linux/tools/perf/builtin-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4
   5#include "util/util.h"
   6#include "util/evlist.h"
   7#include "util/cache.h"
   8#include "util/evsel.h"
   9#include "util/symbol.h"
  10#include "util/thread.h"
  11#include "util/header.h"
  12#include "util/session.h"
  13#include "util/tool.h"
  14#include "util/cloexec.h"
  15#include "util/thread_map.h"
  16#include "util/color.h"
  17#include "util/stat.h"
  18#include "util/callchain.h"
  19#include "util/time-utils.h"
  20
  21#include <subcmd/parse-options.h>
  22#include "util/trace-event.h"
  23
  24#include "util/debug.h"
  25
  26#include <linux/kernel.h>
  27#include <linux/log2.h>
  28#include <sys/prctl.h>
  29#include <sys/resource.h>
  30#include <inttypes.h>
  31
  32#include <errno.h>
  33#include <semaphore.h>
  34#include <pthread.h>
  35#include <math.h>
  36#include <api/fs/fs.h>
  37#include <linux/time64.h>
  38
  39#include "sane_ctype.h"
  40
  41#define PR_SET_NAME             15               /* Set process name */
  42#define MAX_CPUS                4096
  43#define COMM_LEN                20
  44#define SYM_LEN                 129
  45#define MAX_PID                 1024000
  46
  47struct sched_atom;
  48
  49struct task_desc {
  50        unsigned long           nr;
  51        unsigned long           pid;
  52        char                    comm[COMM_LEN];
  53
  54        unsigned long           nr_events;
  55        unsigned long           curr_event;
  56        struct sched_atom       **atoms;
  57
  58        pthread_t               thread;
  59        sem_t                   sleep_sem;
  60
  61        sem_t                   ready_for_work;
  62        sem_t                   work_done_sem;
  63
  64        u64                     cpu_usage;
  65};
  66
  67enum sched_event_type {
  68        SCHED_EVENT_RUN,
  69        SCHED_EVENT_SLEEP,
  70        SCHED_EVENT_WAKEUP,
  71        SCHED_EVENT_MIGRATION,
  72};
  73
  74struct sched_atom {
  75        enum sched_event_type   type;
  76        int                     specific_wait;
  77        u64                     timestamp;
  78        u64                     duration;
  79        unsigned long           nr;
  80        sem_t                   *wait_sem;
  81        struct task_desc        *wakee;
  82};
  83
  84#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  85
  86/* task state bitmask, copied from include/linux/sched.h */
  87#define TASK_RUNNING            0
  88#define TASK_INTERRUPTIBLE      1
  89#define TASK_UNINTERRUPTIBLE    2
  90#define __TASK_STOPPED          4
  91#define __TASK_TRACED           8
  92/* in tsk->exit_state */
  93#define EXIT_DEAD               16
  94#define EXIT_ZOMBIE             32
  95#define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
  96/* in tsk->state again */
  97#define TASK_DEAD               64
  98#define TASK_WAKEKILL           128
  99#define TASK_WAKING             256
 100#define TASK_PARKED             512
 101
 102enum thread_state {
 103        THREAD_SLEEPING = 0,
 104        THREAD_WAIT_CPU,
 105        THREAD_SCHED_IN,
 106        THREAD_IGNORE
 107};
 108
 109struct work_atom {
 110        struct list_head        list;
 111        enum thread_state       state;
 112        u64                     sched_out_time;
 113        u64                     wake_up_time;
 114        u64                     sched_in_time;
 115        u64                     runtime;
 116};
 117
 118struct work_atoms {
 119        struct list_head        work_list;
 120        struct thread           *thread;
 121        struct rb_node          node;
 122        u64                     max_lat;
 123        u64                     max_lat_at;
 124        u64                     total_lat;
 125        u64                     nb_atoms;
 126        u64                     total_runtime;
 127        int                     num_merged;
 128};
 129
 130typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 131
 132struct perf_sched;
 133
 134struct trace_sched_handler {
 135        int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 136                            struct perf_sample *sample, struct machine *machine);
 137
 138        int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 139                             struct perf_sample *sample, struct machine *machine);
 140
 141        int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 142                            struct perf_sample *sample, struct machine *machine);
 143
 144        /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 145        int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 146                          struct machine *machine);
 147
 148        int (*migrate_task_event)(struct perf_sched *sched,
 149                                  struct perf_evsel *evsel,
 150                                  struct perf_sample *sample,
 151                                  struct machine *machine);
 152};
 153
 154#define COLOR_PIDS PERF_COLOR_BLUE
 155#define COLOR_CPUS PERF_COLOR_BG_RED
 156
 157struct perf_sched_map {
 158        DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 159        int                     *comp_cpus;
 160        bool                     comp;
 161        struct thread_map       *color_pids;
 162        const char              *color_pids_str;
 163        struct cpu_map          *color_cpus;
 164        const char              *color_cpus_str;
 165        struct cpu_map          *cpus;
 166        const char              *cpus_str;
 167};
 168
 169struct perf_sched {
 170        struct perf_tool tool;
 171        const char       *sort_order;
 172        unsigned long    nr_tasks;
 173        struct task_desc **pid_to_task;
 174        struct task_desc **tasks;
 175        const struct trace_sched_handler *tp_handler;
 176        pthread_mutex_t  start_work_mutex;
 177        pthread_mutex_t  work_done_wait_mutex;
 178        int              profile_cpu;
 179/*
 180 * Track the current task - that way we can know whether there's any
 181 * weird events, such as a task being switched away that is not current.
 182 */
 183        int              max_cpu;
 184        u32              curr_pid[MAX_CPUS];
 185        struct thread    *curr_thread[MAX_CPUS];
 186        char             next_shortname1;
 187        char             next_shortname2;
 188        unsigned int     replay_repeat;
 189        unsigned long    nr_run_events;
 190        unsigned long    nr_sleep_events;
 191        unsigned long    nr_wakeup_events;
 192        unsigned long    nr_sleep_corrections;
 193        unsigned long    nr_run_events_optimized;
 194        unsigned long    targetless_wakeups;
 195        unsigned long    multitarget_wakeups;
 196        unsigned long    nr_runs;
 197        unsigned long    nr_timestamps;
 198        unsigned long    nr_unordered_timestamps;
 199        unsigned long    nr_context_switch_bugs;
 200        unsigned long    nr_events;
 201        unsigned long    nr_lost_chunks;
 202        unsigned long    nr_lost_events;
 203        u64              run_measurement_overhead;
 204        u64              sleep_measurement_overhead;
 205        u64              start_time;
 206        u64              cpu_usage;
 207        u64              runavg_cpu_usage;
 208        u64              parent_cpu_usage;
 209        u64              runavg_parent_cpu_usage;
 210        u64              sum_runtime;
 211        u64              sum_fluct;
 212        u64              run_avg;
 213        u64              all_runtime;
 214        u64              all_count;
 215        u64              cpu_last_switched[MAX_CPUS];
 216        struct rb_root   atom_root, sorted_atom_root, merged_atom_root;
 217        struct list_head sort_list, cmp_pid;
 218        bool force;
 219        bool skip_merge;
 220        struct perf_sched_map map;
 221
 222        /* options for timehist command */
 223        bool            summary;
 224        bool            summary_only;
 225        bool            idle_hist;
 226        bool            show_callchain;
 227        unsigned int    max_stack;
 228        bool            show_cpu_visual;
 229        bool            show_wakeups;
 230        bool            show_next;
 231        bool            show_migrations;
 232        bool            show_state;
 233        u64             skipped_samples;
 234        const char      *time_str;
 235        struct perf_time_interval ptime;
 236        struct perf_time_interval hist_time;
 237};
 238
 239/* per thread run time data */
 240struct thread_runtime {
 241        u64 last_time;      /* time of previous sched in/out event */
 242        u64 dt_run;         /* run time */
 243        u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 244        u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 245        u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 246        u64 dt_delay;       /* time between wakeup and sched-in */
 247        u64 ready_to_run;   /* time of wakeup */
 248
 249        struct stats run_stats;
 250        u64 total_run_time;
 251        u64 total_sleep_time;
 252        u64 total_iowait_time;
 253        u64 total_preempt_time;
 254        u64 total_delay_time;
 255
 256        int last_state;
 257        u64 migrations;
 258};
 259
 260/* per event run time data */
 261struct evsel_runtime {
 262        u64 *last_time; /* time this event was last seen per cpu */
 263        u32 ncpu;       /* highest cpu slot allocated */
 264};
 265
 266/* per cpu idle time data */
 267struct idle_thread_runtime {
 268        struct thread_runtime   tr;
 269        struct thread           *last_thread;
 270        struct rb_root          sorted_root;
 271        struct callchain_root   callchain;
 272        struct callchain_cursor cursor;
 273};
 274
 275/* track idle times per cpu */
 276static struct thread **idle_threads;
 277static int idle_max_cpu;
 278static char idle_comm[] = "<idle>";
 279
 280static u64 get_nsecs(void)
 281{
 282        struct timespec ts;
 283
 284        clock_gettime(CLOCK_MONOTONIC, &ts);
 285
 286        return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 287}
 288
 289static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 290{
 291        u64 T0 = get_nsecs(), T1;
 292
 293        do {
 294                T1 = get_nsecs();
 295        } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 296}
 297
 298static void sleep_nsecs(u64 nsecs)
 299{
 300        struct timespec ts;
 301
 302        ts.tv_nsec = nsecs % 999999999;
 303        ts.tv_sec = nsecs / 999999999;
 304
 305        nanosleep(&ts, NULL);
 306}
 307
 308static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 309{
 310        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 311        int i;
 312
 313        for (i = 0; i < 10; i++) {
 314                T0 = get_nsecs();
 315                burn_nsecs(sched, 0);
 316                T1 = get_nsecs();
 317                delta = T1-T0;
 318                min_delta = min(min_delta, delta);
 319        }
 320        sched->run_measurement_overhead = min_delta;
 321
 322        printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 323}
 324
 325static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 326{
 327        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 328        int i;
 329
 330        for (i = 0; i < 10; i++) {
 331                T0 = get_nsecs();
 332                sleep_nsecs(10000);
 333                T1 = get_nsecs();
 334                delta = T1-T0;
 335                min_delta = min(min_delta, delta);
 336        }
 337        min_delta -= 10000;
 338        sched->sleep_measurement_overhead = min_delta;
 339
 340        printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 341}
 342
 343static struct sched_atom *
 344get_new_event(struct task_desc *task, u64 timestamp)
 345{
 346        struct sched_atom *event = zalloc(sizeof(*event));
 347        unsigned long idx = task->nr_events;
 348        size_t size;
 349
 350        event->timestamp = timestamp;
 351        event->nr = idx;
 352
 353        task->nr_events++;
 354        size = sizeof(struct sched_atom *) * task->nr_events;
 355        task->atoms = realloc(task->atoms, size);
 356        BUG_ON(!task->atoms);
 357
 358        task->atoms[idx] = event;
 359
 360        return event;
 361}
 362
 363static struct sched_atom *last_event(struct task_desc *task)
 364{
 365        if (!task->nr_events)
 366                return NULL;
 367
 368        return task->atoms[task->nr_events - 1];
 369}
 370
 371static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 372                                u64 timestamp, u64 duration)
 373{
 374        struct sched_atom *event, *curr_event = last_event(task);
 375
 376        /*
 377         * optimize an existing RUN event by merging this one
 378         * to it:
 379         */
 380        if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 381                sched->nr_run_events_optimized++;
 382                curr_event->duration += duration;
 383                return;
 384        }
 385
 386        event = get_new_event(task, timestamp);
 387
 388        event->type = SCHED_EVENT_RUN;
 389        event->duration = duration;
 390
 391        sched->nr_run_events++;
 392}
 393
 394static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 395                                   u64 timestamp, struct task_desc *wakee)
 396{
 397        struct sched_atom *event, *wakee_event;
 398
 399        event = get_new_event(task, timestamp);
 400        event->type = SCHED_EVENT_WAKEUP;
 401        event->wakee = wakee;
 402
 403        wakee_event = last_event(wakee);
 404        if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 405                sched->targetless_wakeups++;
 406                return;
 407        }
 408        if (wakee_event->wait_sem) {
 409                sched->multitarget_wakeups++;
 410                return;
 411        }
 412
 413        wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 414        sem_init(wakee_event->wait_sem, 0, 0);
 415        wakee_event->specific_wait = 1;
 416        event->wait_sem = wakee_event->wait_sem;
 417
 418        sched->nr_wakeup_events++;
 419}
 420
 421static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 422                                  u64 timestamp, u64 task_state __maybe_unused)
 423{
 424        struct sched_atom *event = get_new_event(task, timestamp);
 425
 426        event->type = SCHED_EVENT_SLEEP;
 427
