linux/virt/kvm/arm/vgic/vgic-its.c
<<
>>
Prefs
   1/*
   2 * GICv3 ITS emulation
   3 *
   4 * Copyright (C) 2015,2016 ARM Ltd.
   5 * Author: Andre Przywara <andre.przywara@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/cpu.h>
  21#include <linux/kvm.h>
  22#include <linux/kvm_host.h>
  23#include <linux/interrupt.h>
  24#include <linux/list.h>
  25#include <linux/uaccess.h>
  26#include <linux/list_sort.h>
  27
  28#include <linux/irqchip/arm-gic-v3.h>
  29
  30#include <asm/kvm_emulate.h>
  31#include <asm/kvm_arm.h>
  32#include <asm/kvm_mmu.h>
  33
  34#include "vgic.h"
  35#include "vgic-mmio.h"
  36
  37static int vgic_its_save_tables_v0(struct vgic_its *its);
  38static int vgic_its_restore_tables_v0(struct vgic_its *its);
  39static int vgic_its_commit_v0(struct vgic_its *its);
  40static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
  41                             struct kvm_vcpu *filter_vcpu, bool needs_inv);
  42
  43/*
  44 * Creates a new (reference to a) struct vgic_irq for a given LPI.
  45 * If this LPI is already mapped on another ITS, we increase its refcount
  46 * and return a pointer to the existing structure.
  47 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
  48 * This function returns a pointer to the _unlocked_ structure.
  49 */
  50static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
  51                                     struct kvm_vcpu *vcpu)
  52{
  53        struct vgic_dist *dist = &kvm->arch.vgic;
  54        struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
  55        int ret;
  56
  57        /* In this case there is no put, since we keep the reference. */
  58        if (irq)
  59                return irq;
  60
  61        irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
  62        if (!irq)
  63                return ERR_PTR(-ENOMEM);
  64
  65        INIT_LIST_HEAD(&irq->lpi_list);
  66        INIT_LIST_HEAD(&irq->ap_list);
  67        spin_lock_init(&irq->irq_lock);
  68
  69        irq->config = VGIC_CONFIG_EDGE;
  70        kref_init(&irq->refcount);
  71        irq->intid = intid;
  72        irq->target_vcpu = vcpu;
  73
  74        spin_lock(&dist->lpi_list_lock);
  75
  76        /*
  77         * There could be a race with another vgic_add_lpi(), so we need to
  78         * check that we don't add a second list entry with the same LPI.
  79         */
  80        list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
  81                if (oldirq->intid != intid)
  82                        continue;
  83
  84                /* Someone was faster with adding this LPI, lets use that. */
  85                kfree(irq);
  86                irq = oldirq;
  87
  88                /*
  89                 * This increases the refcount, the caller is expected to
  90                 * call vgic_put_irq() on the returned pointer once it's
  91                 * finished with the IRQ.
  92                 */
  93                vgic_get_irq_kref(irq);
  94
  95                goto out_unlock;
  96        }
  97
  98        list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
  99        dist->lpi_list_count++;
 100
 101out_unlock:
 102        spin_unlock(&dist->lpi_list_lock);
 103
 104        /*
 105         * We "cache" the configuration table entries in our struct vgic_irq's.
 106         * However we only have those structs for mapped IRQs, so we read in
 107         * the respective config data from memory here upon mapping the LPI.
 108         */
 109        ret = update_lpi_config(kvm, irq, NULL, false);
 110        if (ret)
 111                return ERR_PTR(ret);
 112
 113        ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
 114        if (ret)
 115                return ERR_PTR(ret);
 116
 117        return irq;
 118}
 119
 120struct its_device {
 121        struct list_head dev_list;
 122
 123        /* the head for the list of ITTEs */
 124        struct list_head itt_head;
 125        u32 num_eventid_bits;
 126        gpa_t itt_addr;
 127        u32 device_id;
 128};
 129
 130#define COLLECTION_NOT_MAPPED ((u32)~0)
 131
 132struct its_collection {
 133        struct list_head coll_list;
 134
 135        u32 collection_id;
 136        u32 target_addr;
 137};
 138
 139#define its_is_collection_mapped(coll) ((coll) && \
 140                                ((coll)->target_addr != COLLECTION_NOT_MAPPED))
 141
 142struct its_ite {
 143        struct list_head ite_list;
 144
 145        struct vgic_irq *irq;
 146        struct its_collection *collection;
 147        u32 event_id;
 148};
 149
 150/**
 151 * struct vgic_its_abi - ITS abi ops and settings
 152 * @cte_esz: collection table entry size
 153 * @dte_esz: device table entry size
 154 * @ite_esz: interrupt translation table entry size
 155 * @save tables: save the ITS tables into guest RAM
 156 * @restore_tables: restore the ITS internal structs from tables
 157 *  stored in guest RAM
 158 * @commit: initialize the registers which expose the ABI settings,
 159 *  especially the entry sizes
 160 */
 161struct vgic_its_abi {
 162        int cte_esz;
 163        int dte_esz;
 164        int ite_esz;
 165        int (*save_tables)(struct vgic_its *its);
 166        int (*restore_tables)(struct vgic_its *its);
 167        int (*commit)(struct vgic_its *its);
 168};
 169
 170static const struct vgic_its_abi its_table_abi_versions[] = {
 171        [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
 172         .save_tables = vgic_its_save_tables_v0,
 173         .restore_tables = vgic_its_restore_tables_v0,
 174         .commit = vgic_its_commit_v0,
 175        },
 176};
 177
 178#define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
 179
 180inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
 181{
 182        return &its_table_abi_versions[its->abi_rev];
 183}
 184
 185int vgic_its_set_abi(struct vgic_its *its, int rev)
 186{
 187        const struct vgic_its_abi *abi;
 188
 189        its->abi_rev = rev;
 190        abi = vgic_its_get_abi(its);
 191        return abi->commit(its);
 192}
 193
 194/*
 195 * Find and returns a device in the device table for an ITS.
 196 * Must be called with the its_lock mutex held.
 197 */
 198static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
 199{
 200        struct its_device *device;
 201
 202        list_for_each_entry(device, &its->device_list, dev_list)
 203                if (device_id == device->device_id)
 204                        return device;
 205
 206        return NULL;
 207}
 208
 209/*
 210 * Find and returns an interrupt translation table entry (ITTE) for a given
 211 * Device ID/Event ID pair on an ITS.
 212 * Must be called with the its_lock mutex held.
 213 */
 214static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
 215                                  u32 event_id)
 216{
 217        struct its_device *device;
 218        struct its_ite *ite;
 219
 220        device = find_its_device(its, device_id);
 221        if (device == NULL)
 222                return NULL;
 223
 224        list_for_each_entry(ite, &device->itt_head, ite_list)
 225                if (ite->event_id == event_id)
 226                        return ite;
 227
 228        return NULL;
 229}
 230
 231/* To be used as an iterator this macro misses the enclosing parentheses */
 232#define for_each_lpi_its(dev, ite, its) \
 233        list_for_each_entry(dev, &(its)->device_list, dev_list) \
 234                list_for_each_entry(ite, &(dev)->itt_head, ite_list)
 235
 236/*
 237 * We only implement 48 bits of PA at the moment, although the ITS
 238 * supports more. Let's be restrictive here.
 239 */
 240#define BASER_ADDRESS(x)        ((x) & GENMASK_ULL(47, 16))
 241#define CBASER_ADDRESS(x)       ((x) & GENMASK_ULL(47, 12))
 242
 243#define GIC_LPI_OFFSET 8192
 244
 245#define VITS_TYPER_IDBITS 16
 246#define VITS_TYPER_DEVBITS 16
 247#define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
 248#define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
 249
 250/*
 251 * Finds and returns a collection in the ITS collection table.
 252 * Must be called with the its_lock mutex held.
 253 */
 254static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
 255{
 256        struct its_collection *collection;
 257
 258        list_for_each_entry(collection, &its->collection_list, coll_list) {
 259                if (coll_id == collection->collection_id)
 260                        return collection;
 261        }
 262
 263        return NULL;
 264}
 265
 266#define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
 267#define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
 268
 269/*
 270 * Reads the configuration data for a given LPI from guest memory and
 271 * updates the fields in struct vgic_irq.
 272 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 273 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 274 */
 275static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
 276                             struct kvm_vcpu *filter_vcpu, bool needs_inv)
 277{
 278        u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
 279        u8 prop;
 280        int ret;
 281        unsigned long flags;
 282
 283        ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
 284                             &prop, 1);
 285
 286        if (ret)
 287                return ret;
 288
 289        spin_lock_irqsave(&irq->irq_lock, flags);
 290
 291        if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
 292                irq->priority = LPI_PROP_PRIORITY(prop);
 293                irq->enabled = LPI_PROP_ENABLE_BIT(prop);
 294
 295                if (!irq->hw) {
 296                        vgic_queue_irq_unlock(kvm, irq, flags);
 297                        return 0;
 298                }
 299        }
 300
 301        spin_unlock_irqrestore(&irq->irq_lock, flags);
 302
 303        if (irq->hw)
 304                return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
 305
 306        return 0;
 307}
 308
 309/*
 310 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 311 * enumerate those LPIs without holding any lock.
 312 * Returns their number and puts the kmalloc'ed array into intid_ptr.
