linux/net/ceph/messenger.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/crc32c.h>
   5#include <linux/ctype.h>
   6#include <linux/highmem.h>
   7#include <linux/inet.h>
   8#include <linux/kthread.h>
   9#include <linux/net.h>
  10#include <linux/nsproxy.h>
  11#include <linux/sched/mm.h>
  12#include <linux/slab.h>
  13#include <linux/socket.h>
  14#include <linux/string.h>
  15#ifdef  CONFIG_BLOCK
  16#include <linux/bio.h>
  17#endif  /* CONFIG_BLOCK */
  18#include <linux/dns_resolver.h>
  19#include <net/tcp.h>
  20
  21#include <linux/ceph/ceph_features.h>
  22#include <linux/ceph/libceph.h>
  23#include <linux/ceph/messenger.h>
  24#include <linux/ceph/decode.h>
  25#include <linux/ceph/pagelist.h>
  26#include <linux/export.h>
  27
  28/*
  29 * Ceph uses the messenger to exchange ceph_msg messages with other
  30 * hosts in the system.  The messenger provides ordered and reliable
  31 * delivery.  We tolerate TCP disconnects by reconnecting (with
  32 * exponential backoff) in the case of a fault (disconnection, bad
  33 * crc, protocol error).  Acks allow sent messages to be discarded by
  34 * the sender.
  35 */
  36
  37/*
  38 * We track the state of the socket on a given connection using
  39 * values defined below.  The transition to a new socket state is
  40 * handled by a function which verifies we aren't coming from an
  41 * unexpected state.
  42 *
  43 *      --------
  44 *      | NEW* |  transient initial state
  45 *      --------
  46 *          | con_sock_state_init()
  47 *          v
  48 *      ----------
  49 *      | CLOSED |  initialized, but no socket (and no
  50 *      ----------  TCP connection)
  51 *       ^      \
  52 *       |       \ con_sock_state_connecting()
  53 *       |        ----------------------
  54 *       |                              \
  55 *       + con_sock_state_closed()       \
  56 *       |+---------------------------    \
  57 *       | \                          \    \
  58 *       |  -----------                \    \
  59 *       |  | CLOSING |  socket event;  \    \
  60 *       |  -----------  await close     \    \
  61 *       |       ^                        \   |
  62 *       |       |                         \  |
  63 *       |       + con_sock_state_closing() \ |
  64 *       |      / \                         | |
  65 *       |     /   ---------------          | |
  66 *       |    /                   \         v v
  67 *       |   /                    --------------
  68 *       |  /    -----------------| CONNECTING |  socket created, TCP
  69 *       |  |   /                 --------------  connect initiated
  70 *       |  |   | con_sock_state_connected()
  71 *       |  |   v
  72 *      -------------
  73 *      | CONNECTED |  TCP connection established
  74 *      -------------
  75 *
  76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  77 */
  78
  79#define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
  80#define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
  81#define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
  82#define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
  83#define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
  84
  85/*
  86 * connection states
  87 */
  88#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  89#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  90#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  91#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  92#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  93#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  94
  95/*
  96 * ceph_connection flag bits
  97 */
  98#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  99                                       * messages on errors */
 100#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 101#define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
 102#define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
 103#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 104
 105static bool con_flag_valid(unsigned long con_flag)
 106{
 107        switch (con_flag) {
 108        case CON_FLAG_LOSSYTX:
 109        case CON_FLAG_KEEPALIVE_PENDING:
 110        case CON_FLAG_WRITE_PENDING:
 111        case CON_FLAG_SOCK_CLOSED:
 112        case CON_FLAG_BACKOFF:
 113                return true;
 114        default:
 115                return false;
 116        }
 117}
 118
 119static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 120{
 121        BUG_ON(!con_flag_valid(con_flag));
 122
 123        clear_bit(con_flag, &con->flags);
 124}
 125
 126static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 127{
 128        BUG_ON(!con_flag_valid(con_flag));
 129
 130        set_bit(con_flag, &con->flags);
 131}
 132
 133static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 134{
 135        BUG_ON(!con_flag_valid(con_flag));
 136
 137        return test_bit(con_flag, &con->flags);
 138}
 139
 140static bool con_flag_test_and_clear(struct ceph_connection *con,
 141                                        unsigned long con_flag)
 142{
 143        BUG_ON(!con_flag_valid(con_flag));
 144
 145        return test_and_clear_bit(con_flag, &con->flags);
 146}
 147
 148static bool con_flag_test_and_set(struct ceph_connection *con,
 149                                        unsigned long con_flag)
 150{
 151        BUG_ON(!con_flag_valid(con_flag));
 152
 153        return test_and_set_bit(con_flag, &con->flags);
 154}
 155
 156/* Slab caches for frequently-allocated structures */
 157
 158static struct kmem_cache        *ceph_msg_cache;
 159static struct kmem_cache        *ceph_msg_data_cache;
 160
 161/* static tag bytes (protocol control messages) */
 162static char tag_msg = CEPH_MSGR_TAG_MSG;
 163static char tag_ack = CEPH_MSGR_TAG_ACK;
 164static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 165static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 166
 167#ifdef CONFIG_LOCKDEP
 168static struct lock_class_key socket_class;
 169#endif
 170
 171/*
 172 * When skipping (ignoring) a block of input we read it into a "skip
 173 * buffer," which is this many bytes in size.
 174 */
 175#define SKIP_BUF_SIZE   1024
 176
 177static void queue_con(struct ceph_connection *con);
 178static void cancel_con(struct ceph_connection *con);
 179static void ceph_con_workfn(struct work_struct *);
 180static void con_fault(struct ceph_connection *con);
 181
 182/*
 183 * Nicely render a sockaddr as a string.  An array of formatted
 184 * strings is used, to approximate reentrancy.
 185 */
 186#define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
 187#define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
 188#define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
 189#define MAX_ADDR_STR_LEN        64      /* 54 is enough */
 190
 191static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 192static atomic_t addr_str_seq = ATOMIC_INIT(0);
 193
 194static struct page *zero_page;          /* used in certain error cases */
 195
 196const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 197{
 198        int i;
 199        char *s;
 200        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 201        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 202
 203        i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 204        s = addr_str[i];
 205
 206        switch (ss->ss_family) {
 207        case AF_INET:
 208                snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 209                         ntohs(in4->sin_port));
 210                break;
 211
 212        case AF_INET6:
 213                snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 214                         ntohs(in6->sin6_port));
 215                break;
 216
 217        default:
 218                snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 219                         ss->ss_family);
 220        }
 221
 222        return s;
 223}
 224EXPORT_SYMBOL(ceph_pr_addr);
 225
 226static void encode_my_addr(struct ceph_messenger *msgr)
 227{
 228        memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 229        ceph_encode_addr(&msgr->my_enc_addr);
 230}
 231
 232/*
 233 * work queue for all reading and writing to/from the socket.
 234 */
 235static struct workqueue_struct *ceph_msgr_wq;
 236
 237static int ceph_msgr_slab_init(void)
 238{
 239        BUG_ON(ceph_msg_cache);
 240        ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 241        if (!ceph_msg_cache)
 242                return -ENOMEM;
 243
 244        BUG_ON(ceph_msg_data_cache);
 245        ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
 246        if (ceph_msg_data_cache)
 247                return 0;
 248
 249        kmem_cache_destroy(ceph_msg_cache);
 250        ceph_msg_cache = NULL;
 251
 252        return -ENOMEM;
 253}
 254
 255static void ceph_msgr_slab_exit(void)
 256{
 257        BUG_ON(!ceph_msg_data_cache);
 258        kmem_cache_destroy(ceph_msg_data_cache);
 259        ceph_msg_data_cache = NULL;
 260
 261        BUG_ON(!ceph_msg_cache);
 262        kmem_cache_destroy(ceph_msg_cache);
 263        ceph_msg_cache = NULL;
 264}
 265
 266static void _ceph_msgr_exit(void)
 267{
 268        if (ceph_msgr_wq) {
 269                destroy_workqueue(ceph_msgr_wq);
 270                ceph_msgr_wq = NULL;
 271        }
 272
 273        BUG_ON(zero_page == NULL);
 274        put_page(zero_page);
 275        zero_page = NULL;
 276
 277        ceph_msgr_slab_exit();
 278}
 279
 280int ceph_msgr_init(void)
 281{
 282        if (ceph_msgr_slab_init())
 283                return -ENOMEM;
 284
 285        BUG_ON(zero_page != NULL);
 286        zero_page = ZERO_PAGE(0);
 287        get_page(zero_page);
 288
 289        /*
 290         * The number of active work items is limited by the number of
 291         * connections, so leave @max_active at default.
 292         */
 293        ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 294        if (ceph_msgr_wq)
 295                return 0;
 296
 297        pr_err("msgr_init failed to create workqueue\n");
 298        _ceph_msgr_exit();
 299
 300        return -ENOMEM;
 301}
 302EXPORT_SYMBOL(ceph_msgr_init);
 303
 304void ceph_msgr_exit(void)
 305{
 306        BUG_ON(ceph_msgr_wq == NULL);
 307
 308        _ceph_msgr_exit();
 309}
 310EXPORT_SYMBOL(ceph_msgr_exit);
 311
 312void ceph_msgr_flush(void)
 313{
 314        flush_workqueue(ceph_msgr_wq);
 315}
 316EXPORT_SYMBOL(ceph_msgr_flush);
 317
 318/* Connection socket state transition functions */
 319
 320static void con_sock_state_init(struct ceph_connection *con)
 321{
 322        int old_state;
 323
 324        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 325        if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 326                printk("%s: unexpected old state %d\n", __func__, old_state);
 327        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 328             CON_SOCK_STATE_CLOSED);
 329}
 330
 331static void con_sock_state_connecting(struct ceph_connection *con)
 332{
 333        int old_state;
 334
 335        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 336        if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 337                printk("%s: unexpected old state %d\n", __func__, old_state);
 338        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 339             CON_SOCK_STATE_CONNECTING);
 340}
 341
 342static void con_sock_state_connected(struct ceph_connection *con)
 343{
 344        int old_state;
 345
 346        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 347        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 348                printk("%s: unexpected old state %d\n", __func__, old_state);
 349        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 350             CON_SOCK_STATE_CONNECTED);
 351}
 352
 353static void con_sock_state_closing(struct ceph_connection *con)
 354{
 355        int old_state;
 356
 357        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 358        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 359                        old_state != CON_SOCK_STATE_CONNECTED &&
 360                        old_state != CON_SOCK_STATE_CLOSING))
 361                printk("%s: unexpected old state %d\n", __func__, old_state);
 362        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 363             CON_SOCK_STATE_CLOSING);
 364}
 365
 366static void con_sock_state_closed(struct ceph_connection *con)
 367{
 368        int old_state;
 369
 370        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 371        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 372                    old_state != CON_SOCK_STATE_CLOSING &&
 373                    old_state != CON_SOCK_STATE_CONNECTING &&
 374                    old_state != CON_SOCK_STATE_CLOSED))
 375                printk("%s: unexpected old state %d\n", __func__, old_state);
 376        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 377             CON_SOCK_STATE_CLOSED);
 378}
 379
 380/*
 381 * socket callback functions
 382 */
 383
 384/* data available on socket, or listen socket received a connect */
 385static void ceph_sock_data_ready(struct sock *sk)
 386{
 387        struct ceph_connection *con = sk->sk_user_data;
 388        if (atomic_read(&con->msgr->stopping)) {
 389                return;
 390        }
 391
 392        if (sk->sk_state != TCP_CLOSE_WAIT) {
 393                dout("%s on %p state = %lu, queueing work\n", __func__,
 394                     con, con->state);
 395                queue_con(con);
 396        }
 397}
 398
 399/* socket has buffer space for writing */
 400static void ceph_sock_write_space(struct sock *sk)
 401{
 402        struct ceph_connection *con = sk->sk_user_data;
 403
 404        /* only queue to workqueue if there is data we want to write,
 405         * and there is sufficient space in the socket buffer to accept
 406         * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 407         * doesn't get called again until try_write() fills the socket
 408         * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 409         * and net/core/stream.c:sk_stream_write_space().
 410         */
 411        if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 412                if (sk_stream_is_writeable(sk)) {
 413                        dout("%s %p queueing write work\n", __func__, con);
 414                        clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 415                        queue_con(con);
 416                }
 417        } else {
 418                dout("%s %p nothing to write\n", __func__, con);
 419        }
 420}
 421
 422/* socket's state has changed */
 423static void ceph_sock_state_change(struct sock *sk)
 424{
 425        struct ceph_connection *con = sk->sk_user_data;
 426
 427        dout("%s %p state = %lu sk_state = %u\n", __func__,
 428             con, con->state, sk->sk_state);
 429
 430        switch (sk->sk_state) {
 431        case TCP_CLOSE:
 432                dout("%s TCP_CLOSE\n", __func__);
 433                /* fall through */
 434        case TCP_CLOSE_WAIT:
 435                dout("%s TCP_CLOSE_WAIT\n", __func__);
 436                con_sock_state_closing(con);
 437                con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 438                queue_con(con);
 439                break;
 440        case TCP_ESTABLISHED:
 441                dout("%s TCP_ESTABLISHED\n", __func__);
 442                con_sock_state_connected(con);
 443                queue_con(con);
 444                break;
 445        default:        /* Everything else is uninteresting */
 446                break;
 447        }
 448}
 449
 450/*
 451 * set up socket callbacks
 452 */
 453static void set_sock_callbacks(struct socket *sock,
 454                               struct ceph_connection *con)
 455{
 456        struct sock *sk = sock->sk;
 457        sk->sk_user_data = con;
 458        sk->sk_data_ready = ceph_sock_data_ready;
 459        sk->sk_write_space = ceph_sock_write_space;
 460        sk->sk_state_change = ceph_sock_state_change;
 461}
 462
 463
 464/*
 465 * socket helpers
 466 */
 467
 468/*
 469 * initiate connection to a remote socket.
