linux/virt/kvm/arm/arm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/cpu_pm.h>
  20#include <linux/errno.h>
  21#include <linux/err.h>
  22#include <linux/kvm_host.h>
  23#include <linux/list.h>
  24#include <linux/module.h>
  25#include <linux/vmalloc.h>
  26#include <linux/fs.h>
  27#include <linux/mman.h>
  28#include <linux/sched.h>
  29#include <linux/kvm.h>
  30#include <linux/kvm_irqfd.h>
  31#include <linux/irqbypass.h>
  32#include <trace/events/kvm.h>
  33#include <kvm/arm_pmu.h>
  34#include <kvm/arm_psci.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include "trace.h"
  38
  39#include <linux/uaccess.h>
  40#include <asm/ptrace.h>
  41#include <asm/mman.h>
  42#include <asm/tlbflush.h>
  43#include <asm/cacheflush.h>
  44#include <asm/virt.h>
  45#include <asm/kvm_arm.h>
  46#include <asm/kvm_asm.h>
  47#include <asm/kvm_mmu.h>
  48#include <asm/kvm_emulate.h>
  49#include <asm/kvm_coproc.h>
  50#include <asm/sections.h>
  51
  52#ifdef REQUIRES_VIRT
  53__asm__(".arch_extension        virt");
  54#endif
  55
  56DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
  57static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  58
  59/* Per-CPU variable containing the currently running vcpu. */
  60static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  61
  62/* The VMID used in the VTTBR */
  63static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  64static u32 kvm_next_vmid;
  65static unsigned int kvm_vmid_bits __read_mostly;
  66static DEFINE_SPINLOCK(kvm_vmid_lock);
  67
  68static bool vgic_present;
  69
  70static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
  71
  72static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  73{
  74        __this_cpu_write(kvm_arm_running_vcpu, vcpu);
  75}
  76
  77DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
  78
  79/**
  80 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  81 * Must be called from non-preemptible context
  82 */
  83struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  84{
  85        return __this_cpu_read(kvm_arm_running_vcpu);
  86}
  87
  88/**
  89 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  90 */
  91struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
  92{
  93        return &kvm_arm_running_vcpu;
  94}
  95
  96int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  97{
  98        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  99}
 100
 101int kvm_arch_hardware_setup(void)
 102{
 103        return 0;
 104}
 105
 106void kvm_arch_check_processor_compat(void *rtn)
 107{
 108        *(int *)rtn = 0;
 109}
 110
 111
 112/**
 113 * kvm_arch_init_vm - initializes a VM data structure
 114 * @kvm:        pointer to the KVM struct
 115 */
 116int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 117{
 118        int ret, cpu;
 119
 120        if (type)
 121                return -EINVAL;
 122
 123        kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
 124        if (!kvm->arch.last_vcpu_ran)
 125                return -ENOMEM;
 126
 127        for_each_possible_cpu(cpu)
 128                *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
 129
 130        ret = kvm_alloc_stage2_pgd(kvm);
 131        if (ret)
 132                goto out_fail_alloc;
 133
 134        ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
 135        if (ret)
 136                goto out_free_stage2_pgd;
 137
 138        kvm_vgic_early_init(kvm);
 139
 140        /* Mark the initial VMID generation invalid */
 141        kvm->arch.vmid_gen = 0;
 142
 143        /* The maximum number of VCPUs is limited by the host's GIC model */
 144        kvm->arch.max_vcpus = vgic_present ?
 145                                kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
 146
 147        return ret;
 148out_free_stage2_pgd:
 149        kvm_free_stage2_pgd(kvm);
 150out_fail_alloc:
 151        free_percpu(kvm->arch.last_vcpu_ran);
 152        kvm->arch.last_vcpu_ran = NULL;
 153        return ret;
 154}
 155
 156bool kvm_arch_has_vcpu_debugfs(void)
 157{
 158        return false;
 159}
 160
 161int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 162{
 163        return 0;
 164}
 165
 166int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 167{
 168        return VM_FAULT_SIGBUS;
 169}
 170
 171
 172/**
 173 * kvm_arch_destroy_vm - destroy the VM data structure
 174 * @kvm:        pointer to the KVM struct
 175 */
 176void kvm_arch_destroy_vm(struct kvm *kvm)
 177{
 178        int i;
 179
 180        kvm_vgic_destroy(kvm);
 181
 182        free_percpu(kvm->arch.last_vcpu_ran);
 183        kvm->arch.last_vcpu_ran = NULL;
 184
 185        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 186                if (kvm->vcpus[i]) {
 187                        kvm_arch_vcpu_free(kvm->vcpus[i]);
 188                        kvm->vcpus[i] = NULL;
 189                }
 190        }
 191        atomic_set(&kvm->online_vcpus, 0);
 192}
 193
 194int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 195{
 196        int r;
 197        switch (ext) {
 198        case KVM_CAP_IRQCHIP:
 199                r = vgic_present;
 200                break;
 201        case KVM_CAP_IOEVENTFD:
 202        case KVM_CAP_DEVICE_CTRL:
 203        case KVM_CAP_USER_MEMORY:
 204        case KVM_CAP_SYNC_MMU:
 205        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 206        case KVM_CAP_ONE_REG:
 207        case KVM_CAP_ARM_PSCI:
 208        case KVM_CAP_ARM_PSCI_0_2:
 209        case KVM_CAP_READONLY_MEM:
 210        case KVM_CAP_MP_STATE:
 211        case KVM_CAP_IMMEDIATE_EXIT:
 212                r = 1;
 213                break;
 214        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 215                r = 1;
 216                break;
 217        case KVM_CAP_NR_VCPUS:
 218                r = num_online_cpus();
 219                break;
