linux/net/ipv4/udp.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              The User Datagram Protocol (UDP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12 *              Hirokazu Takahashi, <taka@valinux.co.jp>
  13 *
  14 * Fixes:
  15 *              Alan Cox        :       verify_area() calls
  16 *              Alan Cox        :       stopped close while in use off icmp
  17 *                                      messages. Not a fix but a botch that
  18 *                                      for udp at least is 'valid'.
  19 *              Alan Cox        :       Fixed icmp handling properly
  20 *              Alan Cox        :       Correct error for oversized datagrams
  21 *              Alan Cox        :       Tidied select() semantics.
  22 *              Alan Cox        :       udp_err() fixed properly, also now
  23 *                                      select and read wake correctly on errors
  24 *              Alan Cox        :       udp_send verify_area moved to avoid mem leak
  25 *              Alan Cox        :       UDP can count its memory
  26 *              Alan Cox        :       send to an unknown connection causes
  27 *                                      an ECONNREFUSED off the icmp, but
  28 *                                      does NOT close.
  29 *              Alan Cox        :       Switched to new sk_buff handlers. No more backlog!
  30 *              Alan Cox        :       Using generic datagram code. Even smaller and the PEEK
  31 *                                      bug no longer crashes it.
  32 *              Fred Van Kempen :       Net2e support for sk->broadcast.
  33 *              Alan Cox        :       Uses skb_free_datagram
  34 *              Alan Cox        :       Added get/set sockopt support.
  35 *              Alan Cox        :       Broadcasting without option set returns EACCES.
  36 *              Alan Cox        :       No wakeup calls. Instead we now use the callbacks.
  37 *              Alan Cox        :       Use ip_tos and ip_ttl
  38 *              Alan Cox        :       SNMP Mibs
  39 *              Alan Cox        :       MSG_DONTROUTE, and 0.0.0.0 support.
  40 *              Matt Dillon     :       UDP length checks.
  41 *              Alan Cox        :       Smarter af_inet used properly.
  42 *              Alan Cox        :       Use new kernel side addressing.
  43 *              Alan Cox        :       Incorrect return on truncated datagram receive.
  44 *      Arnt Gulbrandsen        :       New udp_send and stuff
  45 *              Alan Cox        :       Cache last socket
  46 *              Alan Cox        :       Route cache
  47 *              Jon Peatfield   :       Minor efficiency fix to sendto().
  48 *              Mike Shaver     :       RFC1122 checks.
  49 *              Alan Cox        :       Nonblocking error fix.
  50 *      Willy Konynenberg       :       Transparent proxying support.
  51 *              Mike McLagan    :       Routing by source
  52 *              David S. Miller :       New socket lookup architecture.
  53 *                                      Last socket cache retained as it
  54 *                                      does have a high hit rate.
  55 *              Olaf Kirch      :       Don't linearise iovec on sendmsg.
  56 *              Andi Kleen      :       Some cleanups, cache destination entry
  57 *                                      for connect.
  58 *      Vitaly E. Lavrov        :       Transparent proxy revived after year coma.
  59 *              Melvin Smith    :       Check msg_name not msg_namelen in sendto(),
  60 *                                      return ENOTCONN for unconnected sockets (POSIX)
  61 *              Janos Farkas    :       don't deliver multi/broadcasts to a different
  62 *                                      bound-to-device socket
  63 *      Hirokazu Takahashi      :       HW checksumming for outgoing UDP
  64 *                                      datagrams.
  65 *      Hirokazu Takahashi      :       sendfile() on UDP works now.
  66 *              Arnaldo C. Melo :       convert /proc/net/udp to seq_file
  67 *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
  68 *      Alexey Kuznetsov:               allow both IPv4 and IPv6 sockets to bind
  69 *                                      a single port at the same time.
  70 *      Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71 *      James Chapman           :       Add L2TP encapsulation type.
  72 *
  73 *
  74 *              This program is free software; you can redistribute it and/or
  75 *              modify it under the terms of the GNU General Public License
  76 *              as published by the Free Software Foundation; either version
  77 *              2 of the License, or (at your option) any later version.
  78 */
  79
  80#define pr_fmt(fmt) "UDP: " fmt
  81
  82#include <linux/uaccess.h>
  83#include <asm/ioctls.h>
  84#include <linux/bootmem.h>
  85#include <linux/highmem.h>
  86#include <linux/swap.h>
  87#include <linux/types.h>
  88#include <linux/fcntl.h>
  89#include <linux/module.h>
  90#include <linux/socket.h>
  91#include <linux/sockios.h>
  92#include <linux/igmp.h>
  93#include <linux/inetdevice.h>
  94#include <linux/in.h>
  95#include <linux/errno.h>
  96#include <linux/timer.h>
  97#include <linux/mm.h>
  98#include <linux/inet.h>
  99#include <linux/netdevice.h>
 100#include <linux/slab.h>
 101#include <net/tcp_states.h>
 102#include <linux/skbuff.h>
 103#include <linux/proc_fs.h>
 104#include <linux/seq_file.h>
 105#include <net/net_namespace.h>
 106#include <net/icmp.h>
 107#include <net/inet_hashtables.h>
 108#include <net/route.h>
 109#include <net/checksum.h>
 110#include <net/xfrm.h>
 111#include <trace/events/udp.h>
 112#include <linux/static_key.h>
 113#include <trace/events/skb.h>
 114#include <net/busy_poll.h>
 115#include "udp_impl.h"
 116#include <net/sock_reuseport.h>
 117#include <net/addrconf.h>
 118
 119struct udp_table udp_table __read_mostly;
 120EXPORT_SYMBOL(udp_table);
 121
 122long sysctl_udp_mem[3] __read_mostly;
 123EXPORT_SYMBOL(sysctl_udp_mem);
 124
 125int sysctl_udp_rmem_min __read_mostly;
 126EXPORT_SYMBOL(sysctl_udp_rmem_min);
 127
 128int sysctl_udp_wmem_min __read_mostly;
 129EXPORT_SYMBOL(sysctl_udp_wmem_min);
 130
 131atomic_long_t udp_memory_allocated;
 132EXPORT_SYMBOL(udp_memory_allocated);
 133
 134#define MAX_UDP_PORTS 65536
 135#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 136
 137/* IPCB reference means this can not be used from early demux */
 138static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
 139{
 140#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 141        if (!net->ipv4.sysctl_udp_l3mdev_accept &&
 142            skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 143                return true;
 144#endif
 145        return false;
 146}
 147
 148static int udp_lib_lport_inuse(struct net *net, __u16 num,
 149                               const struct udp_hslot *hslot,
 150                               unsigned long *bitmap,
 151                               struct sock *sk, unsigned int log)
 152{
 153        struct sock *sk2;
 154        kuid_t uid = sock_i_uid(sk);
 155
 156        sk_for_each(sk2, &hslot->head) {
 157                if (net_eq(sock_net(sk2), net) &&
 158                    sk2 != sk &&
 159                    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 160                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 161                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 162                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 163                    inet_rcv_saddr_equal(sk, sk2, true)) {
 164                        if (sk2->sk_reuseport && sk->sk_reuseport &&
 165                            !rcu_access_pointer(sk->sk_reuseport_cb) &&
 166                            uid_eq(uid, sock_i_uid(sk2))) {
 167                                if (!bitmap)
 168                                        return 0;
 169                        } else {
 170                                if (!bitmap)
 171                                        return 1;
 172                                __set_bit(udp_sk(sk2)->udp_port_hash >> log,
 173                                          bitmap);
 174                        }
 175                }
 176        }
 177        return 0;
 178}
 179
 180/*
 181 * Note: we still hold spinlock of primary hash chain, so no other writer
 182 * can insert/delete a socket with local_port == num
 183 */
 184static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 185                                struct udp_hslot *hslot2,
 186                                struct sock *sk)
 187{
 188        struct sock *sk2;
 189        kuid_t uid = sock_i_uid(sk);
 190        int res = 0;
 191
 192        spin_lock(&hslot2->lock);
 193        udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 194                if (net_eq(sock_net(sk2), net) &&
 195                    sk2 != sk &&
 196                    (udp_sk(sk2)->udp_port_hash == num) &&
 197                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 198                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 199                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 200                    inet_rcv_saddr_equal(sk, sk2, true)) {
 201                        if (sk2->sk_reuseport && sk->sk_reuseport &&
 202                            !rcu_access_pointer(sk->sk_reuseport_cb) &&
 203                            uid_eq(uid, sock_i_uid(sk2))) {
 204                                res = 0;
 205                        } else {
 206                                res = 1;
 207                        }
 208                        break;
 209                }
 210        }
 211        spin_unlock(&hslot2->lock);
 212        return res;
 213}
 214
 215static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 216{
 217        struct net *net = sock_net(sk);
 218        kuid_t uid = sock_i_uid(sk);
 219        struct sock *sk2;
 220
 221        sk_for_each(sk2, &hslot->head) {
 222                if (net_eq(sock_net(sk2), net) &&
 223                    sk2 != sk &&
 224                    sk2->sk_family == sk->sk_family &&
 225                    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 226                    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 227                    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 228                    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 229                    inet_rcv_saddr_equal(sk, sk2, false)) {
 230                        return reuseport_add_sock(sk, sk2);
 231                }
 232        }
 233
 234        return reuseport_alloc(sk);
 235}
 236
 237/**
 238 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 239 *
 240 *  @sk:          socket struct in question
 241 *  @snum:        port number to look up
 242 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 243 *                   with NULL address
 244 */
 245int udp_lib_get_port(struct sock *sk, unsigned short snum,
 246                     unsigned int hash2_nulladdr)
 247{
 248        struct udp_hslot *hslot, *hslot2;
 249        struct udp_table *udptable = sk->sk_prot->h.udp_table;
 250        int    error = 1;
 251        struct net *net = sock_net(sk);
 252
 253        if (!snum) {
 254                int low, high, remaining;
 255                unsigned int rand;
 256                unsigned short first, last;
 257                DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 258
 259                inet_get_local_port_range(net, &low, &high);
 260                remaining = (high - low) + 1;
 261
 262                rand = prandom_u32();
 263                first = reciprocal_scale(rand, remaining) + low;
 264                /*
 265                 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 266                 */
 267                rand = (rand | 1) * (udptable->mask + 1);
 268                last = first + udptable->mask + 1;
 269                do {
 270                        hslot = udp_hashslot(udptable, net, first);
 271                        bitmap_zero(bitmap, PORTS_PER_CHAIN);
 272                        spin_lock_bh(&hslot->lock);
 273                        udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 274                                            udptable->log);
 275
 276                        snum = first;
 277                        /*
 278                         * Iterate on all possible values of snum for this hash.
 279                         * Using steps of an odd multiple of UDP_HTABLE_SIZE
 280                         * give us randomization and full range coverage.
