linux/net/ipv4/tcp_output.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *              Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:     Pedro Roque     :       Retransmit queue handled by TCP.
  23 *                              :       Fragmentation on mtu decrease
  24 *                              :       Segment collapse on retransmit
  25 *                              :       AF independence
  26 *
  27 *              Linus Torvalds  :       send_delayed_ack
  28 *              David S. Miller :       Charge memory using the right skb
  29 *                                      during syn/ack processing.
  30 *              David S. Miller :       Output engine completely rewritten.
  31 *              Andrea Arcangeli:       SYNACK carry ts_recent in tsecr.
  32 *              Cacophonix Gaul :       draft-minshall-nagle-01
  33 *              J Hadi Salim    :       ECN support
  34 *
  35 */
  36
  37#define pr_fmt(fmt) "TCP: " fmt
  38
  39#include <net/tcp.h>
  40
  41#include <linux/compiler.h>
  42#include <linux/gfp.h>
  43#include <linux/module.h>
  44#include <linux/static_key.h>
  45
  46#include <trace/events/tcp.h>
  47
  48static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  49                           int push_one, gfp_t gfp);
  50
  51/* Account for new data that has been sent to the network. */
  52static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  53{
  54        struct inet_connection_sock *icsk = inet_csk(sk);
  55        struct tcp_sock *tp = tcp_sk(sk);
  56        unsigned int prior_packets = tp->packets_out;
  57
  58        tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  59
  60        __skb_unlink(skb, &sk->sk_write_queue);
  61        tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  62
  63        tp->packets_out += tcp_skb_pcount(skb);
  64        if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  65                tcp_rearm_rto(sk);
  66
  67        NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  68                      tcp_skb_pcount(skb));
  69}
  70
  71/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  72 * window scaling factor due to loss of precision.
  73 * If window has been shrunk, what should we make? It is not clear at all.
  74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  76 * invalid. OK, let's make this for now:
  77 */
  78static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  79{
  80        const struct tcp_sock *tp = tcp_sk(sk);
  81
  82        if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  83            (tp->rx_opt.wscale_ok &&
  84             ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  85                return tp->snd_nxt;
  86        else
  87                return tcp_wnd_end(tp);
  88}
  89
  90/* Calculate mss to advertise in SYN segment.
  91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  92 *
  93 * 1. It is independent of path mtu.
  94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  96 *    attached devices, because some buggy hosts are confused by
  97 *    large MSS.
  98 * 4. We do not make 3, we advertise MSS, calculated from first
  99 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 100 *    This may be overridden via information stored in routing table.
 101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 102 *    probably even Jumbo".
 103 */
 104static __u16 tcp_advertise_mss(struct sock *sk)
 105{
 106        struct tcp_sock *tp = tcp_sk(sk);
 107        const struct dst_entry *dst = __sk_dst_get(sk);
 108        int mss = tp->advmss;
 109
 110        if (dst) {
 111                unsigned int metric = dst_metric_advmss(dst);
 112
 113                if (metric < mss) {
 114                        mss = metric;
 115                        tp->advmss = mss;
 116                }
 117        }
 118
 119        return (__u16)mss;
 120}
 121
 122/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 123 * This is the first part of cwnd validation mechanism.
 124 */
 125void tcp_cwnd_restart(struct sock *sk, s32 delta)
 126{
 127        struct tcp_sock *tp = tcp_sk(sk);
 128        u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 129        u32 cwnd = tp->snd_cwnd;
 130
 131        tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 132
 133        tp->snd_ssthresh = tcp_current_ssthresh(sk);
 134        restart_cwnd = min(restart_cwnd, cwnd);
 135
 136        while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 137                cwnd >>= 1;
 138        tp->snd_cwnd = max(cwnd, restart_cwnd);
 139        tp->snd_cwnd_stamp = tcp_jiffies32;
 140        tp->snd_cwnd_used = 0;
 141}
 142
 143/* Congestion state accounting after a packet has been sent. */
 144static void tcp_event_data_sent(struct tcp_sock *tp,
 145                                struct sock *sk)
 146{
 147        struct inet_connection_sock *icsk = inet_csk(sk);
 148        const u32 now = tcp_jiffies32;
 149
 150        if (tcp_packets_in_flight(tp) == 0)
 151                tcp_ca_event(sk, CA_EVENT_TX_START);
 152
 153        tp->lsndtime = now;
 154
 155        /* If it is a reply for ato after last received
 156         * packet, enter pingpong mode.
 157         */
 158        if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 159                icsk->icsk_ack.pingpong = 1;
 160}
 161
 162/* Account for an ACK we sent. */
 163static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
 164{
 165        tcp_dec_quickack_mode(sk, pkts);
 166        inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 167}
 168
 169
 170u32 tcp_default_init_rwnd(u32 mss)
 171{
 172        /* Initial receive window should be twice of TCP_INIT_CWND to
 173         * enable proper sending of new unsent data during fast recovery
 174         * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
 175         * limit when mss is larger than 1460.
 176         */
 177        u32 init_rwnd = TCP_INIT_CWND * 2;
 178
 179        if (mss > 1460)
 180                init_rwnd = max((1460 * init_rwnd) / mss, 2U);
 181        return init_rwnd;
 182}
 183
 184/* Determine a window scaling and initial window to offer.
 185 * Based on the assumption that the given amount of space
 186 * will be offered. Store the results in the tp structure.
 187 * NOTE: for smooth operation initial space offering should
 188 * be a multiple of mss if possible. We assume here that mss >= 1.
 189 * This MUST be enforced by all callers.
 190 */
 191void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
 192                               __u32 *rcv_wnd, __u32 *window_clamp,
 193                               int wscale_ok, __u8 *rcv_wscale,
 194                               __u32 init_rcv_wnd)
 195{
 196        unsigned int space = (__space < 0 ? 0 : __space);
 197
 198        /* If no clamp set the clamp to the max possible scaled window */
 199        if (*window_clamp == 0)
 200                (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
 201        space = min(*window_clamp, space);
 202
 203        /* Quantize space offering to a multiple of mss if possible. */
 204        if (space > mss)
 205                space = rounddown(space, mss);
 206
 207        /* NOTE: offering an initial window larger than 32767
 208         * will break some buggy TCP stacks. If the admin tells us
 209         * it is likely we could be speaking with such a buggy stack
 210         * we will truncate our initial window offering to 32K-1
 211         * unless the remote has sent us a window scaling option,
 212         * which we interpret as a sign the remote TCP is not
 213         * misinterpreting the window field as a signed quantity.
 214         */
 215        if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 216                (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 217        else
 218                (*rcv_wnd) = space;
 219
 220        (*rcv_wscale) = 0;
 221        if (wscale_ok) {
 222                /* Set window scaling on max possible window */
 223                space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 224                space = max_t(u32, space, sysctl_rmem_max);
 225                space = min_t(u32, space, *window_clamp);
 226                while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
 227                        space >>= 1;
 228                        (*rcv_wscale)++;
 229                }
 230        }
 231
 232        if (mss > (1 << *rcv_wscale)) {
 233                if (!init_rcv_wnd) /* Use default unless specified otherwise */
 234                        init_rcv_wnd = tcp_default_init_rwnd(mss);
 235                *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 236        }
 237
 238        /* Set the clamp no higher than max representable value */
 239        (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
 240}
 241EXPORT_SYMBOL(tcp_select_initial_window);
 242
 243/* Chose a new window to advertise, update state in tcp_sock for the
 244 * socket, and return result with RFC1323 scaling applied.  The return
 245 * value can be stuffed directly into th->window for an outgoing
 246 * frame.
 247 */
 248static u16 tcp_select_window(struct sock *sk)
 249{
 250        struct tcp_sock *tp = tcp_sk(sk);
 251        u32 old_win = tp->rcv_wnd;
 252        u32 cur_win = tcp_receive_window(tp);
 253        u32 new_win = __tcp_select_window(sk);
 254
 255        /* Never shrink the offered window */
 256        if (new_win < cur_win) {
 257                /* Danger Will Robinson!
 258                 * Don't update rcv_wup/rcv_wnd here or else
 259                 * we will not be able to advertise a zero
 260                 * window in time.  --DaveM
 261                 *
 262                 * Relax Will Robinson.
 263                 */
 264                if (new_win == 0)
 265                        NET_INC_STATS(sock_net(sk),
 266                                      LINUX_MIB_TCPWANTZEROWINDOWADV);
 267                new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 268        }
 269        tp->rcv_wnd = new_win;
 270        tp->rcv_wup = tp->rcv_nxt;
 271
 272        /* Make sure we do not exceed the maximum possible
 273         * scaled window.
 274         */
 275        if (!tp->rx_opt.rcv_wscale &&
 276            sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 277                new_win = min(new_win, MAX_TCP_WINDOW);
 278        else
 279                new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 280
 281        /* RFC1323 scaling applied */
 282        new_win >>= tp->rx_opt.rcv_wscale;
 283
 284        /* If we advertise zero window, disable fast path. */
 285        if (new_win == 0) {
 286                tp->pred_flags = 0;
 287                if (old_win)
 288                        NET_INC_STATS(sock_net(sk),
 289                                      LINUX_MIB_TCPTOZEROWINDOWADV);
 290        } else if (old_win == 0) {
 291                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 292        }
 293
 294        return new_win;
 295}
 296
 297/* Packet ECN state for a SYN-ACK */
 298static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 299{
 300        const struct tcp_sock *tp = tcp_sk(sk);
 301
 302        TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 303        if (!(tp->ecn_flags & TCP_ECN_OK))
 304                TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 305        else if (tcp_ca_needs_ecn(sk) ||
 306                 tcp_bpf_ca_needs_ecn(sk))
 307                INET_ECN_xmit(sk);
 308}
 309
 310/* Packet ECN state for a SYN.  */
 311static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 312{
 313        struct tcp_sock *tp = tcp_sk(sk);
 314        bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
 315        bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
 316                tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
 317
 318        if (!use_ecn) {
 319                const struct dst_entry *dst = __sk_dst_get(sk);
 320
 321                if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 322                        use_ecn = true;
 323        }
 324
 325        tp->ecn_flags = 0;
 326
 327        if (use_ecn) {
 328                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 329                tp->ecn_flags = TCP_ECN_OK;
 330                if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
 331                        INET_ECN_xmit(sk);
 332        }
 333}
 334
 335static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 336{
 337        if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
 338                /* tp->ecn_flags are cleared at a later point in time when
 339                 * SYN ACK is ultimatively being received.
 340                 */
 341                TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 342}
 343
 344static void
 345tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 346{
 347        if (inet_rsk(req)->ecn_ok)
 348                th->ece = 1;
 349}
 350
 351/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 352 * be sent.
 353 */
 354static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 355                         struct tcphdr *th, int tcp_header_len)
 356{
 357        struct tcp_sock *tp = tcp_sk(sk);
 358
 359        if (tp->ecn_flags & TCP_ECN_OK) {
 360                /* Not-retransmitted data segment: set ECT and inject CWR. */
 361                if (skb->len != tcp_header_len &&
 362                    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 363                        INET_ECN_xmit(sk);
 364                        if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 365                                tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 366                                th->cwr = 1;
 367                                skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 368                        }
 369                } else if (!tcp_ca_needs_ecn(sk)) {
 370                        /* ACK or retransmitted segment: clear ECT|CE */
 371                        INET_ECN_dontxmit(sk);
 372                }
 373                if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 374                        th->ece = 1;
 375        }
 376}
 377
 378/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 379 * auto increment end seqno.
 380 */
 381static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 382{
 383        skb->ip_summed = CHECKSUM_PARTIAL;
 384
 385        TCP_SKB_CB(skb)->tcp_flags = flags;
 386        TCP_SKB_CB(skb)->sacked = 0;
 387
 388        tcp_skb_pcount_set(skb, 1);
 389
 390        TCP_SKB_CB(skb)->seq = seq;
 391        if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 392                seq++;
 393        TCP_SKB_CB(skb)->end_seq = seq;
 394}
 395
 396static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 397{
 398        return tp->snd_una != tp->snd_up;
 399}
 400
 401#define OPTION_SACK_ADVERTISE   (1 << 0)
 402#define OPTION_TS               (1 << 1)
 403#define OPTION_MD5              (1 << 2)
 404#define OPTION_WSCALE           (1 << 3)
 405#define OPTION_FAST_OPEN_COOKIE (1 << 8)
 406#define OPTION_SMC              (1 << 9)
 407
 408static void smc_options_write(__be32 *ptr, u16 *options)
 409{
 410#if IS_ENABLED(CONFIG_SMC)
 411        if (static_branch_unlikely(&tcp_have_smc)) {
 412                if (unlikely(OPTION_SMC & *options)) {
 413                        *ptr++ = htonl((TCPOPT_NOP  << 24) |
 414                                       (TCPOPT_NOP  << 16) |
 415                                       (TCPOPT_EXP <<  8) |
 416                                       (TCPOLEN_EXP_SMC_BASE));
 417                        *ptr++ = htonl(TCPOPT_SMC_MAGIC);
 418                }
 419        }
 420#endif
 421}
 422
 423struct tcp_out_options {
 424        u16 options;            /* bit field of OPTION_* */
 425        u16 mss;                /* 0 to disable */
 426        u8 ws;                  /* window scale, 0 to disable */
 427        u8 num_sack_blocks;     /* number of SACK blocks to include */
 428        u8 hash_size;           /* bytes in hash_location */
 429        __u8 *hash_location;    /* temporary pointer, overloaded */
 430        __u32 tsval, tsecr;     /* need to include OPTION_TS */
 431        struct tcp_fastopen_cookie *fastopen_cookie;    /* Fast open cookie */
 432};
 433
 434/* Write previously computed TCP options to the packet.
 435 *
 436 * Beware: Something in the Internet is very sensitive to the ordering of
 437 * TCP options, we learned this through the hard way, so be careful here.
 438 * Luckily we can at least blame others for their non-compliance but from
 439 * inter-operability perspective it seems that we're somewhat stuck with
 440 * the ordering which we have been using if we want to keep working with
 441 * those broken things (not that it currently hurts anybody as there isn't
 442 * particular reason why the ordering would need to be changed).
 443 *
 444 * At least SACK_PERM as the first option is known to lead to a disaster
 445 * (but it may well be that other scenarios fail similarly).