 220        case KVM_CAP_MAX_VCPUS:
 221                r = KVM_MAX_VCPUS;
 222                break;
 223        case KVM_CAP_NR_MEMSLOTS:
 224                r = KVM_USER_MEM_SLOTS;
 225                break;
 226        case KVM_CAP_MSI_DEVID:
 227                if (!kvm)
 228                        r = -EINVAL;
 229                else
 230                        r = kvm->arch.vgic.msis_require_devid;
 231                break;
 232        case KVM_CAP_ARM_USER_IRQ:
 233                /*
 234                 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
 235                 * (bump this number if adding more devices)
 236                 */
 237                r = 1;
 238                break;
 239        default:
 240                r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
 241                break;
 242        }
 243        return r;
 244}
 245
 246long kvm_arch_dev_ioctl(struct file *filp,
 247                        unsigned int ioctl, unsigned long arg)
 248{
 249        return -EINVAL;
 250}
 251
 252
 253struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 254{
 255        int err;
 256        struct kvm_vcpu *vcpu;
 257
 258        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
 259                err = -EBUSY;
 260                goto out;
 261        }
 262
 263        if (id >= kvm->arch.max_vcpus) {
 264                err = -EINVAL;
 265                goto out;
 266        }
 267
 268        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 269        if (!vcpu) {
 270                err = -ENOMEM;
 271                goto out;
 272        }
 273
 274        err = kvm_vcpu_init(vcpu, kvm, id);
 275        if (err)
 276                goto free_vcpu;
 277
 278        err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
 279        if (err)
 280                goto vcpu_uninit;
 281
 282        return vcpu;
 283vcpu_uninit:
 284        kvm_vcpu_uninit(vcpu);
 285free_vcpu:
 286        kmem_cache_free(kvm_vcpu_cache, vcpu);
 287out:
 288        return ERR_PTR(err);
 289}
 290
 291void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 292{
 293        kvm_vgic_vcpu_early_init(vcpu);
 294}
 295
 296void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 297{
 298        if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
 299                static_branch_dec(&userspace_irqchip_in_use);
 300
 301        kvm_mmu_free_memory_caches(vcpu);
 302        kvm_timer_vcpu_terminate(vcpu);
 303        kvm_pmu_vcpu_destroy(vcpu);
 304        kvm_vcpu_uninit(vcpu);
 305        kmem_cache_free(kvm_vcpu_cache, vcpu);
 306}
 307
 308void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 309{
 310        kvm_arch_vcpu_free(vcpu);
 311}
 312
 313int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 314{
 315        return kvm_timer_is_pending(vcpu);
 316}
 317
 318void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
 319{
 320        kvm_timer_schedule(vcpu);
 321        kvm_vgic_v4_enable_doorbell(vcpu);
 322}
 323
 324void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
 325{
 326        kvm_timer_unschedule(vcpu);
 327        kvm_vgic_v4_disable_doorbell(vcpu);
 328}
 329
 330int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 331{
 332        /* Force users to call KVM_ARM_VCPU_INIT */
 333        vcpu->arch.target = -1;
 334        bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 335
 336        /* Set up the timer */
 337        kvm_timer_vcpu_init(vcpu);
 338
 339        kvm_arm_reset_debug_ptr(vcpu);
 340
 341        return kvm_vgic_vcpu_init(vcpu);
 342}
 343
 344void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 345{
 346        int *last_ran;
 347
 348        last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
 349
 350        /*
 351         * We might get preempted before the vCPU actually runs, but
 352         * over-invalidation doesn't affect correctness.
 353         */
 354        if (*last_ran != vcpu->vcpu_id) {
 355                kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
 356                *last_ran = vcpu->vcpu_id;
 357        }
 358
 359        vcpu->cpu = cpu;
 360        vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
 361
 362        kvm_arm_set_running_vcpu(vcpu);
 363        kvm_vgic_load(vcpu);
 364        kvm_timer_vcpu_load(vcpu);
 365}
 366
 367void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 368{
 369        kvm_timer_vcpu_put(vcpu);
 370        kvm_vgic_put(vcpu);
 371
 372        vcpu->cpu = -1;
 373
 374        kvm_arm_set_running_vcpu(NULL);
 375}
 376
 377static void vcpu_power_off(struct kvm_vcpu *vcpu)
 378{
 379        vcpu->arch.power_off = true;
 380        kvm_make_request(KVM_REQ_SLEEP, vcpu);
 381        kvm_vcpu_kick(vcpu);
 382}
 383
 384int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 385                                    struct kvm_mp_state *mp_state)
 386{
 387        if (vcpu->arch.power_off)
 388                mp_state->mp_state = KVM_MP_STATE_STOPPED;
 389        else
 390                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 391
 392        return 0;
 393}
 394
 395int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 396                                    struct kvm_mp_state *mp_state)
 397{
 398        int ret = 0;
 399
 400        switch (mp_state->mp_state) {
 401        case KVM_MP_STATE_RUNNABLE:
 402                vcpu->arch.power_off = false;
 403                break;
 404        case KVM_MP_STATE_STOPPED:
 405                vcpu_power_off(vcpu);
 406                break;
 407        default:
 408                ret = -EINVAL;
 409        }
 410
 411        return ret;
 412}
 413
 414/**
 415 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 416 * @v:          The VCPU pointer
 417 *
 418 * If the guest CPU is not waiting for interrupts or an interrupt line is
 419 * asserted, the CPU is by definition runnable.