 313 */
 314static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
 315{
 316        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 317        struct vgic_irq *irq;
 318        u32 *intids;
 319        int irq_count = dist->lpi_list_count, i = 0;
 320
 321        /*
 322         * We use the current value of the list length, which may change
 323         * after the kmalloc. We don't care, because the guest shouldn't
 324         * change anything while the command handling is still running,
 325         * and in the worst case we would miss a new IRQ, which one wouldn't
 326         * expect to be covered by this command anyway.
 327         */
 328        intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
 329        if (!intids)
 330                return -ENOMEM;
 331
 332        spin_lock(&dist->lpi_list_lock);
 333        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
 334                /* We don't need to "get" the IRQ, as we hold the list lock. */
 335                if (irq->target_vcpu != vcpu)
 336                        continue;
 337                intids[i++] = irq->intid;
 338        }
 339        spin_unlock(&dist->lpi_list_lock);
 340
 341        *intid_ptr = intids;
 342        return i;
 343}
 344
 345static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
 346{
 347        int ret = 0;
 348
 349        spin_lock(&irq->irq_lock);
 350        irq->target_vcpu = vcpu;
 351        spin_unlock(&irq->irq_lock);
 352
 353        if (irq->hw) {
 354                struct its_vlpi_map map;
 355
 356                ret = its_get_vlpi(irq->host_irq, &map);
 357                if (ret)
 358                        return ret;
 359
 360                map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 361
 362                ret = its_map_vlpi(irq->host_irq, &map);
 363        }
 364
 365        return ret;
 366}
 367
 368/*
 369 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 370 * is targeting) to the VGIC's view, which deals with target VCPUs.
 371 * Needs to be called whenever either the collection for a LPIs has
 372 * changed or the collection itself got retargeted.
 373 */
 374static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
 375{
 376        struct kvm_vcpu *vcpu;
 377
 378        if (!its_is_collection_mapped(ite->collection))
 379                return;
 380
 381        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 382        update_affinity(ite->irq, vcpu);
 383}
 384
 385/*
 386 * Updates the target VCPU for every LPI targeting this collection.
 387 * Must be called with the its_lock mutex held.
 388 */
 389static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
 390                                       struct its_collection *coll)
 391{
 392        struct its_device *device;
 393        struct its_ite *ite;
 394
 395        for_each_lpi_its(device, ite, its) {
 396                if (!ite->collection || coll != ite->collection)
 397                        continue;
 398
 399                update_affinity_ite(kvm, ite);
 400        }
 401}
 402
 403static u32 max_lpis_propbaser(u64 propbaser)
 404{
 405        int nr_idbits = (propbaser & 0x1f) + 1;
 406
 407        return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
 408}
 409
 410/*
 411 * Sync the pending table pending bit of LPIs targeting @vcpu
 412 * with our own data structures. This relies on the LPI being
 413 * mapped before.
 414 */
 415static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
 416{
 417        gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 418        struct vgic_irq *irq;
 419        int last_byte_offset = -1;
 420        int ret = 0;
 421        u32 *intids;
 422        int nr_irqs, i;
 423        unsigned long flags;
 424        u8 pendmask;
 425
 426        nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
 427        if (nr_irqs < 0)
 428                return nr_irqs;
 429
 430        for (i = 0; i < nr_irqs; i++) {
 431                int byte_offset, bit_nr;
 432
 433                byte_offset = intids[i] / BITS_PER_BYTE;
 434                bit_nr = intids[i] % BITS_PER_BYTE;
 435
 436                /*
 437                 * For contiguously allocated LPIs chances are we just read
 438                 * this very same byte in the last iteration. Reuse that.
 439                 */
 440                if (byte_offset != last_byte_offset) {
 441                        ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
 442                                             &pendmask, 1);
 443                        if (ret) {
 444                                kfree(intids);
 445                                return ret;
 446                        }
 447                        last_byte_offset = byte_offset;
 448                }
 449
 450                irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
 451                spin_lock_irqsave(&irq->irq_lock, flags);
 452                irq->pending_latch = pendmask & (1U << bit_nr);
 453                vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 454                vgic_put_irq(vcpu->kvm, irq);
 455        }
 456
 457        kfree(intids);
 458
 459        return ret;
 460}
 461
 462static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
 463                                              struct vgic_its *its,
 464                                              gpa_t addr, unsigned int len)
 465{
 466        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
 467        u64 reg = GITS_TYPER_PLPIS;
 468
 469        /*
 470         * We use linear CPU numbers for redistributor addressing,
 471         * so GITS_TYPER.PTA is 0.
 472         * Also we force all PROPBASER registers to be the same, so
 473         * CommonLPIAff is 0 as well.
 474         * To avoid memory waste in the guest, we keep the number of IDBits and
 475         * DevBits low - as least for the time being.
 476         */
 477        reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
 478        reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
 479        reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
 480
 481        return extract_bytes(reg, addr & 7, len);
 482}
 483
 484static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
 485                                             struct vgic_its *its,
 486                                             gpa_t addr, unsigned int len)
 487{
 488        u32 val;
 489
 490        val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
 491        val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
 492        return val;
 493}
 494
 495static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
 496                                            struct vgic_its *its,
 497                                            gpa_t addr, unsigned int len,
 498                                            unsigned long val)
 499{
 500        u32 rev = GITS_IIDR_REV(val);
 501
 502        if (rev >= NR_ITS_ABIS)
 503                return -EINVAL;
 504        return vgic_its_set_abi(its, rev);
 505}
 506
 507static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
 508                                               struct vgic_its *its,
 509                                               gpa_t addr, unsigned int len)
 510{
 511        switch (addr & 0xffff) {
 512        case GITS_PIDR0:
 513                return 0x92;    /* part number, bits[7:0] */
 514        case GITS_PIDR1:
 515                return 0xb4;    /* part number, bits[11:8] */
 516        case GITS_PIDR2:
 517                return GIC_PIDR2_ARCH_GICv3 | 0x0b;
 518        case GITS_PIDR4:
 519                return 0x40;    /* This is a 64K software visible page */
 520        /* The following are the ID registers for (any) GIC. */
 521        case GITS_CIDR0:
 522                return 0x0d;
 523        case GITS_CIDR1:
 524                return 0xf0;
 525        case GITS_CIDR2:
 526                return 0x05;
 527        case GITS_CIDR3:
 528                return 0xb1;
 529        }
 530
 531        return 0;
 532}
 533
 534int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
 535                         u32 devid, u32 eventid, struct vgic_irq **irq)
 536{
 537        struct kvm_vcpu *vcpu;
 538        struct its_ite *ite;
 539
 540        if (!its->enabled)
 541                return -EBUSY;
 542
 543        ite = find_ite(its, devid, eventid);
 544        if (!ite || !its_is_collection_mapped(ite->collection))
 545                return E_ITS_INT_UNMAPPED_INTERRUPT;
 546
 547        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 548        if (!vcpu)
 549                return E_ITS_INT_UNMAPPED_INTERRUPT;
 550
 551        if (!vcpu->arch.vgic_cpu.lpis_enabled)
 552                return -EBUSY;
 553
 554        *irq = ite->irq;
 555        return 0;
 556}
 557
 558struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
 559{
 560        u64 address;
 561        struct kvm_io_device *kvm_io_dev;
 562        struct vgic_io_device *iodev;
 563
 564        if (!vgic_has_its(kvm))
 565                return ERR_PTR(-ENODEV);
 566
 567        if (!(msi->flags & KVM_MSI_VALID_DEVID))
 568                return ERR_PTR(-EINVAL);
 569
 570        address = (u64)msi->address_hi << 32 | msi->address_lo;
 571
 572        kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
 573        if (!kvm_io_dev)
 574                return ERR_PTR(-EINVAL);
 575
 576        if (kvm_io_dev->ops != &kvm_io_gic_ops)
 577                return ERR_PTR(-EINVAL);
 578
 579        iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
 580        if (iodev->iodev_type != IODEV_ITS)
 581                return ERR_PTR(-EINVAL);
 582
 583        return iodev->its;
 584}
 585
 586/*
 587 * Find the target VCPU and the LPI number for a given devid/eventid pair
 588 * and make this IRQ pending, possibly injecting it.
 589 * Must be called with the its_lock mutex held.
 590 * Returns 0 on success, a positive error value for any ITS mapping
 591 * related errors and negative error values for generic errors.
 592 */
 593static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
 594                                u32 devid, u32 eventid)
 595{
 596        struct vgic_irq *irq = NULL;
 597        unsigned long flags;
 598        int err;
 599
 600        err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
 601        if (err)
 602                return err;
 603
 604        if (irq->hw)
 605                return irq_set_irqchip_state(irq->host_irq,
 606                                             IRQCHIP_STATE_PENDING, true);
 607
 608        spin_lock_irqsave(&irq->irq_lock, flags);
 609        irq->pending_latch = true;
 610        vgic_queue_irq_unlock(kvm, irq, flags);
 611
 612        return 0;
 613}
 614
 615/*
 616 * Queries the KVM IO bus framework to get the ITS pointer from the given
 617 * doorbell address.
 618 * We then call vgic_its_trigger_msi() with the decoded data.