 446 */
 447static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 448                              struct tcp_out_options *opts)
 449{
 450        u16 options = opts->options;    /* mungable copy */
 451
 452        if (unlikely(OPTION_MD5 & options)) {
 453                *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 454                               (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 455                /* overload cookie hash location */
 456                opts->hash_location = (__u8 *)ptr;
 457                ptr += 4;
 458        }
 459
 460        if (unlikely(opts->mss)) {
 461                *ptr++ = htonl((TCPOPT_MSS << 24) |
 462                               (TCPOLEN_MSS << 16) |
 463                               opts->mss);
 464        }
 465
 466        if (likely(OPTION_TS & options)) {
 467                if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 468                        *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 469                                       (TCPOLEN_SACK_PERM << 16) |
 470                                       (TCPOPT_TIMESTAMP << 8) |
 471                                       TCPOLEN_TIMESTAMP);
 472                        options &= ~OPTION_SACK_ADVERTISE;
 473                } else {
 474                        *ptr++ = htonl((TCPOPT_NOP << 24) |
 475                                       (TCPOPT_NOP << 16) |
 476                                       (TCPOPT_TIMESTAMP << 8) |
 477                                       TCPOLEN_TIMESTAMP);
 478                }
 479                *ptr++ = htonl(opts->tsval);
 480                *ptr++ = htonl(opts->tsecr);
 481        }
 482
 483        if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 484                *ptr++ = htonl((TCPOPT_NOP << 24) |
 485                               (TCPOPT_NOP << 16) |
 486                               (TCPOPT_SACK_PERM << 8) |
 487                               TCPOLEN_SACK_PERM);
 488        }
 489
 490        if (unlikely(OPTION_WSCALE & options)) {
 491                *ptr++ = htonl((TCPOPT_NOP << 24) |
 492                               (TCPOPT_WINDOW << 16) |
 493                               (TCPOLEN_WINDOW << 8) |
 494                               opts->ws);
 495        }
 496
 497        if (unlikely(opts->num_sack_blocks)) {
 498                struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 499                        tp->duplicate_sack : tp->selective_acks;
 500                int this_sack;
 501
 502                *ptr++ = htonl((TCPOPT_NOP  << 24) |
 503                               (TCPOPT_NOP  << 16) |
 504                               (TCPOPT_SACK <<  8) |
 505                               (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 506                                                     TCPOLEN_SACK_PERBLOCK)));
 507
 508                for (this_sack = 0; this_sack < opts->num_sack_blocks;
 509                     ++this_sack) {
 510                        *ptr++ = htonl(sp[this_sack].start_seq);
 511                        *ptr++ = htonl(sp[this_sack].end_seq);
 512                }
 513
 514                tp->rx_opt.dsack = 0;
 515        }
 516
 517        if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 518                struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 519                u8 *p = (u8 *)ptr;
 520                u32 len; /* Fast Open option length */
 521
 522                if (foc->exp) {
 523                        len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 524                        *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 525                                     TCPOPT_FASTOPEN_MAGIC);
 526                        p += TCPOLEN_EXP_FASTOPEN_BASE;
 527                } else {
 528                        len = TCPOLEN_FASTOPEN_BASE + foc->len;
 529                        *p++ = TCPOPT_FASTOPEN;
 530                        *p++ = len;
 531                }
 532
 533                memcpy(p, foc->val, foc->len);
 534                if ((len & 3) == 2) {
 535                        p[foc->len] = TCPOPT_NOP;
 536                        p[foc->len + 1] = TCPOPT_NOP;
 537                }
 538                ptr += (len + 3) >> 2;
 539        }
 540
 541        smc_options_write(ptr, &options);
 542}
 543
 544static void smc_set_option(const struct tcp_sock *tp,
 545                           struct tcp_out_options *opts,
 546                           unsigned int *remaining)
 547{
 548#if IS_ENABLED(CONFIG_SMC)
 549        if (static_branch_unlikely(&tcp_have_smc)) {
 550                if (tp->syn_smc) {
 551                        if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 552                                opts->options |= OPTION_SMC;
 553                                *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 554                        }
 555                }
 556        }
 557#endif
 558}
 559
 560static void smc_set_option_cond(const struct tcp_sock *tp,
 561                                const struct inet_request_sock *ireq,
 562                                struct tcp_out_options *opts,
 563                                unsigned int *remaining)
 564{
 565#if IS_ENABLED(CONFIG_SMC)
 566        if (static_branch_unlikely(&tcp_have_smc)) {
 567                if (tp->syn_smc && ireq->smc_ok) {
 568                        if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 569                                opts->options |= OPTION_SMC;
 570                                *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 571                        }
 572                }
 573        }
 574#endif
 575}
 576
 577/* Compute TCP options for SYN packets. This is not the final
 578 * network wire format yet.
 579 */
 580static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 581                                struct tcp_out_options *opts,
 582                                struct tcp_md5sig_key **md5)
 583{
 584        struct tcp_sock *tp = tcp_sk(sk);
 585        unsigned int remaining = MAX_TCP_OPTION_SPACE;
 586        struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 587
 588#ifdef CONFIG_TCP_MD5SIG
 589        *md5 = tp->af_specific->md5_lookup(sk, sk);
 590        if (*md5) {
 591                opts->options |= OPTION_MD5;
 592                remaining -= TCPOLEN_MD5SIG_ALIGNED;
 593        }
 594#else
 595        *md5 = NULL;
 596#endif
 597
 598        /* We always get an MSS option.  The option bytes which will be seen in
 599         * normal data packets should timestamps be used, must be in the MSS
 600         * advertised.  But we subtract them from tp->mss_cache so that
 601         * calculations in tcp_sendmsg are simpler etc.  So account for this
 602         * fact here if necessary.  If we don't do this correctly, as a
 603         * receiver we won't recognize data packets as being full sized when we
 604         * should, and thus we won't abide by the delayed ACK rules correctly.
 605         * SACKs don't matter, we never delay an ACK when we have any of those
 606         * going out.  */
 607        opts->mss = tcp_advertise_mss(sk);
 608        remaining -= TCPOLEN_MSS_ALIGNED;
 609
 610        if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
 611                opts->options |= OPTION_TS;
 612                opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
 613                opts->tsecr = tp->rx_opt.ts_recent;
 614                remaining -= TCPOLEN_TSTAMP_ALIGNED;
 615        }
 616        if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
 617                opts->ws = tp->rx_opt.rcv_wscale;
 618                opts->options |= OPTION_WSCALE;
 619                remaining -= TCPOLEN_WSCALE_ALIGNED;
 620        }
 621        if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
 622                opts->options |= OPTION_SACK_ADVERTISE;
 623                if (unlikely(!(OPTION_TS & opts->options)))
 624                        remaining -= TCPOLEN_SACKPERM_ALIGNED;
 625        }
 626
 627        if (fastopen && fastopen->cookie.len >= 0) {
 628                u32 need = fastopen->cookie.len;
 629
 630                need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 631                                               TCPOLEN_FASTOPEN_BASE;
 632                need = (need + 3) & ~3U;  /* Align to 32 bits */
 633                if (remaining >= need) {
 634                        opts->options |= OPTION_FAST_OPEN_COOKIE;
 635                        opts->fastopen_cookie = &fastopen->cookie;
 636                        remaining -= need;
 637                        tp->syn_fastopen = 1;
 638                        tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 639                }
 640        }
 641
 642        smc_set_option(tp, opts, &remaining);
 643
 644        return MAX_TCP_OPTION_SPACE - remaining;
 645}
 646
 647/* Set up TCP options for SYN-ACKs. */
 648static unsigned int tcp_synack_options(const struct sock *sk,
 649                                       struct request_sock *req,
 650                                       unsigned int mss, struct sk_buff *skb,
 651                                       struct tcp_out_options *opts,
 652                                       const struct tcp_md5sig_key *md5,
 653                                       struct tcp_fastopen_cookie *foc)
 654{
 655        struct inet_request_sock *ireq = inet_rsk(req);
 656        unsigned int remaining = MAX_TCP_OPTION_SPACE;
 657
 658#ifdef CONFIG_TCP_MD5SIG
 659        if (md5) {
 660                opts->options |= OPTION_MD5;
 661                remaining -= TCPOLEN_MD5SIG_ALIGNED;
 662
 663                /* We can't fit any SACK blocks in a packet with MD5 + TS
 664                 * options. There was discussion about disabling SACK
 665                 * rather than TS in order to fit in better with old,
 666                 * buggy kernels, but that was deemed to be unnecessary.
 667                 */
 668                ireq->tstamp_ok &= !ireq->sack_ok;
 669        }
 670#endif
 671
 672        /* We always send an MSS option. */
 673        opts->mss = mss;
 674        remaining -= TCPOLEN_MSS_ALIGNED;
 675
 676        if (likely(ireq->wscale_ok)) {
 677                opts->ws = ireq->rcv_wscale;
 678                opts->options |= OPTION_WSCALE;
 679                remaining -= TCPOLEN_WSCALE_ALIGNED;
 680        }
 681        if (likely(ireq->tstamp_ok)) {
 682                opts->options |= OPTION_TS;
 683                opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
 684                opts->tsecr = req->ts_recent;
 685                remaining -= TCPOLEN_TSTAMP_ALIGNED;
 686        }
 687        if (likely(ireq->sack_ok)) {
 688                opts->options |= OPTION_SACK_ADVERTISE;
 689                if (unlikely(!ireq->tstamp_ok))
 690                        remaining -= TCPOLEN_SACKPERM_ALIGNED;
 691        }
 692        if (foc != NULL && foc->len >= 0) {
 693                u32 need = foc->len;
 694
 695                need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 696                                   TCPOLEN_FASTOPEN_BASE;
 697                need = (need + 3) & ~3U;  /* Align to 32 bits */
 698                if (remaining >= need) {
 699                        opts->options |= OPTION_FAST_OPEN_COOKIE;
 700                        opts->fastopen_cookie = foc;
 701                        remaining -= need;
 702                }
 703        }
 704
 705        smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
 706
 707        return MAX_TCP_OPTION_SPACE - remaining;
 708}
 709
 710/* Compute TCP options for ESTABLISHED sockets. This is not the
 711 * final wire format yet.
 712 */
 713static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 714                                        struct tcp_out_options *opts,
 715                                        struct tcp_md5sig_key **md5)
 716{
 717        struct tcp_sock *tp = tcp_sk(sk);
 718        unsigned int size = 0;
 719        unsigned int eff_sacks;
 720
 721        opts->options = 0;
 722
 723#ifdef CONFIG_TCP_MD5SIG
 724        *md5 = tp->af_specific->md5_lookup(sk, sk);
 725        if (unlikely(*md5)) {
 726                opts->options |= OPTION_MD5;
 727                size += TCPOLEN_MD5SIG_ALIGNED;
 728        }
 729#else
 730        *md5 = NULL;
 731#endif
 732
 733        if (likely(tp->rx_opt.tstamp_ok)) {
 734                opts->options |= OPTION_TS;
 735                opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
 736                opts->tsecr = tp->rx_opt.ts_recent;
 737                size += TCPOLEN_TSTAMP_ALIGNED;
 738        }
 739
 740        eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 741        if (unlikely(eff_sacks)) {
 742                const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 743                opts->num_sack_blocks =
 744                        min_t(unsigned int, eff_sacks,
 745                              (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 746                              TCPOLEN_SACK_PERBLOCK);
 747                size += TCPOLEN_SACK_BASE_ALIGNED +
 748                        opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 749        }
 750
 751        return size;
 752}
 753
 754
 755/* TCP SMALL QUEUES (TSQ)
 756 *
 757 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 758 * to reduce RTT and bufferbloat.
 759 * We do this using a special skb destructor (tcp_wfree).
 760 *
 761 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 762 * needs to be reallocated in a driver.
 763 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 764 *
 765 * Since transmit from skb destructor is forbidden, we use a tasklet
 766 * to process all sockets that eventually need to send more skbs.
 767 * We use one tasklet per cpu, with its own queue of sockets.
 768 */
 769struct tsq_tasklet {
 770        struct tasklet_struct   tasklet;
 771        struct list_head        head; /* queue of tcp sockets */
 772};
 773static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 774
 775static void tcp_tsq_handler(struct sock *sk)
 776{
 777        if ((1 << sk->sk_state) &
 778            (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 779             TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
 780                struct tcp_sock *tp = tcp_sk(sk);
 781
 782                if (tp->lost_out > tp->retrans_out &&
 783                    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
 784                        tcp_mstamp_refresh(tp);
 785                        tcp_xmit_retransmit_queue(sk);
 786                }
 787
 788                tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
 789                               0, GFP_ATOMIC);
 790        }
 791}
 792/*
 793 * One tasklet per cpu tries to send more skbs.
 794 * We run in tasklet context but need to disable irqs when
 795 * transferring tsq->head because tcp_wfree() might
 796 * interrupt us (non NAPI drivers)
 797 */
 798static void tcp_tasklet_func(unsigned long data)
 799{
 800        struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
 801        LIST_HEAD(list);
 802        unsigned long flags;
 803        struct list_head *q, *n;
 804        struct tcp_sock *tp;
 805        struct sock *sk;
 806
 807        local_irq_save(flags);
 808        list_splice_init(&tsq->head, &list);
 809        local_irq_restore(flags);
 810
 811        list_for_each_safe(q, n, &list) {
 812                tp = list_entry(q, struct tcp_sock, tsq_node);
 813                list_del(&tp->tsq_node);
 814
 815                sk = (struct sock *)tp;
 816                smp_mb__before_atomic();
 817                clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
 818
 819                if (!sk->sk_lock.owned &&
 820                    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
 821                        bh_lock_sock(sk);
 822                        if (!sock_owned_by_user(sk)) {
 823                                clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
 824                                tcp_tsq_handler(sk);
 825                        }
 826                        bh_unlock_sock(sk);
 827                }
 828
 829                sk_free(sk);
 830        }
 831}
 832
 833#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |           \
 834                          TCPF_WRITE_TIMER_DEFERRED |   \
 835                          TCPF_DELACK_TIMER_DEFERRED |  \
 836                          TCPF_MTU_REDUCED_DEFERRED)
 837/**
 838 * tcp_release_cb - tcp release_sock() callback
 839 * @sk: socket
 840 *
 841 * called from release_sock() to perform protocol dependent
 842 * actions before socket release.
 843 */
 844void tcp_release_cb(struct sock *sk)
 845{
 846        unsigned long flags, nflags;
 847
 848        /* perform an atomic operation only if at least one flag is set */
 849        do {
 850                flags = sk->sk_tsq_flags;
 851                if (!(flags & TCP_DEFERRED_ALL))
 852                        return;
 853                nflags = flags & ~TCP_DEFERRED_ALL;
 854        } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
 855
 856        if (flags & TCPF_TSQ_DEFERRED)
 857                tcp_tsq_handler(sk);
 858
 859        /* Here begins the tricky part :
 860         * We are called from release_sock() with :
 861         * 1) BH disabled
 862         * 2) sk_lock.slock spinlock held
 863         * 3) socket owned by us (sk->sk_lock.owned == 1)
 864         *
 865         * But following code is meant to be called from BH handlers,
 866         * so we should keep BH disabled, but early release socket ownership
 867         */
 868        sock_release_ownership(sk);
 869
 870        if (flags & TCPF_WRITE_TIMER_DEFERRED) {
 871                tcp_write_timer_handler(sk);
 872                __sock_put(sk);
 873        }
 874        if (flags & TCPF_DELACK_TIMER_DEFERRED) {
 875                tcp_delack_timer_handler(sk);
 876                __sock_put(sk);
 877        }
 878        if (flags & TCPF_MTU_REDUCED_DEFERRED) {
 879                inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
 880                __sock_put(sk);
 881        }
 882}
 883EXPORT_SYMBOL(tcp_release_cb);
 884
 885void __init tcp_tasklet_init(void)
 886{
 887        int i;
 888
 889        for_each_possible_cpu(i) {
 890                struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 891
 892                INIT_LIST_HEAD(&tsq->head);
 893                tasklet_init(&tsq->tasklet,
 894                             tcp_tasklet_func,
 895                             (unsigned long)tsq);
 896        }
 897}
 898
 899/*
 900 * Write buffer destructor automatically called from kfree_skb.
 901 * We can't xmit new skbs from this context, as we might already
 902 * hold qdisc lock.
 903 */
 904void tcp_wfree(struct sk_buff *skb)
 905{
 906        struct sock *sk = skb->sk;
 907        struct tcp_sock *tp = tcp_sk(sk);
 908        unsigned long flags, nval, oval;
 909
 910        /* Keep one reference on sk_wmem_alloc.