 420 */
 421int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 422{
 423        return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
 424                && !v->arch.power_off && !v->arch.pause);
 425}
 426
 427bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 428{
 429        return vcpu_mode_priv(vcpu);
 430}
 431
 432/* Just ensure a guest exit from a particular CPU */
 433static void exit_vm_noop(void *info)
 434{
 435}
 436
 437void force_vm_exit(const cpumask_t *mask)
 438{
 439        preempt_disable();
 440        smp_call_function_many(mask, exit_vm_noop, NULL, true);
 441        preempt_enable();
 442}
 443
 444/**
 445 * need_new_vmid_gen - check that the VMID is still valid
 446 * @kvm: The VM's VMID to check
 447 *
 448 * return true if there is a new generation of VMIDs being used
 449 *
 450 * The hardware supports only 256 values with the value zero reserved for the
 451 * host, so we check if an assigned value belongs to a previous generation,
 452 * which which requires us to assign a new value. If we're the first to use a
 453 * VMID for the new generation, we must flush necessary caches and TLBs on all
 454 * CPUs.
 455 */
 456static bool need_new_vmid_gen(struct kvm *kvm)
 457{
 458        return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
 459}
 460
 461/**
 462 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 463 * @kvm The guest that we are about to run
 464 *
 465 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 466 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 467 * caches and TLBs.
 468 */
 469static void update_vttbr(struct kvm *kvm)
 470{
 471        phys_addr_t pgd_phys;
 472        u64 vmid;
 473
 474        if (!need_new_vmid_gen(kvm))
 475                return;
 476
 477        spin_lock(&kvm_vmid_lock);
 478
 479        /*
 480         * We need to re-check the vmid_gen here to ensure that if another vcpu
 481         * already allocated a valid vmid for this vm, then this vcpu should
 482         * use the same vmid.
 483         */
 484        if (!need_new_vmid_gen(kvm)) {
 485                spin_unlock(&kvm_vmid_lock);
 486                return;
 487        }
 488
 489        /* First user of a new VMID generation? */
 490        if (unlikely(kvm_next_vmid == 0)) {
 491                atomic64_inc(&kvm_vmid_gen);
 492                kvm_next_vmid = 1;
 493
 494                /*
 495                 * On SMP we know no other CPUs can use this CPU's or each
 496                 * other's VMID after force_vm_exit returns since the
 497                 * kvm_vmid_lock blocks them from reentry to the guest.
 498                 */
 499                force_vm_exit(cpu_all_mask);
 500                /*
 501                 * Now broadcast TLB + ICACHE invalidation over the inner
 502                 * shareable domain to make sure all data structures are
 503                 * clean.
 504                 */
 505                kvm_call_hyp(__kvm_flush_vm_context);
 506        }
 507
 508        kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
 509        kvm->arch.vmid = kvm_next_vmid;
 510        kvm_next_vmid++;
 511        kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
 512
 513        /* update vttbr to be used with the new vmid */
 514        pgd_phys = virt_to_phys(kvm->arch.pgd);
 515        BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
 516        vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
 517        kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
 518
 519        spin_unlock(&kvm_vmid_lock);
 520}
 521
 522static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 523{
 524        struct kvm *kvm = vcpu->kvm;
 525        int ret = 0;
 526
 527        if (likely(vcpu->arch.has_run_once))
 528                return 0;
 529
 530        vcpu->arch.has_run_once = true;
 531
 532        if (likely(irqchip_in_kernel(kvm))) {
 533                /*
 534                 * Map the VGIC hardware resources before running a vcpu the
 535                 * first time on this VM.
 536                 */
 537                if (unlikely(!vgic_ready(kvm))) {
 538                        ret = kvm_vgic_map_resources(kvm);
 539                        if (ret)
 540                                return ret;
 541                }
 542        } else {
 543                /*
 544                 * Tell the rest of the code that there are userspace irqchip
 545                 * VMs in the wild.
 546                 */
 547                static_branch_inc(&userspace_irqchip_in_use);
 548        }
 549
 550        ret = kvm_timer_enable(vcpu);
 551        if (ret)
 552                return ret;
 553
 554        ret = kvm_arm_pmu_v3_enable(vcpu);
 555
 556        return ret;
 557}
 558
 559bool kvm_arch_intc_initialized(struct kvm *kvm)
 560{
 561        return vgic_initialized(kvm);
 562}
 563
 564void kvm_arm_halt_guest(struct kvm *kvm)
 565{
 566        int i;
 567        struct kvm_vcpu *vcpu;
 568
 569        kvm_for_each_vcpu(i, vcpu, kvm)
 570                vcpu->arch.pause = true;
 571        kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
 572}
 573
 574void kvm_arm_resume_guest(struct kvm *kvm)
 575{
 576        int i;
 577        struct kvm_vcpu *vcpu;
 578
 579        kvm_for_each_vcpu(i, vcpu, kvm) {
 580                vcpu->arch.pause = false;
 581                swake_up(kvm_arch_vcpu_wq(vcpu));
 582        }
 583}
 584
 585static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
 586{
 587        struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
 588
 589        swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
 590                                       (!vcpu->arch.pause)));
 591
 592        if (vcpu->arch.power_off || vcpu->arch.pause) {
 593                /* Awaken to handle a signal, request we sleep again later. */
 594                kvm_make_request(KVM_REQ_SLEEP, vcpu);
 595        }
 596}
 597
 598static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 599{
 600        return vcpu->arch.target >= 0;
 601}
 602
 603static void check_vcpu_requests(struct kvm_vcpu *vcpu)
 604{
 605        if (kvm_request_pending(vcpu)) {
 606                if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
 607                        vcpu_req_sleep(vcpu);
 608
 609                /*
 610                 * Clear IRQ_PENDING requests that were made to guarantee
 611                 * that a VCPU sees new virtual interrupts.
