node, caller);
1806}
1807
1808void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1809{
1810        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1811                                __builtin_return_address(0));
1812}
1813EXPORT_SYMBOL(__vmalloc);
1814
1815static inline void *__vmalloc_node_flags(unsigned long size,
1816                                        int node, gfp_t flags)
1817{
1818        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1819                                        node, __builtin_return_address(0));
1820}
1821
1822
1823void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1824                                  void *caller)
1825{
1826        return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1827}
1828
1829/**
1830 *      vmalloc  -  allocate virtually contiguous memory
1831 *      @size:          allocation size
1832 *      Allocate enough pages to cover @size from the page level
1833 *      allocator and map them into contiguous kernel virtual space.
1834 *
1835 *      For tight control over page level allocator and protection flags
1836 *      use __vmalloc() instead.
1837 */
1838void *vmalloc(unsigned long size)
1839{
1840        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1841                                    GFP_KERNEL);
1842}
1843EXPORT_SYMBOL(vmalloc);
1844
1845/**
1846 *      vzalloc - allocate virtually contiguous memory with zero fill
1847 *      @size:  allocation size
1848 *      Allocate enough pages to cover @size from the page level
1849 *      allocator and map them into contiguous kernel virtual space.
1850 *      The memory allocated is set to zero.
1851 *
1852 *      For tight control over page level allocator and protection flags
1853 *      use __vmalloc() instead.
1854 */
1855void *vzalloc(unsigned long size)
1856{
1857        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1858                                GFP_KERNEL | __GFP_ZERO);
1859}
1860EXPORT_SYMBOL(vzalloc);
1861
1862/**
1863 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1864 * @size: allocation size
1865 *
1866 * The resulting memory area is zeroed so it can be mapped to userspace
1867 * without leaking data.
1868 */
1869void *vmalloc_user(unsigned long size)
1870{
1871        struct vm_struct *area;
1872        void *ret;
1873
1874        ret = __vmalloc_node(size, SHMLBA,
1875                             GFP_KERNEL | __GFP_ZERO,
1876                             PAGE_KERNEL, NUMA_NO_NODE,
1877                             __builtin_return_address(0));
1878        if (ret) {
1879                area = find_vm_area(ret);
1880                area->flags |= VM_USERMAP;
1881        }
1882        return ret;
1883}
1884EXPORT_SYMBOL(vmalloc_user);
1885
1886/**
1887 *      vmalloc_node  -  allocate memory on a specific node
1888 *      @size:          allocation size
1889 *      @node:          numa node
1890 *
1891 *      Allocate enough pages to cover @size from the page level
1892 *      allocator and map them into contiguous kernel virtual space.
1893 *
1894 *      For tight control over page level allocator and protection flags
1895 *      use __vmalloc() instead.
1896 */
1897void *vmalloc_node(unsigned long size, int node)
1898{
1899        return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1900                                        node, __builtin_return_address(0));
1901}
1902EXPORT_SYMBOL(vmalloc_node);
1903
1904/**
1905 * vzalloc_node - allocate memory on a specific node with zero fill
1906 * @size:       allocation size
1907 * @node:       numa node
1908 *
1909 * Allocate enough pages to cover @size from the page level
1910 * allocator and map them into contiguous kernel virtual space.
1911 * The memory allocated is set to zero.
1912 *
1913 * For tight control over page level allocator and protection flags
1914 * use __vmalloc_node() instead.
1915 */
1916void *vzalloc_node(unsigned long size, int node)
1917{
1918        return __vmalloc_node_flags(size, node,
1919                         GFP_KERNEL | __GFP_ZERO);
1920}
1921EXPORT_SYMBOL(vzalloc_node);
1922
1923#ifndef PAGE_KERNEL_EXEC
1924# define PAGE_KERNEL_EXEC PAGE_KERNEL
1925#endif
1926
1927/**
1928 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1929 *      @size:          allocation size
1930 *
1931 *      Kernel-internal function to allocate enough pages to cover @size
1932 *      the page level allocator and map them into contiguous and
1933 *      executable kernel virtual space.
1934 *
1935 *      For tight control over page level allocator and protection flags
1936 *      use __vmalloc() instead.