 428        sched->nr_sleep_events++;
 429}
 430
 431static struct task_desc *register_pid(struct perf_sched *sched,
 432                                      unsigned long pid, const char *comm)
 433{
 434        struct task_desc *task;
 435        static int pid_max;
 436
 437        if (sched->pid_to_task == NULL) {
 438                if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 439                        pid_max = MAX_PID;
 440                BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 441        }
 442        if (pid >= (unsigned long)pid_max) {
 443                BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 444                        sizeof(struct task_desc *))) == NULL);
 445                while (pid >= (unsigned long)pid_max)
 446                        sched->pid_to_task[pid_max++] = NULL;
 447        }
 448
 449        task = sched->pid_to_task[pid];
 450
 451        if (task)
 452                return task;
 453
 454        task = zalloc(sizeof(*task));
 455        task->pid = pid;
 456        task->nr = sched->nr_tasks;
 457        strcpy(task->comm, comm);
 458        /*
 459         * every task starts in sleeping state - this gets ignored
 460         * if there's no wakeup pointing to this sleep state:
 461         */
 462        add_sched_event_sleep(sched, task, 0, 0);
 463
 464        sched->pid_to_task[pid] = task;
 465        sched->nr_tasks++;
 466        sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 467        BUG_ON(!sched->tasks);
 468        sched->tasks[task->nr] = task;
 469
 470        if (verbose > 0)
 471                printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 472
 473        return task;
 474}
 475
 476
 477static void print_task_traces(struct perf_sched *sched)
 478{
 479        struct task_desc *task;
 480        unsigned long i;
 481
 482        for (i = 0; i < sched->nr_tasks; i++) {
 483                task = sched->tasks[i];
 484                printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 485                        task->nr, task->comm, task->pid, task->nr_events);
 486        }
 487}
 488
 489static void add_cross_task_wakeups(struct perf_sched *sched)
 490{
 491        struct task_desc *task1, *task2;
 492        unsigned long i, j;
 493
 494        for (i = 0; i < sched->nr_tasks; i++) {
 495                task1 = sched->tasks[i];
 496                j = i + 1;
 497                if (j == sched->nr_tasks)
 498                        j = 0;
 499                task2 = sched->tasks[j];
 500                add_sched_event_wakeup(sched, task1, 0, task2);
 501        }
 502}
 503
 504static void perf_sched__process_event(struct perf_sched *sched,
 505                                      struct sched_atom *atom)
 506{
 507        int ret = 0;
 508
 509        switch (atom->type) {
 510                case SCHED_EVENT_RUN:
 511                        burn_nsecs(sched, atom->duration);
 512                        break;
 513                case SCHED_EVENT_SLEEP:
 514                        if (atom->wait_sem)
 515                                ret = sem_wait(atom->wait_sem);
 516                        BUG_ON(ret);
 517                        break;
 518                case SCHED_EVENT_WAKEUP:
 519                        if (atom->wait_sem)
 520                                ret = sem_post(atom->wait_sem);
 521                        BUG_ON(ret);
 522                        break;
 523                case SCHED_EVENT_MIGRATION:
 524                        break;
 525                default:
 526                        BUG_ON(1);
 527        }
 528}
 529
 530static u64 get_cpu_usage_nsec_parent(void)
 531{
 532        struct rusage ru;
 533        u64 sum;
 534        int err;
 535
 536        err = getrusage(RUSAGE_SELF, &ru);
 537        BUG_ON(err);
 538
 539        sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 540        sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 541
 542        return sum;
 543}
 544
 545static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 546{
 547        struct perf_event_attr attr;
 548        char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 549        int fd;
 550        struct rlimit limit;
 551        bool need_privilege = false;
 552
 553        memset(&attr, 0, sizeof(attr));
 554
 555        attr.type = PERF_TYPE_SOFTWARE;
 556        attr.config = PERF_COUNT_SW_TASK_CLOCK;
 557
 558force_again:
 559        fd = sys_perf_event_open(&attr, 0, -1, -1,
 560                                 perf_event_open_cloexec_flag());
 561
 562        if (fd < 0) {
 563                if (errno == EMFILE) {
 564                        if (sched->force) {
 565                                BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 566                                limit.rlim_cur += sched->nr_tasks - cur_task;
 567                                if (limit.rlim_cur > limit.rlim_max) {
 568                                        limit.rlim_max = limit.rlim_cur;
 569                                        need_privilege = true;
 570                                }
 571                                if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 572                                        if (need_privilege && errno == EPERM)
 573                                                strcpy(info, "Need privilege\n");
 574                                } else
 575                                        goto force_again;
 576                        } else
 577                                strcpy(info, "Have a try with -f option\n");
 578                }
 579                pr_err("Error: sys_perf_event_open() syscall returned "
 580                       "with %d (%s)\n%s", fd,
 581                       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 582                exit(EXIT_FAILURE);
 583        }
 584        return fd;
 585}
 586
 587static u64 get_cpu_usage_nsec_self(int fd)
 588{
 589        u64 runtime;
 590        int ret;
 591
 592        ret = read(fd, &runtime, sizeof(runtime));
 593        BUG_ON(ret != sizeof(runtime));
 594
 595        return runtime;
 596}
 597
 598struct sched_thread_parms {
 599        struct task_desc  *task;
 600        struct perf_sched *sched;
 601        int fd;
 602};
 603
 604static void *thread_func(void *ctx)
 605{
 606        struct sched_thread_parms *parms = ctx;
 607        struct task_desc *this_task = parms->task;
 608        struct perf_sched *sched = parms->sched;
 609        u64 cpu_usage_0, cpu_usage_1;
 610        unsigned long i, ret;
 611        char comm2[22];
 612        int fd = parms->fd;
 613
 614        zfree(&parms);
 615
 616        sprintf(comm2, ":%s", this_task->comm);
 617        prctl(PR_SET_NAME, comm2);
 618        if (fd < 0)
 619                return NULL;
 620again:
 621        ret = sem_post(&this_task->ready_for_work);
 622        BUG_ON(ret);
 623        ret = pthread_mutex_lock(&sched->start_work_mutex);
 624        BUG_ON(ret);
 625        ret = pthread_mutex_unlock(&sched->start_work_mutex);
 626        BUG_ON(ret);
 627
 628        cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 629
 630        for (i = 0; i < this_task->nr_events; i++) {
 631                this_task->curr_event = i;
 632                perf_sched__process_event(sched, this_task->atoms[i]);
 633        }
 634
 635        cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 636        this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 637        ret = sem_post(&this_task->work_done_sem);
 638        BUG_ON(ret);
 639
 640        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 641        BUG_ON(ret);
 642        ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 643        BUG_ON(ret);
 644
 645        goto again;
 646}
 647
 648static void create_tasks(struct perf_sched *sched)
 649{
 650        struct task_desc *task;
 651        pthread_attr_t attr;
 652        unsigned long i;
 653        int err;
 654
 655        err = pthread_attr_init(&attr);
 656        BUG_ON(err);
 657        err = pthread_attr_setstacksize(&attr,
 658                        (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 659        BUG_ON(err);
 660        err = pthread_mutex_lock(&sched->start_work_mutex);
 661        BUG_ON(err);
 662        err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 663        BUG_ON(err);
 664        for (i = 0; i < sched->nr_tasks; i++) {
 665                struct sched_thread_parms *parms = malloc(sizeof(*parms));
 666                BUG_ON(parms == NULL);
 667                parms->task = task = sched->tasks[i];
 668                parms->sched = sched;
 669                parms->fd = self_open_counters(sched, i);
 670                sem_init(&task->sleep_sem, 0, 0);
 671                sem_init(&task->ready_for_work, 0, 0);
 672                sem_init(&task->work_done_sem, 0, 0);
 673                task->curr_event = 0;
 674                err = pthread_create(&task->thread, &attr, thread_func, parms);
 675                BUG_ON(err);
 676        }
 677}
 678
 679static void wait_for_tasks(struct perf_sched *sched)
 680{
 681        u64 cpu_usage_0, cpu_usage_1;
 682        struct task_desc *task;
 683        unsigned long i, ret;
 684
 685        sched->start_time = get_nsecs();
 686        sched->cpu_usage = 0;
 687        pthread_mutex_unlock(&sched->work_done_wait_mutex);
 688
 689        for (i = 0; i < sched->nr_tasks; i++) {
 690                task = sched->tasks[i];
 691                ret = sem_wait(&task->ready_for_work);
 692                BUG_ON(ret);
 693                sem_init(&task->ready_for_work, 0, 0);
 694        }
 695        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 696        BUG_ON(ret);
 697
 698        cpu_usage_0 = get_cpu_usage_nsec_parent();
 699
 700        pthread_mutex_unlock(&sched->start_work_mutex);
 701
 702        for (i = 0; i < sched->nr_tasks; i++) {
 703                task = sched->tasks[i];
 704                ret = sem_wait(&task->work_done_sem);
 705                BUG_ON(ret);
 706                sem_init(&task->work_done_sem, 0, 0);
 707                sched->cpu_usage += task->cpu_usage;
 708                task->cpu_usage = 0;
 709        }
 710
 711        cpu_usage_1 = get_cpu_usage_nsec_parent();
 712        if (!sched->runavg_cpu_usage)
 713                sched->runavg_cpu_usage = sched->cpu_usage;
 714        sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 715
 716        sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 717        if (!sched->runavg_parent_cpu_usage)
 718                sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 719        sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 720                                         sched->parent_cpu_usage)/sched->replay_repeat;
 721
 722        ret = pthread_mutex_lock(&sched->start_work_mutex);
 723        BUG_ON(ret);
 724
 725        for (i = 0; i < sched->nr_tasks; i++) {
 726                task = sched->tasks[i];
 727                sem_init(&task->sleep_sem, 0, 0);
 728                task->curr_event = 0;
 729        }
 730}
 731
 732static void run_one_test(struct perf_sched *sched)
 733{
 734        u64 T0, T1, delta, avg_delta, fluct;
 735
 736        T0 = get_nsecs();
 737        wait_for_tasks(sched);
 738        T1 = get_nsecs();
 739
 740        delta = T1 - T0;
 741        sched->sum_runtime += delta;
 742        sched->nr_runs++;
 743
 744        avg_delta = sched->sum_runtime / sched->nr_runs;
 745        if (delta < avg_delta)
 746                fluct = avg_delta - delta;
 747        else
 748                fluct = delta - avg_delta;
 749        sched->sum_fluct += fluct;
 750        if (!sched->run_avg)
 751                sched->run_avg = delta;
 752        sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 753
 754        printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 755
 756        printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 757
 758        printf("cpu: %0.2f / %0.2f",
 759                (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 760
 761#if 0
 762        /*
 763         * rusage statistics done by the parent, these are less
 764         * accurate than the sched->sum_exec_runtime based statistics:
 765         */
 766        printf(" [%0.2f / %0.2f]",
 767                (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 768                (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 769#endif
 770
 771        printf("\n");
 772
 773        if (sched->nr_sleep_corrections)
 774                printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 775        sched->nr_sleep_corrections = 0;
 776}
 777
 778static void test_calibrations(struct perf_sched *sched)
 779{
 780        u64 T0, T1;
 781
 782        T0 = get_nsecs();
 783        burn_nsecs(sched, NSEC_PER_MSEC);
 784        T1 = get_nsecs();
 785
 786        printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 787
 788        T0 = get_nsecs();
 789        sleep_nsecs(NSEC_PER_MSEC);
 790        T1 = get_nsecs();
 791
 792        printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 793}
 794
 795static int
 796replay_wakeup_event(struct perf_sched *sched,
 797                    struct perf_evsel *evsel, struct perf_sample *sample,
 798                    struct machine *machine __maybe_unused)
 799{
 800        const char *comm = perf_evsel__strval(evsel, sample, "comm");
 801        const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
 802        struct task_desc *waker, *wakee;
 803
 804        if (verbose > 0) {
 805                printf("sched_wakeup event %p\n", evsel);
 806
 807                printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 808        }
 809
 810        waker = register_pid(sched, sample->tid, "<unknown>");
 811        wakee = register_pid(sched, pid, comm);
 812
 813        add_sched_event_wakeup(sched, waker, sample->time, wakee);
 814        return 0;
 815}
 816
 817static int replay_switch_event(struct perf_sched *sched,
 818                               struct perf_evsel *evsel,
 819                               struct perf_sample *sample,
 820                               struct machine *machine __maybe_unused)
 821{
 822        const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 823                   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 824        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 825                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 826        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 827        struct task_desc *prev, __maybe_unused *next;