 470 */
 471static int ceph_tcp_connect(struct ceph_connection *con)
 472{
 473        struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 474        struct socket *sock;
 475        unsigned int noio_flag;
 476        int ret;
 477
 478        BUG_ON(con->sock);
 479
 480        /* sock_create_kern() allocates with GFP_KERNEL */
 481        noio_flag = memalloc_noio_save();
 482        ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 483                               SOCK_STREAM, IPPROTO_TCP, &sock);
 484        memalloc_noio_restore(noio_flag);
 485        if (ret)
 486                return ret;
 487        sock->sk->sk_allocation = GFP_NOFS;
 488
 489#ifdef CONFIG_LOCKDEP
 490        lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 491#endif
 492
 493        set_sock_callbacks(sock, con);
 494
 495        dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 496
 497        con_sock_state_connecting(con);
 498        ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 499                                 O_NONBLOCK);
 500        if (ret == -EINPROGRESS) {
 501                dout("connect %s EINPROGRESS sk_state = %u\n",
 502                     ceph_pr_addr(&con->peer_addr.in_addr),
 503                     sock->sk->sk_state);
 504        } else if (ret < 0) {
 505                pr_err("connect %s error %d\n",
 506                       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 507                sock_release(sock);
 508                return ret;
 509        }
 510
 511        if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
 512                int optval = 1;
 513
 514                ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 515                                        (char *)&optval, sizeof(optval));
 516                if (ret)
 517                        pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 518                               ret);
 519        }
 520
 521        con->sock = sock;
 522        return 0;
 523}
 524
 525static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 526{
 527        struct kvec iov = {buf, len};
 528        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 529        int r;
 530
 531        iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
 532        r = sock_recvmsg(sock, &msg, msg.msg_flags);
 533        if (r == -EAGAIN)
 534                r = 0;
 535        return r;
 536}
 537
 538static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 539                     int page_offset, size_t length)
 540{
 541        struct bio_vec bvec = {
 542                .bv_page = page,
 543                .bv_offset = page_offset,
 544                .bv_len = length
 545        };
 546        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 547        int r;
 548
 549        BUG_ON(page_offset + length > PAGE_SIZE);
 550        iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
 551        r = sock_recvmsg(sock, &msg, msg.msg_flags);
 552        if (r == -EAGAIN)
 553                r = 0;
 554        return r;
 555}
 556
 557/*
 558 * write something.  @more is true if caller will be sending more data
 559 * shortly.
 560 */
 561static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 562                     size_t kvlen, size_t len, int more)
 563{
 564        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 565        int r;
 566
 567        if (more)
 568                msg.msg_flags |= MSG_MORE;
 569        else
 570                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 571
 572        r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 573        if (r == -EAGAIN)
 574                r = 0;
 575        return r;
 576}
 577
 578static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 579                     int offset, size_t size, bool more)
 580{
 581        int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 582        int ret;
 583
 584        ret = kernel_sendpage(sock, page, offset, size, flags);
 585        if (ret == -EAGAIN)
 586                ret = 0;
 587
 588        return ret;
 589}
 590
 591static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 592                     int offset, size_t size, bool more)
 593{
 594        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 595        struct bio_vec bvec;
 596        int ret;
 597
 598        /* sendpage cannot properly handle pages with page_count == 0,
 599         * we need to fallback to sendmsg if that's the case */
 600        if (page_count(page) >= 1)
 601                return __ceph_tcp_sendpage(sock, page, offset, size, more);
 602
 603        bvec.bv_page = page;
 604        bvec.bv_offset = offset;
 605        bvec.bv_len = size;
 606
 607        if (more)
 608                msg.msg_flags |= MSG_MORE;
 609        else
 610                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 611
 612        iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
 613        ret = sock_sendmsg(sock, &msg);
 614        if (ret == -EAGAIN)
 615                ret = 0;
 616
 617        return ret;
 618}
 619
 620/*
 621 * Shutdown/close the socket for the given connection.
 622 */
 623static int con_close_socket(struct ceph_connection *con)
 624{
 625        int rc = 0;
 626
 627        dout("con_close_socket on %p sock %p\n", con, con->sock);
 628        if (con->sock) {
 629                rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 630                sock_release(con->sock);
 631                con->sock = NULL;
 632        }
 633
 634        /*
 635         * Forcibly clear the SOCK_CLOSED flag.  It gets set
 636         * independent of the connection mutex, and we could have
 637         * received a socket close event before we had the chance to
 638         * shut the socket down.
 639         */
 640        con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 641
 642        con_sock_state_closed(con);
 643        return rc;
 644}
 645
 646/*
 647 * Reset a connection.  Discard all incoming and outgoing messages
 648 * and clear *_seq state.
 649 */
 650static void ceph_msg_remove(struct ceph_msg *msg)
 651{
 652        list_del_init(&msg->list_head);
 653
 654        ceph_msg_put(msg);
 655}
 656static void ceph_msg_remove_list(struct list_head *head)
 657{
 658        while (!list_empty(head)) {
 659                struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 660                                                        list_head);
 661                ceph_msg_remove(msg);
 662        }
 663}
 664
 665static void reset_connection(struct ceph_connection *con)
 666{
 667        /* reset connection, out_queue, msg_ and connect_seq */
 668        /* discard existing out_queue and msg_seq */
 669        dout("reset_connection %p\n", con);
 670        ceph_msg_remove_list(&con->out_queue);
 671        ceph_msg_remove_list(&con->out_sent);
 672
 673        if (con->in_msg) {
 674                BUG_ON(con->in_msg->con != con);
 675                ceph_msg_put(con->in_msg);
 676                con->in_msg = NULL;
 677        }
 678
 679        con->connect_seq = 0;
 680        con->out_seq = 0;
 681        if (con->out_msg) {
 682                BUG_ON(con->out_msg->con != con);
 683                ceph_msg_put(con->out_msg);
 684                con->out_msg = NULL;
 685        }
 686        con->in_seq = 0;
 687        con->in_seq_acked = 0;
 688
 689        con->out_skip = 0;
 690}
 691
 692/*
 693 * mark a peer down.  drop any open connections.
 694 */
 695void ceph_con_close(struct ceph_connection *con)
 696{
 697        mutex_lock(&con->mutex);
 698        dout("con_close %p peer %s\n", con,
 699             ceph_pr_addr(&con->peer_addr.in_addr));
 700        con->state = CON_STATE_CLOSED;
 701
 702        con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
 703        con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 704        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 705        con_flag_clear(con, CON_FLAG_BACKOFF);
 706
 707        reset_connection(con);
 708        con->peer_global_seq = 0;
 709        cancel_con(con);
 710        con_close_socket(con);
 711        mutex_unlock(&con->mutex);
 712}
 713EXPORT_SYMBOL(ceph_con_close);
 714
 715/*
 716 * Reopen a closed connection, with a new peer address.
 717 */
 718void ceph_con_open(struct ceph_connection *con,
 719                   __u8 entity_type, __u64 entity_num,
 720                   struct ceph_entity_addr *addr)
 721{
 722        mutex_lock(&con->mutex);
 723        dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 724
 725        WARN_ON(con->state != CON_STATE_CLOSED);
 726        con->state = CON_STATE_PREOPEN;
 727
 728        con->peer_name.type = (__u8) entity_type;
 729        con->peer_name.num = cpu_to_le64(entity_num);
 730
 731        memcpy(&con->peer_addr, addr, sizeof(*addr));
 732        con->delay = 0;      /* reset backoff memory */
 733        mutex_unlock(&con->mutex);
 734        queue_con(con);
 735}
 736EXPORT_SYMBOL(ceph_con_open);
 737
 738/*
 739 * return true if this connection ever successfully opened
 740 */
 741bool ceph_con_opened(struct ceph_connection *con)
 742{
 743        return con->connect_seq > 0;
 744}
 745
 746/*
 747 * initialize a new connection.
 748 */
 749void ceph_con_init(struct ceph_connection *con, void *private,
 750        const struct ceph_connection_operations *ops,
 751        struct ceph_messenger *msgr)
 752{
 753        dout("con_init %p\n", con);
 754        memset(con, 0, sizeof(*con));
 755        con->private = private;
 756        con->ops = ops;
 757        con->msgr = msgr;
 758
 759        con_sock_state_init(con);
 760
 761        mutex_init(&con->mutex);
 762        INIT_LIST_HEAD(&con->out_queue);
 763        INIT_LIST_HEAD(&con->out_sent);
 764        INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 765
 766        con->state = CON_STATE_CLOSED;
 767}
 768EXPORT_SYMBOL(ceph_con_init);
 769
 770
 771/*
 772 * We maintain a global counter to order connection attempts.  Get
 773 * a unique seq greater than @gt.
 774 */
 775static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 776{
 777        u32 ret;
 778
 779        spin_lock(&msgr->global_seq_lock);
 780        if (msgr->global_seq < gt)
 781                msgr->global_seq = gt;
 782        ret = ++msgr->global_seq;
 783        spin_unlock(&msgr->global_seq_lock);
 784        return ret;
 785}
 786
 787static void con_out_kvec_reset(struct ceph_connection *con)
 788{
 789        BUG_ON(con->out_skip);
 790
 791        con->out_kvec_left = 0;
 792        con->out_kvec_bytes = 0;
 793        con->out_kvec_cur = &con->out_kvec[0];
 794}
 795
 796static void con_out_kvec_add(struct ceph_connection *con,
 797                                size_t size, void *data)
 798{
 799        int index = con->out_kvec_left;
 800
 801        BUG_ON(con->out_skip);
 802        BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 803
 804        con->out_kvec[index].iov_len = size;
 805        con->out_kvec[index].iov_base = data;
 806        con->out_kvec_left++;
 807        con->out_kvec_bytes += size;
 808}
 809
 810/*
 811 * Chop off a kvec from the end.  Return residual number of bytes for
 812 * that kvec, i.e. how many bytes would have been written if the kvec
 813 * hadn't been nuked.
 814 */
 815static int con_out_kvec_skip(struct ceph_connection *con)
 816{
 817        int off = con->out_kvec_cur - con->out_kvec;
 818        int skip = 0;
 819
 820        if (con->out_kvec_bytes > 0) {
 821                skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 822                BUG_ON(con->out_kvec_bytes < skip);
 823                BUG_ON(!con->out_kvec_left);
 824                con->out_kvec_bytes -= skip;
 825                con->out_kvec_left--;
 826        }
 827
 828        return skip;
 829}
 830
 831#ifdef CONFIG_BLOCK
 832
 833/*
 834 * For a bio data item, a piece is whatever remains of the next
 835 * entry in the current bio iovec, or the first entry in the next
 836 * bio in the list.
 837 */
 838static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 839                                        size_t length)
 840{
 841        struct ceph_msg_data *data = cursor->data;
 842        struct bio *bio;
 843
 844        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 845
 846        bio = data->bio;
 847        BUG_ON(!bio);
 848
 849        cursor->resid = min(length, data->bio_length);
 850        cursor->bio = bio;
 851        cursor->bvec_iter = bio->bi_iter;
 852        cursor->last_piece =
 853                cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
 854}
 855
 856static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 857                                                size_t *page_offset,
 858                                                size_t *length)
 859{
 860        struct ceph_msg_data *data = cursor->data;
 861        struct bio *bio;
 862        struct bio_vec bio_vec;
 863
 864        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 865
 866        bio = cursor->bio;
 867        BUG_ON(!bio);
 868
 869        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 870
 871        *page_offset = (size_t) bio_vec.bv_offset;
 872        BUG_ON(*page_offset >= PAGE_SIZE);
 873        if (cursor->last_piece) /* pagelist offset is always 0 */
 874                *length = cursor->resid;
 875        else
 876                *length = (size_t) bio_vec.bv_len;
 877        BUG_ON(*length > cursor->resid);
 878        BUG_ON(*page_offset + *length > PAGE_SIZE);
 879
 880        return bio_vec.bv_page;
 881}
 882
 883static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 884                                        size_t bytes)
 885{
 886        struct bio *bio;
 887        struct bio_vec bio_vec;
 888
 889        BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
 890
 891        bio = cursor->bio;
 892        BUG_ON(!bio);
 893
 894        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 895
 896        /* Advance the cursor offset */
 897
 898        BUG_ON(cursor->resid < bytes);
 899        cursor->resid -= bytes;
 900
 901        bio_advance_iter(bio, &cursor->bvec_iter, bytes);
 902
 903        if (bytes < bio_vec.bv_len)
 904                return false;   /* more bytes to process in this segment */
 905
 906        /* Move on to the next segment, and possibly the next bio */
 907
 908        if (!cursor->bvec_iter.bi_size) {
 909                bio = bio->bi_next;
 910                cursor->bio = bio;
 911                if (bio)
 912                        cursor->bvec_iter = bio->bi_iter;
 913                else
 914                        memset(&cursor->bvec_iter, 0,
 915                               sizeof(cursor->bvec_iter));
 916        }
 917
 918        if (!cursor->last_piece) {
 919                BUG_ON(!cursor->resid);
 920                BUG_ON(!bio);
 921                /* A short read is OK, so use <= rather than == */
 922                if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
 923                        cursor->last_piece = true;
 924        }
 925
 926        return true;
 927}
 928#endif /* CONFIG_BLOCK */
 929
 930/*
 931 * For a page array, a piece comes from the first page in the array
 932 * that has not already been fully consumed.