 911         * Will be released by sk_free() from here or tcp_tasklet_func()
 912         */
 913        WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
 914
 915        /* If this softirq is serviced by ksoftirqd, we are likely under stress.
 916         * Wait until our queues (qdisc + devices) are drained.
 917         * This gives :
 918         * - less callbacks to tcp_write_xmit(), reducing stress (batches)
 919         * - chance for incoming ACK (processed by another cpu maybe)
 920         *   to migrate this flow (skb->ooo_okay will be eventually set)
 921         */
 922        if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
 923                goto out;
 924
 925        for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
 926                struct tsq_tasklet *tsq;
 927                bool empty;
 928
 929                if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
 930                        goto out;
 931
 932                nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
 933                nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
 934                if (nval != oval)
 935                        continue;
 936
 937                /* queue this socket to tasklet queue */
 938                local_irq_save(flags);
 939                tsq = this_cpu_ptr(&tsq_tasklet);
 940                empty = list_empty(&tsq->head);
 941                list_add(&tp->tsq_node, &tsq->head);
 942                if (empty)
 943                        tasklet_schedule(&tsq->tasklet);
 944                local_irq_restore(flags);
 945                return;
 946        }
 947out:
 948        sk_free(sk);
 949}
 950
 951/* Note: Called under hard irq.
 952 * We can not call TCP stack right away.
 953 */
 954enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
 955{
 956        struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
 957        struct sock *sk = (struct sock *)tp;
 958        unsigned long nval, oval;
 959
 960        for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
 961                struct tsq_tasklet *tsq;
 962                bool empty;
 963
 964                if (oval & TSQF_QUEUED)
 965                        break;
 966
 967                nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
 968                nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
 969                if (nval != oval)
 970                        continue;
 971
 972                if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
 973                        break;
 974                /* queue this socket to tasklet queue */
 975                tsq = this_cpu_ptr(&tsq_tasklet);
 976                empty = list_empty(&tsq->head);
 977                list_add(&tp->tsq_node, &tsq->head);
 978                if (empty)
 979                        tasklet_schedule(&tsq->tasklet);
 980                break;
 981        }
 982        return HRTIMER_NORESTART;
 983}
 984
 985/* BBR congestion control needs pacing.
 986 * Same remark for SO_MAX_PACING_RATE.
 987 * sch_fq packet scheduler is efficiently handling pacing,
 988 * but is not always installed/used.
 989 * Return true if TCP stack should pace packets itself.
 990 */
 991static bool tcp_needs_internal_pacing(const struct sock *sk)
 992{
 993        return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
 994}
 995
 996static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
 997{
 998        u64 len_ns;
 999        u32 rate;
1000
1001        if (!tcp_needs_internal_pacing(sk))
1002                return;
1003        rate = sk->sk_pacing_rate;
1004        if (!rate || rate == ~0U)
1005                return;
1006
1007        /* Should account for header sizes as sch_fq does,
1008         * but lets make things simple.
1009         */
1010        len_ns = (u64)skb->len * NSEC_PER_SEC;
1011        do_div(len_ns, rate);
1012        hrtimer_start(&tcp_sk(sk)->pacing_timer,
1013                      ktime_add_ns(ktime_get(), len_ns),
1014                      HRTIMER_MODE_ABS_PINNED);
1015}
1016
1017static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1018{
1019        skb->skb_mstamp = tp->tcp_mstamp;
1020        list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1021}
1022
1023/* This routine actually transmits TCP packets queued in by
1024 * tcp_do_sendmsg().  This is used by both the initial
1025 * transmission and possible later retransmissions.
1026 * All SKB's seen here are completely headerless.  It is our
1027 * job to build the TCP header, and pass the packet down to
1028 * IP so it can do the same plus pass the packet off to the
1029 * device.
1030 *
1031 * We are working here with either a clone of the original
1032 * SKB, or a fresh unique copy made by the retransmit engine.
1033 */
1034static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1035                            gfp_t gfp_mask)
1036{
1037        const struct inet_connection_sock *icsk = inet_csk(sk);
1038        struct inet_sock *inet;
1039        struct tcp_sock *tp;
1040        struct tcp_skb_cb *tcb;
1041        struct tcp_out_options opts;
1042        unsigned int tcp_options_size, tcp_header_size;
1043        struct sk_buff *oskb = NULL;
1044        struct tcp_md5sig_key *md5;
1045        struct tcphdr *th;
1046        int err;
1047
1048        BUG_ON(!skb || !tcp_skb_pcount(skb));
1049        tp = tcp_sk(sk);
1050
1051        if (clone_it) {
1052                TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1053                        - tp->snd_una;
1054                oskb = skb;
1055
1056                tcp_skb_tsorted_save(oskb) {
1057                        if (unlikely(skb_cloned(oskb)))
1058                                skb = pskb_copy(oskb, gfp_mask);
1059                        else
1060                                skb = skb_clone(oskb, gfp_mask);
1061                } tcp_skb_tsorted_restore(oskb);
1062
1063                if (unlikely(!skb))
1064                        return -ENOBUFS;
1065        }
1066        skb->skb_mstamp = tp->tcp_mstamp;
1067
1068        inet = inet_sk(sk);
1069        tcb = TCP_SKB_CB(skb);
1070        memset(&opts, 0, sizeof(opts));
1071
1072        if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1073                tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1074        else
1075                tcp_options_size = tcp_established_options(sk, skb, &opts,
1076                                                           &md5);
1077        tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1078
1079        /* if no packet is in qdisc/device queue, then allow XPS to select
1080         * another queue. We can be called from tcp_tsq_handler()
1081         * which holds one reference to sk_wmem_alloc.
1082         *
1083         * TODO: Ideally, in-flight pure ACK packets should not matter here.
1084         * One way to get this would be to set skb->truesize = 2 on them.
1085         */
1086        skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1087
1088        /* If we had to use memory reserve to allocate this skb,
1089         * this might cause drops if packet is looped back :
1090         * Other socket might not have SOCK_MEMALLOC.
1091         * Packets not looped back do not care about pfmemalloc.
1092         */
1093        skb->pfmemalloc = 0;
1094
1095        skb_push(skb, tcp_header_size);
1096        skb_reset_transport_header(skb);
1097
1098        skb_orphan(skb);
1099        skb->sk = sk;
1100        skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1101        skb_set_hash_from_sk(skb, sk);
1102        refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1103
1104        skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1105
1106        /* Build TCP header and checksum it. */
1107        th = (struct tcphdr *)skb->data;
1108        th->source              = inet->inet_sport;
1109        th->dest                = inet->inet_dport;
1110        th->seq                 = htonl(tcb->seq);
1111        th->ack_seq             = htonl(tp->rcv_nxt);
1112        *(((__be16 *)th) + 6)   = htons(((tcp_header_size >> 2) << 12) |
1113                                        tcb->tcp_flags);
1114
1115        th->check               = 0;
1116        th->urg_ptr             = 0;
1117
1118        /* The urg_mode check is necessary during a below snd_una win probe */
1119        if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1120                if (before(tp->snd_up, tcb->seq + 0x10000)) {
1121                        th->urg_ptr = htons(tp->snd_up - tcb->seq);
1122                        th->urg = 1;
1123                } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1124                        th->urg_ptr = htons(0xFFFF);
1125                        th->urg = 1;
1126                }
1127        }
1128
1129        tcp_options_write((__be32 *)(th + 1), tp, &opts);
1130        skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1131        if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1132                th->window      = htons(tcp_select_window(sk));
1133                tcp_ecn_send(sk, skb, th, tcp_header_size);
1134        } else {
1135                /* RFC1323: The window in SYN & SYN/ACK segments
1136                 * is never scaled.
1137                 */
1138                th->window      = htons(min(tp->rcv_wnd, 65535U));
1139        }
1140#ifdef CONFIG_TCP_MD5SIG
1141        /* Calculate the MD5 hash, as we have all we need now */
1142        if (md5) {
1143                sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1144                tp->af_specific->calc_md5_hash(opts.hash_location,
1145                                               md5, sk, skb);
1146        }
1147#endif
1148
1149        icsk->icsk_af_ops->send_check(sk, skb);
1150
1151        if (likely(tcb->tcp_flags & TCPHDR_ACK))
1152                tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1153
1154        if (skb->len != tcp_header_size) {
1155                tcp_event_data_sent(tp, sk);
1156                tp->data_segs_out += tcp_skb_pcount(skb);
1157                tcp_internal_pacing(sk, skb);
1158        }
1159
1160        if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1161                TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1162                              tcp_skb_pcount(skb));
1163
1164        tp->segs_out += tcp_skb_pcount(skb);
1165        /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1166        skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1167        skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1168
1169        /* Our usage of tstamp should remain private */
1170        skb->tstamp = 0;
1171
1172        /* Cleanup our debris for IP stacks */
1173        memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1174                               sizeof(struct inet6_skb_parm)));
1175
1176        err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1177
1178        if (unlikely(err > 0)) {
1179                tcp_enter_cwr(sk);
1180                err = net_xmit_eval(err);
1181        }
1182        if (!err && oskb) {
1183                tcp_update_skb_after_send(tp, oskb);
1184                tcp_rate_skb_sent(sk, oskb);
1185        }
1186        return err;
1187}
1188
1189/* This routine just queues the buffer for sending.
1190 *
1191 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1192 * otherwise socket can stall.
1193 */
1194static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1195{
1196        struct tcp_sock *tp = tcp_sk(sk);
1197
1198        /* Advance write_seq and place onto the write_queue. */
1199        tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1200        __skb_header_release(skb);
1201        tcp_add_write_queue_tail(sk, skb);
1202        sk->sk_wmem_queued += skb->truesize;
1203        sk_mem_charge(sk, skb->truesize);
1204}
1205
1206/* Initialize TSO segments for a packet. */
1207static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1208{
1209        if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1210                /* Avoid the costly divide in the normal
1211                 * non-TSO case.
1212                 */
1213                tcp_skb_pcount_set(skb, 1);
1214                TCP_SKB_CB(skb)->tcp_gso_size = 0;
1215        } else {
1216                tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1217                TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1218        }
1219}
1220
1221/* Pcount in the middle of the write queue got changed, we need to do various
1222 * tweaks to fix counters
1223 */
1224static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1225{
1226        struct tcp_sock *tp = tcp_sk(sk);
1227
1228        tp->packets_out -= decr;
1229
1230        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1231                tp->sacked_out -= decr;
1232        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1233                tp->retrans_out -= decr;
1234        if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1235                tp->lost_out -= decr;
1236
1237        /* Reno case is special. Sigh... */
1238        if (tcp_is_reno(tp) && decr > 0)
1239                tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1240
1241        if (tp->lost_skb_hint &&
1242            before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1243            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1244                tp->lost_cnt_hint -= decr;
1245
1246        tcp_verify_left_out(tp);
1247}
1248
1249static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1250{
1251        return TCP_SKB_CB(skb)->txstamp_ack ||
1252                (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1253}
1254
1255static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1256{
1257        struct skb_shared_info *shinfo = skb_shinfo(skb);
1258
1259        if (unlikely(tcp_has_tx_tstamp(skb)) &&
1260            !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1261                struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1262                u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1263
1264                shinfo->tx_flags &= ~tsflags;
1265                shinfo2->tx_flags |= tsflags;
1266                swap(shinfo->tskey, shinfo2->tskey);
1267                TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1268                TCP_SKB_CB(skb)->txstamp_ack = 0;
1269        }
1270}
1271
1272static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1273{
1274        TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1275        TCP_SKB_CB(skb)->eor = 0;
1276}
1277
1278/* Insert buff after skb on the write or rtx queue of sk.  */
1279static void tcp_insert_write_queue_after(struct sk_buff *skb,
1280                                         struct sk_buff *buff,
1281                                         struct sock *sk,
1282                                         enum tcp_queue tcp_queue)
1283{
1284        if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1285                __skb_queue_after(&sk->sk_write_queue, skb, buff);
1286        else
1287                tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1288}
1289
1290/* Function to create two new TCP segments.  Shrinks the given segment
1291 * to the specified size and appends a new segment with the rest of the
1292 * packet to the list.  This won't be called frequently, I hope.
1293 * Remember, these are still headerless SKBs at this point.
1294 */
1295int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1296                 struct sk_buff *skb, u32 len,
1297                 unsigned int mss_now, gfp_t gfp)
1298{
1299        struct tcp_sock *tp = tcp_sk(sk);
1300        struct sk_buff *buff;
1301        int nsize, old_factor;
1302        int nlen;
1303        u8 flags;
1304
1305        if (WARN_ON(len > skb->len))
1306                return -EINVAL;
1307
1308        nsize = skb_headlen(skb) - len;
1309        if (nsize < 0)
1310                nsize = 0;
1311
1312        if (skb_unclone(skb, gfp))
1313                return -ENOMEM;
1314
1315        /* Get a new skb... force flag on. */
1316        buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1317        if (!buff)
1318                return -ENOMEM; /* We'll just try again later. */
1319
1320        sk->sk_wmem_queued += buff->truesize;
1321        sk_mem_charge(sk, buff->truesize);
1322        nlen = skb->len - len - nsize;
1323        buff->truesize += nlen;
1324        skb->truesize -= nlen;
1325
1326        /* Correct the sequence numbers. */
1327        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1328        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1329        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1330
1331        /* PSH and FIN should only be set in the second packet. */
1332        flags = TCP_SKB_CB(skb)->tcp_flags;
1333        TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1334        TCP_SKB_CB(buff)->tcp_flags = flags;
1335        TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1336        tcp_skb_fragment_eor(skb, buff);
1337
1338        if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1339                /* Copy and checksum data tail into the new buffer. */
1340                buff->csum = csum_partial_copy_nocheck(skb->data + len,
1341                                                       skb_put(buff, nsize),
1342                                                       nsize, 0);
1343
1344                skb_trim(skb, len);
1345
1346                skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1347        } else {
1348                skb->ip_summed = CHECKSUM_PARTIAL;
1349                skb_split(skb, buff, len);
1350        }
1351
1352        buff->ip_summed = skb->ip_summed;
1353
1354        buff->tstamp = skb->tstamp;
1355        tcp_fragment_tstamp(skb, buff);
1356
1357        old_factor = tcp_skb_pcount(skb);
1358
1359        /* Fix up tso_factor for both original and new SKB.  */
1360        tcp_set_skb_tso_segs(skb, mss_now);
1361        tcp_set_skb_tso_segs(buff, mss_now);
1362
1363        /* Update delivered info for the new segment */
1364        TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1365
1366        /* If this packet has been sent out already, we must
1367         * adjust the various packet counters.
1368         */
1369        if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1370                int diff = old_factor - tcp_skb_pcount(skb) -
1371                        tcp_skb_pcount(buff);
1372
1373                if (diff)
1374                        tcp_adjust_pcount(sk, skb, diff);
1375        }
1376
1377        /* Link BUFF into the send queue. */
1378        __skb_header_release(buff);
1379        tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1380        if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1381                list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1382
1383        return 0;
1384}
1385
1386/* This is similar to __pskb_pull_tail(). The difference is that pulled
1387 * data is not copied, but immediately discarded.