 828        u64 timestamp0, timestamp = sample->time;
 829        int cpu = sample->cpu;
 830        s64 delta;
 831
 832        if (verbose > 0)
 833                printf("sched_switch event %p\n", evsel);
 834
 835        if (cpu >= MAX_CPUS || cpu < 0)
 836                return 0;
 837
 838        timestamp0 = sched->cpu_last_switched[cpu];
 839        if (timestamp0)
 840                delta = timestamp - timestamp0;
 841        else
 842                delta = 0;
 843
 844        if (delta < 0) {
 845                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 846                return -1;
 847        }
 848
 849        pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 850                 prev_comm, prev_pid, next_comm, next_pid, delta);
 851
 852        prev = register_pid(sched, prev_pid, prev_comm);
 853        next = register_pid(sched, next_pid, next_comm);
 854
 855        sched->cpu_last_switched[cpu] = timestamp;
 856
 857        add_sched_event_run(sched, prev, timestamp, delta);
 858        add_sched_event_sleep(sched, prev, timestamp, prev_state);
 859
 860        return 0;
 861}
 862
 863static int replay_fork_event(struct perf_sched *sched,
 864                             union perf_event *event,
 865                             struct machine *machine)
 866{
 867        struct thread *child, *parent;
 868
 869        child = machine__findnew_thread(machine, event->fork.pid,
 870                                        event->fork.tid);
 871        parent = machine__findnew_thread(machine, event->fork.ppid,
 872                                         event->fork.ptid);
 873
 874        if (child == NULL || parent == NULL) {
 875                pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 876                                 child, parent);
 877                goto out_put;
 878        }
 879
 880        if (verbose > 0) {
 881                printf("fork event\n");
 882                printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 883                printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 884        }
 885
 886        register_pid(sched, parent->tid, thread__comm_str(parent));
 887        register_pid(sched, child->tid, thread__comm_str(child));
 888out_put:
 889        thread__put(child);
 890        thread__put(parent);
 891        return 0;
 892}
 893
 894struct sort_dimension {
 895        const char              *name;
 896        sort_fn_t               cmp;
 897        struct list_head        list;
 898};
 899
 900static int
 901thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 902{
 903        struct sort_dimension *sort;
 904        int ret = 0;
 905
 906        BUG_ON(list_empty(list));
 907
 908        list_for_each_entry(sort, list, list) {
 909                ret = sort->cmp(l, r);
 910                if (ret)
 911                        return ret;
 912        }
 913
 914        return ret;
 915}
 916
 917static struct work_atoms *
 918thread_atoms_search(struct rb_root *root, struct thread *thread,
 919                         struct list_head *sort_list)
 920{
 921        struct rb_node *node = root->rb_node;
 922        struct work_atoms key = { .thread = thread };
 923
 924        while (node) {
 925                struct work_atoms *atoms;
 926                int cmp;
 927
 928                atoms = container_of(node, struct work_atoms, node);
 929
 930                cmp = thread_lat_cmp(sort_list, &key, atoms);
 931                if (cmp > 0)
 932                        node = node->rb_left;
 933                else if (cmp < 0)
 934                        node = node->rb_right;
 935                else {
 936                        BUG_ON(thread != atoms->thread);
 937                        return atoms;
 938                }
 939        }
 940        return NULL;
 941}
 942
 943static void
 944__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 945                         struct list_head *sort_list)
 946{
 947        struct rb_node **new = &(root->rb_node), *parent = NULL;
 948
 949        while (*new) {
 950                struct work_atoms *this;
 951                int cmp;
 952
 953                this = container_of(*new, struct work_atoms, node);
 954                parent = *new;
 955
 956                cmp = thread_lat_cmp(sort_list, data, this);
 957
 958                if (cmp > 0)
 959                        new = &((*new)->rb_left);
 960                else
 961                        new = &((*new)->rb_right);
 962        }
 963
 964        rb_link_node(&data->node, parent, new);
 965        rb_insert_color(&data->node, root);
 966}
 967
 968static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 969{
 970        struct work_atoms *atoms = zalloc(sizeof(*atoms));
 971        if (!atoms) {
 972                pr_err("No memory at %s\n", __func__);
 973                return -1;
 974        }
 975
 976        atoms->thread = thread__get(thread);
 977        INIT_LIST_HEAD(&atoms->work_list);
 978        __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 979        return 0;
 980}
 981
 982static char sched_out_state(u64 prev_state)
 983{
 984        const char *str = TASK_STATE_TO_CHAR_STR;
 985
 986        return str[prev_state];
 987}
 988
 989static int
 990add_sched_out_event(struct work_atoms *atoms,
 991                    char run_state,
 992                    u64 timestamp)
 993{
 994        struct work_atom *atom = zalloc(sizeof(*atom));
 995        if (!atom) {
 996                pr_err("Non memory at %s", __func__);
 997                return -1;
 998        }
 999
1000        atom->sched_out_time = timestamp;
1001
1002        if (run_state == 'R') {
1003                atom->state = THREAD_WAIT_CPU;
1004                atom->wake_up_time = atom->sched_out_time;
1005        }
1006
1007        list_add_tail(&atom->list, &atoms->work_list);
1008        return 0;
1009}
1010
1011static void
1012add_runtime_event(struct work_atoms *atoms, u64 delta,
1013                  u64 timestamp __maybe_unused)
1014{
1015        struct work_atom *atom;
1016
1017        BUG_ON(list_empty(&atoms->work_list));
1018
1019        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1020
1021        atom->runtime += delta;
1022        atoms->total_runtime += delta;
1023}
1024
1025static void
1026add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1027{
1028        struct work_atom *atom;
1029        u64 delta;
1030
1031        if (list_empty(&atoms->work_list))
1032                return;
1033
1034        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1035
1036        if (atom->state != THREAD_WAIT_CPU)
1037                return;
1038
1039        if (timestamp < atom->wake_up_time) {
1040                atom->state = THREAD_IGNORE;
1041                return;
1042        }
1043
1044        atom->state = THREAD_SCHED_IN;
1045        atom->sched_in_time = timestamp;
1046
1047        delta = atom->sched_in_time - atom->wake_up_time;
1048        atoms->total_lat += delta;
1049        if (delta > atoms->max_lat) {
1050                atoms->max_lat = delta;
1051                atoms->max_lat_at = timestamp;
1052        }
1053        atoms->nb_atoms++;
1054}
1055
1056static int latency_switch_event(struct perf_sched *sched,
1057                                struct perf_evsel *evsel,
1058                                struct perf_sample *sample,
1059                                struct machine *machine)
1060{
1061        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1062                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1063        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1064        struct work_atoms *out_events, *in_events;
1065        struct thread *sched_out, *sched_in;
1066        u64 timestamp0, timestamp = sample->time;
1067        int cpu = sample->cpu, err = -1;
1068        s64 delta;
1069
1070        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1071
1072        timestamp0 = sched->cpu_last_switched[cpu];
1073        sched->cpu_last_switched[cpu] = timestamp;
1074        if (timestamp0)
1075                delta = timestamp - timestamp0;
1076        else
1077                delta = 0;
1078
1079        if (delta < 0) {
1080                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1081                return -1;
1082        }
1083
1084        sched_out = machine__findnew_thread(machine, -1, prev_pid);
1085        sched_in = machine__findnew_thread(machine, -1, next_pid);
1086        if (sched_out == NULL || sched_in == NULL)
1087                goto out_put;
1088
1089        out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1090        if (!out_events) {
1091                if (thread_atoms_insert(sched, sched_out))
1092                        goto out_put;
1093                out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1094                if (!out_events) {
1095                        pr_err("out-event: Internal tree error");
1096                        goto out_put;
1097                }
1098        }
1099        if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1100                return -1;
1101
1102        in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1103        if (!in_events) {
1104                if (thread_atoms_insert(sched, sched_in))
1105                        goto out_put;
1106                in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1107                if (!in_events) {
1108                        pr_err("in-event: Internal tree error");
1109                        goto out_put;
1110                }
1111                /*
1112                 * Take came in we have not heard about yet,
1113                 * add in an initial atom in runnable state:
1114                 */
1115                if (add_sched_out_event(in_events, 'R', timestamp))
1116                        goto out_put;
1117        }
1118        add_sched_in_event(in_events, timestamp);
1119        err = 0;
1120out_put:
1121        thread__put(sched_out);
1122        thread__put(sched_in);
1123        return err;
1124}
1125
1126static int latency_runtime_event(struct perf_sched *sched,
1127                                 struct perf_evsel *evsel,
1128                                 struct perf_sample *sample,
1129                                 struct machine *machine)
1130{
1131        const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1132        const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1133        struct thread *thread = machine__findnew_thread(machine, -1, pid);
1134        struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1135        u64 timestamp = sample->time;
1136        int cpu = sample->cpu, err = -1;
1137
1138        if (thread == NULL)
1139                return -1;
1140
1141        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1142        if (!atoms) {
1143                if (thread_atoms_insert(sched, thread))
1144                        goto out_put;
1145                atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1146                if (!atoms) {
1147                        pr_err("in-event: Internal tree error");
1148                        goto out_put;
1149                }
1150                if (add_sched_out_event(atoms, 'R', timestamp))
1151                        goto out_put;
1152        }
1153
1154        add_runtime_event(atoms, runtime, timestamp);
1155        err = 0;
1156out_put:
1157        thread__put(thread);
1158        return err;
1159}
1160
1161static int latency_wakeup_event(struct perf_sched *sched,
1162                                struct perf_evsel *evsel,
1163                                struct perf_sample *sample,
1164                                struct machine *machine)
1165{
1166        const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1167        struct work_atoms *atoms;
1168        struct work_atom *atom;
1169        struct thread *wakee;
1170        u64 timestamp = sample->time;
1171        int err = -1;
1172
1173        wakee = machine__findnew_thread(machine, -1, pid);
1174        if (wakee == NULL)
1175                return -1;
1176        atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1177        if (!atoms) {
1178                if (thread_atoms_insert(sched, wakee))
1179                        goto out_put;
1180                atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1181                if (!atoms) {
1182                        pr_err("wakeup-event: Internal tree error");
1183                        goto out_put;
1184                }
1185                if (add_sched_out_event(atoms, 'S', timestamp))
1186                        goto out_put;
1187        }
1188
1189        BUG_ON(list_empty(&atoms->work_list));
1190
1191        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1192
1193        /*
1194         * As we do not guarantee the wakeup event happens when
1195         * task is out of run queue, also may happen when task is
1196         * on run queue and wakeup only change ->state to TASK_RUNNING,
1197         * then we should not set the ->wake_up_time when wake up a
1198         * task which is on run queue.
1199         *
1200         * You WILL be missing events if you've recorded only
1201         * one CPU, or are only looking at only one, so don't
1202         * skip in this case.
1203         */
1204        if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1205                goto out_ok;
1206
1207        sched->nr_timestamps++;
1208        if (atom->sched_out_time > timestamp) {
1209                sched->nr_unordered_timestamps++;
1210                goto out_ok;
1211        }
1212
1213        atom->state = THREAD_WAIT_CPU;
1214        atom->wake_up_time = timestamp;
1215out_ok:
1216        err = 0;
1217out_put:
1218        thread__put(wakee);
1219        return err;
1220}
1221
1222static int latency_migrate_task_event(struct perf_sched *sched,
1223                                      struct perf_evsel *evsel,
1224                                      struct perf_sample *sample,
1225                                      struct machine *machine)
1226{
1227        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1228        u64 timestamp = sample->time;
1229        struct work_atoms *atoms;
1230        struct work_atom *atom;
1231        struct thread *migrant;
1232        int err = -1;
1233
1234        /*
1235         * Only need to worry about migration when profiling one CPU.