 933 */
 934static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 935                                        size_t length)
 936{
 937        struct ceph_msg_data *data = cursor->data;
 938        int page_count;
 939
 940        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 941
 942        BUG_ON(!data->pages);
 943        BUG_ON(!data->length);
 944
 945        cursor->resid = min(length, data->length);
 946        page_count = calc_pages_for(data->alignment, (u64)data->length);
 947        cursor->page_offset = data->alignment & ~PAGE_MASK;
 948        cursor->page_index = 0;
 949        BUG_ON(page_count > (int)USHRT_MAX);
 950        cursor->page_count = (unsigned short)page_count;
 951        BUG_ON(length > SIZE_MAX - cursor->page_offset);
 952        cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 953}
 954
 955static struct page *
 956ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 957                                        size_t *page_offset, size_t *length)
 958{
 959        struct ceph_msg_data *data = cursor->data;
 960
 961        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 962
 963        BUG_ON(cursor->page_index >= cursor->page_count);
 964        BUG_ON(cursor->page_offset >= PAGE_SIZE);
 965
 966        *page_offset = cursor->page_offset;
 967        if (cursor->last_piece)
 968                *length = cursor->resid;
 969        else
 970                *length = PAGE_SIZE - *page_offset;
 971
 972        return data->pages[cursor->page_index];
 973}
 974
 975static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 976                                                size_t bytes)
 977{
 978        BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 979
 980        BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 981
 982        /* Advance the cursor page offset */
 983
 984        cursor->resid -= bytes;
 985        cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 986        if (!bytes || cursor->page_offset)
 987                return false;   /* more bytes to process in the current page */
 988
 989        if (!cursor->resid)
 990                return false;   /* no more data */
 991
 992        /* Move on to the next page; offset is already at 0 */
 993
 994        BUG_ON(cursor->page_index >= cursor->page_count);
 995        cursor->page_index++;
 996        cursor->last_piece = cursor->resid <= PAGE_SIZE;
 997
 998        return true;
 999}
1000
1001/*
1002 * For a pagelist, a piece is whatever remains to be consumed in the
1003 * first page in the list, or the front of the next page.
1004 */
1005static void
1006ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1007                                        size_t length)
1008{
1009        struct ceph_msg_data *data = cursor->data;
1010        struct ceph_pagelist *pagelist;
1011        struct page *page;
1012
1013        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1014
1015        pagelist = data->pagelist;
1016        BUG_ON(!pagelist);
1017
1018        if (!length)
1019                return;         /* pagelist can be assigned but empty */
1020
1021        BUG_ON(list_empty(&pagelist->head));
1022        page = list_first_entry(&pagelist->head, struct page, lru);
1023
1024        cursor->resid = min(length, pagelist->length);
1025        cursor->page = page;
1026        cursor->offset = 0;
1027        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1028}
1029
1030static struct page *
1031ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1032                                size_t *page_offset, size_t *length)
1033{
1034        struct ceph_msg_data *data = cursor->data;
1035        struct ceph_pagelist *pagelist;
1036
1037        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1038
1039        pagelist = data->pagelist;
1040        BUG_ON(!pagelist);
1041
1042        BUG_ON(!cursor->page);
1043        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1044
1045        /* offset of first page in pagelist is always 0 */
1046        *page_offset = cursor->offset & ~PAGE_MASK;
1047        if (cursor->last_piece)
1048                *length = cursor->resid;
1049        else
1050                *length = PAGE_SIZE - *page_offset;
1051
1052        return cursor->page;
1053}
1054
1055static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1056                                                size_t bytes)
1057{
1058        struct ceph_msg_data *data = cursor->data;
1059        struct ceph_pagelist *pagelist;
1060
1061        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1062
1063        pagelist = data->pagelist;
1064        BUG_ON(!pagelist);
1065
1066        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1067        BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1068
1069        /* Advance the cursor offset */
1070
1071        cursor->resid -= bytes;
1072        cursor->offset += bytes;
1073        /* offset of first page in pagelist is always 0 */
1074        if (!bytes || cursor->offset & ~PAGE_MASK)
1075                return false;   /* more bytes to process in the current page */
1076
1077        if (!cursor->resid)
1078                return false;   /* no more data */
1079
1080        /* Move on to the next page */
1081
1082        BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1083        cursor->page = list_next_entry(cursor->page, lru);
1084        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1085
1086        return true;
1087}
1088
1089/*
1090 * Message data is handled (sent or received) in pieces, where each
1091 * piece resides on a single page.  The network layer might not
1092 * consume an entire piece at once.  A data item's cursor keeps
1093 * track of which piece is next to process and how much remains to
1094 * be processed in that piece.  It also tracks whether the current
1095 * piece is the last one in the data item.
1096 */
1097static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1098{
1099        size_t length = cursor->total_resid;
1100
1101        switch (cursor->data->type) {
1102        case CEPH_MSG_DATA_PAGELIST:
1103                ceph_msg_data_pagelist_cursor_init(cursor, length);
1104                break;
1105        case CEPH_MSG_DATA_PAGES:
1106                ceph_msg_data_pages_cursor_init(cursor, length);
1107                break;
1108#ifdef CONFIG_BLOCK
1109        case CEPH_MSG_DATA_BIO:
1110                ceph_msg_data_bio_cursor_init(cursor, length);
1111                break;
1112#endif /* CONFIG_BLOCK */
1113        case CEPH_MSG_DATA_NONE:
1114        default:
1115                /* BUG(); */
1116                break;
1117        }
1118        cursor->need_crc = true;
1119}
1120
1121static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1122{
1123        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1124        struct ceph_msg_data *data;
1125
1126        BUG_ON(!length);
1127        BUG_ON(length > msg->data_length);
1128        BUG_ON(list_empty(&msg->data));
1129
1130        cursor->data_head = &msg->data;
1131        cursor->total_resid = length;
1132        data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1133        cursor->data = data;
1134
1135        __ceph_msg_data_cursor_init(cursor);
1136}
1137
1138/*
1139 * Return the page containing the next piece to process for a given
1140 * data item, and supply the page offset and length of that piece.
1141 * Indicate whether this is the last piece in this data item.
1142 */
1143static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1144                                        size_t *page_offset, size_t *length,
1145                                        bool *last_piece)
1146{
1147        struct page *page;
1148
1149        switch (cursor->data->type) {
1150        case CEPH_MSG_DATA_PAGELIST:
1151                page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1152                break;
1153        case CEPH_MSG_DATA_PAGES:
1154                page = ceph_msg_data_pages_next(cursor, page_offset, length);
1155                break;
1156#ifdef CONFIG_BLOCK
1157        case CEPH_MSG_DATA_BIO:
1158                page = ceph_msg_data_bio_next(cursor, page_offset, length);
1159                break;
1160#endif /* CONFIG_BLOCK */
1161        case CEPH_MSG_DATA_NONE:
1162        default:
1163                page = NULL;
1164                break;
1165        }
1166        BUG_ON(!page);
1167        BUG_ON(*page_offset + *length > PAGE_SIZE);
1168        BUG_ON(!*length);
1169        if (last_piece)
1170                *last_piece = cursor->last_piece;
1171
1172        return page;
1173}
1174
1175/*
1176 * Returns true if the result moves the cursor on to the next piece
1177 * of the data item.
1178 */
1179static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1180                                  size_t bytes)
1181{
1182        bool new_piece;
1183
1184        BUG_ON(bytes > cursor->resid);
1185        switch (cursor->data->type) {
1186        case CEPH_MSG_DATA_PAGELIST:
1187                new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1188                break;
1189        case CEPH_MSG_DATA_PAGES:
1190                new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1191                break;
1192#ifdef CONFIG_BLOCK
1193        case CEPH_MSG_DATA_BIO:
1194                new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1195                break;
1196#endif /* CONFIG_BLOCK */
1197        case CEPH_MSG_DATA_NONE:
1198        default:
1199                BUG();
1200                break;
1201        }
1202        cursor->total_resid -= bytes;
1203
1204        if (!cursor->resid && cursor->total_resid) {
1205                WARN_ON(!cursor->last_piece);
1206                BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1207                cursor->data = list_next_entry(cursor->data, links);
1208                __ceph_msg_data_cursor_init(cursor);
1209                new_piece = true;
1210        }
1211        cursor->need_crc = new_piece;
1212}
1213
1214static size_t sizeof_footer(struct ceph_connection *con)
1215{
1216        return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1217            sizeof(struct ceph_msg_footer) :
1218            sizeof(struct ceph_msg_footer_old);
1219}
1220
1221static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1222{
1223        BUG_ON(!msg);
1224        BUG_ON(!data_len);
1225
1226        /* Initialize data cursor */
1227
1228        ceph_msg_data_cursor_init(msg, (size_t)data_len);
1229}
1230
1231/*
1232 * Prepare footer for currently outgoing message, and finish things
1233 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1234 */
1235static void prepare_write_message_footer(struct ceph_connection *con)
1236{
1237        struct ceph_msg *m = con->out_msg;
1238
1239        m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1240
1241        dout("prepare_write_message_footer %p\n", con);
1242        con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1243        if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1244                if (con->ops->sign_message)
1245                        con->ops->sign_message(m);
1246                else
1247                        m->footer.sig = 0;
1248        } else {
1249                m->old_footer.flags = m->footer.flags;
1250        }
1251        con->out_more = m->more_to_follow;
1252        con->out_msg_done = true;
1253}
1254
1255/*
1256 * Prepare headers for the next outgoing message.
1257 */
1258static void prepare_write_message(struct ceph_connection *con)
1259{
1260        struct ceph_msg *m;
1261        u32 crc;
1262
1263        con_out_kvec_reset(con);
1264        con->out_msg_done = false;
1265
1266        /* Sneak an ack in there first?  If we can get it into the same
1267         * TCP packet that's a good thing. */
1268        if (con->in_seq > con->in_seq_acked) {
1269                con->in_seq_acked = con->in_seq;
1270                con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1271                con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1272                con_out_kvec_add(con, sizeof (con->out_temp_ack),
1273                        &con->out_temp_ack);
1274        }
1275
1276        BUG_ON(list_empty(&con->out_queue));
1277        m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1278        con->out_msg = m;
1279        BUG_ON(m->con != con);
1280
1281        /* put message on sent list */
1282        ceph_msg_get(m);
1283        list_move_tail(&m->list_head, &con->out_sent);
1284
1285        /*
1286         * only assign outgoing seq # if we haven't sent this message
1287         * yet.  if it is requeued, resend with it's original seq.
1288         */
1289        if (m->needs_out_seq) {
1290                m->hdr.seq = cpu_to_le64(++con->out_seq);
1291                m->needs_out_seq = false;
1292
1293                if (con->ops->reencode_message)
1294                        con->ops->reencode_message(m);
1295        }
1296
1297        dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1298             m, con->out_seq, le16_to_cpu(m->hdr.type),
1299             le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1300             m->data_length);
1301        WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1302        WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1303
1304        /* tag + hdr + front + middle */
1305        con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1306        con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1307        con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1308
1309        if (m->middle)
1310                con_out_kvec_add(con, m->middle->vec.iov_len,
1311                        m->middle->vec.iov_base);
1312
1313        /* fill in hdr crc and finalize hdr */
1314        crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1315        con->out_msg->hdr.crc = cpu_to_le32(crc);
1316        memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1317
1318        /* fill in front and middle crc, footer */
1319        crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1320        con->out_msg->footer.front_crc = cpu_to_le32(crc);
1321        if (m->middle) {
1322                crc = crc32c(0, m->middle->vec.iov_base,
1323                                m->middle->vec.iov_len);
1324                con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1325        } else
1326                con->out_msg->footer.middle_crc = 0;
1327        dout("%s front_crc %u middle_crc %u\n", __func__,
1328             le32_to_cpu(con->out_msg->footer.front_crc),
1329             le32_to_cpu(con->out_msg->footer.middle_crc));
1330        con->out_msg->footer.flags = 0;
1331
1332        /* is there a data payload? */
1333        con->out_msg->footer.data_crc = 0;
1334        if (m->data_length) {
1335                prepare_message_data(con->out_msg, m->data_length);
1336                con->out_more = 1;  /* data + footer will follow */
1337        } else {
1338                /* no, queue up footer too and be done */
1339                prepare_write_message_footer(con);
1340        }
1341
1342        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1343}
1344
1345/*
1346 * Prepare an ack.