1388 */
1389static int __pskb_trim_head(struct sk_buff *skb, int len)
1390{
1391        struct skb_shared_info *shinfo;
1392        int i, k, eat;
1393
1394        eat = min_t(int, len, skb_headlen(skb));
1395        if (eat) {
1396                __skb_pull(skb, eat);
1397                len -= eat;
1398                if (!len)
1399                        return 0;
1400        }
1401        eat = len;
1402        k = 0;
1403        shinfo = skb_shinfo(skb);
1404        for (i = 0; i < shinfo->nr_frags; i++) {
1405                int size = skb_frag_size(&shinfo->frags[i]);
1406
1407                if (size <= eat) {
1408                        skb_frag_unref(skb, i);
1409                        eat -= size;
1410                } else {
1411                        shinfo->frags[k] = shinfo->frags[i];
1412                        if (eat) {
1413                                shinfo->frags[k].page_offset += eat;
1414                                skb_frag_size_sub(&shinfo->frags[k], eat);
1415                                eat = 0;
1416                        }
1417                        k++;
1418                }
1419        }
1420        shinfo->nr_frags = k;
1421
1422        skb->data_len -= len;
1423        skb->len = skb->data_len;
1424        return len;
1425}
1426
1427/* Remove acked data from a packet in the transmit queue. */
1428int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1429{
1430        u32 delta_truesize;
1431
1432        if (skb_unclone(skb, GFP_ATOMIC))
1433                return -ENOMEM;
1434
1435        delta_truesize = __pskb_trim_head(skb, len);
1436
1437        TCP_SKB_CB(skb)->seq += len;
1438        skb->ip_summed = CHECKSUM_PARTIAL;
1439
1440        if (delta_truesize) {
1441                skb->truesize      -= delta_truesize;
1442                sk->sk_wmem_queued -= delta_truesize;
1443                sk_mem_uncharge(sk, delta_truesize);
1444                sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1445        }
1446
1447        /* Any change of skb->len requires recalculation of tso factor. */
1448        if (tcp_skb_pcount(skb) > 1)
1449                tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1450
1451        return 0;
1452}
1453
1454/* Calculate MSS not accounting any TCP options.  */
1455static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1456{
1457        const struct tcp_sock *tp = tcp_sk(sk);
1458        const struct inet_connection_sock *icsk = inet_csk(sk);
1459        int mss_now;
1460
1461        /* Calculate base mss without TCP options:
1462           It is MMS_S - sizeof(tcphdr) of rfc1122
1463         */
1464        mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1465
1466        /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1467        if (icsk->icsk_af_ops->net_frag_header_len) {
1468                const struct dst_entry *dst = __sk_dst_get(sk);
1469
1470                if (dst && dst_allfrag(dst))
1471                        mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1472        }
1473
1474        /* Clamp it (mss_clamp does not include tcp options) */
1475        if (mss_now > tp->rx_opt.mss_clamp)
1476                mss_now = tp->rx_opt.mss_clamp;
1477
1478        /* Now subtract optional transport overhead */
1479        mss_now -= icsk->icsk_ext_hdr_len;
1480
1481        /* Then reserve room for full set of TCP options and 8 bytes of data */
1482        if (mss_now < 48)
1483                mss_now = 48;
1484        return mss_now;
1485}
1486
1487/* Calculate MSS. Not accounting for SACKs here.  */
1488int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1489{
1490        /* Subtract TCP options size, not including SACKs */
1491        return __tcp_mtu_to_mss(sk, pmtu) -
1492               (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1493}
1494
1495/* Inverse of above */
1496int tcp_mss_to_mtu(struct sock *sk, int mss)
1497{
1498        const struct tcp_sock *tp = tcp_sk(sk);
1499        const struct inet_connection_sock *icsk = inet_csk(sk);
1500        int mtu;
1501
1502        mtu = mss +
1503              tp->tcp_header_len +
1504              icsk->icsk_ext_hdr_len +
1505              icsk->icsk_af_ops->net_header_len;
1506
1507        /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1508        if (icsk->icsk_af_ops->net_frag_header_len) {
1509                const struct dst_entry *dst = __sk_dst_get(sk);
1510
1511                if (dst && dst_allfrag(dst))
1512                        mtu += icsk->icsk_af_ops->net_frag_header_len;
1513        }
1514        return mtu;
1515}
1516EXPORT_SYMBOL(tcp_mss_to_mtu);
1517
1518/* MTU probing init per socket */
1519void tcp_mtup_init(struct sock *sk)
1520{
1521        struct tcp_sock *tp = tcp_sk(sk);
1522        struct inet_connection_sock *icsk = inet_csk(sk);
1523        struct net *net = sock_net(sk);
1524
1525        icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1526        icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1527                               icsk->icsk_af_ops->net_header_len;
1528        icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1529        icsk->icsk_mtup.probe_size = 0;
1530        if (icsk->icsk_mtup.enabled)
1531                icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1532}
1533EXPORT_SYMBOL(tcp_mtup_init);
1534
1535/* This function synchronize snd mss to current pmtu/exthdr set.
1536
1537   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1538   for TCP options, but includes only bare TCP header.
1539
1540   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1541   It is minimum of user_mss and mss received with SYN.
1542   It also does not include TCP options.
1543
1544   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1545
1546   tp->mss_cache is current effective sending mss, including
1547   all tcp options except for SACKs. It is evaluated,
1548   taking into account current pmtu, but never exceeds
1549   tp->rx_opt.mss_clamp.
1550
1551   NOTE1. rfc1122 clearly states that advertised MSS
1552   DOES NOT include either tcp or ip options.
1553
1554   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1555   are READ ONLY outside this function.         --ANK (980731)
1556 */
1557unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1558{
1559        struct tcp_sock *tp = tcp_sk(sk);
1560        struct inet_connection_sock *icsk = inet_csk(sk);
1561        int mss_now;
1562
1563        if (icsk->icsk_mtup.search_high > pmtu)
1564                icsk->icsk_mtup.search_high = pmtu;
1565
1566        mss_now = tcp_mtu_to_mss(sk, pmtu);
1567        mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1568
1569        /* And store cached results */
1570        icsk->icsk_pmtu_cookie = pmtu;
1571        if (icsk->icsk_mtup.enabled)
1572                mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1573        tp->mss_cache = mss_now;
1574
1575        return mss_now;
1576}
1577EXPORT_SYMBOL(tcp_sync_mss);
1578
1579/* Compute the current effective MSS, taking SACKs and IP options,
1580 * and even PMTU discovery events into account.
1581 */
1582unsigned int tcp_current_mss(struct sock *sk)
1583{
1584        const struct tcp_sock *tp = tcp_sk(sk);
1585        const struct dst_entry *dst = __sk_dst_get(sk);
1586        u32 mss_now;
1587        unsigned int header_len;
1588        struct tcp_out_options opts;
1589        struct tcp_md5sig_key *md5;
1590
1591        mss_now = tp->mss_cache;
1592
1593        if (dst) {
1594                u32 mtu = dst_mtu(dst);
1595                if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1596                        mss_now = tcp_sync_mss(sk, mtu);
1597        }
1598
1599        header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1600                     sizeof(struct tcphdr);
1601        /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1602         * some common options. If this is an odd packet (because we have SACK
1603         * blocks etc) then our calculated header_len will be different, and
1604         * we have to adjust mss_now correspondingly */
1605        if (header_len != tp->tcp_header_len) {
1606                int delta = (int) header_len - tp->tcp_header_len;
1607                mss_now -= delta;
1608        }
1609
1610        return mss_now;
1611}
1612
1613/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1614 * As additional protections, we do not touch cwnd in retransmission phases,
1615 * and if application hit its sndbuf limit recently.
1616 */
1617static void tcp_cwnd_application_limited(struct sock *sk)
1618{
1619        struct tcp_sock *tp = tcp_sk(sk);
1620
1621        if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1622            sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1623                /* Limited by application or receiver window. */
1624                u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1625                u32 win_used = max(tp->snd_cwnd_used, init_win);
1626                if (win_used < tp->snd_cwnd) {
1627                        tp->snd_ssthresh = tcp_current_ssthresh(sk);
1628                        tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1629                }
1630                tp->snd_cwnd_used = 0;
1631        }
1632        tp->snd_cwnd_stamp = tcp_jiffies32;
1633}
1634
1635static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1636{
1637        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1638        struct tcp_sock *tp = tcp_sk(sk);
1639
1640        /* Track the maximum number of outstanding packets in each
1641         * window, and remember whether we were cwnd-limited then.
1642         */
1643        if (!before(tp->snd_una, tp->max_packets_seq) ||
1644            tp->packets_out > tp->max_packets_out) {
1645                tp->max_packets_out = tp->packets_out;
1646                tp->max_packets_seq = tp->snd_nxt;
1647                tp->is_cwnd_limited = is_cwnd_limited;
1648        }
1649
1650        if (tcp_is_cwnd_limited(sk)) {
1651                /* Network is feed fully. */
1652                tp->snd_cwnd_used = 0;
1653                tp->snd_cwnd_stamp = tcp_jiffies32;
1654        } else {
1655                /* Network starves. */
1656                if (tp->packets_out > tp->snd_cwnd_used)
1657                        tp->snd_cwnd_used = tp->packets_out;
1658
1659                if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1660                    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1661                    !ca_ops->cong_control)
1662                        tcp_cwnd_application_limited(sk);
1663
1664                /* The following conditions together indicate the starvation
1665                 * is caused by insufficient sender buffer:
1666                 * 1) just sent some data (see tcp_write_xmit)
1667                 * 2) not cwnd limited (this else condition)
1668                 * 3) no more data to send (tcp_write_queue_empty())
1669                 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1670                 */
1671                if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1672                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1673                    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1674                        tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1675        }
1676}
1677
1678/* Minshall's variant of the Nagle send check. */
1679static bool tcp_minshall_check(const struct tcp_sock *tp)
1680{
1681        return after(tp->snd_sml, tp->snd_una) &&
1682                !after(tp->snd_sml, tp->snd_nxt);
1683}
1684
1685/* Update snd_sml if this skb is under mss
1686 * Note that a TSO packet might end with a sub-mss segment
1687 * The test is really :
1688 * if ((skb->len % mss) != 0)
1689 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1690 * But we can avoid doing the divide again given we already have
1691 *  skb_pcount = skb->len / mss_now
1692 */
1693static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1694                                const struct sk_buff *skb)
1695{
1696        if (skb->len < tcp_skb_pcount(skb) * mss_now)
1697                tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1698}
1699
1700/* Return false, if packet can be sent now without violation Nagle's rules:
1701 * 1. It is full sized. (provided by caller in %partial bool)
1702 * 2. Or it contains FIN. (already checked by caller)
1703 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1704 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1705 *    With Minshall's modification: all sent small packets are ACKed.
1706 */
1707static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1708                            int nonagle)
1709{
1710        return partial &&
1711                ((nonagle & TCP_NAGLE_CORK) ||
1712                 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1713}
1714
1715/* Return how many segs we'd like on a TSO packet,
1716 * to send one TSO packet per ms
1717 */
1718u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1719                     int min_tso_segs)
1720{
1721        u32 bytes, segs;
1722
1723        bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1724                    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1725
1726        /* Goal is to send at least one packet per ms,
1727         * not one big TSO packet every 100 ms.
1728         * This preserves ACK clocking and is consistent
1729         * with tcp_tso_should_defer() heuristic.
1730         */
1731        segs = max_t(u32, bytes / mss_now, min_tso_segs);
1732
1733        return segs;
1734}
1735EXPORT_SYMBOL(tcp_tso_autosize);
1736
1737/* Return the number of segments we want in the skb we are transmitting.
1738 * See if congestion control module wants to decide; otherwise, autosize.
1739 */
1740static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1741{
1742        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1743        u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1744
1745        if (!tso_segs)
1746                tso_segs = tcp_tso_autosize(sk, mss_now,
1747                                sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1748        return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1749}
1750
1751/* Returns the portion of skb which can be sent right away */
1752static unsigned int tcp_mss_split_point(const struct sock *sk,
1753                                        const struct sk_buff *skb,
1754                                        unsigned int mss_now,
1755                                        unsigned int max_segs,
1756                                        int nonagle)
1757{
1758        const struct tcp_sock *tp = tcp_sk(sk);
1759        u32 partial, needed, window, max_len;
1760
1761        window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1762        max_len = mss_now * max_segs;
1763
1764        if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1765                return max_len;
1766
1767        needed = min(skb->len, window);
1768
1769        if (max_len <= needed)
1770                return max_len;
1771
1772        partial = needed % mss_now;
1773        /* If last segment is not a full MSS, check if Nagle rules allow us
1774         * to include this last segment in this skb.
1775         * Otherwise, we'll split the skb at last MSS boundary
1776         */
1777        if (tcp_nagle_check(partial != 0, tp, nonagle))
1778                return needed - partial;
1779
1780        return needed;
1781}
1782
1783/* Can at least one segment of SKB be sent right now, according to the
1784 * congestion window rules?  If so, return how many segments are allowed.
1785 */
1786static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1787                                         const struct sk_buff *skb)
1788{
1789        u32 in_flight, cwnd, halfcwnd;
1790
1791        /* Don't be strict about the congestion window for the final FIN.  */
1792        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1793            tcp_skb_pcount(skb) == 1)
1794                return 1;
1795
1796        in_flight = tcp_packets_in_flight(tp);
1797        cwnd = tp->snd_cwnd;
1798        if (in_flight >= cwnd)
1799                return 0;
1800
1801        /* For better scheduling, ensure we have at least
1802         * 2 GSO packets in flight.
1803         */
1804        halfcwnd = max(cwnd >> 1, 1U);
1805        return min(halfcwnd, cwnd - in_flight);
1806}
1807
1808/* Initialize TSO state of a skb.
1809 * This must be invoked the first time we consider transmitting
1810 * SKB onto the wire.
1811 */
1812static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1813{
1814        int tso_segs = tcp_skb_pcount(skb);
1815
1816        if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1817                tcp_set_skb_tso_segs(skb, mss_now);
1818                tso_segs = tcp_skb_pcount(skb);
1819        }
1820        return tso_segs;
1821}
1822
1823
1824/* Return true if the Nagle test allows this packet to be
1825 * sent now.
1826 */
1827static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1828                                  unsigned int cur_mss, int nonagle)
1829{
1830        /* Nagle rule does not apply to frames, which sit in the middle of the
1831         * write_queue (they have no chances to get new data).
1832         *
1833         * This is implemented in the callers, where they modify the 'nonagle'
1834         * argument based upon the location of SKB in the send queue.
1835         */
1836        if (nonagle & TCP_NAGLE_PUSH)
1837                return true;
1838
1839        /* Don't use the nagle rule for urgent data (or for the final FIN). */
1840        if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1841                return true;
1842
1843        if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1844                return true;
1845
1846        return false;
1847}
1848
1849/* Does at least the first segment of SKB fit into the send window? */
1850static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1851                             const struct sk_buff *skb,
1852                             unsigned int cur_mss)
1853{
1854        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1855
1856        if (skb->len > cur_mss)
1857                end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1858
1859        return !after(end_seq, tcp_wnd_end(tp));
1860}
1861
1862/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1863 * which is put after SKB on the list.  It is very much like
1864 * tcp_fragment() except that it may make several kinds of assumptions
1865 * in order to speed up the splitting operation.  In particular, we
1866 * know that all the data is in scatter-gather pages, and that the
1867 * packet has never been sent out before (and thus is not cloned).