 619 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
 620 */
 621int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
 622{
 623        struct vgic_its *its;
 624        int ret;
 625
 626        its = vgic_msi_to_its(kvm, msi);
 627        if (IS_ERR(its))
 628                return PTR_ERR(its);
 629
 630        mutex_lock(&its->its_lock);
 631        ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
 632        mutex_unlock(&its->its_lock);
 633
 634        if (ret < 0)
 635                return ret;
 636
 637        /*
 638         * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
 639         * if the guest has blocked the MSI. So we map any LPI mapping
 640         * related error to that.
 641         */
 642        if (ret)
 643                return 0;
 644        else
 645                return 1;
 646}
 647
 648/* Requires the its_lock to be held. */
 649static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
 650{
 651        list_del(&ite->ite_list);
 652
 653        /* This put matches the get in vgic_add_lpi. */
 654        if (ite->irq) {
 655                if (ite->irq->hw)
 656                        WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
 657
 658                vgic_put_irq(kvm, ite->irq);
 659        }
 660
 661        kfree(ite);
 662}
 663
 664static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
 665{
 666        return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
 667}
 668
 669#define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
 670#define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
 671#define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
 672#define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
 673#define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
 674#define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
 675#define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
 676#define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
 677#define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
 678
 679/*
 680 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 681 * Must be called with the its_lock mutex held.
 682 */
 683static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
 684                                       u64 *its_cmd)
 685{
 686        u32 device_id = its_cmd_get_deviceid(its_cmd);
 687        u32 event_id = its_cmd_get_id(its_cmd);
 688        struct its_ite *ite;
 689
 690
 691        ite = find_ite(its, device_id, event_id);
 692        if (ite && ite->collection) {
 693                /*
 694                 * Though the spec talks about removing the pending state, we
 695                 * don't bother here since we clear the ITTE anyway and the
 696                 * pending state is a property of the ITTE struct.
 697                 */
 698                its_free_ite(kvm, ite);
 699                return 0;
 700        }
 701
 702        return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
 703}
 704
 705/*
 706 * The MOVI command moves an ITTE to a different collection.
 707 * Must be called with the its_lock mutex held.
 708 */
 709static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
 710                                    u64 *its_cmd)
 711{
 712        u32 device_id = its_cmd_get_deviceid(its_cmd);
 713        u32 event_id = its_cmd_get_id(its_cmd);
 714        u32 coll_id = its_cmd_get_collection(its_cmd);
 715        struct kvm_vcpu *vcpu;
 716        struct its_ite *ite;
 717        struct its_collection *collection;
 718
 719        ite = find_ite(its, device_id, event_id);
 720        if (!ite)
 721                return E_ITS_MOVI_UNMAPPED_INTERRUPT;
 722
 723        if (!its_is_collection_mapped(ite->collection))
 724                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 725
 726        collection = find_collection(its, coll_id);
 727        if (!its_is_collection_mapped(collection))
 728                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 729
 730        ite->collection = collection;
 731        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 732
 733        return update_affinity(ite->irq, vcpu);
 734}
 735
 736/*
 737 * Check whether an ID can be stored into the corresponding guest table.
 738 * For a direct table this is pretty easy, but gets a bit nasty for
 739 * indirect tables. We check whether the resulting guest physical address
 740 * is actually valid (covered by a memslot and guest accessible).
 741 * For this we have to read the respective first level entry.
 742 */
 743static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
 744                              gpa_t *eaddr)
 745{
 746        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
 747        u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
 748        int esz = GITS_BASER_ENTRY_SIZE(baser);
 749        int index;
 750        gfn_t gfn;
 751
 752        switch (type) {
 753        case GITS_BASER_TYPE_DEVICE:
 754                if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
 755                        return false;
 756                break;
 757        case GITS_BASER_TYPE_COLLECTION:
 758                /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
 759                if (id >= BIT_ULL(16))
 760                        return false;
 761                break;
 762        default:
 763                return false;
 764        }
 765
 766        if (!(baser & GITS_BASER_INDIRECT)) {
 767                phys_addr_t addr;
 768
 769                if (id >= (l1_tbl_size / esz))
 770                        return false;
 771
 772                addr = BASER_ADDRESS(baser) + id * esz;
 773                gfn = addr >> PAGE_SHIFT;
 774
 775                if (eaddr)
 776                        *eaddr = addr;
 777                return kvm_is_visible_gfn(its->dev->kvm, gfn);
 778        }
 779
 780        /* calculate and check the index into the 1st level */
 781        index = id / (SZ_64K / esz);
 782        if (index >= (l1_tbl_size / sizeof(u64)))
 783                return false;
 784
 785        /* Each 1st level entry is represented by a 64-bit value. */
 786        if (kvm_read_guest(its->dev->kvm,
 787                           BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
 788                           &indirect_ptr, sizeof(indirect_ptr)))
 789                return false;
 790
 791        indirect_ptr = le64_to_cpu(indirect_ptr);
 792
 793        /* check the valid bit of the first level entry */
 794        if (!(indirect_ptr & BIT_ULL(63)))
 795                return false;
 796
 797        /*
 798         * Mask the guest physical address and calculate the frame number.
 799         * Any address beyond our supported 48 bits of PA will be caught
 800         * by the actual check in the final step.
 801         */
 802        indirect_ptr &= GENMASK_ULL(51, 16);
 803
 804        /* Find the address of the actual entry */
 805        index = id % (SZ_64K / esz);
 806        indirect_ptr += index * esz;
 807        gfn = indirect_ptr >> PAGE_SHIFT;
 808
 809        if (eaddr)
 810                *eaddr = indirect_ptr;
 811        return kvm_is_visible_gfn(its->dev->kvm, gfn);
 812}
 813
 814static int vgic_its_alloc_collection(struct vgic_its *its,
 815                                     struct its_collection **colp,
 816                                     u32 coll_id)
 817{
 818        struct its_collection *collection;
 819
 820        if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
 821                return E_ITS_MAPC_COLLECTION_OOR;
 822
 823        collection = kzalloc(sizeof(*collection), GFP_KERNEL);
 824        if (!collection)
 825                return -ENOMEM;
 826
 827        collection->collection_id = coll_id;
 828        collection->target_addr = COLLECTION_NOT_MAPPED;
 829
 830        list_add_tail(&collection->coll_list, &its->collection_list);
 831        *colp = collection;
 832
 833        return 0;
 834}
 835
 836static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
 837{
 838        struct its_collection *collection;
 839        struct its_device *device;
 840        struct its_ite *ite;
 841
 842        /*
 843         * Clearing the mapping for that collection ID removes the
 844         * entry from the list. If there wasn't any before, we can
 845         * go home early.
 846         */
 847        collection = find_collection(its, coll_id);
 848        if (!collection)
 849                return;
 850
 851        for_each_lpi_its(device, ite, its)
 852                if (ite->collection &&
 853                    ite->collection->collection_id == coll_id)
 854                        ite->collection = NULL;
 855
 856        list_del(&collection->coll_list);
 857        kfree(collection);
 858}
 859
 860/* Must be called with its_lock mutex held */
 861static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
 862                                          struct its_collection *collection,
 863                                          u32 event_id)
 864{
 865        struct its_ite *ite;
 866
 867        ite = kzalloc(sizeof(*ite), GFP_KERNEL);
 868        if (!ite)
 869                return ERR_PTR(-ENOMEM);
 870
 871        ite->event_id   = event_id;
 872        ite->collection = collection;
 873
 874        list_add_tail(&ite->ite_list, &device->itt_head);
 875        return ite;
 876}
 877
 878/*
 879 * The MAPTI and MAPI commands map LPIs to ITTEs.
 880 * Must be called with its_lock mutex held.
 881 */
 882static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
 883                                    u64 *its_cmd)
 884{
 885        u32 device_id = its_cmd_get_deviceid(its_cmd);
 886        u32 event_id = its_cmd_get_id(its_cmd);
 887        u32 coll_id = its_cmd_get_collection(its_cmd);
 888        struct its_ite *ite;
 889        struct kvm_vcpu *vcpu = NULL;
 890        struct its_device *device;
 891        struct its_collection *collection, *new_coll = NULL;
 892        struct vgic_irq *irq;
 893        int lpi_nr;
 894
 895        device = find_its_device(its, device_id);
 896        if (!device)
 897                return E_ITS_MAPTI_UNMAPPED_DEVICE;
 898
 899        if (event_id >= BIT_ULL(device->num_eventid_bits))
 900                return E_ITS_MAPTI_ID_OOR;
 901
 902        if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
 903                lpi_nr = its_cmd_get_physical_id(its_cmd);
 904        else
 905                lpi_nr = event_id;
 906        if (lpi_nr < GIC_LPI_OFFSET ||
 907            lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
 908                return E_ITS_MAPTI_PHYSICALID_OOR;
 909
 910        /* If there is an existing mapping, behavior is UNPREDICTABLE. */
 911        if (find_ite(its, device_id, event_id))
 912                return 0;
 913
 914        collection = find_collection(its, coll_id);
 915        if (!collection) {
 916                int ret = vgic_its_alloc_collection(its, &collection, coll_id);
 917                if (ret)
 918                        return ret;
 919                new_coll = collection;
 920        }
 921
 922        ite = vgic_its_alloc_ite(device, collection, event_id);
 923        if (IS_ERR(ite)) {
 924                if (new_coll)
 925                        vgic_its_free_collection(its, coll_id);
 926                return PTR_ERR(ite);
 927        }
 928
 929        if (its_is_collection_mapped(collection))
 930                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 931
 932        irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
 933        if (IS_ERR(irq)) {
 934                if (new_coll)
 935                        vgic_its_free_collection(its, coll_id);
 936                its_free_ite(kvm, ite);
 937                return PTR_ERR(irq);
 938        }
 939        ite->irq = irq;
 940
 941        return 0;
 942}
 943
 944/* Requires the its_lock to be held. */
 945static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
 946{
 947        struct its_ite *ite, *temp;
 948
 949        /*
 950         * The spec says that unmapping a device with still valid
 951         * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
 952         * since we cannot leave the memory unreferenced.