 281                         */
 282                        do {
 283                                if (low <= snum && snum <= high &&
 284                                    !test_bit(snum >> udptable->log, bitmap) &&
 285                                    !inet_is_local_reserved_port(net, snum))
 286                                        goto found;
 287                                snum += rand;
 288                        } while (snum != first);
 289                        spin_unlock_bh(&hslot->lock);
 290                        cond_resched();
 291                } while (++first != last);
 292                goto fail;
 293        } else {
 294                hslot = udp_hashslot(udptable, net, snum);
 295                spin_lock_bh(&hslot->lock);
 296                if (hslot->count > 10) {
 297                        int exist;
 298                        unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 299
 300                        slot2          &= udptable->mask;
 301                        hash2_nulladdr &= udptable->mask;
 302
 303                        hslot2 = udp_hashslot2(udptable, slot2);
 304                        if (hslot->count < hslot2->count)
 305                                goto scan_primary_hash;
 306
 307                        exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 308                        if (!exist && (hash2_nulladdr != slot2)) {
 309                                hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 310                                exist = udp_lib_lport_inuse2(net, snum, hslot2,
 311                                                             sk);
 312                        }
 313                        if (exist)
 314                                goto fail_unlock;
 315                        else
 316                                goto found;
 317                }
 318scan_primary_hash:
 319                if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 320                        goto fail_unlock;
 321        }
 322found:
 323        inet_sk(sk)->inet_num = snum;
 324        udp_sk(sk)->udp_port_hash = snum;
 325        udp_sk(sk)->udp_portaddr_hash ^= snum;
 326        if (sk_unhashed(sk)) {
 327                if (sk->sk_reuseport &&
 328                    udp_reuseport_add_sock(sk, hslot)) {
 329                        inet_sk(sk)->inet_num = 0;
 330                        udp_sk(sk)->udp_port_hash = 0;
 331                        udp_sk(sk)->udp_portaddr_hash ^= snum;
 332                        goto fail_unlock;
 333                }
 334
 335                sk_add_node_rcu(sk, &hslot->head);
 336                hslot->count++;
 337                sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 338
 339                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 340                spin_lock(&hslot2->lock);
 341                if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 342                    sk->sk_family == AF_INET6)
 343                        hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 344                                           &hslot2->head);
 345                else
 346                        hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 347                                           &hslot2->head);
 348                hslot2->count++;
 349                spin_unlock(&hslot2->lock);
 350        }
 351        sock_set_flag(sk, SOCK_RCU_FREE);
 352        error = 0;
 353fail_unlock:
 354        spin_unlock_bh(&hslot->lock);
 355fail:
 356        return error;
 357}
 358EXPORT_SYMBOL(udp_lib_get_port);
 359
 360int udp_v4_get_port(struct sock *sk, unsigned short snum)
 361{
 362        unsigned int hash2_nulladdr =
 363                ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 364        unsigned int hash2_partial =
 365                ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 366
 367        /* precompute partial secondary hash */
 368        udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 369        return udp_lib_get_port(sk, snum, hash2_nulladdr);
 370}
 371
 372static int compute_score(struct sock *sk, struct net *net,
 373                         __be32 saddr, __be16 sport,
 374                         __be32 daddr, unsigned short hnum,
 375                         int dif, int sdif, bool exact_dif)
 376{
 377        int score;
 378        struct inet_sock *inet;
 379
 380        if (!net_eq(sock_net(sk), net) ||
 381            udp_sk(sk)->udp_port_hash != hnum ||
 382            ipv6_only_sock(sk))
 383                return -1;
 384
 385        score = (sk->sk_family == PF_INET) ? 2 : 1;
 386        inet = inet_sk(sk);
 387
 388        if (inet->inet_rcv_saddr) {
 389                if (inet->inet_rcv_saddr != daddr)
 390                        return -1;
 391                score += 4;
 392        }
 393
 394        if (inet->inet_daddr) {
 395                if (inet->inet_daddr != saddr)
 396                        return -1;
 397                score += 4;
 398        }
 399
 400        if (inet->inet_dport) {
 401                if (inet->inet_dport != sport)
 402                        return -1;
 403                score += 4;
 404        }
 405
 406        if (sk->sk_bound_dev_if || exact_dif) {
 407                bool dev_match = (sk->sk_bound_dev_if == dif ||
 408                                  sk->sk_bound_dev_if == sdif);
 409
 410                if (exact_dif && !dev_match)
 411                        return -1;
 412                if (sk->sk_bound_dev_if && dev_match)
 413                        score += 4;
 414        }
 415
 416        if (sk->sk_incoming_cpu == raw_smp_processor_id())
 417                score++;
 418        return score;
 419}
 420
 421static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
 422                       const __u16 lport, const __be32 faddr,
 423                       const __be16 fport)
 424{
 425        static u32 udp_ehash_secret __read_mostly;
 426
 427        net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 428
 429        return __inet_ehashfn(laddr, lport, faddr, fport,
 430                              udp_ehash_secret + net_hash_mix(net));
 431}
 432
 433/* called with rcu_read_lock() */
 434static struct sock *udp4_lib_lookup2(struct net *net,
 435                                     __be32 saddr, __be16 sport,
 436                                     __be32 daddr, unsigned int hnum,
 437                                     int dif, int sdif, bool exact_dif,
 438                                     struct udp_hslot *hslot2,
 439                                     struct sk_buff *skb)
 440{
 441        struct sock *sk, *result;
 442        int score, badness;
 443        u32 hash = 0;
 444
 445        result = NULL;
 446        badness = 0;
 447        udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 448                score = compute_score(sk, net, saddr, sport,
 449                                      daddr, hnum, dif, sdif, exact_dif);
 450                if (score > badness) {
 451                        if (sk->sk_reuseport) {
 452                                hash = udp_ehashfn(net, daddr, hnum,
 453                                                   saddr, sport);
 454                                result = reuseport_select_sock(sk, hash, skb,
 455                                                        sizeof(struct udphdr));
 456                                if (result)
 457                                        return result;
 458                        }
 459                        badness = score;
 460                        result = sk;
 461                }
 462        }
 463        return result;
 464}
 465
 466/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 467 * harder than this. -DaveM
 468 */
 469struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 470                __be16 sport, __be32 daddr, __be16 dport, int dif,
 471                int sdif, struct udp_table *udptable, struct sk_buff *skb)
 472{
 473        struct sock *sk, *result;
 474        unsigned short hnum = ntohs(dport);
 475        unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
 476        struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
 477        bool exact_dif = udp_lib_exact_dif_match(net, skb);
 478        int score, badness;
 479        u32 hash = 0;
 480
 481        if (hslot->count > 10) {
 482                hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 483                slot2 = hash2 & udptable->mask;
 484                hslot2 = &udptable->hash2[slot2];
 485                if (hslot->count < hslot2->count)
 486                        goto begin;
 487
 488                result = udp4_lib_lookup2(net, saddr, sport,
 489                                          daddr, hnum, dif, sdif,
 490                                          exact_dif, hslot2, skb);
 491                if (!result) {
 492                        unsigned int old_slot2 = slot2;
 493                        hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 494                        slot2 = hash2 & udptable->mask;
 495                        /* avoid searching the same slot again. */
 496                        if (unlikely(slot2 == old_slot2))
 497                                return result;
 498
 499                        hslot2 = &udptable->hash2[slot2];
 500                        if (hslot->count < hslot2->count)
 501                                goto begin;
 502
 503                        result = udp4_lib_lookup2(net, saddr, sport,
 504                                                  daddr, hnum, dif, sdif,
 505                                                  exact_dif, hslot2, skb);
 506                }
 507                return result;
 508        }
 509begin:
 510        result = NULL;
 511        badness = 0;
 512        sk_for_each_rcu(sk, &hslot->head) {
 513                score = compute_score(sk, net, saddr, sport,
 514                                      daddr, hnum, dif, sdif, exact_dif);
 515                if (score > badness) {
 516                        if (sk->sk_reuseport) {
 517                                hash = udp_ehashfn(net, daddr, hnum,
 518                                                   saddr, sport);
 519                                result = reuseport_select_sock(sk, hash, skb,
 520                                                        sizeof(struct udphdr));
 521                                if (result)
 522                                        return result;
 523                        }
 524                        result = sk;
 525                        badness = score;
 526                }
 527        }
 528        return result;
 529}
 530EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 531
 532static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 533                                                 __be16 sport, __be16 dport,
 534                                                 struct udp_table *udptable)
 535{
 536        const struct iphdr *iph = ip_hdr(skb);
 537
 538        return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 539                                 iph->daddr, dport, inet_iif(skb),
 540                                 inet_sdif(skb), udptable, skb);
 541}
 542
 543struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
 544                                 __be16 sport, __be16 dport)
 545{
 546        return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
 547}
 548EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
 549
 550/* Must be called under rcu_read_lock().
 551 * Does increment socket refcount.
 552 */
 553#if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
 554    IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
 555    IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 556struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 557                             __be32 daddr, __be16 dport, int dif)
 558{
 559        struct sock *sk;
 560
 561        sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 562                               dif, 0, &udp_table, NULL);
 563        if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 564                sk = NULL;
 565        return sk;
 566}
 567EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 568#endif
 569
 570static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 571                                       __be16 loc_port, __be32 loc_addr,
 572                                       __be16 rmt_port, __be32 rmt_addr,
 573                                       int dif, int sdif, unsigned short hnum)
 574{
 575        struct inet_sock *inet = inet_sk(sk);
 576
 577        if (!net_eq(sock_net(sk), net) ||
 578            udp_sk(sk)->udp_port_hash != hnum ||
 579            (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 580            (inet->inet_dport != rmt_port && inet->inet_dport) ||
 581            (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 582            ipv6_only_sock(sk) ||
 583            (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
 584             sk->sk_bound_dev_if != sdif))
 585                return false;
 586        if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 587                return false;
 588        return true;
 589}
 590
 591/*
 592 * This routine is called by the ICMP module when it gets some
 593 * sort of error condition.  If err < 0 then the socket should
 594 * be closed and the error returned to the user.  If err > 0
 595 * it's just the icmp type << 8 | icmp code.
 596 * Header points to the ip header of the error packet. We move
 597 * on past this. Then (as it used to claim before adjustment)
 598 * header points to the first 8 bytes of the udp header.  We need
 599 * to find the appropriate port.
 600 */
 601
 602void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 603{
 604        struct inet_sock *inet;
 605        const struct iphdr *iph = (const struct iphdr *)skb->data;
 606        struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 607        const int type = icmp_hdr(skb)->type;
 608        const int code = icmp_hdr(skb)->code;
 609        struct sock *sk;
 610        int harderr;
 611        int err;
 612        struct net *net = dev_net(skb->dev);
 613
 614        sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 615                               iph->saddr, uh->source, skb->dev->ifindex, 0,
 616                               udptable, NULL);
 617        if (!sk) {
 618                __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 619                return; /* No socket for error */
 620        }
 621
 622        err = 0;
 623        harderr = 0;
 624        inet = inet_sk(sk);
 625
 626        switch (type) {
 627        default:
 628        case ICMP_TIME_EXCEEDED:
 629                err = EHOSTUNREACH;
 630                break;
 631        case ICMP_SOURCE_QUENCH:
 632                goto out;
 633        case ICMP_PARAMETERPROB:
 634                err = EPROTO;
 635                harderr = 1;
 636                break;
 637        case ICMP_DEST_UNREACH:
 638                if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 639                        ipv4_sk_update_pmtu(skb, sk, info);
 640                        if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 641                                err = EMSGSIZE;
 642                                harderr = 1;
 643                                break;
 644                        }
 645                        goto out;
 646                }
 647                err = EHOSTUNREACH;
 648                if (code <= NR_ICMP_UNREACH) {
 649                        harderr = icmp_err_convert[code].fatal;
 650                        err = icmp_err_convert[code].errno;
 651                }
 652                break;
 653        case ICMP_REDIRECT:
 654                ipv4_sk_redirect(skb, sk);
 655                goto out;
 656        }
 657
 658        /*
 659         *      RFC1122: OK.  Passes ICMP errors back to application, as per
 660         *      4.1.3.3.