1236         */
1237        if (sched->profile_cpu == -1)
1238                return 0;
1239
1240        migrant = machine__findnew_thread(machine, -1, pid);
1241        if (migrant == NULL)
1242                return -1;
1243        atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1244        if (!atoms) {
1245                if (thread_atoms_insert(sched, migrant))
1246                        goto out_put;
1247                register_pid(sched, migrant->tid, thread__comm_str(migrant));
1248                atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1249                if (!atoms) {
1250                        pr_err("migration-event: Internal tree error");
1251                        goto out_put;
1252                }
1253                if (add_sched_out_event(atoms, 'R', timestamp))
1254                        goto out_put;
1255        }
1256
1257        BUG_ON(list_empty(&atoms->work_list));
1258
1259        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1260        atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1261
1262        sched->nr_timestamps++;
1263
1264        if (atom->sched_out_time > timestamp)
1265                sched->nr_unordered_timestamps++;
1266        err = 0;
1267out_put:
1268        thread__put(migrant);
1269        return err;
1270}
1271
1272static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1273{
1274        int i;
1275        int ret;
1276        u64 avg;
1277        char max_lat_at[32];
1278
1279        if (!work_list->nb_atoms)
1280                return;
1281        /*
1282         * Ignore idle threads:
1283         */
1284        if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1285                return;
1286
1287        sched->all_runtime += work_list->total_runtime;
1288        sched->all_count   += work_list->nb_atoms;
1289
1290        if (work_list->num_merged > 1)
1291                ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1292        else
1293                ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1294
1295        for (i = 0; i < 24 - ret; i++)
1296                printf(" ");
1297
1298        avg = work_list->total_lat / work_list->nb_atoms;
1299        timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1300
1301        printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1302              (double)work_list->total_runtime / NSEC_PER_MSEC,
1303                 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1304                 (double)work_list->max_lat / NSEC_PER_MSEC,
1305                 max_lat_at);
1306}
1307
1308static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1309{
1310        if (l->thread == r->thread)
1311                return 0;
1312        if (l->thread->tid < r->thread->tid)
1313                return -1;
1314        if (l->thread->tid > r->thread->tid)
1315                return 1;
1316        return (int)(l->thread - r->thread);
1317}
1318
1319static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1320{
1321        u64 avgl, avgr;
1322
1323        if (!l->nb_atoms)
1324                return -1;
1325
1326        if (!r->nb_atoms)
1327                return 1;
1328
1329        avgl = l->total_lat / l->nb_atoms;
1330        avgr = r->total_lat / r->nb_atoms;
1331
1332        if (avgl < avgr)
1333                return -1;
1334        if (avgl > avgr)
1335                return 1;
1336
1337        return 0;
1338}
1339
1340static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1341{
1342        if (l->max_lat < r->max_lat)
1343                return -1;
1344        if (l->max_lat > r->max_lat)
1345                return 1;
1346
1347        return 0;
1348}
1349
1350static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1351{
1352        if (l->nb_atoms < r->nb_atoms)
1353                return -1;
1354        if (l->nb_atoms > r->nb_atoms)
1355                return 1;
1356
1357        return 0;
1358}
1359
1360static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1361{
1362        if (l->total_runtime < r->total_runtime)
1363                return -1;
1364        if (l->total_runtime > r->total_runtime)
1365                return 1;
1366
1367        return 0;
1368}
1369
1370static int sort_dimension__add(const char *tok, struct list_head *list)
1371{
1372        size_t i;
1373        static struct sort_dimension avg_sort_dimension = {
1374                .name = "avg",
1375                .cmp  = avg_cmp,
1376        };
1377        static struct sort_dimension max_sort_dimension = {
1378                .name = "max",
1379                .cmp  = max_cmp,
1380        };
1381        static struct sort_dimension pid_sort_dimension = {
1382                .name = "pid",
1383                .cmp  = pid_cmp,
1384        };
1385        static struct sort_dimension runtime_sort_dimension = {
1386                .name = "runtime",
1387                .cmp  = runtime_cmp,
1388        };
1389        static struct sort_dimension switch_sort_dimension = {
1390                .name = "switch",
1391                .cmp  = switch_cmp,
1392        };
1393        struct sort_dimension *available_sorts[] = {
1394                &pid_sort_dimension,
1395                &avg_sort_dimension,
1396                &max_sort_dimension,
1397                &switch_sort_dimension,
1398                &runtime_sort_dimension,
1399        };
1400
1401        for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1402                if (!strcmp(available_sorts[i]->name, tok)) {
1403                        list_add_tail(&available_sorts[i]->list, list);
1404
1405                        return 0;
1406                }
1407        }
1408
1409        return -1;
1410}
1411
1412static void perf_sched__sort_lat(struct perf_sched *sched)
1413{
1414        struct rb_node *node;
1415        struct rb_root *root = &sched->atom_root;
1416again:
1417        for (;;) {
1418                struct work_atoms *data;
1419                node = rb_first(root);
1420                if (!node)
1421                        break;
1422
1423                rb_erase(node, root);
1424                data = rb_entry(node, struct work_atoms, node);
1425                __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1426        }
1427        if (root == &sched->atom_root) {
1428                root = &sched->merged_atom_root;
1429                goto again;
1430        }
1431}
1432
1433static int process_sched_wakeup_event(struct perf_tool *tool,
1434                                      struct perf_evsel *evsel,
1435                                      struct perf_sample *sample,
1436                                      struct machine *machine)
1437{
1438        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1439
1440        if (sched->tp_handler->wakeup_event)
1441                return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1442
1443        return 0;
1444}
1445
1446union map_priv {
1447        void    *ptr;
1448        bool     color;
1449};
1450
1451static bool thread__has_color(struct thread *thread)
1452{
1453        union map_priv priv = {
1454                .ptr = thread__priv(thread),
1455        };
1456
1457        return priv.color;
1458}
1459
1460static struct thread*
1461map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1462{
1463        struct thread *thread = machine__findnew_thread(machine, pid, tid);
1464        union map_priv priv = {
1465                .color = false,
1466        };
1467
1468        if (!sched->map.color_pids || !thread || thread__priv(thread))
1469                return thread;
1470
1471        if (thread_map__has(sched->map.color_pids, tid))
1472                priv.color = true;
1473
1474        thread__set_priv(thread, priv.ptr);
1475        return thread;
1476}
1477
1478static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1479                            struct perf_sample *sample, struct machine *machine)
1480{
1481        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1482        struct thread *sched_in;
1483        int new_shortname;
1484        u64 timestamp0, timestamp = sample->time;
1485        s64 delta;
1486        int i, this_cpu = sample->cpu;
1487        int cpus_nr;
1488        bool new_cpu = false;
1489        const char *color = PERF_COLOR_NORMAL;
1490        char stimestamp[32];
1491
1492        BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1493
1494        if (this_cpu > sched->max_cpu)
1495                sched->max_cpu = this_cpu;
1496
1497        if (sched->map.comp) {
1498                cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1499                if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1500                        sched->map.comp_cpus[cpus_nr++] = this_cpu;
1501                        new_cpu = true;
1502                }
1503        } else
1504                cpus_nr = sched->max_cpu;
1505
1506        timestamp0 = sched->cpu_last_switched[this_cpu];
1507        sched->cpu_last_switched[this_cpu] = timestamp;
1508        if (timestamp0)
1509                delta = timestamp - timestamp0;
1510        else
1511                delta = 0;
1512
1513        if (delta < 0) {
1514                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1515                return -1;
1516        }
1517
1518        sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1519        if (sched_in == NULL)
1520                return -1;
1521
1522        sched->curr_thread[this_cpu] = thread__get(sched_in);
1523
1524        printf("  ");
1525
1526        new_shortname = 0;
1527        if (!sched_in->shortname[0]) {
1528                if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1529                        /*
1530                         * Don't allocate a letter-number for swapper:0
1531                         * as a shortname. Instead, we use '.' for it.
1532                         */
1533                        sched_in->shortname[0] = '.';
1534                        sched_in->shortname[1] = ' ';
1535                } else {
1536                        sched_in->shortname[0] = sched->next_shortname1;
1537                        sched_in->shortname[1] = sched->next_shortname2;
1538
1539                        if (sched->next_shortname1 < 'Z') {
1540                                sched->next_shortname1++;
1541                        } else {
1542                                sched->next_shortname1 = 'A';
1543                                if (sched->next_shortname2 < '9')
1544                                        sched->next_shortname2++;
1545                                else
1546                                        sched->next_shortname2 = '0';
1547                        }
1548                }
1549                new_shortname = 1;
1550        }
1551
1552        for (i = 0; i < cpus_nr; i++) {
1553                int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1554                struct thread *curr_thread = sched->curr_thread[cpu];
1555                const char *pid_color = color;
1556                const char *cpu_color = color;
1557
1558                if (curr_thread && thread__has_color(curr_thread))
1559                        pid_color = COLOR_PIDS;
1560
1561                if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1562                        continue;
1563
1564                if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1565                        cpu_color = COLOR_CPUS;
1566
1567                if (cpu != this_cpu)
1568                        color_fprintf(stdout, color, " ");
1569                else
1570                        color_fprintf(stdout, cpu_color, "*");
1571
1572                if (sched->curr_thread[cpu])
1573                        color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1574                else
1575                        color_fprintf(stdout, color, "   ");
1576        }
1577
1578        if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1579                goto out;
1580
1581        timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1582        color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1583        if (new_shortname || (verbose > 0 && sched_in->tid)) {
1584                const char *pid_color = color;
1585
1586                if (thread__has_color(sched_in))
1587                        pid_color = COLOR_PIDS;
1588
1589                color_fprintf(stdout, pid_color, "%s => %s:%d",
1590                       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1591        }
1592
1593        if (sched->map.comp && new_cpu)
1594                color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1595
1596out:
1597        color_fprintf(stdout, color, "\n");
1598
1599        thread__put(sched_in);
1600
1601        return 0;
1602}
1603
1604static int process_sched_switch_event(struct perf_tool *tool,
1605                                      struct perf_evsel *evsel,
1606                                      struct perf_sample *sample,
1607                                      struct machine *machine)
1608{
1609        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1610        int this_cpu = sample->cpu, err = 0;
1611        u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1612            next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1613
1614        if (sched->curr_pid[this_cpu] != (u32)-1) {
1615                /*
1616                 * Are we trying to switch away a PID that is
1617                 * not current?
1618                 */
1619                if (sched->curr_pid[this_cpu] != prev_pid)
1620                        sched->nr_context_switch_bugs++;
1621        }
1622
1623        if (sched->tp_handler->switch_event)
1624                err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1625
1626        sched->curr_pid[this_cpu] = next_pid;
1627        return err;
1628}
1629
1630static int process_sched_runtime_event(struct perf_tool *tool,
1631                                       struct perf_evsel *evsel,
1632                                       struct perf_sample *sample,
1633                                       struct machine *machine)
1634{
1635        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1636
1637        if (sched->tp_handler->runtime_event)
1638                return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1639
1640        return 0;
1641}
1642
1643static int perf_sched__process_fork_event(struct perf_tool *tool,
1644                                          union perf_event *event,
1645                                          struct perf_sample *sample,
1646                                          struct machine *machine)
1647{
1648        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1649
1650        /* run the fork event through the perf machineruy */
1651        perf_event__process_fork(tool, event, sample, machine);
1652
1653        /* and then run additional processing needed for this command */
1654        if (sched->tp_handler->fork_event)
1655                return sched->tp_handler->fork_event(sched, event, machine);
1656
1657        return 0;
1658}
1659
1660static int process_sched_migrate_task_event(struct perf_tool *tool,
1661                                            struct perf_evsel *evsel,
1662                                            struct perf_sample *sample,
1663                                            struct machine *machine)
1664{
1665        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1666
1667        if (sched->tp_handler->migrate_task_event)
1668                return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1669
1670        return 0;
1671}
1672
1673typedef int (*tracepoint_handler)(struct perf_tool *tool,
1674                                  struct perf_evsel *evsel,
1675                                  struct perf_sample *sample,
1676                                  struct machine *machine);
1677
1678static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1679                                                 union perf_event *event __maybe_unused,
1680                                                 struct perf_sample *sample,
1681                                                 struct perf_evsel *evsel,
1682                                                 struct machine *machine)
1683{
1684        int err = 0;
1685
1686        if (evsel->handler != NULL) {
1687                tracepoint_handler f = evsel->handler;
1688                err = f(tool, evsel, sample, machine);
1689        }
1690
1691        return err;
1692}
1693
1694static int perf_sched__read_events(struct perf_sched *sched)
1695{
1696        const struct perf_evsel_str_handler handlers[] = {
1697                { "sched:sched_switch",       process_sched_switch_event, },
1698                { "sched:sched_stat_runtime", process_sched_runtime_event, },
1699                { "sched:sched_wakeup",       process_sched_wakeup_event, },
1700                { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1701                { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1702        };
1703        struct perf_session *session;
1704        struct perf_data data = {
1705                .file      = {
1706                        .path = input_name,
1707                },
1708                .mode      = PERF_DATA_MODE_READ,
1709                .force     = sched->force,
1710        };
1711        int rc = -1;
1712
1713        session = perf_session__new(&data, false, &sched->tool);
1714        if (session == NULL) {
1715                pr_debug("No Memory for session\n");
1716                return -1;
1717        }
1718
1719        symbol__init(&session->header.env);
1720
1721        if (perf_session__set_tracepoints_handlers(session, handlers))
1722                goto out_delete;
1723
1724        if (perf_session__has_traces(session, "record -R")) {
1725                int err = perf_session__process_events(session);
1726                if (err) {
1727                        pr_err("Failed to process events, error %d", err);
1728                        goto out_delete;
1729                }
1730
1731                sched->nr_events      = session->evlist->stats.nr_events[0];
1732                sched->nr_lost_events = session->evlist->stats.total_lost;
1733                sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1734        }
1735
1736        rc = 0;
1737out_delete:
1738        perf_session__delete(session);
1739        return rc;
1740}
1741
1742/*
1743 * scheduling times are printed as msec.usec
1744 */
1745static inline void print_sched_time(unsigned long long nsecs, int width)
1746{
1747        unsigned long msecs;
1748        unsigned long usecs;
1749
1750        msecs  = nsecs / NSEC_PER_MSEC;
1751        nsecs -= msecs * NSEC_PER_MSEC;
1752        usecs  = nsecs / NSEC_PER_USEC;
1753        printf("%*lu.%03lu ", width, msecs, usecs);
1754}
1755
1756/*
1757 * returns runtime data for event, allocating memory for it the
1758 * first time it is used.