1347 */
1348static void prepare_write_ack(struct ceph_connection *con)
1349{
1350        dout("prepare_write_ack %p %llu -> %llu\n", con,
1351             con->in_seq_acked, con->in_seq);
1352        con->in_seq_acked = con->in_seq;
1353
1354        con_out_kvec_reset(con);
1355
1356        con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1357
1358        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1359        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1360                                &con->out_temp_ack);
1361
1362        con->out_more = 1;  /* more will follow.. eventually.. */
1363        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1364}
1365
1366/*
1367 * Prepare to share the seq during handshake
1368 */
1369static void prepare_write_seq(struct ceph_connection *con)
1370{
1371        dout("prepare_write_seq %p %llu -> %llu\n", con,
1372             con->in_seq_acked, con->in_seq);
1373        con->in_seq_acked = con->in_seq;
1374
1375        con_out_kvec_reset(con);
1376
1377        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1378        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1379                         &con->out_temp_ack);
1380
1381        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1382}
1383
1384/*
1385 * Prepare to write keepalive byte.
1386 */
1387static void prepare_write_keepalive(struct ceph_connection *con)
1388{
1389        dout("prepare_write_keepalive %p\n", con);
1390        con_out_kvec_reset(con);
1391        if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1392                struct timespec now;
1393
1394                ktime_get_real_ts(&now);
1395                con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1396                ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1397                con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1398                                 &con->out_temp_keepalive2);
1399        } else {
1400                con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1401        }
1402        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1403}
1404
1405/*
1406 * Connection negotiation.
1407 */
1408
1409static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1410                                                int *auth_proto)
1411{
1412        struct ceph_auth_handshake *auth;
1413
1414        if (!con->ops->get_authorizer) {
1415                con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1416                con->out_connect.authorizer_len = 0;
1417                return NULL;
1418        }
1419
1420        auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1421        if (IS_ERR(auth))
1422                return auth;
1423
1424        con->auth_reply_buf = auth->authorizer_reply_buf;
1425        con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1426        return auth;
1427}
1428
1429/*
1430 * We connected to a peer and are saying hello.
1431 */
1432static void prepare_write_banner(struct ceph_connection *con)
1433{
1434        con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1435        con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1436                                        &con->msgr->my_enc_addr);
1437
1438        con->out_more = 0;
1439        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1440}
1441
1442static int prepare_write_connect(struct ceph_connection *con)
1443{
1444        unsigned int global_seq = get_global_seq(con->msgr, 0);
1445        int proto;
1446        int auth_proto;
1447        struct ceph_auth_handshake *auth;
1448
1449        switch (con->peer_name.type) {
1450        case CEPH_ENTITY_TYPE_MON:
1451                proto = CEPH_MONC_PROTOCOL;
1452                break;
1453        case CEPH_ENTITY_TYPE_OSD:
1454                proto = CEPH_OSDC_PROTOCOL;
1455                break;
1456        case CEPH_ENTITY_TYPE_MDS:
1457                proto = CEPH_MDSC_PROTOCOL;
1458                break;
1459        default:
1460                BUG();
1461        }
1462
1463        dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1464             con->connect_seq, global_seq, proto);
1465
1466        con->out_connect.features =
1467            cpu_to_le64(from_msgr(con->msgr)->supported_features);
1468        con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1469        con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1470        con->out_connect.global_seq = cpu_to_le32(global_seq);
1471        con->out_connect.protocol_version = cpu_to_le32(proto);
1472        con->out_connect.flags = 0;
1473
1474        auth_proto = CEPH_AUTH_UNKNOWN;
1475        auth = get_connect_authorizer(con, &auth_proto);
1476        if (IS_ERR(auth))
1477                return PTR_ERR(auth);
1478
1479        con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1480        con->out_connect.authorizer_len = auth ?
1481                cpu_to_le32(auth->authorizer_buf_len) : 0;
1482
1483        con_out_kvec_add(con, sizeof (con->out_connect),
1484                                        &con->out_connect);
1485        if (auth && auth->authorizer_buf_len)
1486                con_out_kvec_add(con, auth->authorizer_buf_len,
1487                                        auth->authorizer_buf);
1488
1489        con->out_more = 0;
1490        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1491
1492        return 0;
1493}
1494
1495/*
1496 * write as much of pending kvecs to the socket as we can.
1497 *  1 -> done
1498 *  0 -> socket full, but more to do
1499 * <0 -> error
1500 */
1501static int write_partial_kvec(struct ceph_connection *con)
1502{
1503        int ret;
1504
1505        dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1506        while (con->out_kvec_bytes > 0) {
1507                ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1508                                       con->out_kvec_left, con->out_kvec_bytes,
1509                                       con->out_more);
1510                if (ret <= 0)
1511                        goto out;
1512                con->out_kvec_bytes -= ret;
1513                if (con->out_kvec_bytes == 0)
1514                        break;            /* done */
1515
1516                /* account for full iov entries consumed */
1517                while (ret >= con->out_kvec_cur->iov_len) {
1518                        BUG_ON(!con->out_kvec_left);
1519                        ret -= con->out_kvec_cur->iov_len;
1520                        con->out_kvec_cur++;
1521                        con->out_kvec_left--;
1522                }
1523                /* and for a partially-consumed entry */
1524                if (ret) {
1525                        con->out_kvec_cur->iov_len -= ret;
1526                        con->out_kvec_cur->iov_base += ret;
1527                }
1528        }
1529        con->out_kvec_left = 0;
1530        ret = 1;
1531out:
1532        dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1533             con->out_kvec_bytes, con->out_kvec_left, ret);
1534        return ret;  /* done! */
1535}
1536
1537static u32 ceph_crc32c_page(u32 crc, struct page *page,
1538                                unsigned int page_offset,
1539                                unsigned int length)
1540{
1541        char *kaddr;
1542
1543        kaddr = kmap(page);
1544        BUG_ON(kaddr == NULL);
1545        crc = crc32c(crc, kaddr + page_offset, length);
1546        kunmap(page);
1547
1548        return crc;
1549}
1550/*
1551 * Write as much message data payload as we can.  If we finish, queue
1552 * up the footer.
1553 *  1 -> done, footer is now queued in out_kvec[].
1554 *  0 -> socket full, but more to do
1555 * <0 -> error
1556 */
1557static int write_partial_message_data(struct ceph_connection *con)
1558{
1559        struct ceph_msg *msg = con->out_msg;
1560        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1561        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1562        u32 crc;
1563
1564        dout("%s %p msg %p\n", __func__, con, msg);
1565
1566        if (list_empty(&msg->data))
1567                return -EINVAL;
1568
1569        /*
1570         * Iterate through each page that contains data to be
1571         * written, and send as much as possible for each.
1572         *
1573         * If we are calculating the data crc (the default), we will
1574         * need to map the page.  If we have no pages, they have
1575         * been revoked, so use the zero page.
1576         */
1577        crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1578        while (cursor->resid) {
1579                struct page *page;
1580                size_t page_offset;
1581                size_t length;
1582                bool last_piece;
1583                int ret;
1584
1585                page = ceph_msg_data_next(cursor, &page_offset, &length,
1586                                          &last_piece);
1587                ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1588                                        length, !last_piece);
1589                if (ret <= 0) {
1590                        if (do_datacrc)
1591                                msg->footer.data_crc = cpu_to_le32(crc);
1592
1593                        return ret;
1594                }
1595                if (do_datacrc && cursor->need_crc)
1596                        crc = ceph_crc32c_page(crc, page, page_offset, length);
1597                ceph_msg_data_advance(cursor, (size_t)ret);
1598        }
1599
1600        dout("%s %p msg %p done\n", __func__, con, msg);
1601
1602        /* prepare and queue up footer, too */
1603        if (do_datacrc)
1604                msg->footer.data_crc = cpu_to_le32(crc);
1605        else
1606                msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1607        con_out_kvec_reset(con);
1608        prepare_write_message_footer(con);
1609
1610        return 1;       /* must return > 0 to indicate success */
1611}
1612
1613/*
1614 * write some zeros
1615 */
1616static int write_partial_skip(struct ceph_connection *con)
1617{
1618        int ret;
1619
1620        dout("%s %p %d left\n", __func__, con, con->out_skip);
1621        while (con->out_skip > 0) {
1622                size_t size = min(con->out_skip, (int) PAGE_SIZE);
1623
1624                ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1625                if (ret <= 0)
1626                        goto out;
1627                con->out_skip -= ret;
1628        }
1629        ret = 1;
1630out:
1631        return ret;
1632}
1633
1634/*
1635 * Prepare to read connection handshake, or an ack.
1636 */
1637static void prepare_read_banner(struct ceph_connection *con)
1638{
1639        dout("prepare_read_banner %p\n", con);
1640        con->in_base_pos = 0;
1641}
1642
1643static void prepare_read_connect(struct ceph_connection *con)
1644{
1645        dout("prepare_read_connect %p\n", con);
1646        con->in_base_pos = 0;
1647}
1648
1649static void prepare_read_ack(struct ceph_connection *con)
1650{
1651        dout("prepare_read_ack %p\n", con);
1652        con->in_base_pos = 0;
1653}
1654
1655static void prepare_read_seq(struct ceph_connection *con)
1656{
1657        dout("prepare_read_seq %p\n", con);
1658        con->in_base_pos = 0;
1659        con->in_tag = CEPH_MSGR_TAG_SEQ;
1660}
1661
1662static void prepare_read_tag(struct ceph_connection *con)
1663{
1664        dout("prepare_read_tag %p\n", con);
1665        con->in_base_pos = 0;
1666        con->in_tag = CEPH_MSGR_TAG_READY;
1667}
1668
1669static void prepare_read_keepalive_ack(struct ceph_connection *con)
1670{
1671        dout("prepare_read_keepalive_ack %p\n", con);
1672        con->in_base_pos = 0;
1673}
1674
1675/*
1676 * Prepare to read a message.
1677 */
1678static int prepare_read_message(struct ceph_connection *con)
1679{
1680        dout("prepare_read_message %p\n", con);
1681        BUG_ON(con->in_msg != NULL);
1682        con->in_base_pos = 0;
1683        con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1684        return 0;
1685}
1686
1687
1688static int read_partial(struct ceph_connection *con,
1689                        int end, int size, void *object)
1690{
1691        while (con->in_base_pos < end) {
1692                int left = end - con->in_base_pos;
1693                int have = size - left;
1694                int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1695                if (ret <= 0)
1696                        return ret;
1697                con->in_base_pos += ret;
1698        }
1699        return 1;
1700}
1701
1702
1703/*
1704 * Read all or part of the connect-side handshake on a new connection
1705 */
1706static int read_partial_banner(struct ceph_connection *con)
1707{
1708        int size;
1709        int end;
1710        int ret;
1711
1712        dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1713
1714        /* peer's banner */
1715        size = strlen(CEPH_BANNER);
1716        end = size;
1717        ret = read_partial(con, end, size, con->in_banner);
1718        if (ret <= 0)
1719                goto out;
1720
1721        size = sizeof (con->actual_peer_addr);
1722        end += size;
1723        ret = read_partial(con, end, size, &con->actual_peer_addr);
1724        if (ret <= 0)
1725                goto out;
1726
1727        size = sizeof (con->peer_addr_for_me);
1728        end += size;
1729        ret = read_partial(con, end, size, &con->peer_addr_for_me);
1730        if (ret <= 0)
1731                goto out;
1732
1733out:
1734        return ret;
1735}
1736
1737static int read_partial_connect(struct ceph_connection *con)
1738{
1739        int size;
1740        int end;
1741        int ret;
1742
1743        dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1744
1745        size = sizeof (con->in_reply);
1746        end = size;
1747        ret = read_partial(con, end, size, &con->in_reply);
1748        if (ret <= 0)
1749                goto out;
1750
1751        size = le32_to_cpu(con->in_reply.authorizer_len);
1752        end += size;
1753        ret = read_partial(con, end, size, con->auth_reply_buf);
1754        if (ret <= 0)
1755                goto out;
1756
1757        dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1758             con, (int)con->in_reply.tag,
1759             le32_to_cpu(con->in_reply.connect_seq),
1760             le32_to_cpu(con->in_reply.global_seq));
1761out:
1762        return ret;
1763
1764}
1765
1766/*
1767 * Verify the hello banner looks okay.
1768 */
1769static int verify_hello(struct ceph_connection *con)
1770{
1771        if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1772                pr_err("connect to %s got bad banner\n",
1773                       ceph_pr_addr(&con->peer_addr.in_addr));
1774                con->error_msg = "protocol error, bad banner";
1775                return -1;
1776        }
1777        return 0;
1778}
1779
1780static bool addr_is_blank(struct sockaddr_storage *ss)
1781{
1782        struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1783        struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1784
1785        switch (ss->ss_family) {
1786        case AF_INET:
1787                return addr->s_addr == htonl(INADDR_ANY);
1788        case AF_INET6:
1789                return ipv6_addr_any(addr6);
1790        default:
1791                return true;
1792        }
1793}
1794
1795static int addr_port(struct sockaddr_storage *ss)
1796{
1797        switch (ss->ss_family) {
1798        case AF_INET:
1799                return ntohs(((struct sockaddr_in *)ss)->sin_port);
1800        case AF_INET6:
1801                return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1802        }
1803        return 0;
1804}
1805
1806static void addr_set_port(struct sockaddr_storage *ss, int p)
1807{
1808        switch (ss->ss_family) {
1809        case AF_INET:
1810                ((struct sockaddr_in *)ss)->sin_port = htons(p);
1811                break;
1812        case AF_INET6:
1813                ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1814                break;
1815        }
1816}
1817
1818/*
1819 * Unlike other *_pton function semantics, zero indicates success.