 661         */
 662        if (!inet->recverr) {
 663                if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 664                        goto out;
 665        } else
 666                ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 667
 668        sk->sk_err = err;
 669        sk->sk_error_report(sk);
 670out:
 671        return;
 672}
 673
 674void udp_err(struct sk_buff *skb, u32 info)
 675{
 676        __udp4_lib_err(skb, info, &udp_table);
 677}
 678
 679/*
 680 * Throw away all pending data and cancel the corking. Socket is locked.
 681 */
 682void udp_flush_pending_frames(struct sock *sk)
 683{
 684        struct udp_sock *up = udp_sk(sk);
 685
 686        if (up->pending) {
 687                up->len = 0;
 688                up->pending = 0;
 689                ip_flush_pending_frames(sk);
 690        }
 691}
 692EXPORT_SYMBOL(udp_flush_pending_frames);
 693
 694/**
 695 *      udp4_hwcsum  -  handle outgoing HW checksumming
 696 *      @skb:   sk_buff containing the filled-in UDP header
 697 *              (checksum field must be zeroed out)
 698 *      @src:   source IP address
 699 *      @dst:   destination IP address
 700 */
 701void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 702{
 703        struct udphdr *uh = udp_hdr(skb);
 704        int offset = skb_transport_offset(skb);
 705        int len = skb->len - offset;
 706        int hlen = len;
 707        __wsum csum = 0;
 708
 709        if (!skb_has_frag_list(skb)) {
 710                /*
 711                 * Only one fragment on the socket.
 712                 */
 713                skb->csum_start = skb_transport_header(skb) - skb->head;
 714                skb->csum_offset = offsetof(struct udphdr, check);
 715                uh->check = ~csum_tcpudp_magic(src, dst, len,
 716                                               IPPROTO_UDP, 0);
 717        } else {
 718                struct sk_buff *frags;
 719
 720                /*
 721                 * HW-checksum won't work as there are two or more
 722                 * fragments on the socket so that all csums of sk_buffs
 723                 * should be together
 724                 */
 725                skb_walk_frags(skb, frags) {
 726                        csum = csum_add(csum, frags->csum);
 727                        hlen -= frags->len;
 728                }
 729
 730                csum = skb_checksum(skb, offset, hlen, csum);
 731                skb->ip_summed = CHECKSUM_NONE;
 732
 733                uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 734                if (uh->check == 0)
 735                        uh->check = CSUM_MANGLED_0;
 736        }
 737}
 738EXPORT_SYMBOL_GPL(udp4_hwcsum);
 739
 740/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 741 * for the simple case like when setting the checksum for a UDP tunnel.
 742 */
 743void udp_set_csum(bool nocheck, struct sk_buff *skb,
 744                  __be32 saddr, __be32 daddr, int len)
 745{
 746        struct udphdr *uh = udp_hdr(skb);
 747
 748        if (nocheck) {
 749                uh->check = 0;
 750        } else if (skb_is_gso(skb)) {
 751                uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 752        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 753                uh->check = 0;
 754                uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 755                if (uh->check == 0)
 756                        uh->check = CSUM_MANGLED_0;
 757        } else {
 758                skb->ip_summed = CHECKSUM_PARTIAL;
 759                skb->csum_start = skb_transport_header(skb) - skb->head;
 760                skb->csum_offset = offsetof(struct udphdr, check);
 761                uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 762        }
 763}
 764EXPORT_SYMBOL(udp_set_csum);
 765
 766static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
 767{
 768        struct sock *sk = skb->sk;
 769        struct inet_sock *inet = inet_sk(sk);
 770        struct udphdr *uh;
 771        int err = 0;
 772        int is_udplite = IS_UDPLITE(sk);
 773        int offset = skb_transport_offset(skb);
 774        int len = skb->len - offset;
 775        __wsum csum = 0;
 776
 777        /*
 778         * Create a UDP header
 779         */
 780        uh = udp_hdr(skb);
 781        uh->source = inet->inet_sport;
 782        uh->dest = fl4->fl4_dport;
 783        uh->len = htons(len);
 784        uh->check = 0;
 785
 786        if (is_udplite)                                  /*     UDP-Lite      */
 787                csum = udplite_csum(skb);
 788
 789        else if (sk->sk_no_check_tx) {                   /* UDP csum off */
 790
 791                skb->ip_summed = CHECKSUM_NONE;
 792                goto send;
 793
 794        } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 795
 796                udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 797                goto send;
 798
 799        } else
 800                csum = udp_csum(skb);
 801
 802        /* add protocol-dependent pseudo-header */
 803        uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 804                                      sk->sk_protocol, csum);
 805        if (uh->check == 0)
 806                uh->check = CSUM_MANGLED_0;
 807
 808send:
 809        err = ip_send_skb(sock_net(sk), skb);
 810        if (err) {
 811                if (err == -ENOBUFS && !inet->recverr) {
 812                        UDP_INC_STATS(sock_net(sk),
 813                                      UDP_MIB_SNDBUFERRORS, is_udplite);
 814                        err = 0;
 815                }
 816        } else
 817                UDP_INC_STATS(sock_net(sk),
 818                              UDP_MIB_OUTDATAGRAMS, is_udplite);
 819        return err;
 820}
 821
 822/*
 823 * Push out all pending data as one UDP datagram. Socket is locked.
 824 */
 825int udp_push_pending_frames(struct sock *sk)
 826{
 827        struct udp_sock  *up = udp_sk(sk);
 828        struct inet_sock *inet = inet_sk(sk);
 829        struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 830        struct sk_buff *skb;
 831        int err = 0;
 832
 833        skb = ip_finish_skb(sk, fl4);
 834        if (!skb)
 835                goto out;
 836
 837        err = udp_send_skb(skb, fl4);
 838
 839out:
 840        up->len = 0;
 841        up->pending = 0;
 842        return err;
 843}
 844EXPORT_SYMBOL(udp_push_pending_frames);
 845
 846int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
 847{
 848        struct inet_sock *inet = inet_sk(sk);
 849        struct udp_sock *up = udp_sk(sk);
 850        struct flowi4 fl4_stack;
 851        struct flowi4 *fl4;
 852        int ulen = len;
 853        struct ipcm_cookie ipc;
 854        struct rtable *rt = NULL;
 855        int free = 0;
 856        int connected = 0;
 857        __be32 daddr, faddr, saddr;
 858        __be16 dport;
 859        u8  tos;
 860        int err, is_udplite = IS_UDPLITE(sk);
 861        int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
 862        int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
 863        struct sk_buff *skb;
 864        struct ip_options_data opt_copy;
 865
 866        if (len > 0xFFFF)
 867                return -EMSGSIZE;
 868
 869        /*
 870         *      Check the flags.
 871         */
 872
 873        if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
 874                return -EOPNOTSUPP;
 875
 876        ipc.opt = NULL;
 877        ipc.tx_flags = 0;
 878        ipc.ttl = 0;
 879        ipc.tos = -1;
 880
 881        getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
 882
 883        fl4 = &inet->cork.fl.u.ip4;
 884        if (up->pending) {
 885                /*
 886                 * There are pending frames.
 887                 * The socket lock must be held while it's corked.
 888                 */
 889                lock_sock(sk);
 890                if (likely(up->pending)) {
 891                        if (unlikely(up->pending != AF_INET)) {
 892                                release_sock(sk);
 893                                return -EINVAL;
 894                        }
 895                        goto do_append_data;
 896                }
 897                release_sock(sk);
 898        }
 899        ulen += sizeof(struct udphdr);
 900
 901        /*
 902         *      Get and verify the address.
 903         */
 904        if (msg->msg_name) {
 905                DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
 906                if (msg->msg_namelen < sizeof(*usin))
 907                        return -EINVAL;
 908                if (usin->sin_family != AF_INET) {
 909                        if (usin->sin_family != AF_UNSPEC)
 910                                return -EAFNOSUPPORT;
 911                }
 912
 913                daddr = usin->sin_addr.s_addr;
 914                dport = usin->sin_port;
 915                if (dport == 0)
 916                        return -EINVAL;
 917        } else {
 918                if (sk->sk_state != TCP_ESTABLISHED)
 919                        return -EDESTADDRREQ;
 920                daddr = inet->inet_daddr;
 921                dport = inet->inet_dport;
 922                /* Open fast path for connected socket.
 923                   Route will not be used, if at least one option is set.
 924                 */
 925                connected = 1;
 926        }
 927
 928        ipc.sockc.tsflags = sk->sk_tsflags;
 929        ipc.addr = inet->inet_saddr;
 930        ipc.oif = sk->sk_bound_dev_if;
 931
 932        if (msg->msg_controllen) {
 933                err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
 934                if (unlikely(err)) {
 935                        kfree(ipc.opt);
 936                        return err;
 937                }
 938                if (ipc.opt)
 939                        free = 1;
 940                connected = 0;
 941        }
 942        if (!ipc.opt) {
 943                struct ip_options_rcu *inet_opt;
 944
 945                rcu_read_lock();
 946                inet_opt = rcu_dereference(inet->inet_opt);
 947                if (inet_opt) {
 948                        memcpy(&opt_copy, inet_opt,
 949                               sizeof(*inet_opt) + inet_opt->opt.optlen);
 950                        ipc.opt = &opt_copy.opt;
 951                }
 952                rcu_read_unlock();
 953        }
 954
 955        saddr = ipc.addr;
 956        ipc.addr = faddr = daddr;
 957
 958        sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
 959
 960        if (ipc.opt && ipc.opt->opt.srr) {
 961                if (!daddr)
 962                        return -EINVAL;
 963                faddr = ipc.opt->opt.faddr;
 964                connected = 0;
 965        }
 966        tos = get_rttos(&ipc, inet);
 967        if (sock_flag(sk, SOCK_LOCALROUTE) ||
 968            (msg->msg_flags & MSG_DONTROUTE) ||
 969            (ipc.opt && ipc.opt->opt.is_strictroute)) {
 970                tos |= RTO_ONLINK;
 971                connected = 0;
 972        }
 973
 974        if (ipv4_is_multicast(daddr)) {
 975                if (!ipc.oif)
 976                        ipc.oif = inet->mc_index;
 977                if (!saddr)
 978                        saddr = inet->mc_addr;
 979                connected = 0;
 980        } else if (!ipc.oif) {
 981                ipc.oif = inet->uc_index;
 982        } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
 983                /* oif is set, packet is to local broadcast and
 984                 * and uc_index is set. oif is most likely set
 985                 * by sk_bound_dev_if. If uc_index != oif check if the
 986                 * oif is an L3 master and uc_index is an L3 slave.
 987                 * If so, we want to allow the send using the uc_index.