1937 */
1938
1939void *vmalloc_exec(unsigned long size)
1940{
1941        return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1942                              NUMA_NO_NODE, __builtin_return_address(0));
1943}
1944
1945#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1946#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1947#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1948#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1949#else
1950/*
1951 * 64b systems should always have either DMA or DMA32 zones. For others
1952 * GFP_DMA32 should do the right thing and use the normal zone.
1953 */
1954#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1955#endif
1956
1957/**
1958 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1959 *      @size:          allocation size
1960 *
1961 *      Allocate enough 32bit PA addressable pages to cover @size from the
1962 *      page level allocator and map them into contiguous kernel virtual space.
1963 */
1964void *vmalloc_32(unsigned long size)
1965{
1966        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1967                              NUMA_NO_NODE, __builtin_return_address(0));
1968}
1969EXPORT_SYMBOL(vmalloc_32);
1970
1971/**
1972 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1973 *      @size:          allocation size
1974 *
1975 * The resulting memory area is 32bit addressable and zeroed so it can be
1976 * mapped to userspace without leaking data.
1977 */
1978void *vmalloc_32_user(unsigned long size)
1979{
1980        struct vm_struct *area;
1981        void *ret;
1982
1983        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1984                             NUMA_NO_NODE, __builtin_return_address(0));
1985        if (ret) {
1986                area = find_vm_area(ret);
1987                area->flags |= VM_USERMAP;
1988        }
1989        return ret;
1990}
1991EXPORT_SYMBOL(vmalloc_32_user);
1992
1993/*
1994 * small helper routine , copy contents to buf from addr.
1995 * If the page is not present, fill zero.
1996 */
1997
1998static int aligned_vread(char *buf, char *addr, unsigned long count)
1999{
2000        struct page *p;
2001        int copied = 0;
2002
2003        while (count) {
2004                unsigned long offset, length;
2005
2006                offset = offset_in_page(addr);
2007                length = PAGE_SIZE - offset;
2008                if (length > count)
2009                        length = count;
2010                p = vmalloc_to_page(addr);
2011                /*
2012                 * To do safe access to this _mapped_ area, we need
2013                 * lock. But adding lock here means that we need to add
2014                 * overhead of vmalloc()/vfree() calles for this _debug_
2015                 * interface, rarely used. Instead of that, we'll use
2016                 * kmap() and get small overhead in this access function.
2017                 */
2018                if (p) {
2019                        /*
2020                         * we can expect USER0 is not used (see vread/vwrite's
2021                         * function description)
2022                         */
2023                        void *map = kmap_atomic(p);
2024                        memcpy(buf, map + offset, length);
2025                        kunmap_atomic(map);
2026                } else
2027                        memset(buf, 0, length);
2028
2029                addr += length;
2030                buf += length;
2031                copied += length;
2032                count -= length;
2033        }
2034        return copied;
2035}
2036
2037static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2038{
2039        struct page *p;
2040        int copied = 0;
2041
2042        while (count) {
2043                unsigned long offset, length;
2044
2045                offset = offset_in_page(addr);
2046                length = PAGE_SIZE - offset;
2047                if (length > count)
2048                        length = count;
2049                p = vmalloc_to_page(addr);
2050                /*
2051                 * To do safe access to this _mapped_ area, we need
2052                 * lock. But adding lock here means that we need to add
2053                 * overhead of vmalloc()/vfree() calles for this _debug_
2054                 * interface, rarely used. Instead of that, we'll use
2055                 * kmap() and get small overhead in this access function.
2056                 */
2057                if (p) {
2058                        /*
2059                         * we can expect USER0 is not used (see vread/vwrite's
2060                         * function description)
2061                         */
2062                        void *map = kmap_atomic(p);
2063                        memcpy(map + offset, buf, length);
2064                        kunmap_atomic(map);
2065                }
2066                addr += length;
2067                buf += length;
2068                copied += length;
2069                count -= length;
2070        }
2071        return copied;
2072}
2073
2074/**
2075 *      vread() -  read vmalloc area in a safe way.
2076 *      @buf:           buffer for reading data
2077 *      @addr:          vm address.
2078 *      @count:         number of bytes to be read.
2079 *
2080 *      Returns # of bytes which addr and buf should be increased.
2081 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
2082 *      includes any intersect with alive vmalloc area.