 953         */
 954        list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
 955                its_free_ite(kvm, ite);
 956
 957        list_del(&device->dev_list);
 958        kfree(device);
 959}
 960
 961/* its lock must be held */
 962static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
 963{
 964        struct its_device *cur, *temp;
 965
 966        list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
 967                vgic_its_free_device(kvm, cur);
 968}
 969
 970/* its lock must be held */
 971static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
 972{
 973        struct its_collection *cur, *temp;
 974
 975        list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
 976                vgic_its_free_collection(its, cur->collection_id);
 977}
 978
 979/* Must be called with its_lock mutex held */
 980static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
 981                                                u32 device_id, gpa_t itt_addr,
 982                                                u8 num_eventid_bits)
 983{
 984        struct its_device *device;
 985
 986        device = kzalloc(sizeof(*device), GFP_KERNEL);
 987        if (!device)
 988                return ERR_PTR(-ENOMEM);
 989
 990        device->device_id = device_id;
 991        device->itt_addr = itt_addr;
 992        device->num_eventid_bits = num_eventid_bits;
 993        INIT_LIST_HEAD(&device->itt_head);
 994
 995        list_add_tail(&device->dev_list, &its->device_list);
 996        return device;
 997}
 998
 999/*
1000 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1001 * Must be called with the its_lock mutex held.
1002 */
1003static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1004                                    u64 *its_cmd)
1005{
1006        u32 device_id = its_cmd_get_deviceid(its_cmd);
1007        bool valid = its_cmd_get_validbit(its_cmd);
1008        u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1009        gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1010        struct its_device *device;
1011
1012        if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1013                return E_ITS_MAPD_DEVICE_OOR;
1014
1015        if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1016                return E_ITS_MAPD_ITTSIZE_OOR;
1017
1018        device = find_its_device(its, device_id);
1019
1020        /*
1021         * The spec says that calling MAPD on an already mapped device
1022         * invalidates all cached data for this device. We implement this
1023         * by removing the mapping and re-establishing it.
1024         */
1025        if (device)
1026                vgic_its_free_device(kvm, device);
1027
1028        /*
1029         * The spec does not say whether unmapping a not-mapped device
1030         * is an error, so we are done in any case.
1031         */
1032        if (!valid)
1033                return 0;
1034
1035        device = vgic_its_alloc_device(its, device_id, itt_addr,
1036                                       num_eventid_bits);
1037
1038        return PTR_ERR_OR_ZERO(device);
1039}
1040
1041/*
1042 * The MAPC command maps collection IDs to redistributors.
1043 * Must be called with the its_lock mutex held.
1044 */
1045static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1046                                    u64 *its_cmd)
1047{
1048        u16 coll_id;
1049        u32 target_addr;
1050        struct its_collection *collection;
1051        bool valid;
1052
1053        valid = its_cmd_get_validbit(its_cmd);
1054        coll_id = its_cmd_get_collection(its_cmd);
1055        target_addr = its_cmd_get_target_addr(its_cmd);
1056
1057        if (target_addr >= atomic_read(&kvm->online_vcpus))
1058                return E_ITS_MAPC_PROCNUM_OOR;
1059
1060        if (!valid) {
1061                vgic_its_free_collection(its, coll_id);
1062        } else {
1063                collection = find_collection(its, coll_id);
1064
1065                if (!collection) {
1066                        int ret;
1067
1068                        ret = vgic_its_alloc_collection(its, &collection,
1069                                                        coll_id);
1070                        if (ret)
1071                                return ret;
1072                        collection->target_addr = target_addr;
1073                } else {
1074                        collection->target_addr = target_addr;
1075                        update_affinity_collection(kvm, its, collection);
1076                }
1077        }
1078
1079        return 0;
1080}
1081
1082/*
1083 * The CLEAR command removes the pending state for a particular LPI.
1084 * Must be called with the its_lock mutex held.
1085 */
1086static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1087                                     u64 *its_cmd)
1088{
1089        u32 device_id = its_cmd_get_deviceid(its_cmd);
1090        u32 event_id = its_cmd_get_id(its_cmd);
1091        struct its_ite *ite;
1092
1093
1094        ite = find_ite(its, device_id, event_id);
1095        if (!ite)
1096                return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1097
1098        ite->irq->pending_latch = false;
1099
1100        if (ite->irq->hw)
1101                return irq_set_irqchip_state(ite->irq->host_irq,
1102                                             IRQCHIP_STATE_PENDING, false);
1103
1104        return 0;
1105}
1106
1107/*
1108 * The INV command syncs the configuration bits from the memory table.
1109 * Must be called with the its_lock mutex held.
1110 */
1111static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1112                                   u64 *its_cmd)
1113{
1114        u32 device_id = its_cmd_get_deviceid(its_cmd);
1115        u32 event_id = its_cmd_get_id(its_cmd);
1116        struct its_ite *ite;
1117
1118
1119        ite = find_ite(its, device_id, event_id);
1120        if (!ite)
1121                return E_ITS_INV_UNMAPPED_INTERRUPT;
1122
1123        return update_lpi_config(kvm, ite->irq, NULL, true);
1124}
1125
1126/*
1127 * The INVALL command requests flushing of all IRQ data in this collection.
1128 * Find the VCPU mapped to that collection, then iterate over the VM's list
1129 * of mapped LPIs and update the configuration for each IRQ which targets
1130 * the specified vcpu. The configuration will be read from the in-memory
1131 * configuration table.
1132 * Must be called with the its_lock mutex held.
1133 */
1134static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1135                                      u64 *its_cmd)
1136{
1137        u32 coll_id = its_cmd_get_collection(its_cmd);
1138        struct its_collection *collection;
1139        struct kvm_vcpu *vcpu;
1140        struct vgic_irq *irq;
1141        u32 *intids;
1142        int irq_count, i;
1143
1144        collection = find_collection(its, coll_id);
1145        if (!its_is_collection_mapped(collection))
1146                return E_ITS_INVALL_UNMAPPED_COLLECTION;
1147
1148        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1149
1150        irq_count = vgic_copy_lpi_list(vcpu, &intids);
1151        if (irq_count < 0)
1152                return irq_count;
1153
1154        for (i = 0; i < irq_count; i++) {
1155                irq = vgic_get_irq(kvm, NULL, intids[i]);
1156                if (!irq)
1157                        continue;
1158                update_lpi_config(kvm, irq, vcpu, false);
1159                vgic_put_irq(kvm, irq);
1160        }
1161
1162        kfree(intids);
1163
1164        if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1165                its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1166
1167        return 0;
1168}
1169
1170/*
1171 * The MOVALL command moves the pending state of all IRQs targeting one
1172 * redistributor to another. We don't hold the pending state in the VCPUs,
1173 * but in the IRQs instead, so there is really not much to do for us here.
1174 * However the spec says that no IRQ must target the old redistributor
1175 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1176 * This command affects all LPIs in the system that target that redistributor.
1177 */
1178static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1179                                      u64 *its_cmd)
1180{
1181        u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1182        u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1183        struct kvm_vcpu *vcpu1, *vcpu2;
1184        struct vgic_irq *irq;
1185        u32 *intids;
1186        int irq_count, i;
1187
1188        if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1189            target2_addr >= atomic_read(&kvm->online_vcpus))
1190                return E_ITS_MOVALL_PROCNUM_OOR;
1191
1192        if (target1_addr == target2_addr)
1193                return 0;
1194
1195        vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1196        vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1197
1198        irq_count = vgic_copy_lpi_list(vcpu1, &intids);
1199        if (irq_count < 0)
1200                return irq_count;
1201
1202        for (i = 0; i < irq_count; i++) {
1203                irq = vgic_get_irq(kvm, NULL, intids[i]);
1204
1205                update_affinity(irq, vcpu2);
1206
1207                vgic_put_irq(kvm, irq);
1208        }
1209
1210        kfree(intids);
1211        return 0;
1212}
1213
1214/*
1215 * The INT command injects the LPI associated with that DevID/EvID pair.
1216 * Must be called with the its_lock mutex held.
1217 */
1218static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1219                                   u64 *its_cmd)
1220{
1221        u32 msi_data = its_cmd_get_id(its_cmd);
1222        u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1223
1224        return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1225}
1226
1227/*
1228 * This function is called with the its_cmd lock held, but the ITS data
1229 * structure lock dropped.