1820 */
1821static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1822                char delim, const char **ipend)
1823{
1824        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1825        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1826
1827        memset(ss, 0, sizeof(*ss));
1828
1829        if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1830                ss->ss_family = AF_INET;
1831                return 0;
1832        }
1833
1834        if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1835                ss->ss_family = AF_INET6;
1836                return 0;
1837        }
1838
1839        return -EINVAL;
1840}
1841
1842/*
1843 * Extract hostname string and resolve using kernel DNS facility.
1844 */
1845#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1846static int ceph_dns_resolve_name(const char *name, size_t namelen,
1847                struct sockaddr_storage *ss, char delim, const char **ipend)
1848{
1849        const char *end, *delim_p;
1850        char *colon_p, *ip_addr = NULL;
1851        int ip_len, ret;
1852
1853        /*
1854         * The end of the hostname occurs immediately preceding the delimiter or
1855         * the port marker (':') where the delimiter takes precedence.
1856         */
1857        delim_p = memchr(name, delim, namelen);
1858        colon_p = memchr(name, ':', namelen);
1859
1860        if (delim_p && colon_p)
1861                end = delim_p < colon_p ? delim_p : colon_p;
1862        else if (!delim_p && colon_p)
1863                end = colon_p;
1864        else {
1865                end = delim_p;
1866                if (!end) /* case: hostname:/ */
1867                        end = name + namelen;
1868        }
1869
1870        if (end <= name)
1871                return -EINVAL;
1872
1873        /* do dns_resolve upcall */
1874        ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1875        if (ip_len > 0)
1876                ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1877        else
1878                ret = -ESRCH;
1879
1880        kfree(ip_addr);
1881
1882        *ipend = end;
1883
1884        pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1885                        ret, ret ? "failed" : ceph_pr_addr(ss));
1886
1887        return ret;
1888}
1889#else
1890static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1891                struct sockaddr_storage *ss, char delim, const char **ipend)
1892{
1893        return -EINVAL;
1894}
1895#endif
1896
1897/*
1898 * Parse a server name (IP or hostname). If a valid IP address is not found
1899 * then try to extract a hostname to resolve using userspace DNS upcall.
1900 */
1901static int ceph_parse_server_name(const char *name, size_t namelen,
1902                        struct sockaddr_storage *ss, char delim, const char **ipend)
1903{
1904        int ret;
1905
1906        ret = ceph_pton(name, namelen, ss, delim, ipend);
1907        if (ret)
1908                ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1909
1910        return ret;
1911}
1912
1913/*
1914 * Parse an ip[:port] list into an addr array.  Use the default
1915 * monitor port if a port isn't specified.
1916 */
1917int ceph_parse_ips(const char *c, const char *end,
1918                   struct ceph_entity_addr *addr,
1919                   int max_count, int *count)
1920{
1921        int i, ret = -EINVAL;
1922        const char *p = c;
1923
1924        dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1925        for (i = 0; i < max_count; i++) {
1926                const char *ipend;
1927                struct sockaddr_storage *ss = &addr[i].in_addr;
1928                int port;
1929                char delim = ',';
1930
1931                if (*p == '[') {
1932                        delim = ']';
1933                        p++;
1934                }
1935
1936                ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1937                if (ret)
1938                        goto bad;
1939                ret = -EINVAL;
1940
1941                p = ipend;
1942
1943                if (delim == ']') {
1944                        if (*p != ']') {
1945                                dout("missing matching ']'\n");
1946                                goto bad;
1947                        }
1948                        p++;
1949                }
1950
1951                /* port? */
1952                if (p < end && *p == ':') {
1953                        port = 0;
1954                        p++;
1955                        while (p < end && *p >= '0' && *p <= '9') {
1956                                port = (port * 10) + (*p - '0');
1957                                p++;
1958                        }
1959                        if (port == 0)
1960                                port = CEPH_MON_PORT;
1961                        else if (port > 65535)
1962                                goto bad;
1963                } else {
1964                        port = CEPH_MON_PORT;
1965                }
1966
1967                addr_set_port(ss, port);
1968
1969                dout("parse_ips got %s\n", ceph_pr_addr(ss));
1970
1971                if (p == end)
1972                        break;
1973                if (*p != ',')
1974                        goto bad;
1975                p++;
1976        }
1977
1978        if (p != end)
1979                goto bad;
1980
1981        if (count)
1982                *count = i + 1;
1983        return 0;
1984
1985bad:
1986        pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1987        return ret;
1988}
1989EXPORT_SYMBOL(ceph_parse_ips);
1990
1991static int process_banner(struct ceph_connection *con)
1992{
1993        dout("process_banner on %p\n", con);
1994
1995        if (verify_hello(con) < 0)
1996                return -1;
1997
1998        ceph_decode_addr(&con->actual_peer_addr);
1999        ceph_decode_addr(&con->peer_addr_for_me);
2000
2001        /*
2002         * Make sure the other end is who we wanted.  note that the other
2003         * end may not yet know their ip address, so if it's 0.0.0.0, give
2004         * them the benefit of the doubt.
2005         */
2006        if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2007                   sizeof(con->peer_addr)) != 0 &&
2008            !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2009              con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2010                pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2011                        ceph_pr_addr(&con->peer_addr.in_addr),
2012                        (int)le32_to_cpu(con->peer_addr.nonce),
2013                        ceph_pr_addr(&con->actual_peer_addr.in_addr),
2014                        (int)le32_to_cpu(con->actual_peer_addr.nonce));
2015                con->error_msg = "wrong peer at address";
2016                return -1;
2017        }
2018
2019        /*
2020         * did we learn our address?
2021         */
2022        if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2023                int port = addr_port(&con->msgr->inst.addr.in_addr);
2024
2025                memcpy(&con->msgr->inst.addr.in_addr,
2026                       &con->peer_addr_for_me.in_addr,
2027                       sizeof(con->peer_addr_for_me.in_addr));
2028                addr_set_port(&con->msgr->inst.addr.in_addr, port);
2029                encode_my_addr(con->msgr);
2030                dout("process_banner learned my addr is %s\n",
2031                     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2032        }
2033
2034        return 0;
2035}
2036
2037static int process_connect(struct ceph_connection *con)
2038{
2039        u64 sup_feat = from_msgr(con->msgr)->supported_features;
2040        u64 req_feat = from_msgr(con->msgr)->required_features;
2041        u64 server_feat = le64_to_cpu(con->in_reply.features);
2042        int ret;
2043
2044        dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2045
2046        if (con->auth_reply_buf) {
2047                /*
2048                 * Any connection that defines ->get_authorizer()
2049                 * should also define ->verify_authorizer_reply().
2050                 * See get_connect_authorizer().
2051                 */
2052                ret = con->ops->verify_authorizer_reply(con);
2053                if (ret < 0) {
2054                        con->error_msg = "bad authorize reply";
2055                        return ret;
2056                }
2057        }
2058
2059        switch (con->in_reply.tag) {
2060        case CEPH_MSGR_TAG_FEATURES:
2061                pr_err("%s%lld %s feature set mismatch,"
2062                       " my %llx < server's %llx, missing %llx\n",
2063                       ENTITY_NAME(con->peer_name),
2064                       ceph_pr_addr(&con->peer_addr.in_addr),
2065                       sup_feat, server_feat, server_feat & ~sup_feat);
2066                con->error_msg = "missing required protocol features";
2067                reset_connection(con);
2068                return -1;
2069
2070        case CEPH_MSGR_TAG_BADPROTOVER:
2071                pr_err("%s%lld %s protocol version mismatch,"
2072                       " my %d != server's %d\n",
2073                       ENTITY_NAME(con->peer_name),
2074                       ceph_pr_addr(&con->peer_addr.in_addr),
2075                       le32_to_cpu(con->out_connect.protocol_version),
2076                       le32_to_cpu(con->in_reply.protocol_version));
2077                con->error_msg = "protocol version mismatch";
2078                reset_connection(con);
2079                return -1;
2080
2081        case CEPH_MSGR_TAG_BADAUTHORIZER:
2082                con->auth_retry++;
2083                dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2084                     con->auth_retry);
2085                if (con->auth_retry == 2) {
2086                        con->error_msg = "connect authorization failure";
2087                        return -1;
2088                }
2089                con_out_kvec_reset(con);
2090                ret = prepare_write_connect(con);
2091                if (ret < 0)
2092                        return ret;
2093                prepare_read_connect(con);
2094                break;
2095
2096        case CEPH_MSGR_TAG_RESETSESSION:
2097                /*
2098                 * If we connected with a large connect_seq but the peer
2099                 * has no record of a session with us (no connection, or
2100                 * connect_seq == 0), they will send RESETSESION to indicate
2101                 * that they must have reset their session, and may have
2102                 * dropped messages.
2103                 */
2104                dout("process_connect got RESET peer seq %u\n",
2105                     le32_to_cpu(con->in_reply.connect_seq));
2106                pr_err("%s%lld %s connection reset\n",
2107                       ENTITY_NAME(con->peer_name),
2108                       ceph_pr_addr(&con->peer_addr.in_addr));
2109                reset_connection(con);
2110                con_out_kvec_reset(con);
2111                ret = prepare_write_connect(con);
2112                if (ret < 0)
2113                        return ret;
2114                prepare_read_connect(con);
2115
2116                /* Tell ceph about it. */
2117                mutex_unlock(&con->mutex);
2118                pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2119                if (con->ops->peer_reset)
2120                        con->ops->peer_reset(con);
2121                mutex_lock(&con->mutex);
2122                if (con->state != CON_STATE_NEGOTIATING)
2123                        return -EAGAIN;
2124                break;
2125
2126        case CEPH_MSGR_TAG_RETRY_SESSION:
2127                /*
2128                 * If we sent a smaller connect_seq than the peer has, try
2129                 * again with a larger value.
2130                 */
2131                dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2132                     le32_to_cpu(con->out_connect.connect_seq),
2133                     le32_to_cpu(con->in_reply.connect_seq));
2134                con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2135                con_out_kvec_reset(con);
2136                ret = prepare_write_connect(con);
2137                if (ret < 0)
2138                        return ret;
2139                prepare_read_connect(con);
2140                break;
2141
2142        case CEPH_MSGR_TAG_RETRY_GLOBAL:
2143                /*
2144                 * If we sent a smaller global_seq than the peer has, try
2145                 * again with a larger value.
2146                 */
2147                dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2148                     con->peer_global_seq,
2149                     le32_to_cpu(con->in_reply.global_seq));
2150                get_global_seq(con->msgr,
2151                               le32_to_cpu(con->in_reply.global_seq));
2152                con_out_kvec_reset(con);
2153                ret = prepare_write_connect(con);
2154                if (ret < 0)
2155                        return ret;
2156                prepare_read_connect(con);
2157                break;
2158
2159        case CEPH_MSGR_TAG_SEQ:
2160        case CEPH_MSGR_TAG_READY:
2161                if (req_feat & ~server_feat) {
2162                        pr_err("%s%lld %s protocol feature mismatch,"
2163                               " my required %llx > server's %llx, need %llx\n",
2164                               ENTITY_NAME(con->peer_name),
2165                               ceph_pr_addr(&con->peer_addr.in_addr),
2166                               req_feat, server_feat, req_feat & ~server_feat);
2167                        con->error_msg = "missing required protocol features";
2168                        reset_connection(con);
2169                        return -1;
2170                }
2171
2172                WARN_ON(con->state != CON_STATE_NEGOTIATING);
2173                con->state = CON_STATE_OPEN;
2174                con->auth_retry = 0;    /* we authenticated; clear flag */
2175                con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2176                con->connect_seq++;
2177                con->peer_features = server_feat;
2178                dout("process_connect got READY gseq %d cseq %d (%d)\n",
2179                     con->peer_global_seq,
2180                     le32_to_cpu(con->in_reply.connect_seq),
2181                     con->connect_seq);
2182                WARN_ON(con->connect_seq !=
2183                        le32_to_cpu(con->in_reply.connect_seq));
2184
2185                if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2186                        con_flag_set(con, CON_FLAG_LOSSYTX);
2187
2188                con->delay = 0;      /* reset backoff memory */
2189
2190                if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2191                        prepare_write_seq(con);
2192                        prepare_read_seq(con);
2193                } else {
2194                        prepare_read_tag(con);
2195                }
2196                break;
2197
2198        case CEPH_MSGR_TAG_WAIT:
2199                /*
2200                 * If there is a connection race (we are opening
2201                 * connections to each other), one of us may just have
2202                 * to WAIT.  This shouldn't happen if we are the
2203                 * client.