1868 */
1869static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1870                        struct sk_buff *skb, unsigned int len,
1871                        unsigned int mss_now, gfp_t gfp)
1872{
1873        struct sk_buff *buff;
1874        int nlen = skb->len - len;
1875        u8 flags;
1876
1877        /* All of a TSO frame must be composed of paged data.  */
1878        if (skb->len != skb->data_len)
1879                return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1880
1881        buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1882        if (unlikely(!buff))
1883                return -ENOMEM;
1884
1885        sk->sk_wmem_queued += buff->truesize;
1886        sk_mem_charge(sk, buff->truesize);
1887        buff->truesize += nlen;
1888        skb->truesize -= nlen;
1889
1890        /* Correct the sequence numbers. */
1891        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1892        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1893        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1894
1895        /* PSH and FIN should only be set in the second packet. */
1896        flags = TCP_SKB_CB(skb)->tcp_flags;
1897        TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1898        TCP_SKB_CB(buff)->tcp_flags = flags;
1899
1900        /* This packet was never sent out yet, so no SACK bits. */
1901        TCP_SKB_CB(buff)->sacked = 0;
1902
1903        tcp_skb_fragment_eor(skb, buff);
1904
1905        buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1906        skb_split(skb, buff, len);
1907        tcp_fragment_tstamp(skb, buff);
1908
1909        /* Fix up tso_factor for both original and new SKB.  */
1910        tcp_set_skb_tso_segs(skb, mss_now);
1911        tcp_set_skb_tso_segs(buff, mss_now);
1912
1913        /* Link BUFF into the send queue. */
1914        __skb_header_release(buff);
1915        tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1916
1917        return 0;
1918}
1919
1920/* Try to defer sending, if possible, in order to minimize the amount
1921 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1922 *
1923 * This algorithm is from John Heffner.
1924 */
1925static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1926                                 bool *is_cwnd_limited, u32 max_segs)
1927{
1928        const struct inet_connection_sock *icsk = inet_csk(sk);
1929        u32 age, send_win, cong_win, limit, in_flight;
1930        struct tcp_sock *tp = tcp_sk(sk);
1931        struct sk_buff *head;
1932        int win_divisor;
1933
1934        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1935                goto send_now;
1936
1937        if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1938                goto send_now;
1939
1940        /* Avoid bursty behavior by allowing defer
1941         * only if the last write was recent.
1942         */
1943        if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1944                goto send_now;
1945
1946        in_flight = tcp_packets_in_flight(tp);
1947
1948        BUG_ON(tcp_skb_pcount(skb) <= 1);
1949        BUG_ON(tp->snd_cwnd <= in_flight);
1950
1951        send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1952
1953        /* From in_flight test above, we know that cwnd > in_flight.  */
1954        cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1955
1956        limit = min(send_win, cong_win);
1957
1958        /* If a full-sized TSO skb can be sent, do it. */
1959        if (limit >= max_segs * tp->mss_cache)
1960                goto send_now;
1961
1962        /* Middle in queue won't get any more data, full sendable already? */
1963        if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1964                goto send_now;
1965
1966        win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1967        if (win_divisor) {
1968                u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1969
1970                /* If at least some fraction of a window is available,
1971                 * just use it.
1972                 */
1973                chunk /= win_divisor;
1974                if (limit >= chunk)
1975                        goto send_now;
1976        } else {
1977                /* Different approach, try not to defer past a single
1978                 * ACK.  Receiver should ACK every other full sized
1979                 * frame, so if we have space for more than 3 frames
1980                 * then send now.
1981                 */
1982                if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1983                        goto send_now;
1984        }
1985
1986        /* TODO : use tsorted_sent_queue ? */
1987        head = tcp_rtx_queue_head(sk);
1988        if (!head)
1989                goto send_now;
1990        age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1991        /* If next ACK is likely to come too late (half srtt), do not defer */
1992        if (age < (tp->srtt_us >> 4))
1993                goto send_now;
1994
1995        /* Ok, it looks like it is advisable to defer. */
1996
1997        if (cong_win < send_win && cong_win <= skb->len)
1998                *is_cwnd_limited = true;
1999
2000        return true;
2001
2002send_now:
2003        return false;
2004}
2005
2006static inline void tcp_mtu_check_reprobe(struct sock *sk)
2007{
2008        struct inet_connection_sock *icsk = inet_csk(sk);
2009        struct tcp_sock *tp = tcp_sk(sk);
2010        struct net *net = sock_net(sk);
2011        u32 interval;
2012        s32 delta;
2013
2014        interval = net->ipv4.sysctl_tcp_probe_interval;
2015        delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2016        if (unlikely(delta >= interval * HZ)) {
2017                int mss = tcp_current_mss(sk);
2018
2019                /* Update current search range */
2020                icsk->icsk_mtup.probe_size = 0;
2021                icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2022                        sizeof(struct tcphdr) +
2023                        icsk->icsk_af_ops->net_header_len;
2024                icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2025
2026                /* Update probe time stamp */
2027                icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2028        }
2029}
2030
2031static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2032{
2033        struct sk_buff *skb, *next;
2034
2035        skb = tcp_send_head(sk);
2036        tcp_for_write_queue_from_safe(skb, next, sk) {
2037                if (len <= skb->len)
2038                        break;
2039
2040                if (unlikely(TCP_SKB_CB(skb)->eor))
2041                        return false;
2042
2043                len -= skb->len;
2044        }
2045
2046        return true;
2047}
2048
2049/* Create a new MTU probe if we are ready.
2050 * MTU probe is regularly attempting to increase the path MTU by
2051 * deliberately sending larger packets.  This discovers routing
2052 * changes resulting in larger path MTUs.
2053 *
2054 * Returns 0 if we should wait to probe (no cwnd available),
2055 *         1 if a probe was sent,
2056 *         -1 otherwise
2057 */
2058static int tcp_mtu_probe(struct sock *sk)
2059{
2060        struct inet_connection_sock *icsk = inet_csk(sk);
2061        struct tcp_sock *tp = tcp_sk(sk);
2062        struct sk_buff *skb, *nskb, *next;
2063        struct net *net = sock_net(sk);
2064        int probe_size;
2065        int size_needed;
2066        int copy, len;
2067        int mss_now;
2068        int interval;
2069
2070        /* Not currently probing/verifying,
2071         * not in recovery,
2072         * have enough cwnd, and
2073         * not SACKing (the variable headers throw things off)
2074         */
2075        if (likely(!icsk->icsk_mtup.enabled ||
2076                   icsk->icsk_mtup.probe_size ||
2077                   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2078                   tp->snd_cwnd < 11 ||
2079                   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2080                return -1;
2081
2082        /* Use binary search for probe_size between tcp_mss_base,
2083         * and current mss_clamp. if (search_high - search_low)
2084         * smaller than a threshold, backoff from probing.
2085         */
2086        mss_now = tcp_current_mss(sk);
2087        probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2088                                    icsk->icsk_mtup.search_low) >> 1);
2089        size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2090        interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2091        /* When misfortune happens, we are reprobing actively,
2092         * and then reprobe timer has expired. We stick with current
2093         * probing process by not resetting search range to its orignal.
2094         */
2095        if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2096                interval < net->ipv4.sysctl_tcp_probe_threshold) {
2097                /* Check whether enough time has elaplased for
2098                 * another round of probing.
2099                 */
2100                tcp_mtu_check_reprobe(sk);
2101                return -1;
2102        }
2103
2104        /* Have enough data in the send queue to probe? */
2105        if (tp->write_seq - tp->snd_nxt < size_needed)
2106                return -1;
2107
2108        if (tp->snd_wnd < size_needed)
2109                return -1;
2110        if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2111                return 0;
2112
2113        /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2114        if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2115                if (!tcp_packets_in_flight(tp))
2116                        return -1;
2117                else
2118                        return 0;
2119        }
2120
2121        if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2122                return -1;
2123
2124        /* We're allowed to probe.  Build it now. */
2125        nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2126        if (!nskb)
2127                return -1;
2128        sk->sk_wmem_queued += nskb->truesize;
2129        sk_mem_charge(sk, nskb->truesize);
2130
2131        skb = tcp_send_head(sk);
2132
2133        TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2134        TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2135        TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2136        TCP_SKB_CB(nskb)->sacked = 0;
2137        nskb->csum = 0;
2138        nskb->ip_summed = skb->ip_summed;
2139
2140        tcp_insert_write_queue_before(nskb, skb, sk);
2141        tcp_highest_sack_replace(sk, skb, nskb);
2142
2143        len = 0;
2144        tcp_for_write_queue_from_safe(skb, next, sk) {
2145                copy = min_t(int, skb->len, probe_size - len);
2146                if (nskb->ip_summed) {
2147                        skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2148                } else {
2149                        __wsum csum = skb_copy_and_csum_bits(skb, 0,
2150                                                             skb_put(nskb, copy),
2151                                                             copy, 0);
2152                        nskb->csum = csum_block_add(nskb->csum, csum, len);
2153                }
2154
2155                if (skb->len <= copy) {
2156                        /* We've eaten all the data from this skb.
2157                         * Throw it away. */
2158                        TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2159                        /* If this is the last SKB we copy and eor is set
2160                         * we need to propagate it to the new skb.
2161                         */
2162                        TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2163                        tcp_unlink_write_queue(skb, sk);
2164                        sk_wmem_free_skb(sk, skb);
2165                } else {
2166                        TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2167                                                   ~(TCPHDR_FIN|TCPHDR_PSH);
2168                        if (!skb_shinfo(skb)->nr_frags) {
2169                                skb_pull(skb, copy);
2170                                if (skb->ip_summed != CHECKSUM_PARTIAL)
2171                                        skb->csum = csum_partial(skb->data,
2172                                                                 skb->len, 0);
2173                        } else {
2174                                __pskb_trim_head(skb, copy);
2175                                tcp_set_skb_tso_segs(skb, mss_now);
2176                        }
2177                        TCP_SKB_CB(skb)->seq += copy;
2178                }
2179
2180                len += copy;
2181
2182                if (len >= probe_size)
2183                        break;
2184        }
2185        tcp_init_tso_segs(nskb, nskb->len);
2186
2187        /* We're ready to send.  If this fails, the probe will
2188         * be resegmented into mss-sized pieces by tcp_write_xmit().
2189         */
2190        if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2191                /* Decrement cwnd here because we are sending
2192                 * effectively two packets. */
2193                tp->snd_cwnd--;
2194                tcp_event_new_data_sent(sk, nskb);
2195
2196                icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2197                tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2198                tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2199
2200                return 1;
2201        }
2202
2203        return -1;
2204}
2205
2206static bool tcp_pacing_check(const struct sock *sk)
2207{
2208        return tcp_needs_internal_pacing(sk) &&
2209               hrtimer_active(&tcp_sk(sk)->pacing_timer);
2210}
2211
2212/* TCP Small Queues :
2213 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2214 * (These limits are doubled for retransmits)
2215 * This allows for :
2216 *  - better RTT estimation and ACK scheduling
2217 *  - faster recovery
2218 *  - high rates
2219 * Alas, some drivers / subsystems require a fair amount
2220 * of queued bytes to ensure line rate.
2221 * One example is wifi aggregation (802.11 AMPDU)
2222 */
2223static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2224                                  unsigned int factor)
2225{
2226        unsigned int limit;
2227
2228        limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2229        limit = min_t(u32, limit,
2230                      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2231        limit <<= factor;
2232
2233        if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2234                /* Always send skb if rtx queue is empty.
2235                 * No need to wait for TX completion to call us back,
2236                 * after softirq/tasklet schedule.
2237                 * This helps when TX completions are delayed too much.
2238                 */
2239                if (tcp_rtx_queue_empty(sk))
2240                        return false;
2241
2242                set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2243                /* It is possible TX completion already happened
2244                 * before we set TSQ_THROTTLED, so we must
2245                 * test again the condition.
2246                 */
2247                smp_mb__after_atomic();
2248                if (refcount_read(&sk->sk_wmem_alloc) > limit)
2249                        return true;
2250        }
2251        return false;
2252}
2253
2254static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2255{
2256        const u32 now = tcp_jiffies32;
2257        enum tcp_chrono old = tp->chrono_type;
2258
2259        if (old > TCP_CHRONO_UNSPEC)
2260                tp->chrono_stat[old - 1] += now - tp->chrono_start;
2261        tp->chrono_start = now;
2262        tp->chrono_type = new;
2263}
2264
2265void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2266{
2267        struct tcp_sock *tp = tcp_sk(sk);
2268
2269        /* If there are multiple conditions worthy of tracking in a
2270         * chronograph then the highest priority enum takes precedence
2271         * over the other conditions. So that if something "more interesting"
2272         * starts happening, stop the previous chrono and start a new one.
2273         */
2274        if (type > tp->chrono_type)
2275                tcp_chrono_set(tp, type);
2276}
2277
2278void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2279{
2280        struct tcp_sock *tp = tcp_sk(sk);
2281
2282
2283        /* There are multiple conditions worthy of tracking in a
2284         * chronograph, so that the highest priority enum takes
2285         * precedence over the other conditions (see tcp_chrono_start).
2286         * If a condition stops, we only stop chrono tracking if
2287         * it's the "most interesting" or current chrono we are
2288         * tracking and starts busy chrono if we have pending data.
2289         */
2290        if (tcp_rtx_and_write_queues_empty(sk))
2291                tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2292        else if (type == tp->chrono_type)
2293                tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2294}
2295
2296/* This routine writes packets to the network.  It advances the
2297 * send_head.  This happens as incoming acks open up the remote
2298 * window for us.
2299 *
2300 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2301 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2302 * account rare use of URG, this is not a big flaw.
2303 *
2304 * Send at most one packet when push_one > 0. Temporarily ignore
2305 * cwnd limit to force at most one packet out when push_one == 2.
2306
2307 * Returns true, if no segments are in flight and we have queued segments,
2308 * but cannot send anything now because of SWS or another problem.
2309 */
2310static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2311                           int push_one, gfp_t gfp)
2312{
2313        struct tcp_sock *tp = tcp_sk(sk);
2314        struct sk_buff *skb;
2315        unsigned int tso_segs, sent_pkts;
2316        int cwnd_quota;
2317        int result;
2318        bool is_cwnd_limited = false, is_rwnd_limited = false;
2319        u32 max_segs;
2320
2321        sent_pkts = 0;
2322
2323        tcp_mstamp_refresh(tp);
2324        if (!push_one) {
2325                /* Do MTU probing. */
2326                result = tcp_mtu_probe(sk);
2327                if (!result) {
2328                        return false;
2329                } else if (result > 0) {
2330                        sent_pkts = 1;
2331                }
2332        }
2333
2334        max_segs = tcp_tso_segs(sk, mss_now);
2335        while ((skb = tcp_send_head(sk))) {
2336                unsigned int limit;
2337
2338                if (tcp_pacing_check(sk))
2339                        break;
2340
2341                tso_segs = tcp_init_tso_segs(skb, mss_now);
2342                BUG_ON(!tso_segs);
2343
2344                if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2345                        /* "skb_mstamp" is used as a start point for the retransmit timer */
2346                        tcp_update_skb_after_send(tp, skb);
2347                        goto repair; /* Skip network transmission */
2348                }
2349
2350                cwnd_quota = tcp_cwnd_test(tp, skb);
2351                if (!cwnd_quota) {
2352                        if (push_one == 2)
2353                                /* Force out a loss probe pkt. */
2354                                cwnd_quota = 1;
2355                        else
2356                                break;
2357                }
2358
2359                if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2360                        is_rwnd_limited = true;
2361                        break;
2362                }
2363
2364                if (tso_segs == 1) {
2365                        if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2366                                                     (tcp_skb_is_last(sk, skb) ?