1230 */
1231static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1232                                   u64 *its_cmd)
1233{
1234        int ret = -ENODEV;
1235
1236        mutex_lock(&its->its_lock);
1237        switch (its_cmd_get_command(its_cmd)) {
1238        case GITS_CMD_MAPD:
1239                ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1240                break;
1241        case GITS_CMD_MAPC:
1242                ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1243                break;
1244        case GITS_CMD_MAPI:
1245                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1246                break;
1247        case GITS_CMD_MAPTI:
1248                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1249                break;
1250        case GITS_CMD_MOVI:
1251                ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1252                break;
1253        case GITS_CMD_DISCARD:
1254                ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1255                break;
1256        case GITS_CMD_CLEAR:
1257                ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1258                break;
1259        case GITS_CMD_MOVALL:
1260                ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1261                break;
1262        case GITS_CMD_INT:
1263                ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1264                break;
1265        case GITS_CMD_INV:
1266                ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1267                break;
1268        case GITS_CMD_INVALL:
1269                ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1270                break;
1271        case GITS_CMD_SYNC:
1272                /* we ignore this command: we are in sync all of the time */
1273                ret = 0;
1274                break;
1275        }
1276        mutex_unlock(&its->its_lock);
1277
1278        return ret;
1279}
1280
1281static u64 vgic_sanitise_its_baser(u64 reg)
1282{
1283        reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1284                                  GITS_BASER_SHAREABILITY_SHIFT,
1285                                  vgic_sanitise_shareability);
1286        reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1287                                  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1288                                  vgic_sanitise_inner_cacheability);
1289        reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1290                                  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1291                                  vgic_sanitise_outer_cacheability);
1292
1293        /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1294        reg &= ~GENMASK_ULL(15, 12);
1295
1296        /* We support only one (ITS) page size: 64K */
1297        reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1298
1299        return reg;
1300}
1301
1302static u64 vgic_sanitise_its_cbaser(u64 reg)
1303{
1304        reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1305                                  GITS_CBASER_SHAREABILITY_SHIFT,
1306                                  vgic_sanitise_shareability);
1307        reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1308                                  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1309                                  vgic_sanitise_inner_cacheability);
1310        reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1311                                  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1312                                  vgic_sanitise_outer_cacheability);
1313
1314        /*
1315         * Sanitise the physical address to be 64k aligned.
1316         * Also limit the physical addresses to 48 bits.
1317         */
1318        reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1319
1320        return reg;
1321}
1322
1323static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1324                                               struct vgic_its *its,
1325                                               gpa_t addr, unsigned int len)
1326{
1327        return extract_bytes(its->cbaser, addr & 7, len);
1328}
1329
1330static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1331                                       gpa_t addr, unsigned int len,
1332                                       unsigned long val)
1333{
1334        /* When GITS_CTLR.Enable is 1, this register is RO. */
1335        if (its->enabled)
1336                return;
1337
1338        mutex_lock(&its->cmd_lock);
1339        its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1340        its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1341        its->creadr = 0;
1342        /*
1343         * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1344         * it to CREADR to make sure we start with an empty command buffer.
1345         */
1346        its->cwriter = its->creadr;
1347        mutex_unlock(&its->cmd_lock);
1348}
1349
1350#define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1351#define ITS_CMD_SIZE                    32
1352#define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1353
1354/* Must be called with the cmd_lock held. */
1355static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1356{
1357        gpa_t cbaser;
1358        u64 cmd_buf[4];
1359
1360        /* Commands are only processed when the ITS is enabled. */
1361        if (!its->enabled)
1362                return;
1363
1364        cbaser = CBASER_ADDRESS(its->cbaser);
1365
1366        while (its->cwriter != its->creadr) {
1367                int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1368                                         cmd_buf, ITS_CMD_SIZE);
1369                /*
1370                 * If kvm_read_guest() fails, this could be due to the guest
1371                 * programming a bogus value in CBASER or something else going
1372                 * wrong from which we cannot easily recover.
1373                 * According to section 6.3.2 in the GICv3 spec we can just
1374                 * ignore that command then.
1375                 */
1376                if (!ret)
1377                        vgic_its_handle_command(kvm, its, cmd_buf);
1378
1379                its->creadr += ITS_CMD_SIZE;
1380                if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1381                        its->creadr = 0;
1382        }
1383}
1384
1385/*
1386 * By writing to CWRITER the guest announces new commands to be processed.
1387 * To avoid any races in the first place, we take the its_cmd lock, which
1388 * protects our ring buffer variables, so that there is only one user
1389 * per ITS handling commands at a given time.
1390 */
1391static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1392                                        gpa_t addr, unsigned int len,
1393                                        unsigned long val)
1394{
1395        u64 reg;
1396
1397        if (!its)
1398                return;
1399
1400        mutex_lock(&its->cmd_lock);
1401
1402        reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1403        reg = ITS_CMD_OFFSET(reg);
1404        if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1405                mutex_unlock(&its->cmd_lock);
1406                return;
1407        }
1408        its->cwriter = reg;
1409
1410        vgic_its_process_commands(kvm, its);
1411
1412        mutex_unlock(&its->cmd_lock);
1413}
1414
1415static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1416                                                struct vgic_its *its,
1417                                                gpa_t addr, unsigned int len)
1418{
1419        return extract_bytes(its->cwriter, addr & 0x7, len);
1420}
1421
1422static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1423                                               struct vgic_its *its,
1424                                               gpa_t addr, unsigned int len)
1425{
1426        return extract_bytes(its->creadr, addr & 0x7, len);
1427}
1428
1429static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1430                                              struct vgic_its *its,
1431                                              gpa_t addr, unsigned int len,
1432                                              unsigned long val)
1433{
1434        u32 cmd_offset;
1435        int ret = 0;
1436
1437        mutex_lock(&its->cmd_lock);
1438
1439        if (its->enabled) {
1440                ret = -EBUSY;
1441                goto out;
1442        }
1443
1444        cmd_offset = ITS_CMD_OFFSET(val);
1445        if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1446                ret = -EINVAL;
1447                goto out;
1448        }
1449
1450        its->creadr = cmd_offset;
1451out:
1452        mutex_unlock(&its->cmd_lock);
1453        return ret;
1454}
1455
1456#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1457static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1458                                              struct vgic_its *its,
1459                                              gpa_t addr, unsigned int len)
1460{
1461        u64 reg;
1462
1463        switch (BASER_INDEX(addr)) {
1464        case 0:
1465                reg = its->baser_device_table;
1466                break;
1467        case 1:
1468                reg = its->baser_coll_table;
1469                break;
1470        default:
1471                reg = 0;
1472                break;
1473        }
1474
1475        return extract_bytes(reg, addr & 7, len);
1476}
1477
1478#define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1479static void vgic_mmio_write_its_baser(struct kvm *kvm,
1480                                      struct vgic_its *its,
1481                                      gpa_t addr, unsigned int len,
1482                                      unsigned long val)
1483{
1484        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1485        u64 entry_size, table_type;
1486        u64 reg, *regptr, clearbits = 0;
1487
1488        /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1489        if (its->enabled)
1490                return;
1491
1492        switch (BASER_INDEX(addr)) {
1493        case 0:
1494                regptr = &its->baser_device_table;
1495                entry_size = abi->dte_esz;
1496                table_type = GITS_BASER_TYPE_DEVICE;
1497                break;
1498        case 1:
1499                regptr = &its->baser_coll_table;
1500                entry_size = abi->cte_esz;
1501                table_type = GITS_BASER_TYPE_COLLECTION;
1502                clearbits = GITS_BASER_INDIRECT;
1503                break;
1504        default:
1505                return;
1506        }
1507
1508        reg = update_64bit_reg(*regptr, addr & 7, len, val);
1509        reg &= ~GITS_BASER_RO_MASK;
1510        reg &= ~clearbits;
1511
1512        reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1513        reg |= table_type << GITS_BASER_TYPE_SHIFT;
1514        reg = vgic_sanitise_its_baser(reg);
1515
1516        *regptr = reg;
1517
1518        if (!(reg & GITS_BASER_VALID)) {
1519                /* Take the its_lock to prevent a race with a save/restore */
1520                mutex_lock(&its->its_lock);
1521                switch (table_type) {
1522                case GITS_BASER_TYPE_DEVICE:
1523                        vgic_its_free_device_list(kvm, its);
1524                        break;
1525                case GITS_BASER_TYPE_COLLECTION:
1526                        vgic_its_free_collection_list(kvm, its);
1527                        break;
1528                }
1529                mutex_unlock(&its->its_lock);
1530        }
1531}
1532
1533static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1534                                             struct vgic_its *its,
1535                                             gpa_t addr, unsigned int len)
1536{
1537        u32 reg = 0;
1538
1539        mutex_lock(&its->cmd_lock);
1540        if (its->creadr == its->cwriter)
1541                reg |= GITS_CTLR_QUIESCENT;
1542        if (its->enabled)
1543                reg |= GITS_CTLR_ENABLE;
1544        mutex_unlock(&its->cmd_lock);
1545
1546        return reg;
1547}
1548
1549static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1550                                     gpa_t addr, unsigned int len,
1551                                     unsigned long val)
1552{
1553        mutex_lock(&its->cmd_lock);
1554
1555        /*
1556         * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1557         * device/collection BASER are invalid
1558         */
1559        if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1560                (!(its->baser_device_table & GITS_BASER_VALID) ||
1561                 !(its->baser_coll_table & GITS_BASER_VALID) ||
1562                 !(its->cbaser & GITS_CBASER_VALID)))
1563                goto out;
1564
1565        its->enabled = !!(val & GITS_CTLR_ENABLE);
1566
1567        /*
1568         * Try to process any pending commands. This function bails out early
1569         * if the ITS is disabled or no commands have been queued.