 612                 */
 613                kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
 614        }
 615}
 616
 617/**
 618 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 619 * @vcpu:       The VCPU pointer
 620 * @run:        The kvm_run structure pointer used for userspace state exchange
 621 *
 622 * This function is called through the VCPU_RUN ioctl called from user space. It
 623 * will execute VM code in a loop until the time slice for the process is used
 624 * or some emulation is needed from user space in which case the function will
 625 * return with return value 0 and with the kvm_run structure filled in with the
 626 * required data for the requested emulation.
 627 */
 628int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 629{
 630        int ret;
 631
 632        if (unlikely(!kvm_vcpu_initialized(vcpu)))
 633                return -ENOEXEC;
 634
 635        vcpu_load(vcpu);
 636
 637        ret = kvm_vcpu_first_run_init(vcpu);
 638        if (ret)
 639                goto out;
 640
 641        if (run->exit_reason == KVM_EXIT_MMIO) {
 642                ret = kvm_handle_mmio_return(vcpu, vcpu->run);
 643                if (ret)
 644                        goto out;
 645                if (kvm_arm_handle_step_debug(vcpu, vcpu->run)) {
 646                        ret = 0;
 647                        goto out;
 648                }
 649
 650        }
 651
 652        if (run->immediate_exit) {
 653                ret = -EINTR;
 654                goto out;
 655        }
 656
 657        kvm_sigset_activate(vcpu);
 658
 659        ret = 1;
 660        run->exit_reason = KVM_EXIT_UNKNOWN;
 661        while (ret > 0) {
 662                /*
 663                 * Check conditions before entering the guest
 664                 */
 665                cond_resched();
 666
 667                update_vttbr(vcpu->kvm);
 668
 669                check_vcpu_requests(vcpu);
 670
 671                /*
 672                 * Preparing the interrupts to be injected also
 673                 * involves poking the GIC, which must be done in a
 674                 * non-preemptible context.
 675                 */
 676                preempt_disable();
 677
 678                /* Flush FP/SIMD state that can't survive guest entry/exit */
 679                kvm_fpsimd_flush_cpu_state();
 680
 681                kvm_pmu_flush_hwstate(vcpu);
 682
 683                local_irq_disable();
 684
 685                kvm_vgic_flush_hwstate(vcpu);
 686
 687                /*
 688                 * Exit if we have a signal pending so that we can deliver the
 689                 * signal to user space.
 690                 */
 691                if (signal_pending(current)) {
 692                        ret = -EINTR;
 693                        run->exit_reason = KVM_EXIT_INTR;
 694                }
 695
 696                /*
 697                 * If we're using a userspace irqchip, then check if we need
 698                 * to tell a userspace irqchip about timer or PMU level
 699                 * changes and if so, exit to userspace (the actual level
 700                 * state gets updated in kvm_timer_update_run and
 701                 * kvm_pmu_update_run below).
 702                 */
 703                if (static_branch_unlikely(&userspace_irqchip_in_use)) {
 704                        if (kvm_timer_should_notify_user(vcpu) ||
 705                            kvm_pmu_should_notify_user(vcpu)) {
 706                                ret = -EINTR;
 707                                run->exit_reason = KVM_EXIT_INTR;
 708                        }
 709                }
 710
 711                /*
 712                 * Ensure we set mode to IN_GUEST_MODE after we disable
 713                 * interrupts and before the final VCPU requests check.
 714                 * See the comment in kvm_vcpu_exiting_guest_mode() and
 715                 * Documentation/virtual/kvm/vcpu-requests.rst
 716                 */
 717                smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 718
 719                if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
 720                    kvm_request_pending(vcpu)) {
 721                        vcpu->mode = OUTSIDE_GUEST_MODE;
 722                        kvm_pmu_sync_hwstate(vcpu);
 723                        if (static_branch_unlikely(&userspace_irqchip_in_use))
 724                                kvm_timer_sync_hwstate(vcpu);
 725                        kvm_vgic_sync_hwstate(vcpu);
 726                        local_irq_enable();
 727                        preempt_enable();
 728                        continue;
 729                }
 730
 731                kvm_arm_setup_debug(vcpu);
 732
 733                /**************************************************************
 734                 * Enter the guest
 735                 */
 736                trace_kvm_entry(*vcpu_pc(vcpu));
 737                guest_enter_irqoff();
 738                if (has_vhe())
 739                        kvm_arm_vhe_guest_enter();
 740
 741                ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
 742
 743                if (has_vhe())
 744                        kvm_arm_vhe_guest_exit();
 745                vcpu->mode = OUTSIDE_GUEST_MODE;
 746                vcpu->stat.exits++;
 747                /*
 748                 * Back from guest
 749                 *************************************************************/
 750
 751                kvm_arm_clear_debug(vcpu);
 752
 753                /*
 754                 * We must sync the PMU state before the vgic state so
 755                 * that the vgic can properly sample the updated state of the
 756                 * interrupt line.
 757                 */
 758                kvm_pmu_sync_hwstate(vcpu);
 759
 760                /*
 761                 * Sync the vgic state before syncing the timer state because
 762                 * the timer code needs to know if the virtual timer
 763                 * interrupts are active.
 764                 */
 765                kvm_vgic_sync_hwstate(vcpu);
 766
 767                /*
 768                 * Sync the timer hardware state before enabling interrupts as
 769                 * we don't want vtimer interrupts to race with syncing the
 770                 * timer virtual interrupt state.
 771                 */
 772                if (static_branch_unlikely(&userspace_irqchip_in_use))
 773                        kvm_timer_sync_hwstate(vcpu);
 774
 775                /*
 776                 * We may have taken a host interrupt in HYP mode (ie
 777                 * while executing the guest). This interrupt is still
 778                 * pending, as we haven't serviced it yet!