 988                 */
 989                if (ipc.oif != inet->uc_index &&
 990                    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
 991                                                              inet->uc_index)) {
 992                        ipc.oif = inet->uc_index;
 993                }
 994        }
 995
 996        if (connected)
 997                rt = (struct rtable *)sk_dst_check(sk, 0);
 998
 999        if (!rt) {
1000                struct net *net = sock_net(sk);
1001                __u8 flow_flags = inet_sk_flowi_flags(sk);
1002
1003                fl4 = &fl4_stack;
1004
1005                flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1006                                   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1007                                   flow_flags,
1008                                   faddr, saddr, dport, inet->inet_sport,
1009                                   sk->sk_uid);
1010
1011                security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1012                rt = ip_route_output_flow(net, fl4, sk);
1013                if (IS_ERR(rt)) {
1014                        err = PTR_ERR(rt);
1015                        rt = NULL;
1016                        if (err == -ENETUNREACH)
1017                                IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1018                        goto out;
1019                }
1020
1021                err = -EACCES;
1022                if ((rt->rt_flags & RTCF_BROADCAST) &&
1023                    !sock_flag(sk, SOCK_BROADCAST))
1024                        goto out;
1025                if (connected)
1026                        sk_dst_set(sk, dst_clone(&rt->dst));
1027        }
1028
1029        if (msg->msg_flags&MSG_CONFIRM)
1030                goto do_confirm;
1031back_from_confirm:
1032
1033        saddr = fl4->saddr;
1034        if (!ipc.addr)
1035                daddr = ipc.addr = fl4->daddr;
1036
1037        /* Lockless fast path for the non-corking case. */
1038        if (!corkreq) {
1039                skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1040                                  sizeof(struct udphdr), &ipc, &rt,
1041                                  msg->msg_flags);
1042                err = PTR_ERR(skb);
1043                if (!IS_ERR_OR_NULL(skb))
1044                        err = udp_send_skb(skb, fl4);
1045                goto out;
1046        }
1047
1048        lock_sock(sk);
1049        if (unlikely(up->pending)) {
1050                /* The socket is already corked while preparing it. */
1051                /* ... which is an evident application bug. --ANK */
1052                release_sock(sk);
1053
1054                net_dbg_ratelimited("socket already corked\n");
1055                err = -EINVAL;
1056                goto out;
1057        }
1058        /*
1059         *      Now cork the socket to pend data.
1060         */
1061        fl4 = &inet->cork.fl.u.ip4;
1062        fl4->daddr = daddr;
1063        fl4->saddr = saddr;
1064        fl4->fl4_dport = dport;
1065        fl4->fl4_sport = inet->inet_sport;
1066        up->pending = AF_INET;
1067
1068do_append_data:
1069        up->len += ulen;
1070        err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1071                             sizeof(struct udphdr), &ipc, &rt,
1072                             corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1073        if (err)
1074                udp_flush_pending_frames(sk);
1075        else if (!corkreq)
1076                err = udp_push_pending_frames(sk);
1077        else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1078                up->pending = 0;
1079        release_sock(sk);
1080
1081out:
1082        ip_rt_put(rt);
1083        if (free)
1084                kfree(ipc.opt);
1085        if (!err)
1086                return len;
1087        /*
1088         * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1089         * ENOBUFS might not be good (it's not tunable per se), but otherwise
1090         * we don't have a good statistic (IpOutDiscards but it can be too many
1091         * things).  We could add another new stat but at least for now that
1092         * seems like overkill.
1093         */
1094        if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1095                UDP_INC_STATS(sock_net(sk),
1096                              UDP_MIB_SNDBUFERRORS, is_udplite);
1097        }
1098        return err;
1099
1100do_confirm:
1101        if (msg->msg_flags & MSG_PROBE)
1102                dst_confirm_neigh(&rt->dst, &fl4->daddr);
1103        if (!(msg->msg_flags&MSG_PROBE) || len)
1104                goto back_from_confirm;
1105        err = 0;
1106        goto out;
1107}
1108EXPORT_SYMBOL(udp_sendmsg);
1109
1110int udp_sendpage(struct sock *sk, struct page *page, int offset,
1111                 size_t size, int flags)
1112{
1113        struct inet_sock *inet = inet_sk(sk);
1114        struct udp_sock *up = udp_sk(sk);
1115        int ret;
1116
1117        if (flags & MSG_SENDPAGE_NOTLAST)
1118                flags |= MSG_MORE;
1119
1120        if (!up->pending) {
1121                struct msghdr msg = {   .msg_flags = flags|MSG_MORE };
1122
1123                /* Call udp_sendmsg to specify destination address which
1124                 * sendpage interface can't pass.
1125                 * This will succeed only when the socket is connected.
1126                 */
1127                ret = udp_sendmsg(sk, &msg, 0);
1128                if (ret < 0)
1129                        return ret;
1130        }
1131
1132        lock_sock(sk);
1133
1134        if (unlikely(!up->pending)) {
1135                release_sock(sk);
1136
1137                net_dbg_ratelimited("cork failed\n");
1138                return -EINVAL;
1139        }
1140
1141        ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1142                             page, offset, size, flags);
1143        if (ret == -EOPNOTSUPP) {
1144                release_sock(sk);
1145                return sock_no_sendpage(sk->sk_socket, page, offset,
1146                                        size, flags);
1147        }
1148        if (ret < 0) {
1149                udp_flush_pending_frames(sk);
1150                goto out;
1151        }
1152
1153        up->len += size;
1154        if (!(up->corkflag || (flags&MSG_MORE)))
1155                ret = udp_push_pending_frames(sk);
1156        if (!ret)
1157                ret = size;
1158out:
1159        release_sock(sk);
1160        return ret;
1161}
1162
1163#define UDP_SKB_IS_STATELESS 0x80000000
1164
1165static void udp_set_dev_scratch(struct sk_buff *skb)
1166{
1167        struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1168
1169        BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1170        scratch->_tsize_state = skb->truesize;
1171#if BITS_PER_LONG == 64
1172        scratch->len = skb->len;
1173        scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1174        scratch->is_linear = !skb_is_nonlinear(skb);
1175#endif
1176        /* all head states execept sp (dst, sk, nf) are always cleared by
1177         * udp_rcv() and we need to preserve secpath, if present, to eventually
1178         * process IP_CMSG_PASSSEC at recvmsg() time
1179         */
1180        if (likely(!skb_sec_path(skb)))
1181                scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1182}
1183
1184static int udp_skb_truesize(struct sk_buff *skb)
1185{
1186        return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1187}
1188
1189static bool udp_skb_has_head_state(struct sk_buff *skb)
1190{
1191        return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1192}
1193
1194/* fully reclaim rmem/fwd memory allocated for skb */
1195static void udp_rmem_release(struct sock *sk, int size, int partial,
1196                             bool rx_queue_lock_held)
1197{
1198        struct udp_sock *up = udp_sk(sk);
1199        struct sk_buff_head *sk_queue;
1200        int amt;
1201
1202        if (likely(partial)) {
1203                up->forward_deficit += size;
1204                size = up->forward_deficit;
1205                if (size < (sk->sk_rcvbuf >> 2))
1206                        return;
1207        } else {
1208                size += up->forward_deficit;
1209        }
1210        up->forward_deficit = 0;
1211
1212        /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1213         * if the called don't held it already
1214         */
1215        sk_queue = &sk->sk_receive_queue;
1216        if (!rx_queue_lock_held)
1217                spin_lock(&sk_queue->lock);
1218
1219
1220        sk->sk_forward_alloc += size;
1221        amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1222        sk->sk_forward_alloc -= amt;
1223
1224        if (amt)
1225                __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1226
1227        atomic_sub(size, &sk->sk_rmem_alloc);
1228
1229        /* this can save us from acquiring the rx queue lock on next receive */
1230        skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1231
1232        if (!rx_queue_lock_held)
1233                spin_unlock(&sk_queue->lock);
1234}
1235
1236/* Note: called with reader_queue.lock held.
1237 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1238 * This avoids a cache line miss while receive_queue lock is held.
1239 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1240 */
1241void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1242{
1243        prefetch(&skb->data);
1244        udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1245}
1246EXPORT_SYMBOL(udp_skb_destructor);
1247
1248/* as above, but the caller held the rx queue lock, too */
1249static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1250{
1251        prefetch(&skb->data);
1252        udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1253}
1254
1255/* Idea of busylocks is to let producers grab an extra spinlock
1256 * to relieve pressure on the receive_queue spinlock shared by consumer.
1257 * Under flood, this means that only one producer can be in line
1258 * trying to acquire the receive_queue spinlock.
1259 * These busylock can be allocated on a per cpu manner, instead of a
1260 * per socket one (that would consume a cache line per socket)
1261 */
1262static int udp_busylocks_log __read_mostly;
1263static spinlock_t *udp_busylocks __read_mostly;
1264
1265static spinlock_t *busylock_acquire(void *ptr)
1266{
1267        spinlock_t *busy;
1268
1269        busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1270        spin_lock(busy);
1271        return busy;
1272}
1273
1274static void busylock_release(spinlock_t *busy)
1275{
1276        if (busy)
1277                spin_unlock(busy);
1278}
1279
1280int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1281{
1282        struct sk_buff_head *list = &sk->sk_receive_queue;
1283        int rmem, delta, amt, err = -ENOMEM;
1284        spinlock_t *busy = NULL;
1285        int size;
1286
1287        /* try to avoid the costly atomic add/sub pair when the receive
1288         * queue is full; always allow at least a packet
1289         */
1290        rmem = atomic_read(&sk->sk_rmem_alloc);
1291        if (rmem > sk->sk_rcvbuf)
1292                goto drop;
1293
1294        /* Under mem pressure, it might be helpful to help udp_recvmsg()
1295         * having linear skbs :
1296         * - Reduce memory overhead and thus increase receive queue capacity
1297         * - Less cache line misses at copyout() time
1298         * - Less work at consume_skb() (less alien page frag freeing)
1299         */
1300        if (rmem > (sk->sk_rcvbuf >> 1)) {
1301                skb_condense(skb);
1302
1303                busy = busylock_acquire(sk);
1304        }
1305        size = skb->truesize;
1306        udp_set_dev_scratch(skb);
1307
1308        /* we drop only if the receive buf is full and the receive
1309         * queue contains some other skb
1310         */
1311        rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1312        if (rmem > (size + sk->sk_rcvbuf))
1313                goto uncharge_drop;
1314
1315        spin_lock(&list->lock);
1316        if (size >= sk->sk_forward_alloc) {
1317                amt = sk_mem_pages(size);
1318                delta = amt << SK_MEM_QUANTUM_SHIFT;
1319                if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1320                        err = -ENOBUFS;
1321                        spin_unlock(&list->lock);
1322                        goto uncharge_drop;
1323                }
1324
1325                sk->sk_forward_alloc += delta;
1326        }
1327
1328        sk->sk_forward_alloc -= size;
1329
1330        /* no need to setup a destructor, we will explicitly release the
1331         * forward allocated memory on dequeue
1332         */
1333        sock_skb_set_dropcount(sk, skb);
1334
1335        __skb_queue_tail(list, skb);
1336        spin_unlock(&list->lock);
1337
1338        if (!sock_flag(sk, SOCK_DEAD))
1339                sk->sk_data_ready(sk);
1340
1341        busylock_release(busy);
1342        return 0;
1343
1344uncharge_drop:
1345        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1346
1347drop:
1348        atomic_inc(&sk->sk_drops);
1349        busylock_release(busy);
1350        return err;
1351}
1352EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1353
1354void udp_destruct_sock(struct sock *sk)
1355{
1356        /* reclaim completely the forward allocated memory */
1357        struct udp_sock *up = udp_sk(sk);
1358        unsigned int total = 0;
1359        struct sk_buff *skb;
1360
1361        skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1362        while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1363                total += skb->truesize;
1364                kfree_skb(skb);
1365        }
1366        udp_rmem_release(sk, total, 0, true);
1367
1368        inet_sock_destruct(sk);
1369}
1370EXPORT_SYMBOL_GPL(udp_destruct_sock);
1371
1372int udp_init_sock(struct sock *sk)
1373{
1374        skb_queue_head_init(&udp_sk(sk)->reader_queue);
1375        sk->sk_destruct = udp_destruct_sock;
1376        return 0;
1377}
1378EXPORT_SYMBOL_GPL(udp_init_sock);
1379
1380void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1381{
1382        if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1383                bool slow = lock_sock_fast(sk);
1384
1385                sk_peek_offset_bwd(sk, len);
1386                unlock_sock_fast(sk, slow);
1387        }
1388
1389        if (!skb_unref(skb))
1390                return;
1391
1392        /* In the more common cases we cleared the head states previously,
1393         * see __udp_queue_rcv_skb().