2083 *
2084 *      This function checks that addr is a valid vmalloc'ed area, and
2085 *      copy data from that area to a given buffer. If the given memory range
2086 *      of [addr...addr+count) includes some valid address, data is copied to
2087 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
2088 *      IOREMAP area is treated as memory hole and no copy is done.
2089 *
2090 *      If [addr...addr+count) doesn't includes any intersects with alive
2091 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2092 *
2093 *      Note: In usual ops, vread() is never necessary because the caller
2094 *      should know vmalloc() area is valid and can use memcpy().
2095 *      This is for routines which have to access vmalloc area without
2096 *      any informaion, as /dev/kmem.
2097 *
2098 */
2099
2100long vread(char *buf, char *addr, unsigned long count)
2101{
2102        struct vmap_area *va;
2103        struct vm_struct *vm;
2104        char *vaddr, *buf_start = buf;
2105        unsigned long buflen = count;
2106        unsigned long n;
2107
2108        /* Don't allow overflow */
2109        if ((unsigned long) addr + count < count)
2110                count = -(unsigned long) addr;
2111
2112        spin_lock(&vmap_area_lock);
2113        list_for_each_entry(va, &vmap_area_list, list) {
2114                if (!count)
2115                        break;
2116
2117                if (!(va->flags & VM_VM_AREA))
2118                        continue;
2119
2120                vm = va->vm;
2121                vaddr = (char *) vm->addr;
2122                if (addr >= vaddr + get_vm_area_size(vm))
2123                        continue;
2124                while (addr < vaddr) {
2125                        if (count == 0)
2126                                goto finished;
2127                        *buf = '\0';
2128                        buf++;
2129                        addr++;
2130                        count--;
2131                }
2132                n = vaddr + get_vm_area_size(vm) - addr;
2133                if (n > count)
2134                        n = count;
2135                if (!(vm->flags & VM_IOREMAP))
2136                        aligned_vread(buf, addr, n);
2137                else /* IOREMAP area is treated as memory hole */
2138                        memset(buf, 0, n);
2139                buf += n;
2140                addr += n;
2141                count -= n;
2142        }
2143finished:
2144        spin_unlock(&vmap_area_lock);
2145
2146        if (buf == buf_start)
2147                return 0;
2148        /* zero-fill memory holes */
2149        if (buf != buf_start + buflen)
2150                memset(buf, 0, buflen - (buf - buf_start));
2151
2152        return buflen;
2153}
2154
2155/**
2156 *      vwrite() -  write vmalloc area in a safe way.
2157 *      @buf:           buffer for source data
2158 *      @addr:          vm address.
2159 *      @count:         number of bytes to be read.
2160 *
2161 *      Returns # of bytes which addr and buf should be incresed.
2162 *      (same number to @count).
2163 *      If [addr...addr+count) doesn't includes any intersect with valid
2164 *      vmalloc area, returns 0.
2165 *
2166 *      This function checks that addr is a valid vmalloc'ed area, and
2167 *      copy data from a buffer to the given addr. If specified range of
2168 *      [addr...addr+count) includes some valid address, data is copied from
2169 *      proper area of @buf. If there are memory holes, no copy to hole.
2170 *      IOREMAP area is treated as memory hole and no copy is done.
2171 *
2172 *      If [addr...addr+count) doesn't includes any intersects with alive
2173 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2174 *
2175 *      Note: In usual ops, vwrite() is never necessary because the caller
2176 *      should know vmalloc() area is valid and can use memcpy().
2177 *      This is for routines which have to access vmalloc area without
2178 *      any informaion, as /dev/kmem.