 779                 *
 780                 * We're now back in SVC mode, with interrupts
 781                 * disabled.  Enabling the interrupts now will have
 782                 * the effect of taking the interrupt again, in SVC
 783                 * mode this time.
 784                 */
 785                local_irq_enable();
 786
 787                /*
 788                 * We do local_irq_enable() before calling guest_exit() so
 789                 * that if a timer interrupt hits while running the guest we
 790                 * account that tick as being spent in the guest.  We enable
 791                 * preemption after calling guest_exit() so that if we get
 792                 * preempted we make sure ticks after that is not counted as
 793                 * guest time.
 794                 */
 795                guest_exit();
 796                trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 797
 798                /* Exit types that need handling before we can be preempted */
 799                handle_exit_early(vcpu, run, ret);
 800
 801                preempt_enable();
 802
 803                ret = handle_exit(vcpu, run, ret);
 804        }
 805
 806        /* Tell userspace about in-kernel device output levels */
 807        if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
 808                kvm_timer_update_run(vcpu);
 809                kvm_pmu_update_run(vcpu);
 810        }
 811
 812        kvm_sigset_deactivate(vcpu);
 813
 814out:
 815        vcpu_put(vcpu);
 816        return ret;
 817}
 818
 819static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 820{
 821        int bit_index;
 822        bool set;
 823        unsigned long *ptr;
 824
 825        if (number == KVM_ARM_IRQ_CPU_IRQ)
 826                bit_index = __ffs(HCR_VI);
 827        else /* KVM_ARM_IRQ_CPU_FIQ */
 828                bit_index = __ffs(HCR_VF);
 829
 830        ptr = (unsigned long *)&vcpu->arch.irq_lines;
 831        if (level)
 832                set = test_and_set_bit(bit_index, ptr);
 833        else
 834                set = test_and_clear_bit(bit_index, ptr);
 835
 836        /*
 837         * If we didn't change anything, no need to wake up or kick other CPUs
 838         */
 839        if (set == level)
 840                return 0;
 841
 842        /*
 843         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 844         * trigger a world-switch round on the running physical CPU to set the
 845         * virtual IRQ/FIQ fields in the HCR appropriately.
 846         */
 847        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 848        kvm_vcpu_kick(vcpu);
 849
 850        return 0;
 851}
 852
 853int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 854                          bool line_status)
 855{
 856        u32 irq = irq_level->irq;
 857        unsigned int irq_type, vcpu_idx, irq_num;
 858        int nrcpus = atomic_read(&kvm->online_vcpus);
 859        struct kvm_vcpu *vcpu = NULL;
 860        bool level = irq_level->level;
 861
 862        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 863        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 864        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 865
 866        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 867
 868        switch (irq_type) {
 869        case KVM_ARM_IRQ_TYPE_CPU:
 870                if (irqchip_in_kernel(kvm))
 871                        return -ENXIO;
 872
 873                if (vcpu_idx >= nrcpus)
 874                        return -EINVAL;
 875
 876                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 877                if (!vcpu)
 878                        return -EINVAL;
 879
 880                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
 881                        return -EINVAL;
 882
 883                return vcpu_interrupt_line(vcpu, irq_num, level);
 884        case KVM_ARM_IRQ_TYPE_PPI:
 885                if (!irqchip_in_kernel(kvm))
 886                        return -ENXIO;
 887
 888                if (vcpu_idx >= nrcpus)
 889                        return -EINVAL;
 890
 891                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 892                if (!vcpu)
 893                        return -EINVAL;
 894
 895                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
 896                        return -EINVAL;
 897
 898                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
 899        case KVM_ARM_IRQ_TYPE_SPI:
 900                if (!irqchip_in_kernel(kvm))
 901                        return -ENXIO;
 902
 903                if (irq_num < VGIC_NR_PRIVATE_IRQS)
 904                        return -EINVAL;
 905
 906                return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
 907        }
 908
 909        return -EINVAL;
 910}
 911
 912static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
 913                               const struct kvm_vcpu_init *init)
 914{
 915        unsigned int i;
 916        int phys_target = kvm_target_cpu();
 917
 918        if (init->target != phys_target)
 919                return -EINVAL;
 920
 921        /*
 922         * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 923         * use the same target.
 924         */
 925        if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
 926                return -EINVAL;
 927
 928        /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
 929        for (i = 0; i < sizeof(init->features) * 8; i++) {
 930                bool set = (init->features[i / 32] & (1 << (i % 32)));
 931
 932                if (set && i >= KVM_VCPU_MAX_FEATURES)
 933                        return -ENOENT;
 934
 935                /*
 936                 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 937                 * use the same feature set.
 938                 */
 939                if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
 940                    test_bit(i, vcpu->arch.features) != set)
 941                        return -EINVAL;
 942
 943                if (set)
 944                        set_bit(i, vcpu->arch.features);
 945        }
 946
 947        vcpu->arch.target = phys_target;
 948
 949        /* Now we know what it is, we can reset it. */
 950        return kvm_reset_vcpu(vcpu);
 951}
 952
 953
 954static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
 955                                         struct kvm_vcpu_init *init)
 956{
 957        int ret;
 958
 959        ret = kvm_vcpu_set_target(vcpu, init);
 960        if (ret)
 961                return ret;
 962
 963        /*
 964         * Ensure a rebooted VM will fault in RAM pages and detect if the
 965         * guest MMU is turned off and flush the caches as needed.
 966         */
 967        if (vcpu->arch.has_run_once)
 968                stage2_unmap_vm(vcpu->kvm);
 969
 970        vcpu_reset_hcr(vcpu);
 971
 972        /*
 973         * Handle the "start in power-off" case.