1394         */
1395        if (unlikely(udp_skb_has_head_state(skb)))
1396                skb_release_head_state(skb);
1397        __consume_stateless_skb(skb);
1398}
1399EXPORT_SYMBOL_GPL(skb_consume_udp);
1400
1401static struct sk_buff *__first_packet_length(struct sock *sk,
1402                                             struct sk_buff_head *rcvq,
1403                                             int *total)
1404{
1405        struct sk_buff *skb;
1406
1407        while ((skb = skb_peek(rcvq)) != NULL) {
1408                if (udp_lib_checksum_complete(skb)) {
1409                        __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1410                                        IS_UDPLITE(sk));
1411                        __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1412                                        IS_UDPLITE(sk));
1413                        atomic_inc(&sk->sk_drops);
1414                        __skb_unlink(skb, rcvq);
1415                        *total += skb->truesize;
1416                        kfree_skb(skb);
1417                } else {
1418                        /* the csum related bits could be changed, refresh
1419                         * the scratch area
1420                         */
1421                        udp_set_dev_scratch(skb);
1422                        break;
1423                }
1424        }
1425        return skb;
1426}
1427
1428/**
1429 *      first_packet_length     - return length of first packet in receive queue
1430 *      @sk: socket
1431 *
1432 *      Drops all bad checksum frames, until a valid one is found.
1433 *      Returns the length of found skb, or -1 if none is found.
1434 */
1435static int first_packet_length(struct sock *sk)
1436{
1437        struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1438        struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1439        struct sk_buff *skb;
1440        int total = 0;
1441        int res;
1442
1443        spin_lock_bh(&rcvq->lock);
1444        skb = __first_packet_length(sk, rcvq, &total);
1445        if (!skb && !skb_queue_empty(sk_queue)) {
1446                spin_lock(&sk_queue->lock);
1447                skb_queue_splice_tail_init(sk_queue, rcvq);
1448                spin_unlock(&sk_queue->lock);
1449
1450                skb = __first_packet_length(sk, rcvq, &total);
1451        }
1452        res = skb ? skb->len : -1;
1453        if (total)
1454                udp_rmem_release(sk, total, 1, false);
1455        spin_unlock_bh(&rcvq->lock);
1456        return res;
1457}
1458
1459/*
1460 *      IOCTL requests applicable to the UDP protocol
1461 */
1462
1463int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1464{
1465        switch (cmd) {
1466        case SIOCOUTQ:
1467        {
1468                int amount = sk_wmem_alloc_get(sk);
1469
1470                return put_user(amount, (int __user *)arg);
1471        }
1472
1473        case SIOCINQ:
1474        {
1475                int amount = max_t(int, 0, first_packet_length(sk));
1476
1477                return put_user(amount, (int __user *)arg);
1478        }
1479
1480        default:
1481                return -ENOIOCTLCMD;
1482        }
1483
1484        return 0;
1485}
1486EXPORT_SYMBOL(udp_ioctl);
1487
1488struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1489                               int noblock, int *peeked, int *off, int *err)
1490{
1491        struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1492        struct sk_buff_head *queue;
1493        struct sk_buff *last;
1494        long timeo;
1495        int error;
1496
1497        queue = &udp_sk(sk)->reader_queue;
1498        flags |= noblock ? MSG_DONTWAIT : 0;
1499        timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1500        do {
1501                struct sk_buff *skb;
1502
1503                error = sock_error(sk);
1504                if (error)
1505                        break;
1506
1507                error = -EAGAIN;
1508                *peeked = 0;
1509                do {
1510                        spin_lock_bh(&queue->lock);
1511                        skb = __skb_try_recv_from_queue(sk, queue, flags,
1512                                                        udp_skb_destructor,
1513                                                        peeked, off, err,
1514                                                        &last);
1515                        if (skb) {
1516                                spin_unlock_bh(&queue->lock);
1517                                return skb;
1518                        }
1519
1520                        if (skb_queue_empty(sk_queue)) {
1521                                spin_unlock_bh(&queue->lock);
1522                                goto busy_check;
1523                        }
1524
1525                        /* refill the reader queue and walk it again
1526                         * keep both queues locked to avoid re-acquiring
1527                         * the sk_receive_queue lock if fwd memory scheduling
1528                         * is needed.
1529                         */
1530                        spin_lock(&sk_queue->lock);
1531                        skb_queue_splice_tail_init(sk_queue, queue);
1532
1533                        skb = __skb_try_recv_from_queue(sk, queue, flags,
1534                                                        udp_skb_dtor_locked,
1535                                                        peeked, off, err,
1536                                                        &last);
1537                        spin_unlock(&sk_queue->lock);
1538                        spin_unlock_bh(&queue->lock);
1539                        if (skb)
1540                                return skb;
1541
1542busy_check:
1543                        if (!sk_can_busy_loop(sk))
1544                                break;
1545
1546                        sk_busy_loop(sk, flags & MSG_DONTWAIT);
1547                } while (!skb_queue_empty(sk_queue));
1548
1549                /* sk_queue is empty, reader_queue may contain peeked packets */
1550        } while (timeo &&
1551                 !__skb_wait_for_more_packets(sk, &error, &timeo,
1552                                              (struct sk_buff *)sk_queue));
1553
1554        *err = error;
1555        return NULL;
1556}
1557EXPORT_SYMBOL_GPL(__skb_recv_udp);
1558
1559/*
1560 *      This should be easy, if there is something there we
1561 *      return it, otherwise we block.
1562 */
1563
1564int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1565                int flags, int *addr_len)
1566{
1567        struct inet_sock *inet = inet_sk(sk);
1568        DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1569        struct sk_buff *skb;
1570        unsigned int ulen, copied;
1571        int peeked, peeking, off;
1572        int err;
1573        int is_udplite = IS_UDPLITE(sk);
1574        bool checksum_valid = false;
1575
1576        if (flags & MSG_ERRQUEUE)
1577                return ip_recv_error(sk, msg, len, addr_len);
1578
1579try_again:
1580        peeking = flags & MSG_PEEK;
1581        off = sk_peek_offset(sk, flags);
1582        skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1583        if (!skb)
1584                return err;
1585
1586        ulen = udp_skb_len(skb);
1587        copied = len;
1588        if (copied > ulen - off)
1589                copied = ulen - off;
1590        else if (copied < ulen)
1591                msg->msg_flags |= MSG_TRUNC;
1592
1593        /*
1594         * If checksum is needed at all, try to do it while copying the
1595         * data.  If the data is truncated, or if we only want a partial
1596         * coverage checksum (UDP-Lite), do it before the copy.
1597         */
1598
1599        if (copied < ulen || peeking ||
1600            (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1601                checksum_valid = udp_skb_csum_unnecessary(skb) ||
1602                                !__udp_lib_checksum_complete(skb);
1603                if (!checksum_valid)
1604                        goto csum_copy_err;
1605        }
1606
1607        if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1608                if (udp_skb_is_linear(skb))
1609                        err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1610                else
1611                        err = skb_copy_datagram_msg(skb, off, msg, copied);
1612        } else {
1613                err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1614
1615                if (err == -EINVAL)
1616                        goto csum_copy_err;
1617        }
1618
1619        if (unlikely(err)) {
1620                if (!peeked) {
1621                        atomic_inc(&sk->sk_drops);
1622                        UDP_INC_STATS(sock_net(sk),
1623                                      UDP_MIB_INERRORS, is_udplite);
1624                }
1625                kfree_skb(skb);
1626                return err;
1627        }
1628
1629        if (!peeked)
1630                UDP_INC_STATS(sock_net(sk),
1631                              UDP_MIB_INDATAGRAMS, is_udplite);
1632
1633        sock_recv_ts_and_drops(msg, sk, skb);
1634
1635        /* Copy the address. */
1636        if (sin) {
1637                sin->sin_family = AF_INET;
1638                sin->sin_port = udp_hdr(skb)->source;
1639                sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1640                memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1641                *addr_len = sizeof(*sin);
1642        }
1643        if (inet->cmsg_flags)
1644                ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1645
1646        err = copied;
1647        if (flags & MSG_TRUNC)
1648                err = ulen;
1649
1650        skb_consume_udp(sk, skb, peeking ? -err : err);
1651        return err;
1652
1653csum_copy_err:
1654        if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1655                                 udp_skb_destructor)) {
1656                UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1657                UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1658        }
1659        kfree_skb(skb);
1660
1661        /* starting over for a new packet, but check if we need to yield */
1662        cond_resched();
1663        msg->msg_flags &= ~MSG_TRUNC;
1664        goto try_again;
1665}
1666
1667int __udp_disconnect(struct sock *sk, int flags)
1668{
1669        struct inet_sock *inet = inet_sk(sk);
1670        /*
1671         *      1003.1g - break association.
1672         */
1673
1674        sk->sk_state = TCP_CLOSE;
1675        inet->inet_daddr = 0;
1676        inet->inet_dport = 0;
1677        sock_rps_reset_rxhash(sk);
1678        sk->sk_bound_dev_if = 0;
1679        if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1680                inet_reset_saddr(sk);
1681
1682        if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1683                sk->sk_prot->unhash(sk);
1684                inet->inet_sport = 0;
1685        }
1686        sk_dst_reset(sk);
1687        return 0;
1688}
1689EXPORT_SYMBOL(__udp_disconnect);
1690
1691int udp_disconnect(struct sock *sk, int flags)
1692{
1693        lock_sock(sk);
1694        __udp_disconnect(sk, flags);
1695        release_sock(sk);
1696        return 0;
1697}
1698EXPORT_SYMBOL(udp_disconnect);
1699
1700void udp_lib_unhash(struct sock *sk)
1701{
1702        if (sk_hashed(sk)) {
1703                struct udp_table *udptable = sk->sk_prot->h.udp_table;
1704                struct udp_hslot *hslot, *hslot2;
1705
1706                hslot  = udp_hashslot(udptable, sock_net(sk),
1707                                      udp_sk(sk)->udp_port_hash);
1708                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1709
1710                spin_lock_bh(&hslot->lock);
1711                if (rcu_access_pointer(sk->sk_reuseport_cb))
1712                        reuseport_detach_sock(sk);
1713                if (sk_del_node_init_rcu(sk)) {
1714                        hslot->count--;
1715                        inet_sk(sk)->inet_num = 0;
1716                        sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1717
1718                        spin_lock(&hslot2->lock);
1719                        hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1720                        hslot2->count--;
1721                        spin_unlock(&hslot2->lock);
1722                }
1723                spin_unlock_bh(&hslot->lock);
1724        }
1725}
1726EXPORT_SYMBOL(udp_lib_unhash);
1727
1728/*
1729 * inet_rcv_saddr was changed, we must rehash secondary hash
1730 */
1731void udp_lib_rehash(struct sock *sk, u16 newhash)
1732{
1733        if (sk_hashed(sk)) {
1734                struct udp_table *udptable = sk->sk_prot->h.udp_table;
1735                struct udp_hslot *hslot, *hslot2, *nhslot2;
1736
1737                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1738                nhslot2 = udp_hashslot2(udptable, newhash);
1739                udp_sk(sk)->udp_portaddr_hash = newhash;
1740
1741                if (hslot2 != nhslot2 ||
1742                    rcu_access_pointer(sk->sk_reuseport_cb)) {
1743                        hslot = udp_hashslot(udptable, sock_net(sk),
1744                                             udp_sk(sk)->udp_port_hash);
1745                        /* we must lock primary chain too */
1746                        spin_lock_bh(&hslot->lock);
1747                        if (rcu_access_pointer(sk->sk_reuseport_cb))
1748                                reuseport_detach_sock(sk);
1749
1750                        if (hslot2 != nhslot2) {
1751                                spin_lock(&hslot2->lock);
1752                                hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1753                                hslot2->count--;
1754                                spin_unlock(&hslot2->lock);
1755
1756                                spin_lock(&nhslot2->lock);
1757                                hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1758                                                         &nhslot2->head);
1759                                nhslot2->count++;
1760                                spin_unlock(&nhslot2->lock);
1761                        }
1762
1763                        spin_unlock_bh(&hslot->lock);
1764                }
1765        }
1766}
1767EXPORT_SYMBOL(udp_lib_rehash);
1768
1769static void udp_v4_rehash(struct sock *sk)
1770{
1771        u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1772                                          inet_sk(sk)->inet_rcv_saddr,
1773                                          inet_sk(sk)->inet_num);
1774        udp_lib_rehash(sk, new_hash);
1775}
1776
1777static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1778{
1779        int rc;
1780
1781        if (inet_sk(sk)->inet_daddr) {
1782                sock_rps_save_rxhash(sk, skb);
1783                sk_mark_napi_id(sk, skb);
1784                sk_incoming_cpu_update(sk);
1785        } else {
1786                sk_mark_napi_id_once(sk, skb);
1787        }
1788
1789        rc = __udp_enqueue_schedule_skb(sk, skb);
1790        if (rc < 0) {
1791                int is_udplite = IS_UDPLITE(sk);
1792
1793                /* Note that an ENOMEM error is charged twice */
1794                if (rc == -ENOMEM)
1795                        UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1796                                        is_udplite);
1797                UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1798                kfree_skb(skb);
1799                trace_udp_fail_queue_rcv_skb(rc, sk);
1800                return -1;
1801        }
1802
1803        return 0;
1804}
1805
1806static struct static_key udp_encap_needed __read_mostly;
1807void udp_encap_enable(void)
1808{
1809        static_key_enable(&udp_encap_needed);
1810}
1811EXPORT_SYMBOL(udp_encap_enable);
1812
1813/* returns:
1814 *  -1: error
1815 *   0: success
1816 *  >0: "udp encap" protocol resubmission
1817 *
1818 * Note that in the success and error cases, the skb is assumed to
1819 * have either been requeued or freed.