2204                 */
2205                con->error_msg = "protocol error, got WAIT as client";
2206                return -1;
2207
2208        default:
2209                con->error_msg = "protocol error, garbage tag during connect";
2210                return -1;
2211        }
2212        return 0;
2213}
2214
2215
2216/*
2217 * read (part of) an ack
2218 */
2219static int read_partial_ack(struct ceph_connection *con)
2220{
2221        int size = sizeof (con->in_temp_ack);
2222        int end = size;
2223
2224        return read_partial(con, end, size, &con->in_temp_ack);
2225}
2226
2227/*
2228 * We can finally discard anything that's been acked.
2229 */
2230static void process_ack(struct ceph_connection *con)
2231{
2232        struct ceph_msg *m;
2233        u64 ack = le64_to_cpu(con->in_temp_ack);
2234        u64 seq;
2235        bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2236        struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2237
2238        /*
2239         * In the reconnect case, con_fault() has requeued messages
2240         * in out_sent. We should cleanup old messages according to
2241         * the reconnect seq.
2242         */
2243        while (!list_empty(list)) {
2244                m = list_first_entry(list, struct ceph_msg, list_head);
2245                if (reconnect && m->needs_out_seq)
2246                        break;
2247                seq = le64_to_cpu(m->hdr.seq);
2248                if (seq > ack)
2249                        break;
2250                dout("got ack for seq %llu type %d at %p\n", seq,
2251                     le16_to_cpu(m->hdr.type), m);
2252                m->ack_stamp = jiffies;
2253                ceph_msg_remove(m);
2254        }
2255
2256        prepare_read_tag(con);
2257}
2258
2259
2260static int read_partial_message_section(struct ceph_connection *con,
2261                                        struct kvec *section,
2262                                        unsigned int sec_len, u32 *crc)
2263{
2264        int ret, left;
2265
2266        BUG_ON(!section);
2267
2268        while (section->iov_len < sec_len) {
2269                BUG_ON(section->iov_base == NULL);
2270                left = sec_len - section->iov_len;
2271                ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2272                                       section->iov_len, left);
2273                if (ret <= 0)
2274                        return ret;
2275                section->iov_len += ret;
2276        }
2277        if (section->iov_len == sec_len)
2278                *crc = crc32c(0, section->iov_base, section->iov_len);
2279
2280        return 1;
2281}
2282
2283static int read_partial_msg_data(struct ceph_connection *con)
2284{
2285        struct ceph_msg *msg = con->in_msg;
2286        struct ceph_msg_data_cursor *cursor = &msg->cursor;
2287        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2288        struct page *page;
2289        size_t page_offset;
2290        size_t length;
2291        u32 crc = 0;
2292        int ret;
2293
2294        BUG_ON(!msg);
2295        if (list_empty(&msg->data))
2296                return -EIO;
2297
2298        if (do_datacrc)
2299                crc = con->in_data_crc;
2300        while (cursor->resid) {
2301                page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2302                ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2303                if (ret <= 0) {
2304                        if (do_datacrc)
2305                                con->in_data_crc = crc;
2306
2307                        return ret;
2308                }
2309
2310                if (do_datacrc)
2311                        crc = ceph_crc32c_page(crc, page, page_offset, ret);
2312                ceph_msg_data_advance(cursor, (size_t)ret);
2313        }
2314        if (do_datacrc)
2315                con->in_data_crc = crc;
2316
2317        return 1;       /* must return > 0 to indicate success */
2318}
2319
2320/*
2321 * read (part of) a message.
2322 */
2323static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2324
2325static int read_partial_message(struct ceph_connection *con)
2326{
2327        struct ceph_msg *m = con->in_msg;
2328        int size;
2329        int end;
2330        int ret;
2331        unsigned int front_len, middle_len, data_len;
2332        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2333        bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2334        u64 seq;
2335        u32 crc;
2336
2337        dout("read_partial_message con %p msg %p\n", con, m);
2338
2339        /* header */
2340        size = sizeof (con->in_hdr);
2341        end = size;
2342        ret = read_partial(con, end, size, &con->in_hdr);
2343        if (ret <= 0)
2344                return ret;
2345
2346        crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2347        if (cpu_to_le32(crc) != con->in_hdr.crc) {
2348                pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2349                       crc, con->in_hdr.crc);
2350                return -EBADMSG;
2351        }
2352
2353        front_len = le32_to_cpu(con->in_hdr.front_len);
2354        if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2355                return -EIO;
2356        middle_len = le32_to_cpu(con->in_hdr.middle_len);
2357        if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2358                return -EIO;
2359        data_len = le32_to_cpu(con->in_hdr.data_len);
2360        if (data_len > CEPH_MSG_MAX_DATA_LEN)
2361                return -EIO;
2362
2363        /* verify seq# */
2364        seq = le64_to_cpu(con->in_hdr.seq);
2365        if ((s64)seq - (s64)con->in_seq < 1) {
2366                pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2367                        ENTITY_NAME(con->peer_name),
2368                        ceph_pr_addr(&con->peer_addr.in_addr),
2369                        seq, con->in_seq + 1);
2370                con->in_base_pos = -front_len - middle_len - data_len -
2371                        sizeof_footer(con);
2372                con->in_tag = CEPH_MSGR_TAG_READY;
2373                return 1;
2374        } else if ((s64)seq - (s64)con->in_seq > 1) {
2375                pr_err("read_partial_message bad seq %lld expected %lld\n",
2376                       seq, con->in_seq + 1);
2377                con->error_msg = "bad message sequence # for incoming message";
2378                return -EBADE;
2379        }
2380
2381        /* allocate message? */
2382        if (!con->in_msg) {
2383                int skip = 0;
2384
2385                dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2386                     front_len, data_len);
2387                ret = ceph_con_in_msg_alloc(con, &skip);
2388                if (ret < 0)
2389                        return ret;
2390
2391                BUG_ON(!con->in_msg ^ skip);
2392                if (skip) {
2393                        /* skip this message */
2394                        dout("alloc_msg said skip message\n");
2395                        con->in_base_pos = -front_len - middle_len - data_len -
2396                                sizeof_footer(con);
2397                        con->in_tag = CEPH_MSGR_TAG_READY;
2398                        con->in_seq++;
2399                        return 1;
2400                }
2401
2402                BUG_ON(!con->in_msg);
2403                BUG_ON(con->in_msg->con != con);
2404                m = con->in_msg;
2405                m->front.iov_len = 0;    /* haven't read it yet */
2406                if (m->middle)
2407                        m->middle->vec.iov_len = 0;
2408
2409                /* prepare for data payload, if any */
2410
2411                if (data_len)
2412                        prepare_message_data(con->in_msg, data_len);
2413        }
2414
2415        /* front */
2416        ret = read_partial_message_section(con, &m->front, front_len,
2417                                           &con->in_front_crc);
2418        if (ret <= 0)
2419                return ret;
2420
2421        /* middle */
2422        if (m->middle) {
2423                ret = read_partial_message_section(con, &m->middle->vec,
2424                                                   middle_len,
2425                                                   &con->in_middle_crc);
2426                if (ret <= 0)
2427                        return ret;
2428        }
2429
2430        /* (page) data */
2431        if (data_len) {
2432                ret = read_partial_msg_data(con);
2433                if (ret <= 0)
2434                        return ret;
2435        }
2436
2437        /* footer */
2438        size = sizeof_footer(con);
2439        end += size;
2440        ret = read_partial(con, end, size, &m->footer);
2441        if (ret <= 0)
2442                return ret;
2443
2444        if (!need_sign) {
2445                m->footer.flags = m->old_footer.flags;
2446                m->footer.sig = 0;
2447        }
2448
2449        dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2450             m, front_len, m->footer.front_crc, middle_len,
2451             m->footer.middle_crc, data_len, m->footer.data_crc);
2452
2453        /* crc ok? */
2454        if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2455                pr_err("read_partial_message %p front crc %u != exp. %u\n",
2456                       m, con->in_front_crc, m->footer.front_crc);
2457                return -EBADMSG;
2458        }
2459        if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2460                pr_err("read_partial_message %p middle crc %u != exp %u\n",
2461                       m, con->in_middle_crc, m->footer.middle_crc);
2462                return -EBADMSG;
2463        }
2464        if (do_datacrc &&
2465            (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2466            con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2467                pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2468                       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2469                return -EBADMSG;
2470        }
2471
2472        if (need_sign && con->ops->check_message_signature &&
2473            con->ops->check_message_signature(m)) {
2474                pr_err("read_partial_message %p signature check failed\n", m);
2475                return -EBADMSG;
2476        }
2477
2478        return 1; /* done! */
2479}
2480
2481/*
2482 * Process message.  This happens in the worker thread.  The callback should
2483 * be careful not to do anything that waits on other incoming messages or it
2484 * may deadlock.
2485 */
2486static void process_message(struct ceph_connection *con)
2487{
2488        struct ceph_msg *msg = con->in_msg;
2489
2490        BUG_ON(con->in_msg->con != con);
2491        con->in_msg = NULL;
2492
2493        /* if first message, set peer_name */
2494        if (con->peer_name.type == 0)
2495                con->peer_name = msg->hdr.src;
2496
2497        con->in_seq++;
2498        mutex_unlock(&con->mutex);
2499
2500        dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2501             msg, le64_to_cpu(msg->hdr.seq),
2502             ENTITY_NAME(msg->hdr.src),
2503             le16_to_cpu(msg->hdr.type),
2504             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2505             le32_to_cpu(msg->hdr.front_len),
2506             le32_to_cpu(msg->hdr.data_len),
2507             con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2508        con->ops->dispatch(con, msg);
2509
2510        mutex_lock(&con->mutex);
2511}
2512
2513static int read_keepalive_ack(struct ceph_connection *con)
2514{
2515        struct ceph_timespec ceph_ts;
2516        size_t size = sizeof(ceph_ts);
2517        int ret = read_partial(con, size, size, &ceph_ts);
2518        if (ret <= 0)
2519                return ret;
2520        ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2521        prepare_read_tag(con);
2522        return 1;
2523}
2524
2525/*
2526 * Write something to the socket.  Called in a worker thread when the
2527 * socket appears to be writeable and we have something ready to send.
2528 */
2529static int try_write(struct ceph_connection *con)
2530{
2531        int ret = 1;
2532
2533        dout("try_write start %p state %lu\n", con, con->state);
2534
2535more:
2536        dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2537
2538        /* open the socket first? */
2539        if (con->state == CON_STATE_PREOPEN) {
2540                BUG_ON(con->sock);
2541                con->state = CON_STATE_CONNECTING;
2542
2543                con_out_kvec_reset(con);
2544                prepare_write_banner(con);
2545                prepare_read_banner(con);
2546
2547                BUG_ON(con->in_msg);
2548                con->in_tag = CEPH_MSGR_TAG_READY;
2549                dout("try_write initiating connect on %p new state %lu\n",
2550                     con, con->state);
2551                ret = ceph_tcp_connect(con);
2552                if (ret < 0) {
2553                        con->error_msg = "connect error";
2554                        goto out;
2555                }
2556        }
2557
2558more_kvec:
2559        /* kvec data queued? */
2560        if (con->out_kvec_left) {
2561                ret = write_partial_kvec(con);
2562                if (ret <= 0)
2563                        goto out;
2564        }
2565        if (con->out_skip) {
2566                ret = write_partial_skip(con);
2567                if (ret <= 0)
2568                        goto out;
2569        }
2570
2571        /* msg pages? */
2572        if (con->out_msg) {
2573                if (con->out_msg_done) {
2574                        ceph_msg_put(con->out_msg);
2575                        con->out_msg = NULL;   /* we're done with this one */
2576                        goto do_next;
2577                }
2578
2579                ret = write_partial_message_data(con);
2580                if (ret == 1)
2581                        goto more_kvec;  /* we need to send the footer, too! */
2582                if (ret == 0)
2583                        goto out;
2584                if (ret < 0) {
2585                        dout("try_write write_partial_message_data err %d\n",
2586                             ret);
2587                        goto out;
2588                }
2589        }
2590
2591do_next:
2592        if (con->state == CON_STATE_OPEN) {
2593                if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2594                        prepare_write_keepalive(con);
2595                        goto more;
2596                }
2597                /* is anything else pending? */
2598                if (!list_empty(&con->out_queue)) {
2599                        prepare_write_message(con);
2600                        goto more;
2601                }
2602                if (con->in_seq > con->in_seq_acked) {
2603                        prepare_write_ack(con);
2604                        goto more;
2605                }
2606        }
2607
2608        /* Nothing to do! */
2609        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2610        dout("try_write nothing else to write.\n");
2611        ret = 0;
2612out:
2613        dout("try_write done on %p ret %d\n", con, ret);
2614        return ret;
2615}
2616
2617
2618
2619/*
2620 * Read what we can from the socket.
2621 */
2622static int try_read(struct ceph_connection *con)
2623{
2624        int ret = -1;
2625
2626more:
2627        dout("try_read start on %p state %lu\n", con, con->state);
2628        if (con->state != CON_STATE_CONNECTING &&
2629            con->state != CON_STATE_NEGOTIATING &&
2630            con->state != CON_STATE_OPEN)
2631                return 0;
2632
2633        BUG_ON(!con->sock);
2634
2635        dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2636             con->in_base_pos);
2637
2638        if (con->state == CON_STATE_CONNECTING) {
2639                dout("try_read connecting\n");
2640                ret = read_partial_banner(con);
2641                if (ret <= 0)
2642                        goto out;
2643                ret = process_banner(con);
2644                if (ret < 0)
2645                        goto out;
2646
2647                con->state = CON_STATE_NEGOTIATING;
2648
2649                /*
2650                 * Received banner is good, exchange connection info.