 974         */
 975        if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
 976                vcpu_power_off(vcpu);
 977        else
 978                vcpu->arch.power_off = false;
 979
 980        return 0;
 981}
 982
 983static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
 984                                 struct kvm_device_attr *attr)
 985{
 986        int ret = -ENXIO;
 987
 988        switch (attr->group) {
 989        default:
 990                ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
 991                break;
 992        }
 993
 994        return ret;
 995}
 996
 997static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
 998                                 struct kvm_device_attr *attr)
 999{
1000        int ret = -ENXIO;
1001
1002        switch (attr->group) {
1003        default:
1004                ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1005                break;
1006        }
1007
1008        return ret;
1009}
1010
1011static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1012                                 struct kvm_device_attr *attr)
1013{
1014        int ret = -ENXIO;
1015
1016        switch (attr->group) {
1017        default:
1018                ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1019                break;
1020        }
1021
1022        return ret;
1023}
1024
1025long kvm_arch_vcpu_ioctl(struct file *filp,
1026                         unsigned int ioctl, unsigned long arg)
1027{
1028        struct kvm_vcpu *vcpu = filp->private_data;
1029        void __user *argp = (void __user *)arg;
1030        struct kvm_device_attr attr;
1031        long r;
1032
1033        switch (ioctl) {
1034        case KVM_ARM_VCPU_INIT: {
1035                struct kvm_vcpu_init init;
1036
1037                r = -EFAULT;
1038                if (copy_from_user(&init, argp, sizeof(init)))
1039                        break;
1040
1041                r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1042                break;
1043        }
1044        case KVM_SET_ONE_REG:
1045        case KVM_GET_ONE_REG: {
1046                struct kvm_one_reg reg;
1047
1048                r = -ENOEXEC;
1049                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1050                        break;
1051
1052                r = -EFAULT;
1053                if (copy_from_user(&reg, argp, sizeof(reg)))
1054                        break;
1055
1056                if (ioctl == KVM_SET_ONE_REG)
1057                        r = kvm_arm_set_reg(vcpu, &reg);
1058                else
1059                        r = kvm_arm_get_reg(vcpu, &reg);
1060                break;
1061        }
1062        case KVM_GET_REG_LIST: {
1063                struct kvm_reg_list __user *user_list = argp;
1064                struct kvm_reg_list reg_list;
1065                unsigned n;
1066
1067                r = -ENOEXEC;
1068                if (unlikely(!kvm_vcpu_initialized(vcpu)))
1069                        break;
1070
1071                r = -EFAULT;
1072                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1073                        break;
1074                n = reg_list.n;
1075                reg_list.n = kvm_arm_num_regs(vcpu);
1076                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1077                        break;
1078                r = -E2BIG;
1079                if (n < reg_list.n)
1080                        break;
1081                r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1082                break;
1083        }
1084        case KVM_SET_DEVICE_ATTR: {
1085                r = -EFAULT;
1086                if (copy_from_user(&attr, argp, sizeof(attr)))
1087                        break;
1088                r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1089                break;
1090        }
1091        case KVM_GET_DEVICE_ATTR: {
1092                r = -EFAULT;
1093                if (copy_from_user(&attr, argp, sizeof(attr)))
1094                        break;
1095                r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1096                break;
1097        }
1098        case KVM_HAS_DEVICE_ATTR: {
1099                r = -EFAULT;
1100                if (copy_from_user(&attr, argp, sizeof(attr)))
1101                        break;
1102                r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1103                break;
1104        }
1105        default:
1106                r = -EINVAL;
1107        }
1108
1109        return r;
1110}
1111
1112/**
1113 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1114 * @kvm: kvm instance
1115 * @log: slot id and address to which we copy the log
1116 *
1117 * Steps 1-4 below provide general overview of dirty page logging. See
1118 * kvm_get_dirty_log_protect() function description for additional details.
1119 *
1120 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1121 * always flush the TLB (step 4) even if previous step failed  and the dirty
1122 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1123 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1124 * writes will be marked dirty for next log read.
1125 *
1126 *   1. Take a snapshot of the bit and clear it if needed.
1127 *   2. Write protect the corresponding page.
1128 *   3. Copy the snapshot to the userspace.
1129 *   4. Flush TLB's if needed.