1820 */
1821static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1822{
1823        struct udp_sock *up = udp_sk(sk);
1824        int is_udplite = IS_UDPLITE(sk);
1825
1826        /*
1827         *      Charge it to the socket, dropping if the queue is full.
1828         */
1829        if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1830                goto drop;
1831        nf_reset(skb);
1832
1833        if (static_key_false(&udp_encap_needed) && up->encap_type) {
1834                int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1835
1836                /*
1837                 * This is an encapsulation socket so pass the skb to
1838                 * the socket's udp_encap_rcv() hook. Otherwise, just
1839                 * fall through and pass this up the UDP socket.
1840                 * up->encap_rcv() returns the following value:
1841                 * =0 if skb was successfully passed to the encap
1842                 *    handler or was discarded by it.
1843                 * >0 if skb should be passed on to UDP.
1844                 * <0 if skb should be resubmitted as proto -N
1845                 */
1846
1847                /* if we're overly short, let UDP handle it */
1848                encap_rcv = READ_ONCE(up->encap_rcv);
1849                if (encap_rcv) {
1850                        int ret;
1851
1852                        /* Verify checksum before giving to encap */
1853                        if (udp_lib_checksum_complete(skb))
1854                                goto csum_error;
1855
1856                        ret = encap_rcv(sk, skb);
1857                        if (ret <= 0) {
1858                                __UDP_INC_STATS(sock_net(sk),
1859                                                UDP_MIB_INDATAGRAMS,
1860                                                is_udplite);
1861                                return -ret;
1862                        }
1863                }
1864
1865                /* FALLTHROUGH -- it's a UDP Packet */
1866        }
1867
1868        /*
1869         *      UDP-Lite specific tests, ignored on UDP sockets
1870         */
1871        if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1872
1873                /*
1874                 * MIB statistics other than incrementing the error count are
1875                 * disabled for the following two types of errors: these depend
1876                 * on the application settings, not on the functioning of the
1877                 * protocol stack as such.
1878                 *
1879                 * RFC 3828 here recommends (sec 3.3): "There should also be a
1880                 * way ... to ... at least let the receiving application block
1881                 * delivery of packets with coverage values less than a value
1882                 * provided by the application."
1883                 */
1884                if (up->pcrlen == 0) {          /* full coverage was set  */
1885                        net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1886                                            UDP_SKB_CB(skb)->cscov, skb->len);
1887                        goto drop;
1888                }
1889                /* The next case involves violating the min. coverage requested
1890                 * by the receiver. This is subtle: if receiver wants x and x is
1891                 * greater than the buffersize/MTU then receiver will complain
1892                 * that it wants x while sender emits packets of smaller size y.
1893                 * Therefore the above ...()->partial_cov statement is essential.
1894                 */
1895                if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1896                        net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1897                                            UDP_SKB_CB(skb)->cscov, up->pcrlen);
1898                        goto drop;
1899                }
1900        }
1901
1902        prefetch(&sk->sk_rmem_alloc);
1903        if (rcu_access_pointer(sk->sk_filter) &&
1904            udp_lib_checksum_complete(skb))
1905                        goto csum_error;
1906
1907        if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1908                goto drop;
1909
1910        udp_csum_pull_header(skb);
1911
1912        ipv4_pktinfo_prepare(sk, skb);
1913        return __udp_queue_rcv_skb(sk, skb);
1914
1915csum_error:
1916        __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1917drop:
1918        __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1919        atomic_inc(&sk->sk_drops);
1920        kfree_skb(skb);
1921        return -1;
1922}
1923
1924/* For TCP sockets, sk_rx_dst is protected by socket lock
1925 * For UDP, we use xchg() to guard against concurrent changes.
1926 */
1927bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1928{
1929        struct dst_entry *old;
1930
1931        if (dst_hold_safe(dst)) {
1932                old = xchg(&sk->sk_rx_dst, dst);
1933                dst_release(old);
1934                return old != dst;
1935        }
1936        return false;
1937}
1938EXPORT_SYMBOL(udp_sk_rx_dst_set);
1939
1940/*
1941 *      Multicasts and broadcasts go to each listener.
1942 *
1943 *      Note: called only from the BH handler context.
1944 */
1945static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1946                                    struct udphdr  *uh,
1947                                    __be32 saddr, __be32 daddr,
1948                                    struct udp_table *udptable,
1949                                    int proto)
1950{
1951        struct sock *sk, *first = NULL;
1952        unsigned short hnum = ntohs(uh->dest);
1953        struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1954        unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1955        unsigned int offset = offsetof(typeof(*sk), sk_node);
1956        int dif = skb->dev->ifindex;
1957        int sdif = inet_sdif(skb);
1958        struct hlist_node *node;
1959        struct sk_buff *nskb;
1960
1961        if (use_hash2) {
1962                hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1963                            udptable->mask;
1964                hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1965start_lookup:
1966                hslot = &udptable->hash2[hash2];
1967                offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1968        }
1969
1970        sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1971                if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1972                                         uh->source, saddr, dif, sdif, hnum))
1973                        continue;
1974
1975                if (!first) {
1976                        first = sk;
1977                        continue;
1978                }
1979                nskb = skb_clone(skb, GFP_ATOMIC);
1980
1981                if (unlikely(!nskb)) {
1982                        atomic_inc(&sk->sk_drops);
1983                        __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1984                                        IS_UDPLITE(sk));
1985                        __UDP_INC_STATS(net, UDP_MIB_INERRORS,
1986                                        IS_UDPLITE(sk));
1987                        continue;
1988                }
1989                if (udp_queue_rcv_skb(sk, nskb) > 0)
1990                        consume_skb(nskb);
1991        }
1992
1993        /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1994        if (use_hash2 && hash2 != hash2_any) {
1995                hash2 = hash2_any;
1996                goto start_lookup;
1997        }
1998
1999        if (first) {
2000                if (udp_queue_rcv_skb(first, skb) > 0)
2001                        consume_skb(skb);
2002        } else {
2003                kfree_skb(skb);
2004                __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2005                                proto == IPPROTO_UDPLITE);
2006        }
2007        return 0;
2008}
2009
2010/* Initialize UDP checksum. If exited with zero value (success),
2011 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2012 * Otherwise, csum completion requires chacksumming packet body,
2013 * including udp header and folding it to skb->csum.
2014 */
2015static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2016                                 int proto)
2017{
2018        int err;
2019
2020        UDP_SKB_CB(skb)->partial_cov = 0;
2021        UDP_SKB_CB(skb)->cscov = skb->len;
2022
2023        if (proto == IPPROTO_UDPLITE) {
2024                err = udplite_checksum_init(skb, uh);
2025                if (err)
2026                        return err;
2027
2028                if (UDP_SKB_CB(skb)->partial_cov) {
2029                        skb->csum = inet_compute_pseudo(skb, proto);
2030                        return 0;
2031                }
2032        }
2033
2034        /* Note, we are only interested in != 0 or == 0, thus the
2035         * force to int.
2036         */
2037        return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2038                                                         inet_compute_pseudo);
2039}
2040
2041/*
2042 *      All we need to do is get the socket, and then do a checksum.
2043 */
2044
2045int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2046                   int proto)
2047{
2048        struct sock *sk;
2049        struct udphdr *uh;
2050        unsigned short ulen;
2051        struct rtable *rt = skb_rtable(skb);
2052        __be32 saddr, daddr;
2053        struct net *net = dev_net(skb->dev);
2054
2055        /*
2056         *  Validate the packet.
2057         */
2058        if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2059                goto drop;              /* No space for header. */
2060
2061        uh   = udp_hdr(skb);
2062        ulen = ntohs(uh->len);
2063        saddr = ip_hdr(skb)->saddr;
2064        daddr = ip_hdr(skb)->daddr;
2065
2066        if (ulen > skb->len)
2067                goto short_packet;
2068
2069        if (proto == IPPROTO_UDP) {
2070                /* UDP validates ulen. */
2071                if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2072                        goto short_packet;
2073                uh = udp_hdr(skb);
2074        }
2075
2076        if (udp4_csum_init(skb, uh, proto))
2077                goto csum_error;
2078
2079        sk = skb_steal_sock(skb);
2080        if (sk) {
2081                struct dst_entry *dst = skb_dst(skb);
2082                int ret;
2083
2084                if (unlikely(sk->sk_rx_dst != dst))
2085                        udp_sk_rx_dst_set(sk, dst);
2086
2087                ret = udp_queue_rcv_skb(sk, skb);
2088                sock_put(sk);
2089                /* a return value > 0 means to resubmit the input, but
2090                 * it wants the return to be -protocol, or 0
2091                 */
2092                if (ret > 0)
2093                        return -ret;
2094                return 0;
2095        }
2096
2097        if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2098                return __udp4_lib_mcast_deliver(net, skb, uh,
2099                                                saddr, daddr, udptable, proto);
2100
2101        sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2102        if (sk) {
2103                int ret;
2104
2105                if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2106                        skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2107                                                 inet_compute_pseudo);
2108
2109                ret = udp_queue_rcv_skb(sk, skb);
2110
2111                /* a return value > 0 means to resubmit the input, but
2112                 * it wants the return to be -protocol, or 0
2113                 */
2114                if (ret > 0)
2115                        return -ret;
2116                return 0;
2117        }
2118
2119        if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2120                goto drop;
2121        nf_reset(skb);
2122
2123        /* No socket. Drop packet silently, if checksum is wrong */
2124        if (udp_lib_checksum_complete(skb))
2125                goto csum_error;
2126
2127        __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2128        icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2129
2130        /*
2131         * Hmm.  We got an UDP packet to a port to which we
2132         * don't wanna listen.  Ignore it.