2651                 * Do not reset out_kvec, as sending our banner raced
2652                 * with receiving peer banner after connect completed.
2653                 */
2654                ret = prepare_write_connect(con);
2655                if (ret < 0)
2656                        goto out;
2657                prepare_read_connect(con);
2658
2659                /* Send connection info before awaiting response */
2660                goto out;
2661        }
2662
2663        if (con->state == CON_STATE_NEGOTIATING) {
2664                dout("try_read negotiating\n");
2665                ret = read_partial_connect(con);
2666                if (ret <= 0)
2667                        goto out;
2668                ret = process_connect(con);
2669                if (ret < 0)
2670                        goto out;
2671                goto more;
2672        }
2673
2674        WARN_ON(con->state != CON_STATE_OPEN);
2675
2676        if (con->in_base_pos < 0) {
2677                /*
2678                 * skipping + discarding content.
2679                 *
2680                 * FIXME: there must be a better way to do this!
2681                 */
2682                static char buf[SKIP_BUF_SIZE];
2683                int skip = min((int) sizeof (buf), -con->in_base_pos);
2684
2685                dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2686                ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2687                if (ret <= 0)
2688                        goto out;
2689                con->in_base_pos += ret;
2690                if (con->in_base_pos)
2691                        goto more;
2692        }
2693        if (con->in_tag == CEPH_MSGR_TAG_READY) {
2694                /*
2695                 * what's next?
2696                 */
2697                ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2698                if (ret <= 0)
2699                        goto out;
2700                dout("try_read got tag %d\n", (int)con->in_tag);
2701                switch (con->in_tag) {
2702                case CEPH_MSGR_TAG_MSG:
2703                        prepare_read_message(con);
2704                        break;
2705                case CEPH_MSGR_TAG_ACK:
2706                        prepare_read_ack(con);
2707                        break;
2708                case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2709                        prepare_read_keepalive_ack(con);
2710                        break;
2711                case CEPH_MSGR_TAG_CLOSE:
2712                        con_close_socket(con);
2713                        con->state = CON_STATE_CLOSED;
2714                        goto out;
2715                default:
2716                        goto bad_tag;
2717                }
2718        }
2719        if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2720                ret = read_partial_message(con);
2721                if (ret <= 0) {
2722                        switch (ret) {
2723                        case -EBADMSG:
2724                                con->error_msg = "bad crc/signature";
2725                                /* fall through */
2726                        case -EBADE:
2727                                ret = -EIO;
2728                                break;
2729                        case -EIO:
2730                                con->error_msg = "io error";
2731                                break;
2732                        }
2733                        goto out;
2734                }
2735                if (con->in_tag == CEPH_MSGR_TAG_READY)
2736                        goto more;
2737                process_message(con);
2738                if (con->state == CON_STATE_OPEN)
2739                        prepare_read_tag(con);
2740                goto more;
2741        }
2742        if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2743            con->in_tag == CEPH_MSGR_TAG_SEQ) {
2744                /*
2745                 * the final handshake seq exchange is semantically
2746                 * equivalent to an ACK
2747                 */
2748                ret = read_partial_ack(con);
2749                if (ret <= 0)
2750                        goto out;
2751                process_ack(con);
2752                goto more;
2753        }
2754        if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2755                ret = read_keepalive_ack(con);
2756                if (ret <= 0)
2757                        goto out;
2758                goto more;
2759        }
2760
2761out:
2762        dout("try_read done on %p ret %d\n", con, ret);
2763        return ret;
2764
2765bad_tag:
2766        pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2767        con->error_msg = "protocol error, garbage tag";
2768        ret = -1;
2769        goto out;
2770}
2771
2772
2773/*
2774 * Atomically queue work on a connection after the specified delay.
2775 * Bump @con reference to avoid races with connection teardown.
2776 * Returns 0 if work was queued, or an error code otherwise.
2777 */
2778static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2779{
2780        if (!con->ops->get(con)) {
2781                dout("%s %p ref count 0\n", __func__, con);
2782                return -ENOENT;
2783        }
2784
2785        if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2786                dout("%s %p - already queued\n", __func__, con);
2787                con->ops->put(con);
2788                return -EBUSY;
2789        }
2790
2791        dout("%s %p %lu\n", __func__, con, delay);
2792        return 0;
2793}
2794
2795static void queue_con(struct ceph_connection *con)
2796{
2797        (void) queue_con_delay(con, 0);
2798}
2799
2800static void cancel_con(struct ceph_connection *con)
2801{
2802        if (cancel_delayed_work(&con->work)) {
2803                dout("%s %p\n", __func__, con);
2804                con->ops->put(con);
2805        }
2806}
2807
2808static bool con_sock_closed(struct ceph_connection *con)
2809{
2810        if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2811                return false;
2812
2813#define CASE(x)                                                         \
2814        case CON_STATE_ ## x:                                           \
2815                con->error_msg = "socket closed (con state " #x ")";    \
2816                break;
2817
2818        switch (con->state) {
2819        CASE(CLOSED);
2820        CASE(PREOPEN);
2821        CASE(CONNECTING);
2822        CASE(NEGOTIATING);
2823        CASE(OPEN);
2824        CASE(STANDBY);
2825        default:
2826                pr_warn("%s con %p unrecognized state %lu\n",
2827                        __func__, con, con->state);
2828                con->error_msg = "unrecognized con state";
2829                BUG();
2830                break;
2831        }
2832#undef CASE
2833
2834        return true;
2835}
2836
2837static bool con_backoff(struct ceph_connection *con)
2838{
2839        int ret;
2840
2841        if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2842                return false;
2843
2844        ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2845        if (ret) {
2846                dout("%s: con %p FAILED to back off %lu\n", __func__,
2847                        con, con->delay);
2848                BUG_ON(ret == -ENOENT);
2849                con_flag_set(con, CON_FLAG_BACKOFF);
2850        }
2851
2852        return true;
2853}
2854
2855/* Finish fault handling; con->mutex must *not* be held here */
2856
2857static void con_fault_finish(struct ceph_connection *con)
2858{
2859        dout("%s %p\n", __func__, con);
2860
2861        /*
2862         * in case we faulted due to authentication, invalidate our
2863         * current tickets so that we can get new ones.
2864         */
2865        if (con->auth_retry) {
2866                dout("auth_retry %d, invalidating\n", con->auth_retry);
2867                if (con->ops->invalidate_authorizer)
2868                        con->ops->invalidate_authorizer(con);
2869                con->auth_retry = 0;
2870        }
2871
2872        if (con->ops->fault)
2873                con->ops->fault(con);
2874}
2875
2876/*
2877 * Do some work on a connection.  Drop a connection ref when we're done.
2878 */
2879static void ceph_con_workfn(struct work_struct *work)
2880{
2881        struct ceph_connection *con = container_of(work, struct ceph_connection,
2882                                                   work.work);
2883        bool fault;
2884
2885        mutex_lock(&con->mutex);
2886        while (true) {
2887                int ret;
2888
2889                if ((fault = con_sock_closed(con))) {
2890                        dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2891                        break;
2892                }
2893                if (con_backoff(con)) {
2894                        dout("%s: con %p BACKOFF\n", __func__, con);
2895                        break;
2896                }
2897                if (con->state == CON_STATE_STANDBY) {
2898                        dout("%s: con %p STANDBY\n", __func__, con);
2899                        break;
2900                }
2901                if (con->state == CON_STATE_CLOSED) {
2902                        dout("%s: con %p CLOSED\n", __func__, con);
2903                        BUG_ON(con->sock);
2904                        break;
2905                }
2906                if (con->state == CON_STATE_PREOPEN) {
2907                        dout("%s: con %p PREOPEN\n", __func__, con);
2908                        BUG_ON(con->sock);
2909                }
2910
2911                ret = try_read(con);
2912                if (ret < 0) {
2913                        if (ret == -EAGAIN)
2914                                continue;
2915                        if (!con->error_msg)
2916                                con->error_msg = "socket error on read";
2917                        fault = true;
2918                        break;
2919                }
2920
2921                ret = try_write(con);
2922                if (ret < 0) {
2923                        if (ret == -EAGAIN)
2924                                continue;
2925                        if (!con->error_msg)
2926                                con->error_msg = "socket error on write";
2927                        fault = true;
2928                }
2929
2930                break;  /* If we make it to here, we're done */
2931        }
2932        if (fault)
2933                con_fault(con);
2934        mutex_unlock(&con->mutex);
2935
2936        if (fault)
2937                con_fault_finish(con);
2938
2939        con->ops->put(con);
2940}
2941
2942/*
2943 * Generic error/fault handler.  A retry mechanism is used with
2944 * exponential backoff
2945 */
2946static void con_fault(struct ceph_connection *con)
2947{
2948        dout("fault %p state %lu to peer %s\n",
2949             con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2950
2951        pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2952                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2953        con->error_msg = NULL;
2954
2955        WARN_ON(con->state != CON_STATE_CONNECTING &&
2956               con->state != CON_STATE_NEGOTIATING &&
2957               con->state != CON_STATE_OPEN);
2958
2959        con_close_socket(con);
2960
2961        if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2962                dout("fault on LOSSYTX channel, marking CLOSED\n");
2963                con->state = CON_STATE_CLOSED;
2964                return;
2965        }
2966
2967        if (con->in_msg) {
2968                BUG_ON(con->in_msg->con != con);
2969                ceph_msg_put(con->in_msg);
2970                con->in_msg = NULL;
2971        }
2972
2973        /* Requeue anything that hasn't been acked */
2974        list_splice_init(&con->out_sent, &con->out_queue);
2975
2976        /* If there are no messages queued or keepalive pending, place
2977         * the connection in a STANDBY state */
2978        if (list_empty(&con->out_queue) &&
2979            !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2980                dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2981                con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2982                con->state = CON_STATE_STANDBY;
2983        } else {
2984                /* retry after a delay. */
2985                con->state = CON_STATE_PREOPEN;
2986                if (con->delay == 0)
2987                        con->delay = BASE_DELAY_INTERVAL;
2988                else if (con->delay < MAX_DELAY_INTERVAL)
2989                        con->delay *= 2;
2990                con_flag_set(con, CON_FLAG_BACKOFF);
2991                queue_con(con);
2992        }
2993}
2994
2995
2996
2997/*
2998 * initialize a new messenger instance
2999 */
3000void ceph_messenger_init(struct ceph_messenger *msgr,
3001                         struct ceph_entity_addr *myaddr)
3002{
3003        spin_lock_init(&msgr->global_seq_lock);
3004
3005        if (myaddr)
3006                msgr->inst.addr = *myaddr;
3007
3008        /* select a random nonce */
3009        msgr->inst.addr.type = 0;
3010        get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3011        encode_my_addr(msgr);
3012
3013        atomic_set(&msgr->stopping, 0);
3014        write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3015
3016        dout("%s %p\n", __func__, msgr);
3017}
3018EXPORT_SYMBOL(ceph_messenger_init);
3019
3020void ceph_messenger_fini(struct ceph_messenger *msgr)
3021{
3022        put_net(read_pnet(&msgr->net));
3023}
3024EXPORT_SYMBOL(ceph_messenger_fini);
3025
3026static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3027{
3028        if (msg->con)
3029                msg->con->ops->put(msg->con);
3030
3031        msg->con = con ? con->ops->get(con) : NULL;
3032        BUG_ON(msg->con != con);
3033}
3034
3035static void clear_standby(struct ceph_connection *con)
3036{
3037        /* come back from STANDBY? */
3038        if (con->state == CON_STATE_STANDBY) {
3039                dout("clear_standby %p and ++connect_seq\n", con);
3040                con->state = CON_STATE_PREOPEN;
3041                con->connect_seq++;
3042                WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3043                WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3044        }
3045}
3046
3047/*
3048 * Queue up an outgoing message on the given connection.