2179 */
2180
2181long vwrite(char *buf, char *addr, unsigned long count)
2182{
2183        struct vmap_area *va;
2184        struct vm_struct *vm;
2185        char *vaddr;
2186        unsigned long n, buflen;
2187        int copied = 0;
2188
2189        /* Don't allow overflow */
2190        if ((unsigned long) addr + count < count)
2191                count = -(unsigned long) addr;
2192        buflen = count;
2193
2194        spin_lock(&vmap_area_lock);
2195        list_for_each_entry(va, &vmap_area_list, list) {
2196                if (!count)
2197                        break;
2198
2199                if (!(va->flags & VM_VM_AREA))
2200                        continue;
2201
2202                vm = va->vm;
2203                vaddr = (char *) vm->addr;
2204                if (addr >= vaddr + get_vm_area_size(vm))
2205                        continue;
2206                while (addr < vaddr) {
2207                        if (count == 0)
2208                                goto finished;
2209                        buf++;
2210                        addr++;
2211                        count--;
2212                }
2213                n = vaddr + get_vm_area_size(vm) - addr;
2214                if (n > count)
2215                        n = count;
2216                if (!(vm->flags & VM_IOREMAP)) {
2217                        aligned_vwrite(buf, addr, n);
2218                        copied++;
2219                }
2220                buf += n;
2221                addr += n;
2222                count -= n;
2223        }
2224finished:
2225        spin_unlock(&vmap_area_lock);
2226        if (!copied)
2227                return 0;
2228        return buflen;
2229}
2230
2231/**
2232 *      remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2233 *      @vma:           vma to cover
2234 *      @uaddr:         target user address to start at
2235 *      @kaddr:         virtual address of vmalloc kernel memory
2236 *      @size:          size of map area
2237 *
2238 *      Returns:        0 for success, -Exxx on failure
2239 *
2240 *      This function checks that @kaddr is a valid vmalloc'ed area,
2241 *      and that it is big enough to cover the range starting at
2242 *      @uaddr in @vma. Will return failure if that criteria isn't
2243 *      met.
2244 *
2245 *      Similar to remap_pfn_range() (see mm/memory.c)
2246 */
2247int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2248                                void *kaddr, unsigned long size)
2249{
2250        struct vm_struct *area;
2251
2252        size = PAGE_ALIGN(size);
2253
2254        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2255                return -EINVAL;
2256
2257        area = find_vm_area(kaddr);
2258        if (!area)
2259                return -EINVAL;
2260
2261        if (!(area->flags & VM_USERMAP))
2262                return -EINVAL;
2263
2264        if (kaddr + size > area->addr + area->size)
2265                return -EINVAL;
2266
2267        do {
2268                struct page *page = vmalloc_to_page(kaddr);
2269                int ret;
2270
2271                ret = vm_insert_page(vma, uaddr, page);
2272                if (ret)
2273                        return ret;
2274
2275                uaddr += PAGE_SIZE;
2276                kaddr += PAGE_SIZE;
2277                size -= PAGE_SIZE;
2278        } while (size > 0);
2279
2280        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2281
2282        return 0;
2283}
2284EXPORT_SYMBOL(remap_vmalloc_range_partial);
2285
2286/**
2287 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2288 *      @vma:           vma to cover (map full range of vma)
2289 *      @addr:          vmalloc memory
2290 *      @pgoff:         number of pages into addr before first page to map
2291 *
2292 *      Returns:        0 for success, -Exxx on failure
2293 *
2294 *      This function checks that addr is a valid vmalloc'ed area, and
2295 *      that it is big enough to cover the vma. Will return failure if
2296 *      that criteria isn't met.
2297 *
2298 *      Similar to remap_pfn_range() (see mm/memory.c)
2299 */
2300int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2301                                                unsigned long pgoff)
2302{
2303        return remap_vmalloc_range_partial(vma, vma->vm_start,
2304                                           addr + (pgoff << PAGE_SHIFT),
2305                                           vma->vm_end - vma->vm_start);
2306}
2307EXPORT_SYMBOL(remap_vmalloc_range);
2308
2309/*
2310 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2311 * have one.
2312 */
2313void __weak vmalloc_sync_all(void)
2314{
2315}
2316
2317
2318static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2319{
2320        pte_t ***p = data;
2321
2322        if (p) {
2323                *(*p) = pte;
2324                (*p)++;
2325        }
2326        return 0;
2327}
2328
2329/**
2330 *      alloc_vm_area - allocate a range of kernel address space
2331 *      @size:          size of the area
2332 *      @ptes:          returns the PTEs for the address space
2333 *
2334 *      Returns:        NULL on failure, vm_struct on success
2335 *
2336 *      This function reserves a range of kernel address space, and
2337 *      allocates pagetables to map that range.  No actual mappings
2338 *      are created.
2339 *
2340 *      If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2341 *      allocated for the VM area are returned.
2342 */
2343struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2344{
2345        struct vm_struct *area;
2346
2347        area = get_vm_area_caller(size, VM_IOREMAP,
2348                                __builtin_return_address(0));
2349        if (area == NULL)
2350                return NULL;
2351
2352        /*
2353         * This ensures that page tables are constructed for this region
2354         * of kernel virtual address space and mapped into init_mm.