2133         */
2134        kfree_skb(skb);
2135        return 0;
2136
2137short_packet:
2138        net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2139                            proto == IPPROTO_UDPLITE ? "Lite" : "",
2140                            &saddr, ntohs(uh->source),
2141                            ulen, skb->len,
2142                            &daddr, ntohs(uh->dest));
2143        goto drop;
2144
2145csum_error:
2146        /*
2147         * RFC1122: OK.  Discards the bad packet silently (as far as
2148         * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2149         */
2150        net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2151                            proto == IPPROTO_UDPLITE ? "Lite" : "",
2152                            &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2153                            ulen);
2154        __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2155drop:
2156        __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2157        kfree_skb(skb);
2158        return 0;
2159}
2160
2161/* We can only early demux multicast if there is a single matching socket.
2162 * If more than one socket found returns NULL
2163 */
2164static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2165                                                  __be16 loc_port, __be32 loc_addr,
2166                                                  __be16 rmt_port, __be32 rmt_addr,
2167                                                  int dif, int sdif)
2168{
2169        struct sock *sk, *result;
2170        unsigned short hnum = ntohs(loc_port);
2171        unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2172        struct udp_hslot *hslot = &udp_table.hash[slot];
2173
2174        /* Do not bother scanning a too big list */
2175        if (hslot->count > 10)
2176                return NULL;
2177
2178        result = NULL;
2179        sk_for_each_rcu(sk, &hslot->head) {
2180                if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2181                                        rmt_port, rmt_addr, dif, sdif, hnum)) {
2182                        if (result)
2183                                return NULL;
2184                        result = sk;
2185                }
2186        }
2187
2188        return result;
2189}
2190
2191/* For unicast we should only early demux connected sockets or we can
2192 * break forwarding setups.  The chains here can be long so only check
2193 * if the first socket is an exact match and if not move on.
2194 */
2195static struct sock *__udp4_lib_demux_lookup(struct net *net,
2196                                            __be16 loc_port, __be32 loc_addr,
2197                                            __be16 rmt_port, __be32 rmt_addr,
2198                                            int dif, int sdif)
2199{
2200        unsigned short hnum = ntohs(loc_port);
2201        unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2202        unsigned int slot2 = hash2 & udp_table.mask;
2203        struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2204        INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2205        const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2206        struct sock *sk;
2207
2208        udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2209                if (INET_MATCH(sk, net, acookie, rmt_addr,
2210                               loc_addr, ports, dif, sdif))
2211                        return sk;
2212                /* Only check first socket in chain */
2213                break;
2214        }
2215        return NULL;
2216}
2217
2218int udp_v4_early_demux(struct sk_buff *skb)
2219{
2220        struct net *net = dev_net(skb->dev);
2221        struct in_device *in_dev = NULL;
2222        const struct iphdr *iph;
2223        const struct udphdr *uh;
2224        struct sock *sk = NULL;
2225        struct dst_entry *dst;
2226        int dif = skb->dev->ifindex;
2227        int sdif = inet_sdif(skb);
2228        int ours;
2229
2230        /* validate the packet */
2231        if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2232                return 0;
2233
2234        iph = ip_hdr(skb);
2235        uh = udp_hdr(skb);
2236
2237        if (skb->pkt_type == PACKET_MULTICAST) {
2238                in_dev = __in_dev_get_rcu(skb->dev);
2239
2240                if (!in_dev)
2241                        return 0;
2242
2243                ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2244                                       iph->protocol);
2245                if (!ours)
2246                        return 0;
2247
2248                sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2249                                                   uh->source, iph->saddr,
2250                                                   dif, sdif);
2251        } else if (skb->pkt_type == PACKET_HOST) {
2252                sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2253                                             uh->source, iph->saddr, dif, sdif);
2254        }
2255
2256        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2257                return 0;
2258
2259        skb->sk = sk;
2260        skb->destructor = sock_efree;
2261        dst = READ_ONCE(sk->sk_rx_dst);
2262
2263        if (dst)
2264                dst = dst_check(dst, 0);
2265        if (dst) {
2266                u32 itag = 0;
2267
2268                /* set noref for now.
2269                 * any place which wants to hold dst has to call
2270                 * dst_hold_safe()
2271                 */
2272                skb_dst_set_noref(skb, dst);
2273
2274                /* for unconnected multicast sockets we need to validate
2275                 * the source on each packet
2276                 */
2277                if (!inet_sk(sk)->inet_daddr && in_dev)
2278                        return ip_mc_validate_source(skb, iph->daddr,
2279                                                     iph->saddr, iph->tos,
2280                                                     skb->dev, in_dev, &itag);
2281        }
2282        return 0;
2283}
2284
2285int udp_rcv(struct sk_buff *skb)
2286{
2287        return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2288}
2289
2290void udp_destroy_sock(struct sock *sk)
2291{
2292        struct udp_sock *up = udp_sk(sk);
2293        bool slow = lock_sock_fast(sk);
2294        udp_flush_pending_frames(sk);
2295        unlock_sock_fast(sk, slow);
2296        if (static_key_false(&udp_encap_needed) && up->encap_type) {
2297                void (*encap_destroy)(struct sock *sk);
2298                encap_destroy = READ_ONCE(up->encap_destroy);
2299                if (encap_destroy)
2300                        encap_destroy(sk);
2301        }
2302}
2303
2304/*
2305 *      Socket option code for UDP
2306 */
2307int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2308                       char __user *optval, unsigned int optlen,
2309                       int (*push_pending_frames)(struct sock *))
2310{
2311        struct udp_sock *up = udp_sk(sk);
2312        int val, valbool;
2313        int err = 0;
2314        int is_udplite = IS_UDPLITE(sk);
2315
2316        if (optlen < sizeof(int))
2317                return -EINVAL;
2318
2319        if (get_user(val, (int __user *)optval))
2320                return -EFAULT;
2321
2322        valbool = val ? 1 : 0;
2323
2324        switch (optname) {
2325        case UDP_CORK:
2326                if (val != 0) {
2327                        up->corkflag = 1;
2328                } else {
2329                        up->corkflag = 0;
2330                        lock_sock(sk);
2331                        push_pending_frames(sk);
2332                        release_sock(sk);
2333                }
2334                break;
2335
2336        case UDP_ENCAP:
2337                switch (val) {
2338                case 0:
2339                case UDP_ENCAP_ESPINUDP:
2340                case UDP_ENCAP_ESPINUDP_NON_IKE:
2341                        up->encap_rcv = xfrm4_udp_encap_rcv;
2342                        /* FALLTHROUGH */
2343                case UDP_ENCAP_L2TPINUDP:
2344                        up->encap_type = val;
2345                        udp_encap_enable();
2346                        break;
2347                default:
2348                        err = -ENOPROTOOPT;
2349                        break;
2350                }
2351                break;
2352
2353        case UDP_NO_CHECK6_TX:
2354                up->no_check6_tx = valbool;
2355                break;
2356
2357        case UDP_NO_CHECK6_RX:
2358                up->no_check6_rx = valbool;
2359                break;
2360
2361        /*
2362         *      UDP-Lite's partial checksum coverage (RFC 3828).
2363         */
2364        /* The sender sets actual checksum coverage length via this option.
2365         * The case coverage > packet length is handled by send module. */
2366        case UDPLITE_SEND_CSCOV:
2367                if (!is_udplite)         /* Disable the option on UDP sockets */
2368                        return -ENOPROTOOPT;
2369                if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2370                        val = 8;
2371                else if (val > USHRT_MAX)
2372                        val = USHRT_MAX;
2373                up->pcslen = val;
2374                up->pcflag |= UDPLITE_SEND_CC;
2375                break;
2376
2377        /* The receiver specifies a minimum checksum coverage value. To make
2378         * sense, this should be set to at least 8 (as done below). If zero is
2379         * used, this again means full checksum coverage.                     */
2380        case UDPLITE_RECV_CSCOV:
2381                if (!is_udplite)         /* Disable the option on UDP sockets */
2382                        return -ENOPROTOOPT;
2383                if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2384                        val = 8;
2385                else if (val > USHRT_MAX)
2386                        val = USHRT_MAX;
2387                up->pcrlen = val;
2388                up->pcflag |= UDPLITE_RECV_CC;
2389                break;
2390
2391        default:
2392                err = -ENOPROTOOPT;
2393                break;
2394        }
2395
2396        return err;
2397}
2398EXPORT_SYMBOL(udp_lib_setsockopt);
2399
2400int udp_setsockopt(struct sock *sk, int level, int optname,
2401                   char __user *optval, unsigned int optlen)
2402{
2403        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2404                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2405                                          udp_push_pending_frames);
2406        return ip_setsockopt(sk, level, optname, optval, optlen);
2407}
2408
2409#ifdef CONFIG_COMPAT
2410int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2411                          char __user *optval, unsigned int optlen)
2412{
2413        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2414                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2415                                          udp_push_pending_frames);
2416        return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2417}
2418#endif
2419
2420int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2421                       char __user *optval, int __user *optlen)
2422{
2423        struct udp_sock *up = udp_sk(sk);
2424        int val, len;
2425
2426        if (get_user(len, optlen))
2427                return -EFAULT;
2428
2429        len = min_t(unsigned int, len, sizeof(int));
2430
2431        if (len < 0)
2432                return -EINVAL;
2433
2434        switch (optname) {
2435        case UDP_CORK:
2436                val = up->corkflag;
2437                break;
2438
2439        case UDP_ENCAP:
2440                val = up->encap_type;
2441                break;
2442
2443        case UDP_NO_CHECK6_TX:
2444                val = up->no_check6_tx;
2445                break;
2446
2447        case UDP_NO_CHECK6_RX:
2448                val = up->no_check6_rx;
2449                break;
2450
2451        /* The following two cannot be changed on UDP sockets, the return is
2452         * always 0 (which corresponds to the full checksum coverage of UDP). */
2453        case UDPLITE_SEND_CSCOV:
2454                val = up->pcslen;
2455                break;
2456
2457        case UDPLITE_RECV_CSCOV:
2458                val = up->pcrlen;
2459                break;
2460
2461        default:
2462                return -ENOPROTOOPT;
2463        }
2464
2465        if (put_user(len, optlen))
2466                return -EFAULT;
2467        if (copy_to_user(optval, &val, len))
2468                return -EFAULT;
2469        return 0;
2470}
2471EXPORT_SYMBOL(udp_lib_getsockopt);
2472
2473int udp_getsockopt(struct sock *sk, int level, int optname,
2474                   char __user *optval, int __user *optlen)
2475{
2476        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2477                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2478        return ip_getsockopt(sk, level, optname, optval, optlen);
2479}
2480
2481#ifdef CONFIG_COMPAT
2482int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2483                                 char __user *optval, int __user *optlen)
2484{
2485        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2486                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2487        return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2488}
2489#endif
2490/**
2491 *      udp_poll - wait for a UDP event.
2492 *      @file - file struct
2493 *      @sock - socket
2494 *      @wait - poll table
2495 *
2496 *      This is same as datagram poll, except for the special case of
2497 *      blocking sockets. If application is using a blocking fd
2498 *      and a packet with checksum error is in the queue;
2499 *      then it could get return from select indicating data available
2500 *      but then block when reading it. Add special case code
2501 *      to work around these arguably broken applications.