1130 */
1131int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1132{
1133        bool is_dirty = false;
1134        int r;
1135
1136        mutex_lock(&kvm->slots_lock);
1137
1138        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1139
1140        if (is_dirty)
1141                kvm_flush_remote_tlbs(kvm);
1142
1143        mutex_unlock(&kvm->slots_lock);
1144        return r;
1145}
1146
1147static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1148                                        struct kvm_arm_device_addr *dev_addr)
1149{
1150        unsigned long dev_id, type;
1151
1152        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1153                KVM_ARM_DEVICE_ID_SHIFT;
1154        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1155                KVM_ARM_DEVICE_TYPE_SHIFT;
1156
1157        switch (dev_id) {
1158        case KVM_ARM_DEVICE_VGIC_V2:
1159                if (!vgic_present)
1160                        return -ENXIO;
1161                return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1162        default:
1163                return -ENODEV;
1164        }
1165}
1166
1167long kvm_arch_vm_ioctl(struct file *filp,
1168                       unsigned int ioctl, unsigned long arg)
1169{
1170        struct kvm *kvm = filp->private_data;
1171        void __user *argp = (void __user *)arg;
1172
1173        switch (ioctl) {
1174        case KVM_CREATE_IRQCHIP: {
1175                int ret;
1176                if (!vgic_present)
1177                        return -ENXIO;
1178                mutex_lock(&kvm->lock);
1179                ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1180                mutex_unlock(&kvm->lock);
1181                return ret;
1182        }
1183        case KVM_ARM_SET_DEVICE_ADDR: {
1184                struct kvm_arm_device_addr dev_addr;
1185
1186                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1187                        return -EFAULT;
1188                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1189        }
1190        case KVM_ARM_PREFERRED_TARGET: {
1191                int err;
1192                struct kvm_vcpu_init init;
1193
1194                err = kvm_vcpu_preferred_target(&init);
1195                if (err)
1196                        return err;
1197
1198                if (copy_to_user(argp, &init, sizeof(init)))
1199                        return -EFAULT;
1200
1201                return 0;
1202        }
1203        default:
1204                return -EINVAL;
1205        }
1206}
1207
1208static void cpu_init_hyp_mode(void *dummy)
1209{
1210        phys_addr_t pgd_ptr;
1211        unsigned long hyp_stack_ptr;
1212        unsigned long stack_page;
1213        unsigned long vector_ptr;
1214
1215        /* Switch from the HYP stub to our own HYP init vector */
1216        __hyp_set_vectors(kvm_get_idmap_vector());
1217
1218        pgd_ptr = kvm_mmu_get_httbr();
1219        stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1220        hyp_stack_ptr = stack_page + PAGE_SIZE;
1221        vector_ptr = (unsigned long)kvm_get_hyp_vector();
1222
1223        __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1224        __cpu_init_stage2();
1225
1226        kvm_arm_init_debug();
1227}
1228
1229static void cpu_hyp_reset(void)
1230{
1231        if (!is_kernel_in_hyp_mode())
1232                __hyp_reset_vectors();
1233}
1234
1235static void cpu_hyp_reinit(void)
1236{
1237        cpu_hyp_reset();
1238
1239        if (is_kernel_in_hyp_mode()) {
1240                /*
1241                 * __cpu_init_stage2() is safe to call even if the PM
1242                 * event was cancelled before the CPU was reset.
1243                 */
1244                __cpu_init_stage2();
1245                kvm_timer_init_vhe();
1246        } else {
1247                cpu_init_hyp_mode(NULL);
1248        }
1249
1250        if (vgic_present)
1251                kvm_vgic_init_cpu_hardware();
1252}
1253
1254static void _kvm_arch_hardware_enable(void *discard)
1255{
1256        if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1257                cpu_hyp_reinit();
1258                __this_cpu_write(kvm_arm_hardware_enabled, 1);
1259        }
1260}
1261
1262int kvm_arch_hardware_enable(void)
1263{
1264        _kvm_arch_hardware_enable(NULL);
1265        return 0;
1266}
1267
1268static void _kvm_arch_hardware_disable(void *discard)
1269{
1270        if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1271                cpu_hyp_reset();
1272                __this_cpu_write(kvm_arm_hardware_enabled, 0);
1273        }
1274}
1275
1276void kvm_arch_hardware_disable(void)
1277{
1278        _kvm_arch_hardware_disable(NULL);
1279}
1280
1281#ifdef CONFIG_CPU_PM
1282static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1283                                    unsigned long cmd,
1284                                    void *v)
1285{
1286        /*
1287         * kvm_arm_hardware_enabled is left with its old value over
1288         * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1289         * re-enable hyp.
1290         */
1291        switch (cmd) {
1292        case CPU_PM_ENTER:
1293                if (__this_cpu_read(kvm_arm_hardware_enabled))
1294                        /*
1295                         * don't update kvm_arm_hardware_enabled here
1296                         * so that the hardware will be re-enabled
1297                         * when we resume. See below.
1298                         */
1299                        cpu_hyp_reset();
1300
1301                return NOTIFY_OK;
1302        case CPU_PM_ENTER_FAILED:
1303        case CPU_PM_EXIT:
1304                if (__this_cpu_read(kvm_arm_hardware_enabled))
1305                        /* The hardware was enabled before suspend. */
1306                        cpu_hyp_reinit();
1307
1308                return NOTIFY_OK;
1309
1310        default:
1311                return NOTIFY_DONE;
1312        }
1313}
1314
1315static struct notifier_block hyp_init_cpu_pm_nb = {
1316        .notifier_call = hyp_init_cpu_pm_notifier,
1317};
1318
1319static void __init hyp_cpu_pm_init(void)
1320{
1321        cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1322}
1323static void __init hyp_cpu_pm_exit(void)
1324{
1325        cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1326}
1327#else
1328static inline void hyp_cpu_pm_init(void)
1329{
1330}
1331static inline void hyp_cpu_pm_exit(void)
1332{
1333}
1334#endif
1335
1336static int init_common_resources(void)
1337{
1338        /* set size of VMID supported by CPU */
1339        kvm_vmid_bits = kvm_get_vmid_bits();
1340        kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1341
1342        return 0;
1343}
1344
1345static int init_subsystems(void)
1346{
1347        int err = 0;
1348
1349        /*
1350         * Enable hardware so that subsystem initialisation can access EL2.