2355         */
2356        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2357                                size, f, ptes ? &ptes : NULL)) {
2358                free_vm_area(area);
2359                return NULL;
2360        }
2361
2362        return area;
2363}
2364EXPORT_SYMBOL_GPL(alloc_vm_area);
2365
2366void free_vm_area(struct vm_struct *area)
2367{
2368        struct vm_struct *ret;
2369        ret = remove_vm_area(area->addr);
2370        BUG_ON(ret != area);
2371        kfree(area);
2372}
2373EXPORT_SYMBOL_GPL(free_vm_area);
2374
2375#ifdef CONFIG_SMP
2376static struct vmap_area *node_to_va(struct rb_node *n)
2377{
2378        return rb_entry_safe(n, struct vmap_area, rb_node);
2379}
2380
2381/**
2382 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2383 * @end: target address
2384 * @pnext: out arg for the next vmap_area
2385 * @pprev: out arg for the previous vmap_area
2386 *
2387 * Returns: %true if either or both of next and prev are found,
2388 *          %false if no vmap_area exists
2389 *
2390 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2391 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2392 */
2393static bool pvm_find_next_prev(unsigned long end,
2394                               struct vmap_area **pnext,
2395                               struct vmap_area **pprev)
2396{
2397        struct rb_node *n = vmap_area_root.rb_node;
2398        struct vmap_area *va = NULL;
2399
2400        while (n) {
2401                va = rb_entry(n, struct vmap_area, rb_node);
2402                if (end < va->va_end)
2403                        n = n->rb_left;
2404                else if (end > va->va_end)
2405                        n = n->rb_right;
2406                else
2407                        break;
2408        }
2409
2410        if (!va)
2411                return false;
2412
2413        if (va->va_end > end) {
2414                *pnext = va;
2415                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2416        } else {
2417                *pprev = va;
2418                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2419        }
2420        return true;
2421}
2422
2423/**
2424 * pvm_determine_end - find the highest aligned address between two vmap_areas
2425 * @pnext: in/out arg for the next vmap_area
2426 * @pprev: in/out arg for the previous vmap_area
2427 * @align: alignment
2428 *
2429 * Returns: determined end address
2430 *
2431 * Find the highest aligned address between *@pnext and *@pprev below
2432 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2433 * down address is between the end addresses of the two vmap_areas.
2434 *
2435 * Please note that the address returned by this function may fall
2436 * inside *@pnext vmap_area.  The caller is responsible for checking
2437 * that.
2438 */
2439static unsigned long pvm_determine_end(struct vmap_area **pnext,
2440                                       struct vmap_area **pprev,
2441                                       unsigned long align)
2442{
2443        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2444        unsigned long addr;
2445
2446        if (*pnext)
2447                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2448        else
2449                addr = vmalloc_end;
2450
2451        while (*pprev && (*pprev)->va_end > addr) {
2452                *pnext = *pprev;
2453                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2454        }
2455
2456        return addr;
2457}
2458
2459/**
2460 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2461 * @offsets: array containing offset of each area
2462 * @sizes: array containing size of each area
2463 * @nr_vms: the number of areas to allocate
2464 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2465 *
2466 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2467 *          vm_structs on success, %NULL on failure
2468 *
2469 * Percpu allocator wants to use congruent vm areas so that it can
2470 * maintain the offsets among percpu areas.  This function allocates
2471 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2472 * be scattered pretty far, distance between two areas easily going up
2473 * to gigabytes.  To avoid interacting with regular vmallocs, these
2474 * areas are allocated from top.
2475 *
2476 * Despite its complicated look, this allocator is rather simple.  It
2477 * does everything top-down and scans areas from the end looking for
2478 * matching slot.  While scanning, if any of the areas overlaps with
2479 * existing vmap_area, the base address is pulled down to fit the
2480 * area.  Scanning is repeated till all the areas fit and then all
2481 * necessary data structures are inserted and the result is returned.