1759 */
1760static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1761{
1762        struct evsel_runtime *r = evsel->priv;
1763
1764        if (r == NULL) {
1765                r = zalloc(sizeof(struct evsel_runtime));
1766                evsel->priv = r;
1767        }
1768
1769        return r;
1770}
1771
1772/*
1773 * save last time event was seen per cpu
1774 */
1775static void perf_evsel__save_time(struct perf_evsel *evsel,
1776                                  u64 timestamp, u32 cpu)
1777{
1778        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1779
1780        if (r == NULL)
1781                return;
1782
1783        if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1784                int i, n = __roundup_pow_of_two(cpu+1);
1785                void *p = r->last_time;
1786
1787                p = realloc(r->last_time, n * sizeof(u64));
1788                if (!p)
1789                        return;
1790
1791                r->last_time = p;
1792                for (i = r->ncpu; i < n; ++i)
1793                        r->last_time[i] = (u64) 0;
1794
1795                r->ncpu = n;
1796        }
1797
1798        r->last_time[cpu] = timestamp;
1799}
1800
1801/* returns last time this event was seen on the given cpu */
1802static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1803{
1804        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1805
1806        if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1807                return 0;
1808
1809        return r->last_time[cpu];
1810}
1811
1812static int comm_width = 30;
1813
1814static char *timehist_get_commstr(struct thread *thread)
1815{
1816        static char str[32];
1817        const char *comm = thread__comm_str(thread);
1818        pid_t tid = thread->tid;
1819        pid_t pid = thread->pid_;
1820        int n;
1821
1822        if (pid == 0)
1823                n = scnprintf(str, sizeof(str), "%s", comm);
1824
1825        else if (tid != pid)
1826                n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1827
1828        else
1829                n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1830
1831        if (n > comm_width)
1832                comm_width = n;
1833
1834        return str;
1835}
1836
1837static void timehist_header(struct perf_sched *sched)
1838{
1839        u32 ncpus = sched->max_cpu + 1;
1840        u32 i, j;
1841
1842        printf("%15s %6s ", "time", "cpu");
1843
1844        if (sched->show_cpu_visual) {
1845                printf(" ");
1846                for (i = 0, j = 0; i < ncpus; ++i) {
1847                        printf("%x", j++);
1848                        if (j > 15)
1849                                j = 0;
1850                }
1851                printf(" ");
1852        }
1853
1854        printf(" %-*s  %9s  %9s  %9s", comm_width,
1855                "task name", "wait time", "sch delay", "run time");
1856
1857        if (sched->show_state)
1858                printf("  %s", "state");
1859
1860        printf("\n");
1861
1862        /*
1863         * units row
1864         */
1865        printf("%15s %-6s ", "", "");
1866
1867        if (sched->show_cpu_visual)
1868                printf(" %*s ", ncpus, "");
1869
1870        printf(" %-*s  %9s  %9s  %9s", comm_width,
1871               "[tid/pid]", "(msec)", "(msec)", "(msec)");
1872
1873        if (sched->show_state)
1874                printf("  %5s", "");
1875
1876        printf("\n");
1877
1878        /*
1879         * separator
1880         */
1881        printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1882
1883        if (sched->show_cpu_visual)
1884                printf(" %.*s ", ncpus, graph_dotted_line);
1885
1886        printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1887                graph_dotted_line, graph_dotted_line, graph_dotted_line,
1888                graph_dotted_line);
1889
1890        if (sched->show_state)
1891                printf("  %.5s", graph_dotted_line);
1892
1893        printf("\n");
1894}
1895
1896static char task_state_char(struct thread *thread, int state)
1897{
1898        static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1899        unsigned bit = state ? ffs(state) : 0;
1900
1901        /* 'I' for idle */
1902        if (thread->tid == 0)
1903                return 'I';
1904
1905        return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1906}
1907
1908static void timehist_print_sample(struct perf_sched *sched,
1909                                  struct perf_evsel *evsel,
1910                                  struct perf_sample *sample,
1911                                  struct addr_location *al,
1912                                  struct thread *thread,
1913                                  u64 t, int state)
1914{
1915        struct thread_runtime *tr = thread__priv(thread);
1916        const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1917        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1918        u32 max_cpus = sched->max_cpu + 1;
1919        char tstr[64];
1920        char nstr[30];
1921        u64 wait_time;
1922
1923        timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1924        printf("%15s [%04d] ", tstr, sample->cpu);
1925
1926        if (sched->show_cpu_visual) {
1927                u32 i;
1928                char c;
1929
1930                printf(" ");
1931                for (i = 0; i < max_cpus; ++i) {
1932                        /* flag idle times with 'i'; others are sched events */
1933                        if (i == sample->cpu)
1934                                c = (thread->tid == 0) ? 'i' : 's';
1935                        else
1936                                c = ' ';
1937                        printf("%c", c);
1938                }
1939                printf(" ");
1940        }
1941
1942        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1943
1944        wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
1945        print_sched_time(wait_time, 6);
1946
1947        print_sched_time(tr->dt_delay, 6);
1948        print_sched_time(tr->dt_run, 6);
1949
1950        if (sched->show_state)
1951                printf(" %5c ", task_state_char(thread, state));
1952
1953        if (sched->show_next) {
1954                snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
1955                printf(" %-*s", comm_width, nstr);
1956        }
1957
1958        if (sched->show_wakeups && !sched->show_next)
1959                printf("  %-*s", comm_width, "");
1960
1961        if (thread->tid == 0)
1962                goto out;
1963
1964        if (sched->show_callchain)
1965                printf("  ");
1966
1967        sample__fprintf_sym(sample, al, 0,
1968                            EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1969                            EVSEL__PRINT_CALLCHAIN_ARROW |
1970                            EVSEL__PRINT_SKIP_IGNORED,
1971                            &callchain_cursor, stdout);
1972
1973out:
1974        printf("\n");
1975}
1976
1977/*
1978 * Explanation of delta-time stats:
1979 *
1980 *            t = time of current schedule out event
1981 *        tprev = time of previous sched out event
1982 *                also time of schedule-in event for current task
1983 *    last_time = time of last sched change event for current task
1984 *                (i.e, time process was last scheduled out)
1985 * ready_to_run = time of wakeup for current task
1986 *
1987 * -----|------------|------------|------------|------
1988 *    last         ready        tprev          t
1989 *    time         to run
1990 *
1991 *      |-------- dt_wait --------|
1992 *                   |- dt_delay -|-- dt_run --|
1993 *
1994 *   dt_run = run time of current task
1995 *  dt_wait = time between last schedule out event for task and tprev
1996 *            represents time spent off the cpu
1997 * dt_delay = time between wakeup and schedule-in of task
1998 */
1999
2000static void timehist_update_runtime_stats(struct thread_runtime *r,
2001                                         u64 t, u64 tprev)
2002{
2003        r->dt_delay   = 0;
2004        r->dt_sleep   = 0;
2005        r->dt_iowait  = 0;
2006        r->dt_preempt = 0;
2007        r->dt_run     = 0;
2008
2009        if (tprev) {
2010                r->dt_run = t - tprev;
2011                if (r->ready_to_run) {
2012                        if (r->ready_to_run > tprev)
2013                                pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2014                        else
2015                                r->dt_delay = tprev - r->ready_to_run;
2016                }
2017
2018                if (r->last_time > tprev)
2019                        pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2020                else if (r->last_time) {
2021                        u64 dt_wait = tprev - r->last_time;
2022
2023                        if (r->last_state == TASK_RUNNING)
2024                                r->dt_preempt = dt_wait;
2025                        else if (r->last_state == TASK_UNINTERRUPTIBLE)
2026                                r->dt_iowait = dt_wait;
2027                        else
2028                                r->dt_sleep = dt_wait;
2029                }
2030        }
2031
2032        update_stats(&r->run_stats, r->dt_run);
2033
2034        r->total_run_time     += r->dt_run;
2035        r->total_delay_time   += r->dt_delay;
2036        r->total_sleep_time   += r->dt_sleep;
2037        r->total_iowait_time  += r->dt_iowait;
2038        r->total_preempt_time += r->dt_preempt;
2039}
2040
2041static bool is_idle_sample(struct perf_sample *sample,
2042                           struct perf_evsel *evsel)
2043{
2044        /* pid 0 == swapper == idle task */
2045        if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2046                return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2047
2048        return sample->pid == 0;
2049}
2050
2051static void save_task_callchain(struct perf_sched *sched,
2052                                struct perf_sample *sample,
2053                                struct perf_evsel *evsel,
2054                                struct machine *machine)
2055{
2056        struct callchain_cursor *cursor = &callchain_cursor;
2057        struct thread *thread;
2058
2059        /* want main thread for process - has maps */
2060        thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2061        if (thread == NULL) {
2062                pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2063                return;
2064        }
2065
2066        if (!symbol_conf.use_callchain || sample->callchain == NULL)
2067                return;
2068
2069        if (thread__resolve_callchain(thread, cursor, evsel, sample,
2070                                      NULL, NULL, sched->max_stack + 2) != 0) {
2071                if (verbose > 0)
2072                        pr_err("Failed to resolve callchain. Skipping\n");
2073
2074                return;
2075        }
2076
2077        callchain_cursor_commit(cursor);
2078
2079        while (true) {
2080                struct callchain_cursor_node *node;
2081                struct symbol *sym;
2082
2083                node = callchain_cursor_current(cursor);
2084                if (node == NULL)
2085                        break;
2086
2087                sym = node->sym;
2088                if (sym) {
2089                        if (!strcmp(sym->name, "schedule") ||
2090                            !strcmp(sym->name, "__schedule") ||
2091                            !strcmp(sym->name, "preempt_schedule"))
2092                                sym->ignore = 1;
2093                }
2094
2095                callchain_cursor_advance(cursor);
2096        }
2097}
2098
2099static int init_idle_thread(struct thread *thread)
2100{
2101        struct idle_thread_runtime *itr;
2102
2103        thread__set_comm(thread, idle_comm, 0);
2104
2105        itr = zalloc(sizeof(*itr));
2106        if (itr == NULL)
2107                return -ENOMEM;
2108
2109        init_stats(&itr->tr.run_stats);
2110        callchain_init(&itr->callchain);
2111        callchain_cursor_reset(&itr->cursor);
2112        thread__set_priv(thread, itr);
2113
2114        return 0;
2115}
2116
2117/*
2118 * Track idle stats per cpu by maintaining a local thread
2119 * struct for the idle task on each cpu.