1570         */
1571        vgic_its_process_commands(kvm, its);
1572
1573out:
1574        mutex_unlock(&its->cmd_lock);
1575}
1576
1577#define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1578{                                                               \
1579        .reg_offset = off,                                      \
1580        .len = length,                                          \
1581        .access_flags = acc,                                    \
1582        .its_read = rd,                                         \
1583        .its_write = wr,                                        \
1584}
1585
1586#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1587{                                                               \
1588        .reg_offset = off,                                      \
1589        .len = length,                                          \
1590        .access_flags = acc,                                    \
1591        .its_read = rd,                                         \
1592        .its_write = wr,                                        \
1593        .uaccess_its_write = uwr,                               \
1594}
1595
1596static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1597                              gpa_t addr, unsigned int len, unsigned long val)
1598{
1599        /* Ignore */
1600}
1601
1602static struct vgic_register_region its_registers[] = {
1603        REGISTER_ITS_DESC(GITS_CTLR,
1604                vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1605                VGIC_ACCESS_32bit),
1606        REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1607                vgic_mmio_read_its_iidr, its_mmio_write_wi,
1608                vgic_mmio_uaccess_write_its_iidr, 4,
1609                VGIC_ACCESS_32bit),
1610        REGISTER_ITS_DESC(GITS_TYPER,
1611                vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1612                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1613        REGISTER_ITS_DESC(GITS_CBASER,
1614                vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1615                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1616        REGISTER_ITS_DESC(GITS_CWRITER,
1617                vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1618                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1619        REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1620                vgic_mmio_read_its_creadr, its_mmio_write_wi,
1621                vgic_mmio_uaccess_write_its_creadr, 8,
1622                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1623        REGISTER_ITS_DESC(GITS_BASER,
1624                vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1625                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1626        REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1627                vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1628                VGIC_ACCESS_32bit),
1629};
1630
1631/* This is called on setting the LPI enable bit in the redistributor. */
1632void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1633{
1634        if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1635                its_sync_lpi_pending_table(vcpu);
1636}
1637
1638static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1639                                   u64 addr)
1640{
1641        struct vgic_io_device *iodev = &its->iodev;
1642        int ret;
1643
1644        mutex_lock(&kvm->slots_lock);
1645        if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1646                ret = -EBUSY;
1647                goto out;
1648        }
1649
1650        its->vgic_its_base = addr;
1651        iodev->regions = its_registers;
1652        iodev->nr_regions = ARRAY_SIZE(its_registers);
1653        kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1654
1655        iodev->base_addr = its->vgic_its_base;
1656        iodev->iodev_type = IODEV_ITS;
1657        iodev->its = its;
1658        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1659                                      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1660out:
1661        mutex_unlock(&kvm->slots_lock);
1662
1663        return ret;
1664}
1665
1666#define INITIAL_BASER_VALUE                                               \
1667        (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1668         GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1669         GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1670         GITS_BASER_PAGE_SIZE_64K)
1671
1672#define INITIAL_PROPBASER_VALUE                                           \
1673        (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1674         GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1675         GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1676
1677static int vgic_its_create(struct kvm_device *dev, u32 type)
1678{
1679        struct vgic_its *its;
1680
1681        if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1682                return -ENODEV;
1683
1684        its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1685        if (!its)
1686                return -ENOMEM;
1687
1688        if (vgic_initialized(dev->kvm)) {
1689                int ret = vgic_v4_init(dev->kvm);
1690                if (ret < 0) {
1691                        kfree(its);
1692                        return ret;
1693                }
1694        }
1695
1696        mutex_init(&its->its_lock);
1697        mutex_init(&its->cmd_lock);
1698
1699        its->vgic_its_base = VGIC_ADDR_UNDEF;
1700
1701        INIT_LIST_HEAD(&its->device_list);
1702        INIT_LIST_HEAD(&its->collection_list);
1703
1704        dev->kvm->arch.vgic.msis_require_devid = true;
1705        dev->kvm->arch.vgic.has_its = true;
1706        its->enabled = false;
1707        its->dev = dev;
1708
1709        its->baser_device_table = INITIAL_BASER_VALUE                   |
1710                ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1711        its->baser_coll_table = INITIAL_BASER_VALUE |
1712                ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1713        dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1714
1715        dev->private = its;
1716
1717        return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1718}
1719
1720static void vgic_its_destroy(struct kvm_device *kvm_dev)
1721{
1722        struct kvm *kvm = kvm_dev->kvm;
1723        struct vgic_its *its = kvm_dev->private;
1724
1725        mutex_lock(&its->its_lock);
1726
1727        vgic_its_free_device_list(kvm, its);
1728        vgic_its_free_collection_list(kvm, its);
1729
1730        mutex_unlock(&its->its_lock);
1731        kfree(its);
1732}
1733
1734int vgic_its_has_attr_regs(struct kvm_device *dev,
1735                           struct kvm_device_attr *attr)
1736{
1737        const struct vgic_register_region *region;
1738        gpa_t offset = attr->attr;
1739        int align;
1740
1741        align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1742
1743        if (offset & align)
1744                return -EINVAL;
1745
1746        region = vgic_find_mmio_region(its_registers,
1747                                       ARRAY_SIZE(its_registers),
1748                                       offset);
1749        if (!region)
1750                return -ENXIO;
1751
1752        return 0;
1753}
1754
1755int vgic_its_attr_regs_access(struct kvm_device *dev,
1756                              struct kvm_device_attr *attr,
1757                              u64 *reg, bool is_write)
1758{
1759        const struct vgic_register_region *region;
1760        struct vgic_its *its;
1761        gpa_t addr, offset;
1762        unsigned int len;
1763        int align, ret = 0;
1764
1765        its = dev->private;
1766        offset = attr->attr;
1767
1768        /*
1769         * Although the spec supports upper/lower 32-bit accesses to
1770         * 64-bit ITS registers, the userspace ABI requires 64-bit
1771         * accesses to all 64-bit wide registers. We therefore only
1772         * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1773         * registers
1774         */
1775        if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1776                align = 0x3;
1777        else
1778                align = 0x7;
1779
1780        if (offset & align)
1781                return -EINVAL;
1782
1783        mutex_lock(&dev->kvm->lock);
1784
1785        if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1786                ret = -ENXIO;
1787                goto out;
1788        }
1789
1790        region = vgic_find_mmio_region(its_registers,
1791                                       ARRAY_SIZE(its_registers),
1792                                       offset);
1793        if (!region) {
1794                ret = -ENXIO;
1795                goto out;
1796        }
1797
1798        if (!lock_all_vcpus(dev->kvm)) {
1799                ret = -EBUSY;
1800                goto out;
1801        }
1802
1803        addr = its->vgic_its_base + offset;
1804
1805        len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1806
1807        if (is_write) {
1808                if (region->uaccess_its_write)
1809                        ret = region->uaccess_its_write(dev->kvm, its, addr,
1810                                                        len, *reg);
1811                else
1812                        region->its_write(dev->kvm, its, addr, len, *reg);
1813        } else {
1814                *reg = region->its_read(dev->kvm, its, addr, len);
1815        }
1816        unlock_all_vcpus(dev->kvm);
1817out:
1818        mutex_unlock(&dev->kvm->lock);
1819        return ret;
1820}
1821
1822static u32 compute_next_devid_offset(struct list_head *h,
1823                                     struct its_device *dev)
1824{
1825        struct its_device *next;
1826        u32 next_offset;
1827
1828        if (list_is_last(&dev->dev_list, h))
1829                return 0;
1830        next = list_next_entry(dev, dev_list);
1831        next_offset = next->device_id - dev->device_id;
1832
1833        return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1834}
1835
1836static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1837{
1838        struct its_ite *next;
1839        u32 next_offset;
1840
1841        if (list_is_last(&ite->ite_list, h))
1842                return 0;
1843        next = list_next_entry(ite, ite_list);
1844        next_offset = next->event_id - ite->event_id;
1845
1846        return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1847}
1848
1849/**
1850 * entry_fn_t - Callback called on a table entry restore path
1851 * @its: its handle
1852 * @id: id of the entry
1853 * @entry: pointer to the entry
1854 * @opaque: pointer to an opaque data
1855 *
1856 * Return: < 0 on error, 0 if last element was identified, id offset to next
1857 * element otherwise
1858 */
1859typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1860                          void *opaque);
1861
1862/**
1863 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1864 * to each entry
1865 *
1866 * @its: its handle
1867 * @base: base gpa of the table
1868 * @size: size of the table in bytes
1869 * @esz: entry size in bytes
1870 * @start_id: the ID of the first entry in the table
1871 * (non zero for 2d level tables)
1872 * @fn: function to apply on each entry
1873 *
1874 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1875 * (the last element may not be found on second level tables)
1876 */
1877static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
1878                          int start_id, entry_fn_t fn, void *opaque)
1879{
1880        struct kvm *kvm = its->dev->kvm;
1881        unsigned long len = size;
1882        int id = start_id;
1883        gpa_t gpa = base;
1884        char entry[esz];
1885        int ret;
1886
1887        memset(entry, 0, esz);
1888
1889        while (len > 0) {
1890                int next_offset;
1891                size_t byte_offset;
1892
1893                ret = kvm_read_guest(kvm, gpa, entry, esz);
1894                if (ret)
1895                        return ret;
1896
1897                next_offset = fn(its, id, entry, opaque);
1898                if (next_offset <= 0)
1899                        return next_offset;
1900
1901                byte_offset = next_offset * esz;
1902                id += next_offset;
1903                gpa += byte_offset;
1904                len -= byte_offset;
1905        }
1906        return 1;
1907}
1908
1909/**
1910 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1911 */
1912static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1913                              struct its_ite *ite, gpa_t gpa, int ite_esz)
1914{
1915        struct kvm *kvm = its->dev->kvm;
1916        u32 next_offset;
1917        u64 val;
1918
1919        next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1920        val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1921               ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1922                ite->collection->collection_id;
1923        val = cpu_to_le64(val);
1924        return kvm_write_guest(kvm, gpa, &val, ite_esz);
1925}
1926
1927/**
1928 * vgic_its_restore_ite - restore an interrupt translation entry
1929 * @event_id: id used for indexing
1930 * @ptr: pointer to the ITE entry
1931 * @opaque: pointer to the its_device
1932 */