2482 */
2483struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2484                                     const size_t *sizes, int nr_vms,
2485                                     size_t align)
2486{
2487        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2488        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2489        struct vmap_area **vas, *prev, *next;
2490        struct vm_struct **vms;
2491        int area, area2, last_area, term_area;
2492        unsigned long base, start, end, last_end;
2493        bool purged = false;
2494
2495        /* verify parameters and allocate data structures */
2496        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2497        for (last_area = 0, area = 0; area < nr_vms; area++) {
2498                start = offsets[area];
2499                end = start + sizes[area];
2500
2501                /* is everything aligned properly? */
2502                BUG_ON(!IS_ALIGNED(offsets[area], align));
2503                BUG_ON(!IS_ALIGNED(sizes[area], align));
2504
2505                /* detect the area with the highest address */
2506                if (start > offsets[last_area])
2507                        last_area = area;
2508
2509                for (area2 = area + 1; area2 < nr_vms; area2++) {
2510                        unsigned long start2 = offsets[area2];
2511                        unsigned long end2 = start2 + sizes[area2];
2512
2513                        BUG_ON(start2 < end && start < end2);
2514                }
2515        }
2516        last_end = offsets[last_area] + sizes[last_area];
2517
2518        if (vmalloc_end - vmalloc_start < last_end) {
2519                WARN_ON(true);
2520                return NULL;
2521        }
2522
2523        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2524        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2525        if (!vas || !vms)
2526                goto err_free2;
2527
2528        for (area = 0; area < nr_vms; area++) {
2529                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2530                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2531                if (!vas[area] || !vms[area])
2532                        goto err_free;
2533        }
2534retry:
2535        spin_lock(&vmap_area_lock);
2536
2537        /* start scanning - we scan from the top, begin with the last area */
2538        area = term_area = last_area;
2539        start = offsets[area];
2540        end = start + sizes[area];
2541
2542        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2543                base = vmalloc_end - last_end;
2544                goto found;
2545        }
2546        base = pvm_determine_end(&next, &prev, align) - end;
2547
2548        while (true) {
2549                BUG_ON(next && next->va_end <= base + end);
2550                BUG_ON(prev && prev->va_end > base + end);
2551
2552                /*
2553                 * base might have underflowed, add last_end before
2554                 * comparing.
2555                 */
2556                if (base + last_end < vmalloc_start + last_end) {
2557                        spin_unlock(&vmap_area_lock);
2558                        if (!purged) {
2559                                purge_vmap_area_lazy();
2560                                purged = true;
2561                                goto retry;
2562                        }
2563                        goto err_free;
2564                }
2565
2566                /*
2567                 * If next overlaps, move base downwards so that it's
2568                 * right below next and then recheck.
2569                 */
2570                if (next && next->va_start < base + end) {
2571                        base = pvm_determine_end(&next, &prev, align) - end;
2572                        term_area = area;
2573                        continue;
2574                }
2575
2576                /*
2577                 * If prev overlaps, shift down next and prev and move
2578                 * base so that it's right below new next and then
2579                 * recheck.
2580                 */
2581                if (prev && prev->va_end > base + start)  {
2582                        next = prev;
2583                        prev = node_to_va(rb_prev(&next->rb_node));
2584                        base = pvm_determine_end(&next, &prev, align) - end;
2585                        term_area = area;
2586                        continue;
2587                }
2588
2589                /*
2590                 * This area fits, move on to the previous one.  If
2591                 * the previous one is the terminal one, we're done.