2120 */
2121static int init_idle_threads(int ncpu)
2122{
2123        int i, ret;
2124
2125        idle_threads = zalloc(ncpu * sizeof(struct thread *));
2126        if (!idle_threads)
2127                return -ENOMEM;
2128
2129        idle_max_cpu = ncpu;
2130
2131        /* allocate the actual thread struct if needed */
2132        for (i = 0; i < ncpu; ++i) {
2133                idle_threads[i] = thread__new(0, 0);
2134                if (idle_threads[i] == NULL)
2135                        return -ENOMEM;
2136
2137                ret = init_idle_thread(idle_threads[i]);
2138                if (ret < 0)
2139                        return ret;
2140        }
2141
2142        return 0;
2143}
2144
2145static void free_idle_threads(void)
2146{
2147        int i;
2148
2149        if (idle_threads == NULL)
2150                return;
2151
2152        for (i = 0; i < idle_max_cpu; ++i) {
2153                if ((idle_threads[i]))
2154                        thread__delete(idle_threads[i]);
2155        }
2156
2157        free(idle_threads);
2158}
2159
2160static struct thread *get_idle_thread(int cpu)
2161{
2162        /*
2163         * expand/allocate array of pointers to local thread
2164         * structs if needed
2165         */
2166        if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2167                int i, j = __roundup_pow_of_two(cpu+1);
2168                void *p;
2169
2170                p = realloc(idle_threads, j * sizeof(struct thread *));
2171                if (!p)
2172                        return NULL;
2173
2174                idle_threads = (struct thread **) p;
2175                for (i = idle_max_cpu; i < j; ++i)
2176                        idle_threads[i] = NULL;
2177
2178                idle_max_cpu = j;
2179        }
2180
2181        /* allocate a new thread struct if needed */
2182        if (idle_threads[cpu] == NULL) {
2183                idle_threads[cpu] = thread__new(0, 0);
2184
2185                if (idle_threads[cpu]) {
2186                        if (init_idle_thread(idle_threads[cpu]) < 0)
2187                                return NULL;
2188                }
2189        }
2190
2191        return idle_threads[cpu];
2192}
2193
2194static void save_idle_callchain(struct idle_thread_runtime *itr,
2195                                struct perf_sample *sample)
2196{
2197        if (!symbol_conf.use_callchain || sample->callchain == NULL)
2198                return;
2199
2200        callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2201}
2202
2203/*
2204 * handle runtime stats saved per thread
2205 */
2206static struct thread_runtime *thread__init_runtime(struct thread *thread)
2207{
2208        struct thread_runtime *r;
2209
2210        r = zalloc(sizeof(struct thread_runtime));
2211        if (!r)
2212                return NULL;
2213
2214        init_stats(&r->run_stats);
2215        thread__set_priv(thread, r);
2216
2217        return r;
2218}
2219
2220static struct thread_runtime *thread__get_runtime(struct thread *thread)
2221{
2222        struct thread_runtime *tr;
2223
2224        tr = thread__priv(thread);
2225        if (tr == NULL) {
2226                tr = thread__init_runtime(thread);
2227                if (tr == NULL)
2228                        pr_debug("Failed to malloc memory for runtime data.\n");
2229        }
2230
2231        return tr;
2232}
2233
2234static struct thread *timehist_get_thread(struct perf_sched *sched,
2235                                          struct perf_sample *sample,
2236                                          struct machine *machine,
2237                                          struct perf_evsel *evsel)
2238{
2239        struct thread *thread;
2240
2241        if (is_idle_sample(sample, evsel)) {
2242                thread = get_idle_thread(sample->cpu);
2243                if (thread == NULL)
2244                        pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2245
2246        } else {
2247                /* there were samples with tid 0 but non-zero pid */
2248                thread = machine__findnew_thread(machine, sample->pid,
2249                                                 sample->tid ?: sample->pid);
2250                if (thread == NULL) {
2251                        pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2252                                 sample->tid);
2253                }
2254
2255                save_task_callchain(sched, sample, evsel, machine);
2256                if (sched->idle_hist) {
2257                        struct thread *idle;
2258                        struct idle_thread_runtime *itr;
2259
2260                        idle = get_idle_thread(sample->cpu);
2261                        if (idle == NULL) {
2262                                pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2263                                return NULL;
2264                        }
2265
2266                        itr = thread__priv(idle);
2267                        if (itr == NULL)
2268                                return NULL;
2269
2270                        itr->last_thread = thread;
2271
2272                        /* copy task callchain when entering to idle */
2273                        if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2274                                save_idle_callchain(itr, sample);
2275                }
2276        }
2277
2278        return thread;
2279}
2280
2281static bool timehist_skip_sample(struct perf_sched *sched,
2282                                 struct thread *thread,
2283                                 struct perf_evsel *evsel,
2284                                 struct perf_sample *sample)
2285{
2286        bool rc = false;
2287
2288        if (thread__is_filtered(thread)) {
2289                rc = true;
2290                sched->skipped_samples++;
2291        }
2292
2293        if (sched->idle_hist) {
2294                if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2295                        rc = true;
2296                else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2297                         perf_evsel__intval(evsel, sample, "next_pid") != 0)
2298                        rc = true;
2299        }
2300
2301        return rc;
2302}
2303
2304static void timehist_print_wakeup_event(struct perf_sched *sched,
2305                                        struct perf_evsel *evsel,
2306                                        struct perf_sample *sample,
2307                                        struct machine *machine,
2308                                        struct thread *awakened)
2309{
2310        struct thread *thread;
2311        char tstr[64];
2312
2313        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2314        if (thread == NULL)
2315                return;
2316
2317        /* show wakeup unless both awakee and awaker are filtered */
2318        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2319            timehist_skip_sample(sched, awakened, evsel, sample)) {
2320                return;
2321        }
2322
2323        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2324        printf("%15s [%04d] ", tstr, sample->cpu);
2325        if (sched->show_cpu_visual)
2326                printf(" %*s ", sched->max_cpu + 1, "");
2327
2328        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2329
2330        /* dt spacer */
2331        printf("  %9s  %9s  %9s ", "", "", "");
2332
2333        printf("awakened: %s", timehist_get_commstr(awakened));
2334
2335        printf("\n");
2336}
2337
2338static int timehist_sched_wakeup_event(struct perf_tool *tool,
2339                                       union perf_event *event __maybe_unused,
2340                                       struct perf_evsel *evsel,
2341                                       struct perf_sample *sample,
2342                                       struct machine *machine)
2343{
2344        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2345        struct thread *thread;
2346        struct thread_runtime *tr = NULL;
2347        /* want pid of awakened task not pid in sample */
2348        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2349
2350        thread = machine__findnew_thread(machine, 0, pid);
2351        if (thread == NULL)
2352                return -1;
2353
2354        tr = thread__get_runtime(thread);
2355        if (tr == NULL)
2356                return -1;
2357
2358        if (tr->ready_to_run == 0)
2359                tr->ready_to_run = sample->time;
2360
2361        /* show wakeups if requested */
2362        if (sched->show_wakeups &&
2363            !perf_time__skip_sample(&sched->ptime, sample->time))
2364                timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2365
2366        return 0;
2367}
2368
2369static void timehist_print_migration_event(struct perf_sched *sched,
2370                                        struct perf_evsel *evsel,
2371                                        struct perf_sample *sample,
2372                                        struct machine *machine,
2373                                        struct thread *migrated)
2374{
2375        struct thread *thread;
2376        char tstr[64];
2377        u32 max_cpus = sched->max_cpu + 1;
2378        u32 ocpu, dcpu;
2379
2380        if (sched->summary_only)
2381                return;
2382
2383        max_cpus = sched->max_cpu + 1;
2384        ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2385        dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2386
2387        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2388        if (thread == NULL)
2389                return;
2390
2391        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2392            timehist_skip_sample(sched, migrated, evsel, sample)) {
2393                return;
2394        }
2395
2396        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2397        printf("%15s [%04d] ", tstr, sample->cpu);
2398
2399        if (sched->show_cpu_visual) {
2400                u32 i;
2401                char c;
2402
2403                printf("  ");
2404                for (i = 0; i < max_cpus; ++i) {
2405                        c = (i == sample->cpu) ? 'm' : ' ';
2406                        printf("%c", c);
2407                }
2408                printf("  ");
2409        }
2410
2411        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2412
2413        /* dt spacer */
2414        printf("  %9s  %9s  %9s ", "", "", "");
2415
2416        printf("migrated: %s", timehist_get_commstr(migrated));
2417        printf(" cpu %d => %d", ocpu, dcpu);
2418
2419        printf("\n");
2420}
2421
2422static int timehist_migrate_task_event(struct perf_tool *tool,
2423                                       union perf_event *event __maybe_unused,
2424                                       struct perf_evsel *evsel,
2425                                       struct perf_sample *sample,
2426                                       struct machine *machine)
2427{
2428        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2429        struct thread *thread;
2430        struct thread_runtime *tr = NULL;
2431        /* want pid of migrated task not pid in sample */
2432        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2433
2434        thread = machine__findnew_thread(machine, 0, pid);
2435        if (thread == NULL)
2436                return -1;
2437
2438        tr = thread__get_runtime(thread);
2439        if (tr == NULL)
2440                return -1;
2441
2442        tr->migrations++;
2443
2444        /* show migrations if requested */
2445        timehist_print_migration_event(sched, evsel, sample, machine, thread);
2446
2447        return 0;
2448}
2449
2450static int timehist_sched_change_event(struct perf_tool *tool,
2451                                       union perf_event *event,
2452                                       struct perf_evsel *evsel,
2453                                       struct perf_sample *sample,
2454                                       struct machine *machine)
2455{
2456        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2457        struct perf_time_interval *ptime = &sched->ptime;
2458        struct addr_location al;
2459        struct thread *thread;
2460        struct thread_runtime *tr = NULL;
2461        u64 tprev, t = sample->time;
2462        int rc = 0;
2463        int state = perf_evsel__intval(evsel, sample, "prev_state");
2464
2465
2466        if (machine__resolve(machine, &al, sample) < 0) {
2467                pr_err("problem processing %d event. skipping it\n",
2468                       event->header.type);
2469                rc = -1;
2470                goto out;
2471        }
2472
2473        thread = timehist_get_thread(sched, sample, machine, evsel);
2474        if (thread == NULL) {
2475                rc = -1;
2476                goto out;
2477        }
2478
2479        if (timehist_skip_sample(sched, thread, evsel, sample))
2480                goto out;
2481
2482        tr = thread__get_runtime(thread);
2483        if (tr == NULL) {
2484                rc = -1;
2485                goto out;
2486        }
2487
2488        tprev = perf_evsel__get_time(evsel, sample->cpu);
2489
2490        /*
2491         * If start time given:
2492         * - sample time is under window user cares about - skip sample
2493         * - tprev is under window user cares about  - reset to start of window
2494         */
2495        if (ptime->start && ptime->start > t)
2496                goto out;
2497
2498        if (tprev && ptime->start > tprev)
2499                tprev = ptime->start;
2500
2501        /*
2502         * If end time given:
2503         * - previous sched event is out of window - we are done
2504         * - sample time is beyond window user cares about - reset it
2505         *   to close out stats for time window interest
2506         */
2507        if (ptime->end) {
2508                if (tprev > ptime->end)
2509                        goto out;
2510
2511                if (t > ptime->end)
2512                        t = ptime->end;
2513        }
2514
2515        if (!sched->idle_hist || thread->tid == 0) {
2516                timehist_update_runtime_stats(tr, t, tprev);
2517
2518                if (sched->idle_hist) {
2519                        struct idle_thread_runtime *itr = (void *)tr;
2520                        struct thread_runtime *last_tr;
2521
2522                        BUG_ON(thread->tid != 0);
2523
2524                        if (itr->last_thread == NULL)
2525                                goto out;
2526
2527                        /* add current idle time as last thread's runtime */
2528                        last_tr = thread__get_runtime(itr->last_thread);
2529                        if (last_tr == NULL)
2530                                goto out;
2531
2532                        timehist_update_runtime_stats(last_tr, t, tprev);
2533                        /*
2534                         * remove delta time of last thread as it's not updated
2535                         * and otherwise it will show an invalid value next
2536                         * time.  we only care total run time and run stat.