2367                                                      nonagle : TCP_NAGLE_PUSH))))
2368                                break;
2369                } else {
2370                        if (!push_one &&
2371                            tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2372                                                 max_segs))
2373                                break;
2374                }
2375
2376                limit = mss_now;
2377                if (tso_segs > 1 && !tcp_urg_mode(tp))
2378                        limit = tcp_mss_split_point(sk, skb, mss_now,
2379                                                    min_t(unsigned int,
2380                                                          cwnd_quota,
2381                                                          max_segs),
2382                                                    nonagle);
2383
2384                if (skb->len > limit &&
2385                    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2386                                          skb, limit, mss_now, gfp)))
2387                        break;
2388
2389                if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2390                        clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2391                if (tcp_small_queue_check(sk, skb, 0))
2392                        break;
2393
2394                if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2395                        break;
2396
2397repair:
2398                /* Advance the send_head.  This one is sent out.
2399                 * This call will increment packets_out.
2400                 */
2401                tcp_event_new_data_sent(sk, skb);
2402
2403                tcp_minshall_update(tp, mss_now, skb);
2404                sent_pkts += tcp_skb_pcount(skb);
2405
2406                if (push_one)
2407                        break;
2408        }
2409
2410        if (is_rwnd_limited)
2411                tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2412        else
2413                tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2414
2415        if (likely(sent_pkts)) {
2416                if (tcp_in_cwnd_reduction(sk))
2417                        tp->prr_out += sent_pkts;
2418
2419                /* Send one loss probe per tail loss episode. */
2420                if (push_one != 2)
2421                        tcp_schedule_loss_probe(sk, false);
2422                is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2423                tcp_cwnd_validate(sk, is_cwnd_limited);
2424                return false;
2425        }
2426        return !tp->packets_out && !tcp_write_queue_empty(sk);
2427}
2428
2429bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2430{
2431        struct inet_connection_sock *icsk = inet_csk(sk);
2432        struct tcp_sock *tp = tcp_sk(sk);
2433        u32 timeout, rto_delta_us;
2434        int early_retrans;
2435
2436        /* Don't do any loss probe on a Fast Open connection before 3WHS
2437         * finishes.
2438         */
2439        if (tp->fastopen_rsk)
2440                return false;
2441
2442        early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2443        /* Schedule a loss probe in 2*RTT for SACK capable connections
2444         * not in loss recovery, that are either limited by cwnd or application.
2445         */
2446        if ((early_retrans != 3 && early_retrans != 4) ||
2447            !tp->packets_out || !tcp_is_sack(tp) ||
2448            (icsk->icsk_ca_state != TCP_CA_Open &&
2449             icsk->icsk_ca_state != TCP_CA_CWR))
2450                return false;
2451
2452        /* Probe timeout is 2*rtt. Add minimum RTO to account
2453         * for delayed ack when there's one outstanding packet. If no RTT
2454         * sample is available then probe after TCP_TIMEOUT_INIT.
2455         */
2456        if (tp->srtt_us) {
2457                timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2458                if (tp->packets_out == 1)
2459                        timeout += TCP_RTO_MIN;
2460                else
2461                        timeout += TCP_TIMEOUT_MIN;
2462        } else {
2463                timeout = TCP_TIMEOUT_INIT;
2464        }
2465
2466        /* If the RTO formula yields an earlier time, then use that time. */
2467        rto_delta_us = advancing_rto ?
2468                        jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2469                        tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2470        if (rto_delta_us > 0)
2471                timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2472
2473        inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2474                                  TCP_RTO_MAX);
2475        return true;
2476}
2477
2478/* Thanks to skb fast clones, we can detect if a prior transmit of
2479 * a packet is still in a qdisc or driver queue.
2480 * In this case, there is very little point doing a retransmit !
2481 */
2482static bool skb_still_in_host_queue(const struct sock *sk,
2483                                    const struct sk_buff *skb)
2484{
2485        if (unlikely(skb_fclone_busy(sk, skb))) {
2486                NET_INC_STATS(sock_net(sk),
2487                              LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2488                return true;
2489        }
2490        return false;
2491}
2492
2493/* When probe timeout (PTO) fires, try send a new segment if possible, else
2494 * retransmit the last segment.
2495 */
2496void tcp_send_loss_probe(struct sock *sk)
2497{
2498        struct tcp_sock *tp = tcp_sk(sk);
2499        struct sk_buff *skb;
2500        int pcount;
2501        int mss = tcp_current_mss(sk);
2502
2503        skb = tcp_send_head(sk);
2504        if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2505                pcount = tp->packets_out;
2506                tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2507                if (tp->packets_out > pcount)
2508                        goto probe_sent;
2509                goto rearm_timer;
2510        }
2511        skb = skb_rb_last(&sk->tcp_rtx_queue);
2512
2513        /* At most one outstanding TLP retransmission. */
2514        if (tp->tlp_high_seq)
2515                goto rearm_timer;
2516
2517        /* Retransmit last segment. */
2518        if (WARN_ON(!skb))
2519                goto rearm_timer;
2520
2521        if (skb_still_in_host_queue(sk, skb))
2522                goto rearm_timer;
2523
2524        pcount = tcp_skb_pcount(skb);
2525        if (WARN_ON(!pcount))
2526                goto rearm_timer;
2527
2528        if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2529                if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2530                                          (pcount - 1) * mss, mss,
2531                                          GFP_ATOMIC)))
2532                        goto rearm_timer;
2533                skb = skb_rb_next(skb);
2534        }
2535
2536        if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2537                goto rearm_timer;
2538
2539        if (__tcp_retransmit_skb(sk, skb, 1))
2540                goto rearm_timer;
2541
2542        /* Record snd_nxt for loss detection. */
2543        tp->tlp_high_seq = tp->snd_nxt;
2544
2545probe_sent:
2546        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2547        /* Reset s.t. tcp_rearm_rto will restart timer from now */
2548        inet_csk(sk)->icsk_pending = 0;
2549rearm_timer:
2550        tcp_rearm_rto(sk);
2551}
2552
2553/* Push out any pending frames which were held back due to
2554 * TCP_CORK or attempt at coalescing tiny packets.
2555 * The socket must be locked by the caller.
2556 */
2557void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2558                               int nonagle)
2559{
2560        /* If we are closed, the bytes will have to remain here.
2561         * In time closedown will finish, we empty the write queue and
2562         * all will be happy.
2563         */
2564        if (unlikely(sk->sk_state == TCP_CLOSE))
2565                return;
2566
2567        if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2568                           sk_gfp_mask(sk, GFP_ATOMIC)))
2569                tcp_check_probe_timer(sk);
2570}
2571
2572/* Send _single_ skb sitting at the send head. This function requires
2573 * true push pending frames to setup probe timer etc.
2574 */
2575void tcp_push_one(struct sock *sk, unsigned int mss_now)
2576{
2577        struct sk_buff *skb = tcp_send_head(sk);
2578
2579        BUG_ON(!skb || skb->len < mss_now);
2580
2581        tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2582}
2583
2584/* This function returns the amount that we can raise the
2585 * usable window based on the following constraints
2586 *
2587 * 1. The window can never be shrunk once it is offered (RFC 793)
2588 * 2. We limit memory per socket
2589 *
2590 * RFC 1122:
2591 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2592 *  RECV.NEXT + RCV.WIN fixed until:
2593 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2594 *
2595 * i.e. don't raise the right edge of the window until you can raise
2596 * it at least MSS bytes.
2597 *
2598 * Unfortunately, the recommended algorithm breaks header prediction,
2599 * since header prediction assumes th->window stays fixed.
2600 *
2601 * Strictly speaking, keeping th->window fixed violates the receiver
2602 * side SWS prevention criteria. The problem is that under this rule
2603 * a stream of single byte packets will cause the right side of the
2604 * window to always advance by a single byte.
2605 *
2606 * Of course, if the sender implements sender side SWS prevention
2607 * then this will not be a problem.
2608 *
2609 * BSD seems to make the following compromise:
2610 *
2611 *      If the free space is less than the 1/4 of the maximum
2612 *      space available and the free space is less than 1/2 mss,
2613 *      then set the window to 0.
2614 *      [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2615 *      Otherwise, just prevent the window from shrinking
2616 *      and from being larger than the largest representable value.
2617 *
2618 * This prevents incremental opening of the window in the regime
2619 * where TCP is limited by the speed of the reader side taking
2620 * data out of the TCP receive queue. It does nothing about
2621 * those cases where the window is constrained on the sender side
2622 * because the pipeline is full.
2623 *
2624 * BSD also seems to "accidentally" limit itself to windows that are a
2625 * multiple of MSS, at least until the free space gets quite small.
2626 * This would appear to be a side effect of the mbuf implementation.
2627 * Combining these two algorithms results in the observed behavior
2628 * of having a fixed window size at almost all times.
2629 *
2630 * Below we obtain similar behavior by forcing the offered window to
2631 * a multiple of the mss when it is feasible to do so.
2632 *
2633 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2634 * Regular options like TIMESTAMP are taken into account.
2635 */
2636u32 __tcp_select_window(struct sock *sk)
2637{
2638        struct inet_connection_sock *icsk = inet_csk(sk);
2639        struct tcp_sock *tp = tcp_sk(sk);
2640        /* MSS for the peer's data.  Previous versions used mss_clamp
2641         * here.  I don't know if the value based on our guesses
2642         * of peer's MSS is better for the performance.  It's more correct
2643         * but may be worse for the performance because of rcv_mss
2644         * fluctuations.  --SAW  1998/11/1
2645         */
2646        int mss = icsk->icsk_ack.rcv_mss;
2647        int free_space = tcp_space(sk);
2648        int allowed_space = tcp_full_space(sk);
2649        int full_space = min_t(int, tp->window_clamp, allowed_space);
2650        int window;
2651
2652        if (unlikely(mss > full_space)) {
2653                mss = full_space;
2654                if (mss <= 0)
2655                        return 0;
2656        }
2657        if (free_space < (full_space >> 1)) {
2658                icsk->icsk_ack.quick = 0;
2659
2660                if (tcp_under_memory_pressure(sk))
2661                        tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2662                                               4U * tp->advmss);
2663
2664                /* free_space might become our new window, make sure we don't
2665                 * increase it due to wscale.
2666                 */
2667                free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2668
2669                /* if free space is less than mss estimate, or is below 1/16th
2670                 * of the maximum allowed, try to move to zero-window, else
2671                 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2672                 * new incoming data is dropped due to memory limits.
2673                 * With large window, mss test triggers way too late in order
2674                 * to announce zero window in time before rmem limit kicks in.
2675                 */
2676                if (free_space < (allowed_space >> 4) || free_space < mss)
2677                        return 0;
2678        }
2679
2680        if (free_space > tp->rcv_ssthresh)
2681                free_space = tp->rcv_ssthresh;
2682
2683        /* Don't do rounding if we are using window scaling, since the
2684         * scaled window will not line up with the MSS boundary anyway.
2685         */
2686        if (tp->rx_opt.rcv_wscale) {
2687                window = free_space;
2688
2689                /* Advertise enough space so that it won't get scaled away.
2690                 * Import case: prevent zero window announcement if
2691                 * 1<<rcv_wscale > mss.
2692                 */
2693                window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2694        } else {
2695                window = tp->rcv_wnd;
2696                /* Get the largest window that is a nice multiple of mss.
2697                 * Window clamp already applied above.
2698                 * If our current window offering is within 1 mss of the
2699                 * free space we just keep it. This prevents the divide
2700                 * and multiply from happening most of the time.
2701                 * We also don't do any window rounding when the free space
2702                 * is too small.
2703                 */
2704                if (window <= free_space - mss || window > free_space)
2705                        window = rounddown(free_space, mss);
2706                else if (mss == full_space &&
2707                         free_space > window + (full_space >> 1))
2708                        window = free_space;
2709        }
2710
2711        return window;
2712}
2713
2714void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2715                             const struct sk_buff *next_skb)
2716{
2717        if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2718                const struct skb_shared_info *next_shinfo =
2719                        skb_shinfo(next_skb);
2720                struct skb_shared_info *shinfo = skb_shinfo(skb);
2721
2722                shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2723                shinfo->tskey = next_shinfo->tskey;
2724                TCP_SKB_CB(skb)->txstamp_ack |=
2725                        TCP_SKB_CB(next_skb)->txstamp_ack;
2726        }
2727}
2728
2729/* Collapses two adjacent SKB's during retransmission. */
2730static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2731{
2732        struct tcp_sock *tp = tcp_sk(sk);
2733        struct sk_buff *next_skb = skb_rb_next(skb);
2734        int skb_size, next_skb_size;
2735
2736        skb_size = skb->len;
2737        next_skb_size = next_skb->len;
2738
2739        BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2740
2741        if (next_skb_size) {
2742                if (next_skb_size <= skb_availroom(skb))
2743                        skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2744                                      next_skb_size);
2745                else if (!skb_shift(skb, next_skb, next_skb_size))
2746                        return false;
2747        }
2748        tcp_highest_sack_replace(sk, next_skb, skb);
2749
2750        if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2751                skb->ip_summed = CHECKSUM_PARTIAL;
2752
2753        if (skb->ip_summed != CHECKSUM_PARTIAL)
2754                skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2755
2756        /* Update sequence range on original skb. */
2757        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2758
2759        /* Merge over control information. This moves PSH/FIN etc. over */
2760        TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2761
2762        /* All done, get rid of second SKB and account for it so
2763         * packet counting does not break.
2764         */
2765        TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2766        TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2767
2768        /* changed transmit queue under us so clear hints */
2769        tcp_clear_retrans_hints_partial(tp);
2770        if (next_skb == tp->retransmit_skb_hint)
2771                tp->retransmit_skb_hint = skb;
2772
2773        tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2774
2775        tcp_skb_collapse_tstamp(skb, next_skb);
2776
2777        tcp_rtx_queue_unlink_and_free(next_skb, sk);
2778        return true;
2779}
2780
2781/* Check if coalescing SKBs is legal. */
2782static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2783{
2784        if (tcp_skb_pcount(skb) > 1)
2785                return false;
2786        if (skb_cloned(skb))
2787                return false;
2788        /* Some heuristics for collapsing over SACK'd could be invented */
2789        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2790                return false;
2791
2792        return true;
2793}
2794
2795/* Collapse packets in the retransmit queue to make to create
2796 * less packets on the wire. This is only done on retransmission.
2797 */
2798static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2799                                     int space)
2800{
2801        struct tcp_sock *tp = tcp_sk(sk);
2802        struct sk_buff *skb = to, *tmp;
2803        bool first = true;
2804
2805        if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2806                return;
2807        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2808                return;
2809
2810        skb_rbtree_walk_from_safe(skb, tmp) {
2811                if (!tcp_can_collapse(sk, skb))
2812                        break;
2813
2814                if (!tcp_skb_can_collapse_to(to))
2815                        break;
2816
2817                space -= skb->len;
2818
2819                if (first) {
2820                        first = false;
2821                        continue;
2822                }
2823
2824                if (space < 0)
2825                        break;
2826
2827                if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2828                        break;
2829
2830                if (!tcp_collapse_retrans(sk, to))
2831                        break;
2832        }
2833}
2834
2835/* This retransmits one SKB.  Policy decisions and retransmit queue
2836 * state updates are done by the caller.  Returns non-zero if an
2837 * error occurred which prevented the send.