2592                 */
2593                area = (area + nr_vms - 1) % nr_vms;
2594                if (area == term_area)
2595                        break;
2596                start = offsets[area];
2597                end = start + sizes[area];
2598                pvm_find_next_prev(base + end, &next, &prev);
2599        }
2600found:
2601        /* we've found a fitting base, insert all va's */
2602        for (area = 0; area < nr_vms; area++) {
2603                struct vmap_area *va = vas[area];
2604
2605                va->va_start = base + offsets[area];
2606                va->va_end = va->va_start + sizes[area];
2607                __insert_vmap_area(va);
2608        }
2609
2610        vmap_area_pcpu_hole = base + offsets[last_area];
2611
2612        spin_unlock(&vmap_area_lock);
2613
2614        /* insert all vm's */
2615        for (area = 0; area < nr_vms; area++)
2616                setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2617                                 pcpu_get_vm_areas);
2618
2619        kfree(vas);
2620        return vms;
2621
2622err_free:
2623        for (area = 0; area < nr_vms; area++) {
2624                kfree(vas[area]);
2625                kfree(vms[area]);
2626        }
2627err_free2:
2628        kfree(vas);
2629        kfree(vms);
2630        return NULL;
2631}
2632
2633/**
2634 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2635 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2636 * @nr_vms: the number of allocated areas
2637 *
2638 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2639 */
2640void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2641{
2642        int i;
2643
2644        for (i = 0; i < nr_vms; i++)
2645                free_vm_area(vms[i]);
2646        kfree(vms);
2647}
2648#endif  /* CONFIG_SMP */
2649
2650#ifdef CONFIG_PROC_FS
2651static void *s_start(struct seq_file *m, loff_t *pos)
2652        __acquires(&vmap_area_lock)
2653{
2654        spin_lock(&vmap_area_lock);
2655        return seq_list_start(&vmap_area_list, *pos);
2656}
2657
2658static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2659{
2660        return seq_list_next(p, &vmap_area_list, pos);
2661}
2662
2663static void s_stop(struct seq_file *m, void *p)
2664        __releases(&vmap_area_lock)
2665{
2666        spin_unlock(&vmap_area_lock);
2667}
2668
2669static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2670{
2671        if (IS_ENABLED(CONFIG_NUMA)) {
2672                unsigned int nr, *counters = m->private;
2673
2674                if (!counters)
2675                        return;
2676
2677                if (v->flags & VM_UNINITIALIZED)
2678                        return;
2679                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2680                smp_rmb();
2681
2682                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2683
2684                for (nr = 0; nr < v->nr_pages; nr++)
2685                        counters[page_to_nid(v->pages[nr])]++;
2686
2687                for_each_node_state(nr, N_HIGH_MEMORY)
2688                        if (counters[nr])
2689                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2690        }
2691}
2692
2693static int s_show(struct seq_file *m, void *p)
2694{
2695        struct vmap_area *va;
2696        struct vm_struct *v;
2697
2698        va = list_entry(p, struct vmap_area, list);
2699
2700        /*
2701         * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2702         * behalf of vmap area is being tear down or vm_map_ram allocation.
2703         */
2704        if (!(va->flags & VM_VM_AREA)) {
2705                seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2706                        (void *)va->va_start, (void *)va->va_end,
2707                        va->va_end - va->va_start,
2708                        va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2709
2710                return 0;
2711        }
2712
2713        v = va->vm;
2714
2715        seq_printf(m, "0x%pK-0x%pK %7ld",
2716                v->addr, v->addr + v->size, v->size);
2717
2718        if (v->caller)
2719                seq_printf(m, " %pS", v->caller);
2720
2721        if (v->nr_pages)
2722                seq_printf(m, " pages=%d", v->nr_pages);
2723
2724        if (v->phys_addr)
2725                seq_printf(m, " phys=%pa", &v->phys_addr);
2726
2727        if (v->flags & VM_IOREMAP)
2728                seq_puts(m, " ioremap");
2729
2730        if (v->flags & VM_ALLOC)
2731                seq_puts(m, " vmalloc");
2732
2733        if (v->flags & VM_MAP)
2734                seq_puts(m, " vmap");
2735
2736        if (v->flags & VM_USERMAP)
2737                seq_puts(m, " user");
2738
2739        if (is_vmalloc_addr(v->pages))
2740                seq_puts(m, " vpages");
2741
2742        show_numa_info(m, v);
2743        seq_putc(m, '\n');
2744        return 0;
2745}
2746
2747static const struct seq_operations vmalloc_op = {
2748        .start = s_start,
2749        .next = s_next,
2750        .stop = s_stop,
2751        .show = s_show,
2752};
2753
2754static int vmalloc_open(struct inode *inode, struct file *file)
2755{
2756        if (IS_ENABLED(CONFIG_NUMA))
2757                return seq_open_private(file, &vmalloc_op,
2758                                        nr_node_ids * sizeof(unsigned int));
2759        else
2760                return seq_open(file, &vmalloc_op);
2761}
2762
2763static const struct file_operations proc_vmalloc_operations = {
2764        .open           = vmalloc_open,
2765        .read           = seq_read,
2766        .llseek         = seq_lseek,
2767        .release        = seq_release_private,
2768};
2769
2770static int __init proc_vmalloc_init(void)
2771{
2772        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2773        return 0;
2774}
2775module_init(proc_vmalloc_init);
2776
2777#endif
2778
2779