1351         */
1352        on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1353
1354        /*
1355         * Register CPU lower-power notifier
1356         */
1357        hyp_cpu_pm_init();
1358
1359        /*
1360         * Init HYP view of VGIC
1361         */
1362        err = kvm_vgic_hyp_init();
1363        switch (err) {
1364        case 0:
1365                vgic_present = true;
1366                break;
1367        case -ENODEV:
1368        case -ENXIO:
1369                vgic_present = false;
1370                err = 0;
1371                break;
1372        default:
1373                goto out;
1374        }
1375
1376        /*
1377         * Init HYP architected timer support
1378         */
1379        err = kvm_timer_hyp_init(vgic_present);
1380        if (err)
1381                goto out;
1382
1383        kvm_perf_init();
1384        kvm_coproc_table_init();
1385
1386out:
1387        on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1388
1389        return err;
1390}
1391
1392static void teardown_hyp_mode(void)
1393{
1394        int cpu;
1395
1396        free_hyp_pgds();
1397        for_each_possible_cpu(cpu)
1398                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1399        hyp_cpu_pm_exit();
1400}
1401
1402/**
1403 * Inits Hyp-mode on all online CPUs
1404 */
1405static int init_hyp_mode(void)
1406{
1407        int cpu;
1408        int err = 0;
1409
1410        /*
1411         * Allocate Hyp PGD and setup Hyp identity mapping
1412         */
1413        err = kvm_mmu_init();
1414        if (err)
1415                goto out_err;
1416
1417        /*
1418         * Allocate stack pages for Hypervisor-mode
1419         */
1420        for_each_possible_cpu(cpu) {
1421                unsigned long stack_page;
1422
1423                stack_page = __get_free_page(GFP_KERNEL);
1424                if (!stack_page) {
1425                        err = -ENOMEM;
1426                        goto out_err;
1427                }
1428
1429                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1430        }
1431
1432        /*
1433         * Map the Hyp-code called directly from the host
1434         */
1435        err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1436                                  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1437        if (err) {
1438                kvm_err("Cannot map world-switch code\n");
1439                goto out_err;
1440        }
1441
1442        err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1443                                  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1444        if (err) {
1445                kvm_err("Cannot map rodata section\n");
1446                goto out_err;
1447        }
1448
1449        err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1450                                  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1451        if (err) {
1452                kvm_err("Cannot map bss section\n");
1453                goto out_err;
1454        }
1455
1456        err = kvm_map_vectors();
1457        if (err) {
1458                kvm_err("Cannot map vectors\n");
1459                goto out_err;
1460        }
1461
1462        /*
1463         * Map the Hyp stack pages
1464         */
1465        for_each_possible_cpu(cpu) {
1466                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1467                err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1468                                          PAGE_HYP);
1469
1470                if (err) {
1471                        kvm_err("Cannot map hyp stack\n");
1472                        goto out_err;
1473                }
1474        }
1475
1476        for_each_possible_cpu(cpu) {
1477                kvm_cpu_context_t *cpu_ctxt;
1478
1479                cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1480                err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1481
1482                if (err) {
1483                        kvm_err("Cannot map host CPU state: %d\n", err);
1484                        goto out_err;
1485                }
1486        }
1487
1488        return 0;
1489
1490out_err:
1491        teardown_hyp_mode();
1492        kvm_err("error initializing Hyp mode: %d\n", err);
1493        return err;
1494}
1495
1496static void check_kvm_target_cpu(void *ret)
1497{
1498        *(int *)ret = kvm_target_cpu();
1499}
1500
1501struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1502{
1503        struct kvm_vcpu *vcpu;
1504        int i;
1505
1506        mpidr &= MPIDR_HWID_BITMASK;
1507        kvm_for_each_vcpu(i, vcpu, kvm) {
1508                if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1509                        return vcpu;
1510        }
1511        return NULL;
1512}
1513
1514bool kvm_arch_has_irq_bypass(void)
1515{
1516        return true;
1517}
1518
1519int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1520                                      struct irq_bypass_producer *prod)
1521{
1522        struct kvm_kernel_irqfd *irqfd =
1523                container_of(cons, struct kvm_kernel_irqfd, consumer);
1524
1525        return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1526                                          &irqfd->irq_entry);
1527}
1528void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1529                                      struct irq_bypass_producer *prod)
1530{
1531        struct kvm_kernel_irqfd *irqfd =
1532                container_of(cons, struct kvm_kernel_irqfd, consumer);
1533
1534        kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1535                                     &irqfd->irq_entry);
1536}
1537
1538void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1539{
1540        struct kvm_kernel_irqfd *irqfd =
1541                container_of(cons, struct kvm_kernel_irqfd, consumer);
1542
1543        kvm_arm_halt_guest(irqfd->kvm);
1544}
1545
1546void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1547{
1548        struct kvm_kernel_irqfd *irqfd =
1549                container_of(cons, struct kvm_kernel_irqfd, consumer);
1550
1551        kvm_arm_resume_guest(irqfd->kvm);
1552}
1553
1554/**
1555 * Initialize Hyp-mode and memory mappings on all CPUs.
1556 */
1557int kvm_arch_init(void *opaque)
1558{
1559        int err;
1560        int ret, cpu;
1561        bool in_hyp_mode;
1562
1563        if (!is_hyp_mode_available()) {
1564                kvm_info("HYP mode not available\n");
1565                return -ENODEV;
1566        }
1567
1568        for_each_online_cpu(cpu) {
1569                smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1570                if (ret < 0) {
1571                        kvm_err("Error, CPU %d not supported!\n", cpu);
1572                        return -ENODEV;
1573                }
1574        }
1575
1576        err = init_common_resources();
1577        if (err)
1578                return err;
1579
1580        in_hyp_mode = is_kernel_in_hyp_mode();
1581
1582        if (!in_hyp_mode) {
1583                err = init_hyp_mode();
1584                if (err)
1585                        goto out_err;
1586        }
1587
1588        err = init_subsystems();
1589        if (err)
1590                goto out_hyp;
1591
1592        if (in_hyp_mode)
1593                kvm_info("VHE mode initialized successfully\n");
1594        else
1595                kvm_info("Hyp mode initialized successfully\n");
1596
1597        return 0;
1598
1599out_hyp:
1600        if (!in_hyp_mode)
1601                teardown_hyp_mode();
1602out_err:
1603        return err;
1604}
1605
1606/* NOP: Compiling as a module not supported */
1607void kvm_arch_exit(void)
1608{
1609        kvm_perf_teardown();
1610}
1611
1612static int arm_init(void)
1613{
1614        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1615        return rc;
1616}
1617
1618module_init(arm_init);
1619