2838 */
2839int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2840{
2841        struct inet_connection_sock *icsk = inet_csk(sk);
2842        struct tcp_sock *tp = tcp_sk(sk);
2843        unsigned int cur_mss;
2844        int diff, len, err;
2845
2846
2847        /* Inconclusive MTU probe */
2848        if (icsk->icsk_mtup.probe_size)
2849                icsk->icsk_mtup.probe_size = 0;
2850
2851        /* Do not sent more than we queued. 1/4 is reserved for possible
2852         * copying overhead: fragmentation, tunneling, mangling etc.
2853         */
2854        if (refcount_read(&sk->sk_wmem_alloc) >
2855            min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2856                  sk->sk_sndbuf))
2857                return -EAGAIN;
2858
2859        if (skb_still_in_host_queue(sk, skb))
2860                return -EBUSY;
2861
2862        if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2863                if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2864                        BUG();
2865                if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2866                        return -ENOMEM;
2867        }
2868
2869        if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2870                return -EHOSTUNREACH; /* Routing failure or similar. */
2871
2872        cur_mss = tcp_current_mss(sk);
2873
2874        /* If receiver has shrunk his window, and skb is out of
2875         * new window, do not retransmit it. The exception is the
2876         * case, when window is shrunk to zero. In this case
2877         * our retransmit serves as a zero window probe.
2878         */
2879        if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2880            TCP_SKB_CB(skb)->seq != tp->snd_una)
2881                return -EAGAIN;
2882
2883        len = cur_mss * segs;
2884        if (skb->len > len) {
2885                if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2886                                 cur_mss, GFP_ATOMIC))
2887                        return -ENOMEM; /* We'll try again later. */
2888        } else {
2889                if (skb_unclone(skb, GFP_ATOMIC))
2890                        return -ENOMEM;
2891
2892                diff = tcp_skb_pcount(skb);
2893                tcp_set_skb_tso_segs(skb, cur_mss);
2894                diff -= tcp_skb_pcount(skb);
2895                if (diff)
2896                        tcp_adjust_pcount(sk, skb, diff);
2897                if (skb->len < cur_mss)
2898                        tcp_retrans_try_collapse(sk, skb, cur_mss);
2899        }
2900
2901        /* RFC3168, section 6.1.1.1. ECN fallback */
2902        if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2903                tcp_ecn_clear_syn(sk, skb);
2904
2905        /* Update global and local TCP statistics. */
2906        segs = tcp_skb_pcount(skb);
2907        TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2908        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2909                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2910        tp->total_retrans += segs;
2911
2912        /* make sure skb->data is aligned on arches that require it
2913         * and check if ack-trimming & collapsing extended the headroom
2914         * beyond what csum_start can cover.
2915         */
2916        if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2917                     skb_headroom(skb) >= 0xFFFF)) {
2918                struct sk_buff *nskb;
2919
2920                tcp_skb_tsorted_save(skb) {
2921                        nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2922                        err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2923                                     -ENOBUFS;
2924                } tcp_skb_tsorted_restore(skb);
2925
2926                if (!err) {
2927                        tcp_update_skb_after_send(tp, skb);
2928                        tcp_rate_skb_sent(sk, skb);
2929                }
2930        } else {
2931                err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2932        }
2933
2934        if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2935                tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2936                                  TCP_SKB_CB(skb)->seq, segs, err);
2937
2938        if (likely(!err)) {
2939                TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2940                trace_tcp_retransmit_skb(sk, skb);
2941        } else if (err != -EBUSY) {
2942                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2943        }
2944        return err;
2945}
2946
2947int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2948{
2949        struct tcp_sock *tp = tcp_sk(sk);
2950        int err = __tcp_retransmit_skb(sk, skb, segs);
2951
2952        if (err == 0) {
2953#if FASTRETRANS_DEBUG > 0
2954                if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2955                        net_dbg_ratelimited("retrans_out leaked\n");
2956                }
2957#endif
2958                TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2959                tp->retrans_out += tcp_skb_pcount(skb);
2960
2961                /* Save stamp of the first retransmit. */
2962                if (!tp->retrans_stamp)
2963                        tp->retrans_stamp = tcp_skb_timestamp(skb);
2964
2965        }
2966
2967        if (tp->undo_retrans < 0)
2968                tp->undo_retrans = 0;
2969        tp->undo_retrans += tcp_skb_pcount(skb);
2970        return err;
2971}
2972
2973/* This gets called after a retransmit timeout, and the initially
2974 * retransmitted data is acknowledged.  It tries to continue
2975 * resending the rest of the retransmit queue, until either
2976 * we've sent it all or the congestion window limit is reached.
2977 */
2978void tcp_xmit_retransmit_queue(struct sock *sk)
2979{
2980        const struct inet_connection_sock *icsk = inet_csk(sk);
2981        struct sk_buff *skb, *rtx_head, *hole = NULL;
2982        struct tcp_sock *tp = tcp_sk(sk);
2983        u32 max_segs;
2984        int mib_idx;
2985
2986        if (!tp->packets_out)
2987                return;
2988
2989        rtx_head = tcp_rtx_queue_head(sk);
2990        skb = tp->retransmit_skb_hint ?: rtx_head;
2991        max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2992        skb_rbtree_walk_from(skb) {
2993                __u8 sacked;
2994                int segs;
2995
2996                if (tcp_pacing_check(sk))
2997                        break;
2998
2999                /* we could do better than to assign each time */
3000                if (!hole)
3001                        tp->retransmit_skb_hint = skb;
3002
3003                segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3004                if (segs <= 0)
3005                        return;
3006                sacked = TCP_SKB_CB(skb)->sacked;
3007                /* In case tcp_shift_skb_data() have aggregated large skbs,
3008                 * we need to make sure not sending too bigs TSO packets
3009                 */
3010                segs = min_t(int, segs, max_segs);
3011
3012                if (tp->retrans_out >= tp->lost_out) {
3013                        break;
3014                } else if (!(sacked & TCPCB_LOST)) {
3015                        if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3016                                hole = skb;
3017                        continue;
3018
3019                } else {
3020                        if (icsk->icsk_ca_state != TCP_CA_Loss)
3021                                mib_idx = LINUX_MIB_TCPFASTRETRANS;
3022                        else
3023                                mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3024                }
3025
3026                if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3027                        continue;
3028
3029                if (tcp_small_queue_check(sk, skb, 1))
3030                        return;
3031
3032                if (tcp_retransmit_skb(sk, skb, segs))
3033                        return;
3034
3035                NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3036
3037                if (tcp_in_cwnd_reduction(sk))
3038                        tp->prr_out += tcp_skb_pcount(skb);
3039
3040                if (skb == rtx_head &&
3041                    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3042                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3043                                                  inet_csk(sk)->icsk_rto,
3044                                                  TCP_RTO_MAX);
3045        }
3046}
3047
3048/* We allow to exceed memory limits for FIN packets to expedite
3049 * connection tear down and (memory) recovery.
3050 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3051 * or even be forced to close flow without any FIN.
3052 * In general, we want to allow one skb per socket to avoid hangs
3053 * with edge trigger epoll()
3054 */
3055void sk_forced_mem_schedule(struct sock *sk, int size)
3056{
3057        int amt;
3058
3059        if (size <= sk->sk_forward_alloc)
3060                return;
3061        amt = sk_mem_pages(size);
3062        sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3063        sk_memory_allocated_add(sk, amt);
3064
3065        if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3066                mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3067}
3068
3069/* Send a FIN. The caller locks the socket for us.
3070 * We should try to send a FIN packet really hard, but eventually give up.
3071 */
3072void tcp_send_fin(struct sock *sk)
3073{
3074        struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3075        struct tcp_sock *tp = tcp_sk(sk);
3076
3077        /* Optimization, tack on the FIN if we have one skb in write queue and
3078         * this skb was not yet sent, or we are under memory pressure.
3079         * Note: in the latter case, FIN packet will be sent after a timeout,
3080         * as TCP stack thinks it has already been transmitted.
3081         */
3082        if (!tskb && tcp_under_memory_pressure(sk))
3083                tskb = skb_rb_last(&sk->tcp_rtx_queue);
3084
3085        if (tskb) {
3086coalesce:
3087                TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3088                TCP_SKB_CB(tskb)->end_seq++;
3089                tp->write_seq++;
3090                if (tcp_write_queue_empty(sk)) {
3091                        /* This means tskb was already sent.
3092                         * Pretend we included the FIN on previous transmit.
3093                         * We need to set tp->snd_nxt to the value it would have
3094                         * if FIN had been sent. This is because retransmit path
3095                         * does not change tp->snd_nxt.
3096                         */
3097                        tp->snd_nxt++;
3098                        return;
3099                }
3100        } else {
3101                skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3102                if (unlikely(!skb)) {
3103                        if (tskb)
3104                                goto coalesce;
3105                        return;
3106                }
3107                INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3108                skb_reserve(skb, MAX_TCP_HEADER);
3109                sk_forced_mem_schedule(sk, skb->truesize);
3110                /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3111                tcp_init_nondata_skb(skb, tp->write_seq,
3112                                     TCPHDR_ACK | TCPHDR_FIN);
3113                tcp_queue_skb(sk, skb);
3114        }
3115        __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3116}
3117
3118/* We get here when a process closes a file descriptor (either due to
3119 * an explicit close() or as a byproduct of exit()'ing) and there
3120 * was unread data in the receive queue.  This behavior is recommended
3121 * by RFC 2525, section 2.17.  -DaveM
3122 */
3123void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3124{
3125        struct sk_buff *skb;
3126
3127        TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3128
3129        /* NOTE: No TCP options attached and we never retransmit this. */
3130        skb = alloc_skb(MAX_TCP_HEADER, priority);
3131        if (!skb) {
3132                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3133                return;
3134        }
3135
3136        /* Reserve space for headers and prepare control bits. */
3137        skb_reserve(skb, MAX_TCP_HEADER);
3138        tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3139                             TCPHDR_ACK | TCPHDR_RST);
3140        tcp_mstamp_refresh(tcp_sk(sk));
3141        /* Send it off. */
3142        if (tcp_transmit_skb(sk, skb, 0, priority))
3143                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3144
3145        /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3146         * skb here is different to the troublesome skb, so use NULL
3147         */
3148        trace_tcp_send_reset(sk, NULL);
3149}
3150
3151/* Send a crossed SYN-ACK during socket establishment.
3152 * WARNING: This routine must only be called when we have already sent
3153 * a SYN packet that crossed the incoming SYN that caused this routine
3154 * to get called. If this assumption fails then the initial rcv_wnd
3155 * and rcv_wscale values will not be correct.
3156 */
3157int tcp_send_synack(struct sock *sk)
3158{
3159        struct sk_buff *skb;
3160
3161        skb = tcp_rtx_queue_head(sk);
3162        if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3163                pr_err("%s: wrong queue state\n", __func__);
3164                return -EFAULT;
3165        }
3166        if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3167                if (skb_cloned(skb)) {
3168                        struct sk_buff *nskb;
3169
3170                        tcp_skb_tsorted_save(skb) {
3171                                nskb = skb_copy(skb, GFP_ATOMIC);
3172                        } tcp_skb_tsorted_restore(skb);
3173                        if (!nskb)
3174                                return -ENOMEM;
3175                        INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3176                        tcp_rtx_queue_unlink_and_free(skb, sk);
3177                        __skb_header_release(nskb);
3178                        tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3179                        sk->sk_wmem_queued += nskb->truesize;
3180                        sk_mem_charge(sk, nskb->truesize);
3181                        skb = nskb;
3182                }
3183
3184                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3185                tcp_ecn_send_synack(sk, skb);
3186        }
3187        return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3188}
3189
3190/**
3191 * tcp_make_synack - Prepare a SYN-ACK.
3192 * sk: listener socket
3193 * dst: dst entry attached to the SYNACK
3194 * req: request_sock pointer
3195 *
3196 * Allocate one skb and build a SYNACK packet.
3197 * @dst is consumed : Caller should not use it again.
3198 */
3199struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3200                                struct request_sock *req,
3201                                struct tcp_fastopen_cookie *foc,
3202                                enum tcp_synack_type synack_type)
3203{
3204        struct inet_request_sock *ireq = inet_rsk(req);
3205        const struct tcp_sock *tp = tcp_sk(sk);
3206        struct tcp_md5sig_key *md5 = NULL;
3207        struct tcp_out_options opts;
3208        struct sk_buff *skb;
3209        int tcp_header_size;
3210        struct tcphdr *th;
3211        int mss;
3212
3213        skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3214        if (unlikely(!skb)) {
3215                dst_release(dst);
3216                return NULL;
3217        }
3218        /* Reserve space for headers. */
3219        skb_reserve(skb, MAX_TCP_HEADER);
3220
3221        switch (synack_type) {
3222        case TCP_SYNACK_NORMAL:
3223                skb_set_owner_w(skb, req_to_sk(req));
3224                break;
3225        case TCP_SYNACK_COOKIE:
3226                /* Under synflood, we do not attach skb to a socket,
3227                 * to avoid false sharing.
3228                 */
3229                break;
3230        case TCP_SYNACK_FASTOPEN:
3231                /* sk is a const pointer, because we want to express multiple
3232                 * cpu might call us concurrently.
3233                 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3234                 */
3235                skb_set_owner_w(skb, (struct sock *)sk);
3236                break;
3237        }
3238        skb_dst_set(skb, dst);
3239
3240        mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3241
3242        memset(&opts, 0, sizeof(opts));
3243#ifdef CONFIG_SYN_COOKIES
3244        if (unlikely(req->cookie_ts))
3245                skb->skb_mstamp = cookie_init_timestamp(req);
3246        else
3247#endif
3248                skb->skb_mstamp = tcp_clock_us();
3249
3250#ifdef CONFIG_TCP_MD5SIG
3251        rcu_read_lock();
3252        md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3253#endif
3254        skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3255        tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3256                                             foc) + sizeof(*th);
3257
3258        skb_push(skb, tcp_header_size);
3259        skb_reset_transport_header(skb);
3260
3261        th = (struct tcphdr *)skb->data;
3262        memset(th, 0, sizeof(struct tcphdr));
3263        th->syn = 1;
3264        th->ack = 1;
3265        tcp_ecn_make_synack(req, th);
3266        th->source = htons(ireq->ir_num);
3267        th->dest = ireq->ir_rmt_port;
3268        skb->mark = ireq->ir_mark;
3269        skb->ip_summed = CHECKSUM_PARTIAL;
3270        th->seq = htonl(tcp_rsk(req)->snt_isn);
3271        /* XXX data is queued and acked as is. No buffer/window check */
3272        th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3273
3274        /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3275        th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3276        tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3277        th->doff = (tcp_header_size >> 2);
3278        __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3279
3280#ifdef CONFIG_TCP_MD5SIG
3281        /* Okay, we have all we need - do the md5 hash if needed */
3282        if (md5)
3283                tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3284                                               md5, req_to_sk(req), skb);
3285        rcu_read_unlock();
3286#endif
3287
3288        /* Do not fool tcpdump (if any), clean our debris */
3289        skb->tstamp = 0;
3290        return skb;
3291}
3292EXPORT_SYMBOL(tcp_make_synack);
3293
3294static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3295{
3296        struct inet_connection_sock *icsk = inet_csk(sk);
3297        const struct tcp_congestion_ops *ca;
3298        u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3299
3300        if (ca_key == TCP_CA_UNSPEC)
3301                return;
3302
3303        rcu_read_lock();
3304        ca = tcp_ca_find_key(ca_key);
3305        if (likely(ca && try_module_get(ca->owner))) {
3306                module_put(icsk->icsk_ca_ops->owner);
3307                icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3308                icsk->icsk_ca_ops = ca;
3309        }
3310        rcu_read_unlock();
3311}
3312
3313/* Do all connect socket setups that can be done AF independent. */
3314static void tcp_connect_init(struct sock *sk)
3315{
3316        const struct dst_entry *dst = __sk_dst_get(sk);
3317        struct tcp_sock *tp = tcp_sk(sk);
3318        __u8 rcv_wscale;
3319        u32 rcv_wnd;
3320
3321        /* We'll fix this up when we get a response from the other end.