2502 */
2503__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2504{
2505        __poll_t mask = datagram_poll(file, sock, wait);
2506        struct sock *sk = sock->sk;
2507
2508        if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2509                mask |= EPOLLIN | EPOLLRDNORM;
2510
2511        /* Check for false positives due to checksum errors */
2512        if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2513            !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2514                mask &= ~(EPOLLIN | EPOLLRDNORM);
2515
2516        return mask;
2517
2518}
2519EXPORT_SYMBOL(udp_poll);
2520
2521int udp_abort(struct sock *sk, int err)
2522{
2523        lock_sock(sk);
2524
2525        sk->sk_err = err;
2526        sk->sk_error_report(sk);
2527        __udp_disconnect(sk, 0);
2528
2529        release_sock(sk);
2530
2531        return 0;
2532}
2533EXPORT_SYMBOL_GPL(udp_abort);
2534
2535struct proto udp_prot = {
2536        .name              = "UDP",
2537        .owner             = THIS_MODULE,
2538        .close             = udp_lib_close,
2539        .connect           = ip4_datagram_connect,
2540        .disconnect        = udp_disconnect,
2541        .ioctl             = udp_ioctl,
2542        .init              = udp_init_sock,
2543        .destroy           = udp_destroy_sock,
2544        .setsockopt        = udp_setsockopt,
2545        .getsockopt        = udp_getsockopt,
2546        .sendmsg           = udp_sendmsg,
2547        .recvmsg           = udp_recvmsg,
2548        .sendpage          = udp_sendpage,
2549        .release_cb        = ip4_datagram_release_cb,
2550        .hash              = udp_lib_hash,
2551        .unhash            = udp_lib_unhash,
2552        .rehash            = udp_v4_rehash,
2553        .get_port          = udp_v4_get_port,
2554        .memory_allocated  = &udp_memory_allocated,
2555        .sysctl_mem        = sysctl_udp_mem,
2556        .sysctl_wmem       = &sysctl_udp_wmem_min,
2557        .sysctl_rmem       = &sysctl_udp_rmem_min,
2558        .obj_size          = sizeof(struct udp_sock),
2559        .h.udp_table       = &udp_table,
2560#ifdef CONFIG_COMPAT
2561        .compat_setsockopt = compat_udp_setsockopt,
2562        .compat_getsockopt = compat_udp_getsockopt,
2563#endif
2564        .diag_destroy      = udp_abort,
2565};
2566EXPORT_SYMBOL(udp_prot);
2567
2568/* ------------------------------------------------------------------------ */
2569#ifdef CONFIG_PROC_FS
2570
2571static struct sock *udp_get_first(struct seq_file *seq, int start)
2572{
2573        struct sock *sk;
2574        struct udp_iter_state *state = seq->private;
2575        struct net *net = seq_file_net(seq);
2576
2577        for (state->bucket = start; state->bucket <= state->udp_table->mask;
2578             ++state->bucket) {
2579                struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2580
2581                if (hlist_empty(&hslot->head))
2582                        continue;
2583
2584                spin_lock_bh(&hslot->lock);
2585                sk_for_each(sk, &hslot->head) {
2586                        if (!net_eq(sock_net(sk), net))
2587                                continue;
2588                        if (sk->sk_family == state->family)
2589                                goto found;
2590                }
2591                spin_unlock_bh(&hslot->lock);
2592        }
2593        sk = NULL;
2594found:
2595        return sk;
2596}
2597
2598static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2599{
2600        struct udp_iter_state *state = seq->private;
2601        struct net *net = seq_file_net(seq);
2602
2603        do {
2604                sk = sk_next(sk);
2605        } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2606
2607        if (!sk) {
2608                if (state->bucket <= state->udp_table->mask)
2609                        spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2610                return udp_get_first(seq, state->bucket + 1);
2611        }
2612        return sk;
2613}
2614
2615static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2616{
2617        struct sock *sk = udp_get_first(seq, 0);
2618
2619        if (sk)
2620                while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2621                        --pos;
2622        return pos ? NULL : sk;
2623}
2624
2625static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2626{
2627        struct udp_iter_state *state = seq->private;
2628        state->bucket = MAX_UDP_PORTS;
2629
2630        return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2631}
2632
2633static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2634{
2635        struct sock *sk;
2636
2637        if (v == SEQ_START_TOKEN)
2638                sk = udp_get_idx(seq, 0);
2639        else
2640                sk = udp_get_next(seq, v);
2641
2642        ++*pos;
2643        return sk;
2644}
2645
2646static void udp_seq_stop(struct seq_file *seq, void *v)
2647{
2648        struct udp_iter_state *state = seq->private;
2649
2650        if (state->bucket <= state->udp_table->mask)
2651                spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2652}
2653
2654int udp_seq_open(struct inode *inode, struct file *file)
2655{
2656        struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2657        struct udp_iter_state *s;
2658        int err;
2659
2660        err = seq_open_net(inode, file, &afinfo->seq_ops,
2661                           sizeof(struct udp_iter_state));
2662        if (err < 0)
2663                return err;
2664
2665        s = ((struct seq_file *)file->private_data)->private;
2666        s->family               = afinfo->family;
2667        s->udp_table            = afinfo->udp_table;
2668        return err;
2669}
2670EXPORT_SYMBOL(udp_seq_open);
2671
2672/* ------------------------------------------------------------------------ */
2673int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2674{
2675        struct proc_dir_entry *p;
2676        int rc = 0;
2677
2678        afinfo->seq_ops.start           = udp_seq_start;
2679        afinfo->seq_ops.next            = udp_seq_next;
2680        afinfo->seq_ops.stop            = udp_seq_stop;
2681
2682        p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2683                             afinfo->seq_fops, afinfo);
2684        if (!p)
2685                rc = -ENOMEM;
2686        return rc;
2687}
2688EXPORT_SYMBOL(udp_proc_register);
2689
2690void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2691{
2692        remove_proc_entry(afinfo->name, net->proc_net);
2693}
2694EXPORT_SYMBOL(udp_proc_unregister);
2695
2696/* ------------------------------------------------------------------------ */
2697static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2698                int bucket)
2699{
2700        struct inet_sock *inet = inet_sk(sp);
2701        __be32 dest = inet->inet_daddr;
2702        __be32 src  = inet->inet_rcv_saddr;
2703        __u16 destp       = ntohs(inet->inet_dport);
2704        __u16 srcp        = ntohs(inet->inet_sport);
2705
2706        seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2707                " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2708                bucket, src, srcp, dest, destp, sp->sk_state,
2709                sk_wmem_alloc_get(sp),
2710                sk_rmem_alloc_get(sp),
2711                0, 0L, 0,
2712                from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2713                0, sock_i_ino(sp),
2714                refcount_read(&sp->sk_refcnt), sp,
2715                atomic_read(&sp->sk_drops));
2716}
2717
2718int udp4_seq_show(struct seq_file *seq, void *v)
2719{
2720        seq_setwidth(seq, 127);
2721        if (v == SEQ_START_TOKEN)
2722                seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2723                           "rx_queue tr tm->when retrnsmt   uid  timeout "
2724                           "inode ref pointer drops");
2725        else {
2726                struct udp_iter_state *state = seq->private;
2727
2728                udp4_format_sock(v, seq, state->bucket);
2729        }
2730        seq_pad(seq, '\n');
2731        return 0;
2732}
2733
2734static const struct file_operations udp_afinfo_seq_fops = {
2735        .open     = udp_seq_open,
2736        .read     = seq_read,
2737        .llseek   = seq_lseek,
2738        .release  = seq_release_net
2739};
2740
2741/* ------------------------------------------------------------------------ */
2742static struct udp_seq_afinfo udp4_seq_afinfo = {
2743        .name           = "udp",
2744        .family         = AF_INET,
2745        .udp_table      = &udp_table,
2746        .seq_fops       = &udp_afinfo_seq_fops,
2747        .seq_ops        = {
2748                .show           = udp4_seq_show,
2749        },
2750};
2751
2752static int __net_init udp4_proc_init_net(struct net *net)
2753{
2754        return udp_proc_register(net, &udp4_seq_afinfo);
2755}
2756
2757static void __net_exit udp4_proc_exit_net(struct net *net)
2758{
2759        udp_proc_unregister(net, &udp4_seq_afinfo);
2760}
2761
2762static struct pernet_operations udp4_net_ops = {
2763        .init = udp4_proc_init_net,
2764        .exit = udp4_proc_exit_net,
2765};
2766
2767int __init udp4_proc_init(void)
2768{
2769        return register_pernet_subsys(&udp4_net_ops);
2770}
2771
2772void udp4_proc_exit(void)
2773{
2774        unregister_pernet_subsys(&udp4_net_ops);
2775}
2776#endif /* CONFIG_PROC_FS */
2777
2778static __initdata unsigned long uhash_entries;
2779static int __init set_uhash_entries(char *str)
2780{
2781        ssize_t ret;
2782
2783        if (!str)
2784                return 0;
2785
2786        ret = kstrtoul(str, 0, &uhash_entries);
2787        if (ret)
2788                return 0;
2789
2790        if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2791                uhash_entries = UDP_HTABLE_SIZE_MIN;
2792        return 1;
2793}
2794__setup("uhash_entries=", set_uhash_entries);
2795
2796void __init udp_table_init(struct udp_table *table, const char *name)
2797{
2798        unsigned int i;
2799
2800        table->hash = alloc_large_system_hash(name,
2801                                              2 * sizeof(struct udp_hslot),
2802                                              uhash_entries,
2803                                              21, /* one slot per 2 MB */
2804                                              0,
2805                                              &table->log,
2806                                              &table->mask,
2807                                              UDP_HTABLE_SIZE_MIN,
2808                                              64 * 1024);
2809
2810        table->hash2 = table->hash + (table->mask + 1);
2811        for (i = 0; i <= table->mask; i++) {
2812                INIT_HLIST_HEAD(&table->hash[i].head);
2813                table->hash[i].count = 0;
2814                spin_lock_init(&table->hash[i].lock);
2815        }
2816        for (i = 0; i <= table->mask; i++) {
2817                INIT_HLIST_HEAD(&table->hash2[i].head);
2818                table->hash2[i].count = 0;
2819                spin_lock_init(&table->hash2[i].lock);
2820        }
2821}
2822
2823u32 udp_flow_hashrnd(void)
2824{
2825        static u32 hashrnd __read_mostly;
2826
2827        net_get_random_once(&hashrnd, sizeof(hashrnd));
2828
2829        return hashrnd;
2830}
2831EXPORT_SYMBOL(udp_flow_hashrnd);
2832
2833void __init udp_init(void)
2834{
2835        unsigned long limit;
2836        unsigned int i;
2837
2838        udp_table_init(&udp_table, "UDP");
2839        limit = nr_free_buffer_pages() / 8;
2840        limit = max(limit, 128UL);
2841        sysctl_udp_mem[0] = limit / 4 * 3;
2842        sysctl_udp_mem[1] = limit;
2843        sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2844
2845        sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2846        sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2847
2848        /* 16 spinlocks per cpu */
2849        udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2850        udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2851                                GFP_KERNEL);
2852        if (!udp_busylocks)
2853                panic("UDP: failed to alloc udp_busylocks\n");
2854        for (i = 0; i < (1U << udp_busylocks_log); i++)
2855                spin_lock_init(udp_busylocks + i);
2856}
2857