1933static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1934                                void *ptr, void *opaque)
1935{
1936        struct its_device *dev = (struct its_device *)opaque;
1937        struct its_collection *collection;
1938        struct kvm *kvm = its->dev->kvm;
1939        struct kvm_vcpu *vcpu = NULL;
1940        u64 val;
1941        u64 *p = (u64 *)ptr;
1942        struct vgic_irq *irq;
1943        u32 coll_id, lpi_id;
1944        struct its_ite *ite;
1945        u32 offset;
1946
1947        val = *p;
1948
1949        val = le64_to_cpu(val);
1950
1951        coll_id = val & KVM_ITS_ITE_ICID_MASK;
1952        lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1953
1954        if (!lpi_id)
1955                return 1; /* invalid entry, no choice but to scan next entry */
1956
1957        if (lpi_id < VGIC_MIN_LPI)
1958                return -EINVAL;
1959
1960        offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1961        if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1962                return -EINVAL;
1963
1964        collection = find_collection(its, coll_id);
1965        if (!collection)
1966                return -EINVAL;
1967
1968        ite = vgic_its_alloc_ite(dev, collection, event_id);
1969        if (IS_ERR(ite))
1970                return PTR_ERR(ite);
1971
1972        if (its_is_collection_mapped(collection))
1973                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1974
1975        irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1976        if (IS_ERR(irq))
1977                return PTR_ERR(irq);
1978        ite->irq = irq;
1979
1980        return offset;
1981}
1982
1983static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1984                            struct list_head *b)
1985{
1986        struct its_ite *itea = container_of(a, struct its_ite, ite_list);
1987        struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
1988
1989        if (itea->event_id < iteb->event_id)
1990                return -1;
1991        else
1992                return 1;
1993}
1994
1995static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
1996{
1997        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1998        gpa_t base = device->itt_addr;
1999        struct its_ite *ite;
2000        int ret;
2001        int ite_esz = abi->ite_esz;
2002
2003        list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2004
2005        list_for_each_entry(ite, &device->itt_head, ite_list) {
2006                gpa_t gpa = base + ite->event_id * ite_esz;
2007
2008                /*
2009                 * If an LPI carries the HW bit, this means that this
2010                 * interrupt is controlled by GICv4, and we do not
2011                 * have direct access to that state. Let's simply fail
2012                 * the save operation...
2013                 */
2014                if (ite->irq->hw)
2015                        return -EACCES;
2016
2017                ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2018                if (ret)
2019                        return ret;
2020        }
2021        return 0;
2022}
2023
2024/**
2025 * vgic_its_restore_itt - restore the ITT of a device
2026 *
2027 * @its: its handle
2028 * @dev: device handle
2029 *
2030 * Return 0 on success, < 0 on error
2031 */
2032static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2033{
2034        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2035        gpa_t base = dev->itt_addr;
2036        int ret;
2037        int ite_esz = abi->ite_esz;
2038        size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2039
2040        ret = scan_its_table(its, base, max_size, ite_esz, 0,
2041                             vgic_its_restore_ite, dev);
2042
2043        /* scan_its_table returns +1 if all ITEs are invalid */
2044        if (ret > 0)
2045                ret = 0;
2046
2047        return ret;
2048}
2049
2050/**
2051 * vgic_its_save_dte - Save a device table entry at a given GPA
2052 *
2053 * @its: ITS handle
2054 * @dev: ITS device
2055 * @ptr: GPA
2056 */
2057static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2058                             gpa_t ptr, int dte_esz)
2059{
2060        struct kvm *kvm = its->dev->kvm;
2061        u64 val, itt_addr_field;
2062        u32 next_offset;
2063
2064        itt_addr_field = dev->itt_addr >> 8;
2065        next_offset = compute_next_devid_offset(&its->device_list, dev);
2066        val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2067               ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2068               (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2069                (dev->num_eventid_bits - 1));
2070        val = cpu_to_le64(val);
2071        return kvm_write_guest(kvm, ptr, &val, dte_esz);
2072}
2073
2074/**
2075 * vgic_its_restore_dte - restore a device table entry
2076 *
2077 * @its: its handle
2078 * @id: device id the DTE corresponds to
2079 * @ptr: kernel VA where the 8 byte DTE is located
2080 * @opaque: unused
2081 *
2082 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2083 * next dte otherwise
2084 */
2085static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2086                                void *ptr, void *opaque)
2087{
2088        struct its_device *dev;
2089        gpa_t itt_addr;
2090        u8 num_eventid_bits;
2091        u64 entry = *(u64 *)ptr;
2092        bool valid;
2093        u32 offset;
2094        int ret;
2095
2096        entry = le64_to_cpu(entry);
2097
2098        valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2099        num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2100        itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2101                        >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2102
2103        if (!valid)
2104                return 1;
2105
2106        /* dte entry is valid */
2107        offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2108
2109        dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2110        if (IS_ERR(dev))
2111                return PTR_ERR(dev);
2112
2113        ret = vgic_its_restore_itt(its, dev);
2114        if (ret) {
2115                vgic_its_free_device(its->dev->kvm, dev);
2116                return ret;
2117        }
2118
2119        return offset;
2120}
2121
2122static int vgic_its_device_cmp(void *priv, struct list_head *a,
2123                               struct list_head *b)
2124{
2125        struct its_device *deva = container_of(a, struct its_device, dev_list);
2126        struct its_device *devb = container_of(b, struct its_device, dev_list);
2127
2128        if (deva->device_id < devb->device_id)
2129                return -1;
2130        else
2131                return 1;
2132}
2133
2134/**
2135 * vgic_its_save_device_tables - Save the device table and all ITT
2136 * into guest RAM
2137 *
2138 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2139 * returns the GPA of the device entry
2140 */
2141static int vgic_its_save_device_tables(struct vgic_its *its)
2142{
2143        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2144        u64 baser = its->baser_device_table;
2145        struct its_device *dev;
2146        int dte_esz = abi->dte_esz;
2147
2148        if (!(baser & GITS_BASER_VALID))
2149                return 0;
2150
2151        list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2152
2153        list_for_each_entry(dev, &its->device_list, dev_list) {
2154                int ret;
2155                gpa_t eaddr;
2156
2157                if (!vgic_its_check_id(its, baser,
2158                                       dev->device_id, &eaddr))
2159                        return -EINVAL;
2160
2161                ret = vgic_its_save_itt(its, dev);
2162                if (ret)
2163                        return ret;
2164
2165                ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2166                if (ret)
2167                        return ret;
2168        }
2169        return 0;
2170}
2171
2172/**
2173 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2174 *
2175 * @its: its handle
2176 * @id: index of the entry in the L1 table
2177 * @addr: kernel VA
2178 * @opaque: unused
2179 *
2180 * L1 table entries are scanned by steps of 1 entry
2181 * Return < 0 if error, 0 if last dte was found when scanning the L2
2182 * table, +1 otherwise (meaning next L1 entry must be scanned)
2183 */
2184static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2185                         void *opaque)
2186{
2187        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2188        int l2_start_id = id * (SZ_64K / abi->dte_esz);
2189        u64 entry = *(u64 *)addr;
2190        int dte_esz = abi->dte_esz;
2191        gpa_t gpa;
2192        int ret;
2193
2194        entry = le64_to_cpu(entry);
2195
2196        if (!(entry & KVM_ITS_L1E_VALID_MASK))
2197                return 1;
2198
2199        gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2200
2201        ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2202                             l2_start_id, vgic_its_restore_dte, NULL);
2203
2204        return ret;
2205}
2206
2207/**
2208 * vgic_its_restore_device_tables - Restore the device table and all ITT
2209 * from guest RAM to internal data structs
2210 */
2211static int vgic_its_restore_device_tables(struct vgic_its *its)
2212{
2213        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2214        u64 baser = its->baser_device_table;
2215        int l1_esz, ret;
2216        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2217        gpa_t l1_gpa;
2218
2219        if (!(baser & GITS_BASER_VALID))
2220                return 0;
2221
2222        l1_gpa = BASER_ADDRESS(baser);
2223
2224        if (baser & GITS_BASER_INDIRECT) {
2225                l1_esz = GITS_LVL1_ENTRY_SIZE;
2226                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2227                                     handle_l1_dte, NULL);
2228        } else {
2229                l1_esz = abi->dte_esz;
2230                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2231                                     vgic_its_restore_dte, NULL);
2232        }
2233
2234        /* scan_its_table returns +1 if all entries are invalid */
2235        if (ret > 0)
2236                ret = 0;
2237
2238        return ret;
2239}
2240
2241static int vgic_its_save_cte(struct vgic_its *its,
2242                             struct its_collection *collection,
2243                             gpa_t gpa, int esz)
2244{
2245        u64 val;
2246
2247        val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2248               ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2249               collection->collection_id);
2250        val = cpu_to_le64(val);
2251        return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2252}
2253
2254static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2255{
2256        struct its_collection *collection;
2257        struct kvm *kvm = its->dev->kvm;
2258        u32 target_addr, coll_id;
2259        u64 val;
2260        int ret;
2261
2262        BUG_ON(esz > sizeof(val));
2263        ret = kvm_read_guest(kvm, gpa, &val, esz);
2264        if (ret)
2265                return ret;
2266        val = le64_to_cpu(val);
2267        if (!(val & KVM_ITS_CTE_VALID_MASK))
2268                return 0;
2269
2270        target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2271        coll_id = val & KVM_ITS_CTE_ICID_MASK;
2272
2273        if (target_addr >= atomic_read(&kvm->online_vcpus))
2274                return -EINVAL;
2275
2276        collection = find_collection(its, coll_id);
2277        if (collection)
2278                return -EEXIST;
2279        ret = vgic_its_alloc_collection(its, &collection, coll_id);
2280        if (ret)
2281                return ret;
2282        collection->target_addr = target_addr;
2283        return 1;
2284}
2285
2286/**
2287 * vgic_its_save_collection_table - Save the collection table into
2288 * guest RAM
2289 */
2290static int vgic_its_save_collection_table(struct vgic_its *its)
2291{
2292        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2293        u64 baser = its->baser_coll_table;
2294        gpa_t gpa = BASER_ADDRESS(baser);
2295        struct its_collection *collection;
2296        u64 val;
2297        size_t max_size, filled = 0;
2298        int ret, cte_esz = abi->cte_esz;
2299
2300        if (!(baser & GITS_BASER_VALID))
2301                return 0;
2302
2303        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2304
2305        list_for_each_entry(collection, &its->collection_list, coll_list) {
2306                ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2307                if (ret)
2308                        return ret;
2309                gpa += cte_esz;
2310                filled += cte_esz;
2311        }
2312
2313        if (filled == max_size)
2314                return 0;
2315
2316        /*
2317         * table is not fully filled, add a last dummy element
2318         * with valid bit unset
2319         */
2320        val = 0;
2321        BUG_ON(cte_esz > sizeof(val));
2322        ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2323        return ret;
2324}
2325
2326/**
2327 * vgic_its_restore_collection_table - reads the collection table
2328 * in guest memory and restores the ITS internal state. Requires the
2329 * BASER registers to be restored before.