3049 */
3050void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3051{
3052        /* set src+dst */
3053        msg->hdr.src = con->msgr->inst.name;
3054        BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3055        msg->needs_out_seq = true;
3056
3057        mutex_lock(&con->mutex);
3058
3059        if (con->state == CON_STATE_CLOSED) {
3060                dout("con_send %p closed, dropping %p\n", con, msg);
3061                ceph_msg_put(msg);
3062                mutex_unlock(&con->mutex);
3063                return;
3064        }
3065
3066        msg_con_set(msg, con);
3067
3068        BUG_ON(!list_empty(&msg->list_head));
3069        list_add_tail(&msg->list_head, &con->out_queue);
3070        dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3071             ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3072             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3073             le32_to_cpu(msg->hdr.front_len),
3074             le32_to_cpu(msg->hdr.middle_len),
3075             le32_to_cpu(msg->hdr.data_len));
3076
3077        clear_standby(con);
3078        mutex_unlock(&con->mutex);
3079
3080        /* if there wasn't anything waiting to send before, queue
3081         * new work */
3082        if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3083                queue_con(con);
3084}
3085EXPORT_SYMBOL(ceph_con_send);
3086
3087/*
3088 * Revoke a message that was previously queued for send
3089 */
3090void ceph_msg_revoke(struct ceph_msg *msg)
3091{
3092        struct ceph_connection *con = msg->con;
3093
3094        if (!con) {
3095                dout("%s msg %p null con\n", __func__, msg);
3096                return;         /* Message not in our possession */
3097        }
3098
3099        mutex_lock(&con->mutex);
3100        if (!list_empty(&msg->list_head)) {
3101                dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3102                list_del_init(&msg->list_head);
3103                msg->hdr.seq = 0;
3104
3105                ceph_msg_put(msg);
3106        }
3107        if (con->out_msg == msg) {
3108                BUG_ON(con->out_skip);
3109                /* footer */
3110                if (con->out_msg_done) {
3111                        con->out_skip += con_out_kvec_skip(con);
3112                } else {
3113                        BUG_ON(!msg->data_length);
3114                        con->out_skip += sizeof_footer(con);
3115                }
3116                /* data, middle, front */
3117                if (msg->data_length)
3118                        con->out_skip += msg->cursor.total_resid;
3119                if (msg->middle)
3120                        con->out_skip += con_out_kvec_skip(con);
3121                con->out_skip += con_out_kvec_skip(con);
3122
3123                dout("%s %p msg %p - was sending, will write %d skip %d\n",
3124                     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3125                msg->hdr.seq = 0;
3126                con->out_msg = NULL;
3127                ceph_msg_put(msg);
3128        }
3129
3130        mutex_unlock(&con->mutex);
3131}
3132
3133/*
3134 * Revoke a message that we may be reading data into
3135 */
3136void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3137{
3138        struct ceph_connection *con = msg->con;
3139
3140        if (!con) {
3141                dout("%s msg %p null con\n", __func__, msg);
3142                return;         /* Message not in our possession */
3143        }
3144
3145        mutex_lock(&con->mutex);
3146        if (con->in_msg == msg) {
3147                unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3148                unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3149                unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3150
3151                /* skip rest of message */
3152                dout("%s %p msg %p revoked\n", __func__, con, msg);
3153                con->in_base_pos = con->in_base_pos -
3154                                sizeof(struct ceph_msg_header) -
3155                                front_len -
3156                                middle_len -
3157                                data_len -
3158                                sizeof(struct ceph_msg_footer);
3159                ceph_msg_put(con->in_msg);
3160                con->in_msg = NULL;
3161                con->in_tag = CEPH_MSGR_TAG_READY;
3162                con->in_seq++;
3163        } else {
3164                dout("%s %p in_msg %p msg %p no-op\n",
3165                     __func__, con, con->in_msg, msg);
3166        }
3167        mutex_unlock(&con->mutex);
3168}
3169
3170/*
3171 * Queue a keepalive byte to ensure the tcp connection is alive.
3172 */
3173void ceph_con_keepalive(struct ceph_connection *con)
3174{
3175        dout("con_keepalive %p\n", con);
3176        mutex_lock(&con->mutex);
3177        clear_standby(con);
3178        mutex_unlock(&con->mutex);
3179        if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3180            con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3181                queue_con(con);
3182}
3183EXPORT_SYMBOL(ceph_con_keepalive);
3184
3185bool ceph_con_keepalive_expired(struct ceph_connection *con,
3186                               unsigned long interval)
3187{
3188        if (interval > 0 &&
3189            (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3190                struct timespec now;
3191                struct timespec ts;
3192                ktime_get_real_ts(&now);
3193                jiffies_to_timespec(interval, &ts);
3194                ts = timespec_add(con->last_keepalive_ack, ts);
3195                return timespec_compare(&now, &ts) >= 0;
3196        }
3197        return false;
3198}
3199
3200static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3201{
3202        struct ceph_msg_data *data;
3203
3204        if (WARN_ON(!ceph_msg_data_type_valid(type)))
3205                return NULL;
3206
3207        data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3208        if (!data)
3209                return NULL;
3210
3211        data->type = type;
3212        INIT_LIST_HEAD(&data->links);
3213
3214        return data;
3215}
3216
3217static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3218{
3219        if (!data)
3220                return;
3221
3222        WARN_ON(!list_empty(&data->links));
3223        if (data->type == CEPH_MSG_DATA_PAGELIST)
3224                ceph_pagelist_release(data->pagelist);
3225        kmem_cache_free(ceph_msg_data_cache, data);
3226}
3227
3228void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3229                size_t length, size_t alignment)
3230{
3231        struct ceph_msg_data *data;
3232
3233        BUG_ON(!pages);
3234        BUG_ON(!length);
3235
3236        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3237        BUG_ON(!data);
3238        data->pages = pages;
3239        data->length = length;
3240        data->alignment = alignment & ~PAGE_MASK;
3241
3242        list_add_tail(&data->links, &msg->data);
3243        msg->data_length += length;
3244}
3245EXPORT_SYMBOL(ceph_msg_data_add_pages);
3246
3247void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3248                                struct ceph_pagelist *pagelist)
3249{
3250        struct ceph_msg_data *data;
3251
3252        BUG_ON(!pagelist);
3253        BUG_ON(!pagelist->length);
3254
3255        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3256        BUG_ON(!data);
3257        data->pagelist = pagelist;
3258
3259        list_add_tail(&data->links, &msg->data);
3260        msg->data_length += pagelist->length;
3261}
3262EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3263
3264#ifdef  CONFIG_BLOCK
3265void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3266                size_t length)
3267{
3268        struct ceph_msg_data *data;
3269
3270        BUG_ON(!bio);
3271
3272        data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3273        BUG_ON(!data);
3274        data->bio = bio;
3275        data->bio_length = length;
3276
3277        list_add_tail(&data->links, &msg->data);
3278        msg->data_length += length;
3279}
3280EXPORT_SYMBOL(ceph_msg_data_add_bio);
3281#endif  /* CONFIG_BLOCK */
3282
3283/*
3284 * construct a new message with given type, size
3285 * the new msg has a ref count of 1.
3286 */
3287struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3288                              bool can_fail)
3289{
3290        struct ceph_msg *m;
3291
3292        m = kmem_cache_zalloc(ceph_msg_cache, flags);
3293        if (m == NULL)
3294                goto out;
3295
3296        m->hdr.type = cpu_to_le16(type);
3297        m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3298        m->hdr.front_len = cpu_to_le32(front_len);
3299
3300        INIT_LIST_HEAD(&m->list_head);
3301        kref_init(&m->kref);
3302        INIT_LIST_HEAD(&m->data);
3303
3304        /* front */
3305        if (front_len) {
3306                m->front.iov_base = ceph_kvmalloc(front_len, flags);
3307                if (m->front.iov_base == NULL) {
3308                        dout("ceph_msg_new can't allocate %d bytes\n",
3309                             front_len);
3310                        goto out2;
3311                }
3312        } else {
3313                m->front.iov_base = NULL;
3314        }
3315        m->front_alloc_len = m->front.iov_len = front_len;
3316
3317        dout("ceph_msg_new %p front %d\n", m, front_len);
3318        return m;
3319
3320out2:
3321        ceph_msg_put(m);
3322out:
3323        if (!can_fail) {
3324                pr_err("msg_new can't create type %d front %d\n", type,
3325                       front_len);
3326                WARN_ON(1);
3327        } else {
3328                dout("msg_new can't create type %d front %d\n", type,
3329                     front_len);
3330        }
3331        return NULL;
3332}
3333EXPORT_SYMBOL(ceph_msg_new);
3334
3335/*
3336 * Allocate "middle" portion of a message, if it is needed and wasn't
3337 * allocated by alloc_msg.  This allows us to read a small fixed-size
3338 * per-type header in the front and then gracefully fail (i.e.,
3339 * propagate the error to the caller based on info in the front) when
3340 * the middle is too large.
3341 */
3342static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3343{
3344        int type = le16_to_cpu(msg->hdr.type);
3345        int middle_len = le32_to_cpu(msg->hdr.middle_len);
3346
3347        dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3348             ceph_msg_type_name(type), middle_len);
3349        BUG_ON(!middle_len);
3350        BUG_ON(msg->middle);
3351
3352        msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3353        if (!msg->middle)
3354                return -ENOMEM;
3355        return 0;
3356}
3357
3358/*
3359 * Allocate a message for receiving an incoming message on a
3360 * connection, and save the result in con->in_msg.  Uses the
3361 * connection's private alloc_msg op if available.
3362 *
3363 * Returns 0 on success, or a negative error code.
3364 *
3365 * On success, if we set *skip = 1:
3366 *  - the next message should be skipped and ignored.
3367 *  - con->in_msg == NULL
3368 * or if we set *skip = 0:
3369 *  - con->in_msg is non-null.
3370 * On error (ENOMEM, EAGAIN, ...),
3371 *  - con->in_msg == NULL
3372 */
3373static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3374{
3375        struct ceph_msg_header *hdr = &con->in_hdr;
3376        int middle_len = le32_to_cpu(hdr->middle_len);
3377        struct ceph_msg *msg;
3378        int ret = 0;
3379
3380        BUG_ON(con->in_msg != NULL);
3381        BUG_ON(!con->ops->alloc_msg);
3382
3383        mutex_unlock(&con->mutex);
3384        msg = con->ops->alloc_msg(con, hdr, skip);
3385        mutex_lock(&con->mutex);
3386        if (con->state != CON_STATE_OPEN) {
3387                if (msg)
3388                        ceph_msg_put(msg);
3389                return -EAGAIN;
3390        }
3391        if (msg) {
3392                BUG_ON(*skip);
3393                msg_con_set(msg, con);
3394                con->in_msg = msg;
3395        } else {
3396                /*
3397                 * Null message pointer means either we should skip
3398                 * this message or we couldn't allocate memory.  The
3399                 * former is not an error.
3400                 */
3401                if (*skip)
3402                        return 0;
3403
3404                con->error_msg = "error allocating memory for incoming message";
3405                return -ENOMEM;
3406        }
3407        memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3408
3409        if (middle_len && !con->in_msg->middle) {
3410                ret = ceph_alloc_middle(con, con->in_msg);
3411                if (ret < 0) {
3412                        ceph_msg_put(con->in_msg);
3413                        con->in_msg = NULL;
3414                }
3415        }
3416
3417        return ret;
3418}
3419
3420
3421/*
3422 * Free a generically kmalloc'd message.
3423 */
3424static void ceph_msg_free(struct ceph_msg *m)
3425{
3426        dout("%s %p\n", __func__, m);
3427        kvfree(m->front.iov_base);
3428        kmem_cache_free(ceph_msg_cache, m);
3429}
3430
3431static void ceph_msg_release(struct kref *kref)
3432{
3433        struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3434        struct ceph_msg_data *data, *next;
3435
3436        dout("%s %p\n", __func__, m);
3437        WARN_ON(!list_empty(&m->list_head));
3438
3439        msg_con_set(m, NULL);
3440
3441        /* drop middle, data, if any */
3442        if (m->middle) {
3443                ceph_buffer_put(m->middle);
3444                m->middle = NULL;
3445        }
3446
3447        list_for_each_entry_safe(data, next, &m->data, links) {
3448                list_del_init(&data->links);
3449                ceph_msg_data_destroy(data);
3450        }
3451        m->data_length = 0;
3452
3453        if (m->pool)
3454                ceph_msgpool_put(m->pool, m);
3455        else
3456                ceph_msg_free(m);
3457}
3458
3459struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3460{
3461        dout("%s %p (was %d)\n", __func__, msg,
3462             kref_read(&msg->kref));
3463        kref_get(&msg->kref);
3464        return msg;
3465}
3466EXPORT_SYMBOL(ceph_msg_get);
3467
3468void ceph_msg_put(struct ceph_msg *msg)
3469{
3470        dout("%s %p (was %d)\n", __func__, msg,
3471             kref_read(&msg->kref));
3472        kref_put(&msg->kref, ceph_msg_release);
3473}
3474EXPORT_SYMBOL(ceph_msg_put);
3475
3476void ceph_msg_dump(struct ceph_msg *msg)
3477{
3478        pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3479                 msg->front_alloc_len, msg->data_length);
3480        print_hex_dump(KERN_DEBUG, "header: ",
3481                       DUMP_PREFIX_OFFSET, 16, 1,
3482                       &msg->hdr, sizeof(msg->hdr), true);
3483        print_hex_dump(KERN_DEBUG, " front: ",
3484                       DUMP_PREFIX_OFFSET, 16, 1,
3485                       msg->front.iov_base, msg->front.iov_len, true);
3486        if (msg->middle)
3487                print_hex_dump(KERN_DEBUG, "middle: ",
3488                               DUMP_PREFIX_OFFSET, 16, 1,
3489                               msg->middle->vec.iov_base,
3490                               msg->middle->vec.iov_len, true);
3491        print_hex_dump(KERN_DEBUG, "footer: ",
3492                       DUMP_PREFIX_OFFSET, 16, 1,
3493                       &msg->footer, sizeof(msg->footer), true);
3494}
3495EXPORT_SYMBOL(ceph_msg_dump);
3496