2537                         */
2538                        last_tr->dt_run = 0;
2539                        last_tr->dt_delay = 0;
2540                        last_tr->dt_sleep = 0;
2541                        last_tr->dt_iowait = 0;
2542                        last_tr->dt_preempt = 0;
2543
2544                        if (itr->cursor.nr)
2545                                callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2546
2547                        itr->last_thread = NULL;
2548                }
2549        }
2550
2551        if (!sched->summary_only)
2552                timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2553
2554out:
2555        if (sched->hist_time.start == 0 && t >= ptime->start)
2556                sched->hist_time.start = t;
2557        if (ptime->end == 0 || t <= ptime->end)
2558                sched->hist_time.end = t;
2559
2560        if (tr) {
2561                /* time of this sched_switch event becomes last time task seen */
2562                tr->last_time = sample->time;
2563
2564                /* last state is used to determine where to account wait time */
2565                tr->last_state = state;
2566
2567                /* sched out event for task so reset ready to run time */
2568                tr->ready_to_run = 0;
2569        }
2570
2571        perf_evsel__save_time(evsel, sample->time, sample->cpu);
2572
2573        return rc;
2574}
2575
2576static int timehist_sched_switch_event(struct perf_tool *tool,
2577                             union perf_event *event,
2578                             struct perf_evsel *evsel,
2579                             struct perf_sample *sample,
2580                             struct machine *machine __maybe_unused)
2581{
2582        return timehist_sched_change_event(tool, event, evsel, sample, machine);
2583}
2584
2585static int process_lost(struct perf_tool *tool __maybe_unused,
2586                        union perf_event *event,
2587                        struct perf_sample *sample,
2588                        struct machine *machine __maybe_unused)
2589{
2590        char tstr[64];
2591
2592        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2593        printf("%15s ", tstr);
2594        printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2595
2596        return 0;
2597}
2598
2599
2600static void print_thread_runtime(struct thread *t,
2601                                 struct thread_runtime *r)
2602{
2603        double mean = avg_stats(&r->run_stats);
2604        float stddev;
2605
2606        printf("%*s   %5d  %9" PRIu64 " ",
2607               comm_width, timehist_get_commstr(t), t->ppid,
2608               (u64) r->run_stats.n);
2609
2610        print_sched_time(r->total_run_time, 8);
2611        stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2612        print_sched_time(r->run_stats.min, 6);
2613        printf(" ");
2614        print_sched_time((u64) mean, 6);
2615        printf(" ");
2616        print_sched_time(r->run_stats.max, 6);
2617        printf("  ");
2618        printf("%5.2f", stddev);
2619        printf("   %5" PRIu64, r->migrations);
2620        printf("\n");
2621}
2622
2623static void print_thread_waittime(struct thread *t,
2624                                  struct thread_runtime *r)
2625{
2626        printf("%*s   %5d  %9" PRIu64 " ",
2627               comm_width, timehist_get_commstr(t), t->ppid,
2628               (u64) r->run_stats.n);
2629
2630        print_sched_time(r->total_run_time, 8);
2631        print_sched_time(r->total_sleep_time, 6);
2632        printf(" ");
2633        print_sched_time(r->total_iowait_time, 6);
2634        printf(" ");
2635        print_sched_time(r->total_preempt_time, 6);
2636        printf(" ");
2637        print_sched_time(r->total_delay_time, 6);
2638        printf("\n");
2639}
2640
2641struct total_run_stats {
2642        struct perf_sched *sched;
2643        u64  sched_count;
2644        u64  task_count;
2645        u64  total_run_time;
2646};
2647
2648static int __show_thread_runtime(struct thread *t, void *priv)
2649{
2650        struct total_run_stats *stats = priv;
2651        struct thread_runtime *r;
2652
2653        if (thread__is_filtered(t))
2654                return 0;
2655
2656        r = thread__priv(t);
2657        if (r && r->run_stats.n) {
2658                stats->task_count++;
2659                stats->sched_count += r->run_stats.n;
2660                stats->total_run_time += r->total_run_time;
2661
2662                if (stats->sched->show_state)
2663                        print_thread_waittime(t, r);
2664                else
2665                        print_thread_runtime(t, r);
2666        }
2667
2668        return 0;
2669}
2670
2671static int show_thread_runtime(struct thread *t, void *priv)
2672{
2673        if (t->dead)
2674                return 0;
2675
2676        return __show_thread_runtime(t, priv);
2677}
2678
2679static int show_deadthread_runtime(struct thread *t, void *priv)
2680{
2681        if (!t->dead)
2682                return 0;
2683
2684        return __show_thread_runtime(t, priv);
2685}
2686
2687static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2688{
2689        const char *sep = " <- ";
2690        struct callchain_list *chain;
2691        size_t ret = 0;
2692        char bf[1024];
2693        bool first;
2694
2695        if (node == NULL)
2696                return 0;
2697
2698        ret = callchain__fprintf_folded(fp, node->parent);
2699        first = (ret == 0);
2700
2701        list_for_each_entry(chain, &node->val, list) {
2702                if (chain->ip >= PERF_CONTEXT_MAX)
2703                        continue;
2704                if (chain->ms.sym && chain->ms.sym->ignore)
2705                        continue;
2706                ret += fprintf(fp, "%s%s", first ? "" : sep,
2707                               callchain_list__sym_name(chain, bf, sizeof(bf),
2708                                                        false));
2709                first = false;
2710        }
2711
2712        return ret;
2713}
2714
2715static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2716{
2717        size_t ret = 0;
2718        FILE *fp = stdout;
2719        struct callchain_node *chain;
2720        struct rb_node *rb_node = rb_first(root);
2721
2722        printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2723        printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2724               graph_dotted_line);
2725
2726        while (rb_node) {
2727                chain = rb_entry(rb_node, struct callchain_node, rb_node);
2728                rb_node = rb_next(rb_node);
2729
2730                ret += fprintf(fp, "  ");
2731                print_sched_time(chain->hit, 12);
2732                ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2733                ret += fprintf(fp, " %8d  ", chain->count);
2734                ret += callchain__fprintf_folded(fp, chain);
2735                ret += fprintf(fp, "\n");
2736        }
2737
2738        return ret;
2739}
2740
2741static void timehist_print_summary(struct perf_sched *sched,
2742                                   struct perf_session *session)
2743{
2744        struct machine *m = &session->machines.host;
2745        struct total_run_stats totals;
2746        u64 task_count;
2747        struct thread *t;
2748        struct thread_runtime *r;
2749        int i;
2750        u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2751
2752        memset(&totals, 0, sizeof(totals));
2753        totals.sched = sched;
2754
2755        if (sched->idle_hist) {
2756                printf("\nIdle-time summary\n");
2757                printf("%*s  parent  sched-out  ", comm_width, "comm");
2758                printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2759        } else if (sched->show_state) {
2760                printf("\nWait-time summary\n");
2761                printf("%*s  parent   sched-in  ", comm_width, "comm");
2762                printf("   run-time      sleep      iowait     preempt       delay\n");
2763        } else {
2764                printf("\nRuntime summary\n");
2765                printf("%*s  parent   sched-in  ", comm_width, "comm");
2766                printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2767        }
2768        printf("%*s            (count)  ", comm_width, "");
2769        printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2770               sched->show_state ? "(msec)" : "%");
2771        printf("%.117s\n", graph_dotted_line);
2772
2773        machine__for_each_thread(m, show_thread_runtime, &totals);
2774        task_count = totals.task_count;
2775        if (!task_count)
2776                printf("<no still running tasks>\n");
2777
2778        printf("\nTerminated tasks:\n");
2779        machine__for_each_thread(m, show_deadthread_runtime, &totals);
2780        if (task_count == totals.task_count)
2781                printf("<no terminated tasks>\n");
2782
2783        /* CPU idle stats not tracked when samples were skipped */
2784        if (sched->skipped_samples && !sched->idle_hist)
2785                return;
2786
2787        printf("\nIdle stats:\n");
2788        for (i = 0; i < idle_max_cpu; ++i) {
2789                t = idle_threads[i];
2790                if (!t)
2791                        continue;
2792
2793                r = thread__priv(t);
2794                if (r && r->run_stats.n) {
2795                        totals.sched_count += r->run_stats.n;
2796                        printf("    CPU %2d idle for ", i);
2797                        print_sched_time(r->total_run_time, 6);
2798                        printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2799                } else
2800                        printf("    CPU %2d idle entire time window\n", i);
2801        }
2802
2803        if (sched->idle_hist && symbol_conf.use_callchain) {
2804                callchain_param.mode  = CHAIN_FOLDED;
2805                callchain_param.value = CCVAL_PERIOD;
2806
2807                callchain_register_param(&callchain_param);
2808
2809                printf("\nIdle stats by callchain:\n");
2810                for (i = 0; i < idle_max_cpu; ++i) {
2811                        struct idle_thread_runtime *itr;
2812
2813                        t = idle_threads[i];
2814                        if (!t)
2815                                continue;
2816
2817                        itr = thread__priv(t);
2818                        if (itr == NULL)
2819                                continue;
2820
2821                        callchain_param.sort(&itr->sorted_root, &itr->callchain,
2822                                             0, &callchain_param);
2823
2824                        printf("  CPU %2d:", i);
2825                        print_sched_time(itr->tr.total_run_time, 6);
2826                        printf(" msec\n");
2827                        timehist_print_idlehist_callchain(&itr->sorted_root);
2828                        printf("\n");
2829                }
2830        }
2831
2832        printf("\n"
2833               "    Total number of unique tasks: %" PRIu64 "\n"
2834               "Total number of context switches: %" PRIu64 "\n",
2835               totals.task_count, totals.sched_count);
2836
2837        printf("           Total run time (msec): ");
2838        print_sched_time(totals.total_run_time, 2);
2839        printf("\n");
2840
2841        printf("    Total scheduling time (msec): ");
2842        print_sched_time(hist_time, 2);
2843        printf(" (x %d)\n", sched->max_cpu);
2844}
2845
2846typedef int (*sched_handler)(struct perf_tool *tool,
2847                          union perf_event *event,
2848                          struct perf_evsel *evsel,
2849                          struct perf_sample *sample,
2850                          struct machine *machine);
2851
2852static int perf_timehist__process_sample(struct perf_tool *tool,
2853                                         union perf_event *event,
2854                                         struct perf_sample *sample,
2855                                         struct perf_evsel *evsel,
2856                                         struct machine *machine)
2857{
2858        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2859        int err = 0;
2860        int this_cpu = sample->cpu;
2861
2862        if (this_cpu > sched->max_cpu)
2863                sched->max_cpu = this_cpu;
2864
2865        if (evsel->handler != NULL) {
2866                sched_handler f = evsel->handler;
2867
2868                err = f(tool, event, evsel, sample, machine);
2869        }
2870
2871        return err;
2872}
2873
2874static int timehist_check_attr(struct perf_sched *sched,
2875                               struct perf_evlist *evlist)
2876{
2877        struct perf_evsel *evsel;
2878        struct evsel_runtime *er;
2879
2880        list_for_each_entry(evsel, &evlist->entries, node) {
2881                er = perf_evsel__get_runtime(evsel);
2882                if (er == NULL) {
2883                        pr_err("Failed to allocate memory for evsel runtime data\n");
2884                        return -1;
2885                }
2886
2887                if (sched->show_callchain &&
2888                    !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2889                        pr_info("Samples do not have callchains.\n");
2890                        sched->show_callchain = 0;
2891                        symbol_conf.use_callchain = 0;
2892                }
2893        }
2894
2895        return 0;
2896}
2897
2898static int perf_sched__timehist(struct perf_sched *sched)
2899{
2900        const struct perf_evsel_str_handler handlers[] = {
2901                { "sched:sched_switch",       timehist_sched_switch_event, },
2902                { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2903                { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2904        };
2905        const struct perf_evsel_str_handler migrate_handlers[] = {
2906                { "sched:sched_migrate_task", timehist_migrate_task_event, },
2907        };
2908        struct perf_data data = {
2909                .file      = {
2910                        .path = input_name,
2911                },
2912                .mode      = PERF_DATA_MODE_READ,
2913                .force     = sched->force,
2914        };
2915
2916        struct perf_session *session;
2917        struct perf_evlist *evlist;
2918        int err = -1;
2919
2920        /*
2921         * event handlers for timehist option
2922         */
2923        sched->tool.sample       = perf_timehist__process_sample;
2924        sched->tool.mmap         = perf_event__process_mmap;
2925        sched->tool.comm         = perf_event__process_comm;
2926        sched->tool.exit         = perf_event__process_exit;
2927        sched->tool.fork         = perf_event__process_fork;
2928        sched->tool.lost         = process_lost;
2929        sched->tool.attr         = perf_event__process_attr;
2930        sched->tool.tracing_data = perf_event__process_tracing_data;
2931        sched->tool.build_id     = perf_event__process_build_id;
2932
2933        sched->tool.ordered_events = true;
2934        sched->tool.ordering_requires_timestamps = true;
2935
2936        symbol_conf.use_callchain = sched->show_callchain;
2937
2938        session = perf_session__new(&data, false, &sched->tool);
2939        if (session == NULL)
2940                return -ENOMEM;
2941
2942        evlist = session->evlist;
2943
2944        symbol__init(&session->header.env);
2945
2946        if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2947                pr_err("Invalid time string\n");
2948                return -EINVAL;
2949        }
2950
2951        if (timehist_check_attr(sched, evlist) != 0)
2952                goto out;
2953
2954        setup_pager();
2955
2956        /* setup per-evsel handlers */
2957        if (perf_session__set_tracepoints_handlers(session, handlers))
2958                goto out;
2959
2960        /* sched_switch event at a minimum needs to exist */
2961        if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2962                                                  "sched:sched_switch")) {
2963                pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2964                goto out;
2965        }
2966
2967        if (sched->show_migrations &&
2968            perf_session__set_tracepoints_handlers(session, migrate_handlers))
2969                goto out;
2970
2971        /* pre-allocate struct for per-CPU idle stats */
2972        sched->max_cpu = session->header.env.nr_cpus_online;
2973        if (sched->max_cpu == 0)
2974                sched->max_cpu = 4;
2975        if (init_idle_threads(sched->max_cpu))
2976                goto out;
2977
2978        /* summary_only implies summary option, but don't overwrite summary if set */
2979        if (sched->summary_only)
2980                sched->summary = sched->summary_only;
2981
2982        if (!sched->summary_only)
2983                timehist_header(sched);
2984
2985        err = perf_session__process_events(session);
2986        if (err) {
2987                pr_err("Failed to process events, error %d", err);
2988                goto out;
2989        }
2990
2991        sched->nr_events      = evlist->stats.nr_events[0];
2992        sched->nr_lost_events = evlist->stats.total_lost;
2993        sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2994
2995        if (sched->summary)
2996                timehist_print_summary(sched, session);
2997
2998out:
2999        free_idle_threads();
3000        perf_session__delete(session);
3001
3002        return err;
3003}
3004
3005
3006static void print_bad_events(struct perf_sched *sched)
3007{
3008        if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3009                printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3010                        (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3011                        sched->nr_unordered_timestamps, sched->nr_timestamps);
3012        }
3013        if (sched->nr_lost_events && sched->nr_events) {
3014                printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3015                        (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3016                        sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3017        }
3018        if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3019                printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3020                        (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3021                        sched->nr_context_switch_bugs, sched->nr_timestamps);
3022                if (sched->nr_lost_events)
3023                        printf(" (due to lost events?)");