2330 */
2331static int vgic_its_restore_collection_table(struct vgic_its *its)
2332{
2333        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2334        u64 baser = its->baser_coll_table;
2335        int cte_esz = abi->cte_esz;
2336        size_t max_size, read = 0;
2337        gpa_t gpa;
2338        int ret;
2339
2340        if (!(baser & GITS_BASER_VALID))
2341                return 0;
2342
2343        gpa = BASER_ADDRESS(baser);
2344
2345        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2346
2347        while (read < max_size) {
2348                ret = vgic_its_restore_cte(its, gpa, cte_esz);
2349                if (ret <= 0)
2350                        break;
2351                gpa += cte_esz;
2352                read += cte_esz;
2353        }
2354
2355        if (ret > 0)
2356                return 0;
2357
2358        return ret;
2359}
2360
2361/**
2362 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2363 * according to v0 ABI
2364 */
2365static int vgic_its_save_tables_v0(struct vgic_its *its)
2366{
2367        int ret;
2368
2369        ret = vgic_its_save_device_tables(its);
2370        if (ret)
2371                return ret;
2372
2373        return vgic_its_save_collection_table(its);
2374}
2375
2376/**
2377 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2378 * to internal data structs according to V0 ABI
2379 *
2380 */
2381static int vgic_its_restore_tables_v0(struct vgic_its *its)
2382{
2383        int ret;
2384
2385        ret = vgic_its_restore_collection_table(its);
2386        if (ret)
2387                return ret;
2388
2389        return vgic_its_restore_device_tables(its);
2390}
2391
2392static int vgic_its_commit_v0(struct vgic_its *its)
2393{
2394        const struct vgic_its_abi *abi;
2395
2396        abi = vgic_its_get_abi(its);
2397        its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2398        its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2399
2400        its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2401                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2402
2403        its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2404                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2405        return 0;
2406}
2407
2408static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2409{
2410        /* We need to keep the ABI specific field values */
2411        its->baser_coll_table &= ~GITS_BASER_VALID;
2412        its->baser_device_table &= ~GITS_BASER_VALID;
2413        its->cbaser = 0;
2414        its->creadr = 0;
2415        its->cwriter = 0;
2416        its->enabled = 0;
2417        vgic_its_free_device_list(kvm, its);
2418        vgic_its_free_collection_list(kvm, its);
2419}
2420
2421static int vgic_its_has_attr(struct kvm_device *dev,
2422                             struct kvm_device_attr *attr)
2423{
2424        switch (attr->group) {
2425        case KVM_DEV_ARM_VGIC_GRP_ADDR:
2426                switch (attr->attr) {
2427                case KVM_VGIC_ITS_ADDR_TYPE:
2428                        return 0;
2429                }
2430                break;
2431        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2432                switch (attr->attr) {
2433                case KVM_DEV_ARM_VGIC_CTRL_INIT:
2434                        return 0;
2435                case KVM_DEV_ARM_ITS_CTRL_RESET:
2436                        return 0;
2437                case KVM_DEV_ARM_ITS_SAVE_TABLES:
2438                        return 0;
2439                case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2440                        return 0;
2441                }
2442                break;
2443        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2444                return vgic_its_has_attr_regs(dev, attr);
2445        }
2446        return -ENXIO;
2447}
2448
2449static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2450{
2451        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2452        int ret = 0;
2453
2454        if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2455                return 0;
2456
2457        mutex_lock(&kvm->lock);
2458        mutex_lock(&its->its_lock);
2459
2460        if (!lock_all_vcpus(kvm)) {
2461                mutex_unlock(&its->its_lock);
2462                mutex_unlock(&kvm->lock);
2463                return -EBUSY;
2464        }
2465
2466        switch (attr) {
2467        case KVM_DEV_ARM_ITS_CTRL_RESET:
2468                vgic_its_reset(kvm, its);
2469                break;
2470        case KVM_DEV_ARM_ITS_SAVE_TABLES:
2471                ret = abi->save_tables(its);
2472                break;
2473        case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2474                ret = abi->restore_tables(its);
2475                break;
2476        }
2477
2478        unlock_all_vcpus(kvm);
2479        mutex_unlock(&its->its_lock);
2480        mutex_unlock(&kvm->lock);
2481        return ret;
2482}
2483
2484static int vgic_its_set_attr(struct kvm_device *dev,
2485                             struct kvm_device_attr *attr)
2486{
2487        struct vgic_its *its = dev->private;
2488        int ret;
2489
2490        switch (attr->group) {
2491        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2492                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2493                unsigned long type = (unsigned long)attr->attr;
2494                u64 addr;
2495
2496                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2497                        return -ENODEV;
2498
2499                if (copy_from_user(&addr, uaddr, sizeof(addr)))
2500                        return -EFAULT;
2501
2502                ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2503                                        addr, SZ_64K);
2504                if (ret)
2505                        return ret;
2506
2507                return vgic_register_its_iodev(dev->kvm, its, addr);
2508        }
2509        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2510                return vgic_its_ctrl(dev->kvm, its, attr->attr);
2511        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2512                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2513                u64 reg;
2514
2515                if (get_user(reg, uaddr))
2516                        return -EFAULT;
2517
2518                return vgic_its_attr_regs_access(dev, attr, &reg, true);
2519        }
2520        }
2521        return -ENXIO;
2522}
2523
2524static int vgic_its_get_attr(struct kvm_device *dev,
2525                             struct kvm_device_attr *attr)
2526{
2527        switch (attr->group) {
2528        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2529                struct vgic_its *its = dev->private;
2530                u64 addr = its->vgic_its_base;
2531                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2532                unsigned long type = (unsigned long)attr->attr;
2533
2534                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2535                        return -ENODEV;
2536
2537                if (copy_to_user(uaddr, &addr, sizeof(addr)))
2538                        return -EFAULT;
2539                break;
2540        }
2541        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2542                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2543                u64 reg;
2544                int ret;
2545
2546                ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2547                if (ret)
2548                        return ret;
2549                return put_user(reg, uaddr);
2550        }
2551        default:
2552                return -ENXIO;
2553        }
2554
2555        return 0;
2556}
2557
2558static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2559        .name = "kvm-arm-vgic-its",
2560        .create = vgic_its_create,
2561        .destroy = vgic_its_destroy,
2562        .set_attr = vgic_its_set_attr,
2563        .get_attr = vgic_its_get_attr,
2564        .has_attr = vgic_its_has_attr,
2565};
2566
2567int kvm_vgic_register_its_device(void)
2568{
2569        return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2570                                       KVM_DEV_TYPE_ARM_VGIC_ITS);
2571}
2572