3322         * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3323         */
3324        tp->tcp_header_len = sizeof(struct tcphdr);
3325        if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3326                tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3327
3328#ifdef CONFIG_TCP_MD5SIG
3329        if (tp->af_specific->md5_lookup(sk, sk))
3330                tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3331#endif
3332
3333        /* If user gave his TCP_MAXSEG, record it to clamp */
3334        if (tp->rx_opt.user_mss)
3335                tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3336        tp->max_window = 0;
3337        tcp_mtup_init(sk);
3338        tcp_sync_mss(sk, dst_mtu(dst));
3339
3340        tcp_ca_dst_init(sk, dst);
3341
3342        if (!tp->window_clamp)
3343                tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3344        tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3345
3346        tcp_initialize_rcv_mss(sk);
3347
3348        /* limit the window selection if the user enforce a smaller rx buffer */
3349        if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3350            (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3351                tp->window_clamp = tcp_full_space(sk);
3352
3353        rcv_wnd = tcp_rwnd_init_bpf(sk);
3354        if (rcv_wnd == 0)
3355                rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3356
3357        tcp_select_initial_window(sk, tcp_full_space(sk),
3358                                  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3359                                  &tp->rcv_wnd,
3360                                  &tp->window_clamp,
3361                                  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3362                                  &rcv_wscale,
3363                                  rcv_wnd);
3364
3365        tp->rx_opt.rcv_wscale = rcv_wscale;
3366        tp->rcv_ssthresh = tp->rcv_wnd;
3367
3368        sk->sk_err = 0;
3369        sock_reset_flag(sk, SOCK_DONE);
3370        tp->snd_wnd = 0;
3371        tcp_init_wl(tp, 0);
3372        tp->snd_una = tp->write_seq;
3373        tp->snd_sml = tp->write_seq;
3374        tp->snd_up = tp->write_seq;
3375        tp->snd_nxt = tp->write_seq;
3376
3377        if (likely(!tp->repair))
3378                tp->rcv_nxt = 0;
3379        else
3380                tp->rcv_tstamp = tcp_jiffies32;
3381        tp->rcv_wup = tp->rcv_nxt;
3382        tp->copied_seq = tp->rcv_nxt;
3383
3384        inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3385        inet_csk(sk)->icsk_retransmits = 0;
3386        tcp_clear_retrans(tp);
3387}
3388
3389static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3390{
3391        struct tcp_sock *tp = tcp_sk(sk);
3392        struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3393
3394        tcb->end_seq += skb->len;
3395        __skb_header_release(skb);
3396        sk->sk_wmem_queued += skb->truesize;
3397        sk_mem_charge(sk, skb->truesize);
3398        tp->write_seq = tcb->end_seq;
3399        tp->packets_out += tcp_skb_pcount(skb);
3400}
3401
3402/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3403 * queue a data-only packet after the regular SYN, such that regular SYNs
3404 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3405 * only the SYN sequence, the data are retransmitted in the first ACK.
3406 * If cookie is not cached or other error occurs, falls back to send a
3407 * regular SYN with Fast Open cookie request option.
3408 */
3409static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3410{
3411        struct tcp_sock *tp = tcp_sk(sk);
3412        struct tcp_fastopen_request *fo = tp->fastopen_req;
3413        int space, err = 0;
3414        struct sk_buff *syn_data;
3415
3416        tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3417        if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3418                goto fallback;
3419
3420        /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3421         * user-MSS. Reserve maximum option space for middleboxes that add
3422         * private TCP options. The cost is reduced data space in SYN :(
3423         */
3424        tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3425
3426        space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3427                MAX_TCP_OPTION_SPACE;
3428
3429        space = min_t(size_t, space, fo->size);
3430
3431        /* limit to order-0 allocations */
3432        space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3433
3434        syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3435        if (!syn_data)
3436                goto fallback;
3437        syn_data->ip_summed = CHECKSUM_PARTIAL;
3438        memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3439        if (space) {
3440                int copied = copy_from_iter(skb_put(syn_data, space), space,
3441                                            &fo->data->msg_iter);
3442                if (unlikely(!copied)) {
3443                        tcp_skb_tsorted_anchor_cleanup(syn_data);
3444                        kfree_skb(syn_data);
3445                        goto fallback;
3446                }
3447                if (copied != space) {
3448                        skb_trim(syn_data, copied);
3449                        space = copied;
3450                }
3451        }
3452        /* No more data pending in inet_wait_for_connect() */
3453        if (space == fo->size)
3454                fo->data = NULL;
3455        fo->copied = space;
3456
3457        tcp_connect_queue_skb(sk, syn_data);
3458        if (syn_data->len)
3459                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3460
3461        err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3462
3463        syn->skb_mstamp = syn_data->skb_mstamp;
3464
3465        /* Now full SYN+DATA was cloned and sent (or not),
3466         * remove the SYN from the original skb (syn_data)
3467         * we keep in write queue in case of a retransmit, as we
3468         * also have the SYN packet (with no data) in the same queue.
3469         */
3470        TCP_SKB_CB(syn_data)->seq++;
3471        TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3472        if (!err) {
3473                tp->syn_data = (fo->copied > 0);
3474                tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3475                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3476                goto done;
3477        }
3478
3479        /* data was not sent, put it in write_queue */
3480        __skb_queue_tail(&sk->sk_write_queue, syn_data);
3481        tp->packets_out -= tcp_skb_pcount(syn_data);
3482
3483fallback:
3484        /* Send a regular SYN with Fast Open cookie request option */
3485        if (fo->cookie.len > 0)
3486                fo->cookie.len = 0;
3487        err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3488        if (err)
3489                tp->syn_fastopen = 0;
3490done:
3491        fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3492        return err;
3493}
3494
3495/* Build a SYN and send it off. */
3496int tcp_connect(struct sock *sk)
3497{
3498        struct tcp_sock *tp = tcp_sk(sk);
3499        struct sk_buff *buff;
3500        int err;
3501
3502        tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3503
3504        if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3505                return -EHOSTUNREACH; /* Routing failure or similar. */
3506
3507        tcp_connect_init(sk);
3508
3509        if (unlikely(tp->repair)) {
3510                tcp_finish_connect(sk, NULL);
3511                return 0;
3512        }
3513
3514        buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3515        if (unlikely(!buff))
3516                return -ENOBUFS;
3517
3518        tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3519        tcp_mstamp_refresh(tp);
3520        tp->retrans_stamp = tcp_time_stamp(tp);
3521        tcp_connect_queue_skb(sk, buff);
3522        tcp_ecn_send_syn(sk, buff);
3523        tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3524
3525        /* Send off SYN; include data in Fast Open. */
3526        err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3527              tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3528        if (err == -ECONNREFUSED)
3529                return err;
3530
3531        /* We change tp->snd_nxt after the tcp_transmit_skb() call
3532         * in order to make this packet get counted in tcpOutSegs.
3533         */
3534        tp->snd_nxt = tp->write_seq;
3535        tp->pushed_seq = tp->write_seq;
3536        buff = tcp_send_head(sk);
3537        if (unlikely(buff)) {
3538                tp->snd_nxt     = TCP_SKB_CB(buff)->seq;
3539                tp->pushed_seq  = TCP_SKB_CB(buff)->seq;
3540        }
3541        TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3542
3543        /* Timer for repeating the SYN until an answer. */
3544        inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3545                                  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3546        return 0;
3547}
3548EXPORT_SYMBOL(tcp_connect);
3549
3550/* Send out a delayed ack, the caller does the policy checking
3551 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3552 * for details.
3553 */
3554void tcp_send_delayed_ack(struct sock *sk)
3555{
3556        struct inet_connection_sock *icsk = inet_csk(sk);
3557        int ato = icsk->icsk_ack.ato;
3558        unsigned long timeout;
3559
3560        tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3561
3562        if (ato > TCP_DELACK_MIN) {
3563                const struct tcp_sock *tp = tcp_sk(sk);
3564                int max_ato = HZ / 2;
3565
3566                if (icsk->icsk_ack.pingpong ||
3567                    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3568                        max_ato = TCP_DELACK_MAX;
3569
3570                /* Slow path, intersegment interval is "high". */
3571
3572                /* If some rtt estimate is known, use it to bound delayed ack.
3573                 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3574                 * directly.
3575                 */
3576                if (tp->srtt_us) {
3577                        int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3578                                        TCP_DELACK_MIN);
3579
3580                        if (rtt < max_ato)
3581                                max_ato = rtt;
3582                }
3583
3584                ato = min(ato, max_ato);
3585        }
3586
3587        /* Stay within the limit we were given */
3588        timeout = jiffies + ato;
3589
3590        /* Use new timeout only if there wasn't a older one earlier. */
3591        if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3592                /* If delack timer was blocked or is about to expire,
3593                 * send ACK now.
3594                 */
3595                if (icsk->icsk_ack.blocked ||
3596                    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3597                        tcp_send_ack(sk);
3598                        return;
3599                }
3600
3601                if (!time_before(timeout, icsk->icsk_ack.timeout))
3602                        timeout = icsk->icsk_ack.timeout;
3603        }
3604        icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3605        icsk->icsk_ack.timeout = timeout;
3606        sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3607}
3608
3609/* This routine sends an ack and also updates the window. */
3610void tcp_send_ack(struct sock *sk)
3611{
3612        struct sk_buff *buff;
3613
3614        /* If we have been reset, we may not send again. */
3615        if (sk->sk_state == TCP_CLOSE)
3616                return;
3617
3618        tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3619
3620        /* We are not putting this on the write queue, so
3621         * tcp_transmit_skb() will set the ownership to this
3622         * sock.
3623         */
3624        buff = alloc_skb(MAX_TCP_HEADER,
3625                         sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3626        if (unlikely(!buff)) {
3627                inet_csk_schedule_ack(sk);
3628                inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3629                inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3630                                          TCP_DELACK_MAX, TCP_RTO_MAX);
3631                return;
3632        }
3633
3634        /* Reserve space for headers and prepare control bits. */
3635        skb_reserve(buff, MAX_TCP_HEADER);
3636        tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3637
3638        /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3639         * too much.
3640         * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3641         */
3642        skb_set_tcp_pure_ack(buff);
3643
3644        /* Send it off, this clears delayed acks for us. */
3645        tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3646}
3647EXPORT_SYMBOL_GPL(tcp_send_ack);
3648
3649/* This routine sends a packet with an out of date sequence
3650 * number. It assumes the other end will try to ack it.
3651 *
3652 * Question: what should we make while urgent mode?
3653 * 4.4BSD forces sending single byte of data. We cannot send
3654 * out of window data, because we have SND.NXT==SND.MAX...
3655 *
3656 * Current solution: to send TWO zero-length segments in urgent mode:
3657 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3658 * out-of-date with SND.UNA-1 to probe window.
3659 */
3660static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3661{
3662        struct tcp_sock *tp = tcp_sk(sk);
3663        struct sk_buff *skb;
3664
3665        /* We don't queue it, tcp_transmit_skb() sets ownership. */
3666        skb = alloc_skb(MAX_TCP_HEADER,
3667                        sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3668        if (!skb)
3669                return -1;
3670
3671        /* Reserve space for headers and set control bits. */
3672        skb_reserve(skb, MAX_TCP_HEADER);
3673        /* Use a previous sequence.  This should cause the other
3674         * end to send an ack.  Don't queue or clone SKB, just
3675         * send it.
3676         */
3677        tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3678        NET_INC_STATS(sock_net(sk), mib);
3679        return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3680}
3681
3682/* Called from setsockopt( ... TCP_REPAIR ) */
3683void tcp_send_window_probe(struct sock *sk)
3684{
3685        if (sk->sk_state == TCP_ESTABLISHED) {
3686                tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3687                tcp_mstamp_refresh(tcp_sk(sk));
3688                tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3689        }
3690}
3691
3692/* Initiate keepalive or window probe from timer. */
3693int tcp_write_wakeup(struct sock *sk, int mib)
3694{
3695        struct tcp_sock *tp = tcp_sk(sk);
3696        struct sk_buff *skb;
3697
3698        if (sk->sk_state == TCP_CLOSE)
3699                return -1;
3700
3701        skb = tcp_send_head(sk);
3702        if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3703                int err;
3704                unsigned int mss = tcp_current_mss(sk);
3705                unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3706
3707                if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3708                        tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3709
3710                /* We are probing the opening of a window
3711                 * but the window size is != 0
3712                 * must have been a result SWS avoidance ( sender )
3713                 */
3714                if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3715                    skb->len > mss) {
3716                        seg_size = min(seg_size, mss);
3717                        TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3718                        if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3719                                         skb, seg_size, mss, GFP_ATOMIC))
3720                                return -1;
3721                } else if (!tcp_skb_pcount(skb))
3722                        tcp_set_skb_tso_segs(skb, mss);
3723
3724                TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3725                err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3726                if (!err)
3727                        tcp_event_new_data_sent(sk, skb);
3728                return err;
3729        } else {
3730                if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3731                        tcp_xmit_probe_skb(sk, 1, mib);
3732                return tcp_xmit_probe_skb(sk, 0, mib);
3733        }
3734}
3735
3736/* A window probe timeout has occurred.  If window is not closed send
3737 * a partial packet else a zero probe.
3738 */
3739void tcp_send_probe0(struct sock *sk)
3740{
3741        struct inet_connection_sock *icsk = inet_csk(sk);
3742        struct tcp_sock *tp = tcp_sk(sk);
3743        struct net *net = sock_net(sk);
3744        unsigned long probe_max;
3745        int err;
3746
3747        err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3748
3749        if (tp->packets_out || tcp_write_queue_empty(sk)) {
3750                /* Cancel probe timer, if it is not required. */
3751                icsk->icsk_probes_out = 0;
3752                icsk->icsk_backoff = 0;
3753                return;
3754        }
3755
3756        if (err <= 0) {
3757                if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3758                        icsk->icsk_backoff++;
3759                icsk->icsk_probes_out++;
3760                probe_max = TCP_RTO_MAX;
3761        } else {
3762                /* If packet was not sent due to local congestion,
3763                 * do not backoff and do not remember icsk_probes_out.
3764                 * Let local senders to fight for local resources.
3765                 *
3766                 * Use accumulated backoff yet.
3767                 */
3768                if (!icsk->icsk_probes_out)
3769                        icsk->icsk_probes_out = 1;
3770                probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3771        }
3772        inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3773                                  tcp_probe0_when(sk, probe_max),
3774                                  TCP_RTO_MAX);
3775}
3776
3777int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3778{
3779        const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3780        struct flowi fl;
3781        int res;
3782
3783        tcp_rsk(req)->txhash = net_tx_rndhash();
3784        res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3785        if (!res) {
3786                __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3787                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3788                if (unlikely(tcp_passive_fastopen(sk)))
3789                        tcp_sk(sk)->total_retrans++;
3790                trace_tcp_retransmit_synack(sk, req);
3791        }
3792        return res;
3793}
3794EXPORT_SYMBOL(tcp_rtx_synack);
3795