3024                printf("\n");
3025        }
3026}
3027
3028static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
3029{
3030        struct rb_node **new = &(root->rb_node), *parent = NULL;
3031        struct work_atoms *this;
3032        const char *comm = thread__comm_str(data->thread), *this_comm;
3033
3034        while (*new) {
3035                int cmp;
3036
3037                this = container_of(*new, struct work_atoms, node);
3038                parent = *new;
3039
3040                this_comm = thread__comm_str(this->thread);
3041                cmp = strcmp(comm, this_comm);
3042                if (cmp > 0) {
3043                        new = &((*new)->rb_left);
3044                } else if (cmp < 0) {
3045                        new = &((*new)->rb_right);
3046                } else {
3047                        this->num_merged++;
3048                        this->total_runtime += data->total_runtime;
3049                        this->nb_atoms += data->nb_atoms;
3050                        this->total_lat += data->total_lat;
3051                        list_splice(&data->work_list, &this->work_list);
3052                        if (this->max_lat < data->max_lat) {
3053                                this->max_lat = data->max_lat;
3054                                this->max_lat_at = data->max_lat_at;
3055                        }
3056                        zfree(&data);
3057                        return;
3058                }
3059        }
3060
3061        data->num_merged++;
3062        rb_link_node(&data->node, parent, new);
3063        rb_insert_color(&data->node, root);
3064}
3065
3066static void perf_sched__merge_lat(struct perf_sched *sched)
3067{
3068        struct work_atoms *data;
3069        struct rb_node *node;
3070
3071        if (sched->skip_merge)
3072                return;
3073
3074        while ((node = rb_first(&sched->atom_root))) {
3075                rb_erase(node, &sched->atom_root);
3076                data = rb_entry(node, struct work_atoms, node);
3077                __merge_work_atoms(&sched->merged_atom_root, data);
3078        }
3079}
3080
3081static int perf_sched__lat(struct perf_sched *sched)
3082{
3083        struct rb_node *next;
3084
3085        setup_pager();
3086
3087        if (perf_sched__read_events(sched))
3088                return -1;
3089
3090        perf_sched__merge_lat(sched);
3091        perf_sched__sort_lat(sched);
3092
3093        printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3094        printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3095        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3096
3097        next = rb_first(&sched->sorted_atom_root);
3098
3099        while (next) {
3100                struct work_atoms *work_list;
3101
3102                work_list = rb_entry(next, struct work_atoms, node);
3103                output_lat_thread(sched, work_list);
3104                next = rb_next(next);
3105                thread__zput(work_list->thread);
3106        }
3107
3108        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3109        printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3110                (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3111
3112        printf(" ---------------------------------------------------\n");
3113
3114        print_bad_events(sched);
3115        printf("\n");
3116
3117        return 0;
3118}
3119
3120static int setup_map_cpus(struct perf_sched *sched)
3121{
3122        struct cpu_map *map;
3123
3124        sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3125
3126        if (sched->map.comp) {
3127                sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3128                if (!sched->map.comp_cpus)
3129                        return -1;
3130        }
3131
3132        if (!sched->map.cpus_str)
3133                return 0;
3134
3135        map = cpu_map__new(sched->map.cpus_str);
3136        if (!map) {
3137                pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3138                return -1;
3139        }
3140
3141        sched->map.cpus = map;
3142        return 0;
3143}
3144
3145static int setup_color_pids(struct perf_sched *sched)
3146{
3147        struct thread_map *map;
3148
3149        if (!sched->map.color_pids_str)
3150                return 0;
3151
3152        map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3153        if (!map) {
3154                pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3155                return -1;
3156        }
3157
3158        sched->map.color_pids = map;
3159        return 0;
3160}
3161
3162static int setup_color_cpus(struct perf_sched *sched)
3163{
3164        struct cpu_map *map;
3165
3166        if (!sched->map.color_cpus_str)
3167                return 0;
3168
3169        map = cpu_map__new(sched->map.color_cpus_str);
3170        if (!map) {
3171                pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3172                return -1;
3173        }
3174
3175        sched->map.color_cpus = map;
3176        return 0;
3177}
3178
3179static int perf_sched__map(struct perf_sched *sched)
3180{
3181        if (setup_map_cpus(sched))
3182                return -1;
3183
3184        if (setup_color_pids(sched))
3185                return -1;
3186
3187        if (setup_color_cpus(sched))
3188                return -1;
3189
3190        setup_pager();
3191        if (perf_sched__read_events(sched))
3192                return -1;
3193        print_bad_events(sched);
3194        return 0;
3195}
3196
3197static int perf_sched__replay(struct perf_sched *sched)
3198{
3199        unsigned long i;
3200
3201        calibrate_run_measurement_overhead(sched);
3202        calibrate_sleep_measurement_overhead(sched);
3203
3204        test_calibrations(sched);
3205
3206        if (perf_sched__read_events(sched))
3207                return -1;
3208
3209        printf("nr_run_events:        %ld\n", sched->nr_run_events);
3210        printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3211        printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3212
3213        if (sched->targetless_wakeups)
3214                printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3215        if (sched->multitarget_wakeups)
3216                printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3217        if (sched->nr_run_events_optimized)
3218                printf("run atoms optimized: %ld\n",
3219                        sched->nr_run_events_optimized);
3220
3221        print_task_traces(sched);
3222        add_cross_task_wakeups(sched);
3223
3224        create_tasks(sched);
3225        printf("------------------------------------------------------------\n");
3226        for (i = 0; i < sched->replay_repeat; i++)
3227                run_one_test(sched);
3228
3229        return 0;
3230}
3231
3232static void setup_sorting(struct perf_sched *sched, const struct option *options,
3233                          const char * const usage_msg[])
3234{
3235        char *tmp, *tok, *str = strdup(sched->sort_order);
3236
3237        for (tok = strtok_r(str, ", ", &tmp);
3238                        tok; tok = strtok_r(NULL, ", ", &tmp)) {
3239                if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3240                        usage_with_options_msg(usage_msg, options,
3241                                        "Unknown --sort key: `%s'", tok);
3242                }
3243        }
3244
3245        free(str);
3246
3247        sort_dimension__add("pid", &sched->cmp_pid);
3248}
3249
3250static int __cmd_record(int argc, const char **argv)
3251{
3252        unsigned int rec_argc, i, j;
3253        const char **rec_argv;
3254        const char * const record_args[] = {
3255                "record",
3256                "-a",
3257                "-R",
3258                "-m", "1024",
3259                "-c", "1",
3260                "-e", "sched:sched_switch",
3261                "-e", "sched:sched_stat_wait",
3262                "-e", "sched:sched_stat_sleep",
3263                "-e", "sched:sched_stat_iowait",
3264                "-e", "sched:sched_stat_runtime",
3265                "-e", "sched:sched_process_fork",
3266                "-e", "sched:sched_wakeup",
3267                "-e", "sched:sched_wakeup_new",
3268                "-e", "sched:sched_migrate_task",
3269        };
3270
3271        rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3272        rec_argv = calloc(rec_argc + 1, sizeof(char *));
3273
3274        if (rec_argv == NULL)
3275                return -ENOMEM;
3276
3277        for (i = 0; i < ARRAY_SIZE(record_args); i++)
3278                rec_argv[i] = strdup(record_args[i]);
3279
3280        for (j = 1; j < (unsigned int)argc; j++, i++)
3281                rec_argv[i] = argv[j];
3282
3283        BUG_ON(i != rec_argc);
3284
3285        return cmd_record(i, rec_argv);
3286}
3287
3288int cmd_sched(int argc, const char **argv)
3289{
3290        const char default_sort_order[] = "avg, max, switch, runtime";
3291        struct perf_sched sched = {
3292                .tool = {
3293                        .sample          = perf_sched__process_tracepoint_sample,
3294                        .comm            = perf_event__process_comm,
3295                        .namespaces      = perf_event__process_namespaces,
3296                        .lost            = perf_event__process_lost,
3297                        .fork            = perf_sched__process_fork_event,
3298                        .ordered_events = true,
3299                },
3300                .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3301                .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3302                .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3303                .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3304                .sort_order           = default_sort_order,
3305                .replay_repeat        = 10,
3306                .profile_cpu          = -1,
3307                .next_shortname1      = 'A',
3308                .next_shortname2      = '0',
3309                .skip_merge           = 0,
3310                .show_callchain       = 1,
3311                .max_stack            = 5,
3312        };
3313        const struct option sched_options[] = {
3314        OPT_STRING('i', "input", &input_name, "file",
3315                    "input file name"),
3316        OPT_INCR('v', "verbose", &verbose,
3317                    "be more verbose (show symbol address, etc)"),
3318        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3319                    "dump raw trace in ASCII"),
3320        OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3321        OPT_END()
3322        };
3323        const struct option latency_options[] = {
3324        OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3325                   "sort by key(s): runtime, switch, avg, max"),
3326        OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3327                    "CPU to profile on"),
3328        OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3329                    "latency stats per pid instead of per comm"),
3330        OPT_PARENT(sched_options)
3331        };
3332        const struct option replay_options[] = {
3333        OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3334                     "repeat the workload replay N times (-1: infinite)"),
3335        OPT_PARENT(sched_options)
3336        };
3337        const struct option map_options[] = {
3338        OPT_BOOLEAN(0, "compact", &sched.map.comp,
3339                    "map output in compact mode"),
3340        OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3341                   "highlight given pids in map"),
3342        OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3343                    "highlight given CPUs in map"),
3344        OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3345                    "display given CPUs in map"),
3346        OPT_PARENT(sched_options)
3347        };
3348        const struct option timehist_options[] = {
3349        OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3350                   "file", "vmlinux pathname"),
3351        OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3352                   "file", "kallsyms pathname"),
3353        OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3354                    "Display call chains if present (default on)"),
3355        OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3356                   "Maximum number of functions to display backtrace."),
3357        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3358                    "Look for files with symbols relative to this directory"),
3359        OPT_BOOLEAN('s', "summary", &sched.summary_only,
3360                    "Show only syscall summary with statistics"),
3361        OPT_BOOLEAN('S', "with-summary", &sched.summary,
3362                    "Show all syscalls and summary with statistics"),
3363        OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3364        OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3365        OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3366        OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3367        OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3368        OPT_STRING(0, "time", &sched.time_str, "str",
3369                   "Time span for analysis (start,stop)"),
3370        OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3371        OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3372                   "analyze events only for given process id(s)"),
3373        OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3374                   "analyze events only for given thread id(s)"),
3375        OPT_PARENT(sched_options)
3376        };
3377
3378        const char * const latency_usage[] = {
3379                "perf sched latency [<options>]",
3380                NULL
3381        };
3382        const char * const replay_usage[] = {
3383                "perf sched replay [<options>]",
3384                NULL
3385        };
3386        const char * const map_usage[] = {
3387                "perf sched map [<options>]",
3388                NULL
3389        };
3390        const char * const timehist_usage[] = {
3391                "perf sched timehist [<options>]",
3392                NULL
3393        };
3394        const char *const sched_subcommands[] = { "record", "latency", "map",
3395                                                  "replay", "script",
3396                                                  "timehist", NULL };
3397        const char *sched_usage[] = {
3398                NULL,
3399                NULL
3400        };
3401        struct trace_sched_handler lat_ops  = {
3402                .wakeup_event       = latency_wakeup_event,
3403                .switch_event       = latency_switch_event,
3404                .runtime_event      = latency_runtime_event,
3405                .migrate_task_event = latency_migrate_task_event,
3406        };
3407        struct trace_sched_handler map_ops  = {
3408                .switch_event       = map_switch_event,
3409        };
3410        struct trace_sched_handler replay_ops  = {
3411                .wakeup_event       = replay_wakeup_event,
3412                .switch_event       = replay_switch_event,
3413                .fork_event         = replay_fork_event,
3414        };
3415        unsigned int i;
3416
3417        for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3418                sched.curr_pid[i] = -1;
3419
3420        argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3421                                        sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3422        if (!argc)
3423                usage_with_options(sched_usage, sched_options);
3424
3425        /*
3426         * Aliased to 'perf script' for now:
3427         */
3428        if (!strcmp(argv[0], "script"))
3429                return cmd_script(argc, argv);
3430
3431        if (!strncmp(argv[0], "rec", 3)) {
3432                return __cmd_record(argc, argv);
3433        } else if (!strncmp(argv[0], "lat", 3)) {
3434                sched.tp_handler = &lat_ops;
3435                if (argc > 1) {
3436                        argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3437                        if (argc)
3438                                usage_with_options(latency_usage, latency_options);
3439                }
3440                setup_sorting(&sched, latency_options, latency_usage);
3441                return perf_sched__lat(&sched);
3442        } else if (!strcmp(argv[0], "map")) {
3443                if (argc) {
3444                        argc = parse_options(argc, argv, map_options, map_usage, 0);
3445                        if (argc)
3446                                usage_with_options(map_usage, map_options);
3447                }
3448                sched.tp_handler = &map_ops;
3449                setup_sorting(&sched, latency_options, latency_usage);
3450                return perf_sched__map(&sched);
3451        } else if (!strncmp(argv[0], "rep", 3)) {
3452                sched.tp_handler = &replay_ops;
3453                if (argc) {
3454                        argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3455                        if (argc)
3456                                usage_with_options(replay_usage, replay_options);
3457                }
3458                return perf_sched__replay(&sched);
3459        } else if (!strcmp(argv[0], "timehist")) {
3460                if (argc) {
3461                        argc = parse_options(argc, argv, timehist_options,
3462                                             timehist_usage, 0);
3463                        if (argc)
3464                                usage_with_options(timehist_usage, timehist_options);
3465                }
3466                if ((sched.show_wakeups || sched.show_next) &&
3467                    sched.summary_only) {
3468                        pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3469                        parse_options_usage(timehist_usage, timehist_options, "s", true);
3470                        if (sched.show_wakeups)
3471                                parse_options_usage(NULL, timehist_options, "w", true);
3472                        if (sched.show_next)
3473                                parse_options_usage(NULL, timehist_options, "n", true);
3474                        return -EINVAL;
3475                }
3476
3477                return perf_sched__timehist(&sched);
3478        } else {
3479                usage_with_options(sched_usage, sched_options);
3480        }
3481
3482        return 0;
3483}
3484