linux/arch/arm/net/bpf_jit_32.c
<<
>>
Prefs
   1/*
   2 * Just-In-Time compiler for eBPF filters on 32bit ARM
   3 *
   4 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   5 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License as published by the
   9 * Free Software Foundation; version 2 of the License.
  10 */
  11
  12#include <linux/bpf.h>
  13#include <linux/bitops.h>
  14#include <linux/compiler.h>
  15#include <linux/errno.h>
  16#include <linux/filter.h>
  17#include <linux/netdevice.h>
  18#include <linux/string.h>
  19#include <linux/slab.h>
  20#include <linux/if_vlan.h>
  21
  22#include <asm/cacheflush.h>
  23#include <asm/hwcap.h>
  24#include <asm/opcodes.h>
  25
  26#include "bpf_jit_32.h"
  27
  28/*
  29 * eBPF prog stack layout:
  30 *
  31 *                         high
  32 * original ARM_SP =>     +-----+
  33 *                        |     | callee saved registers
  34 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  35 *                        | ... | eBPF JIT scratch space
  36 * eBPF fp register =>    +-----+
  37 *   (BPF_FP)             | ... | eBPF prog stack
  38 *                        +-----+
  39 *                        |RSVD | JIT scratchpad
  40 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  41 *                        |     |
  42 *                        | ... | Function call stack
  43 *                        |     |
  44 *                        +-----+
  45 *                          low
  46 *
  47 * The callee saved registers depends on whether frame pointers are enabled.
  48 * With frame pointers (to be compliant with the ABI):
  49 *
  50 *                                high
  51 * original ARM_SP =>     +------------------+ \
  52 *                        |        pc        | |
  53 * current ARM_FP =>      +------------------+ } callee saved registers
  54 *                        |r4-r8,r10,fp,ip,lr| |
  55 *                        +------------------+ /
  56 *                                low
  57 *
  58 * Without frame pointers:
  59 *
  60 *                                high
  61 * original ARM_SP =>     +------------------+
  62 *                        | r4-r8,r10,fp,lr  | callee saved registers
  63 * current ARM_FP =>      +------------------+
  64 *                                low
  65 *
  66 * When popping registers off the stack at the end of a BPF function, we
  67 * reference them via the current ARM_FP register.
  68 */
  69#define CALLEE_MASK     (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  70                         1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R10 | \
  71                         1 << ARM_FP)
  72#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  73#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  74
  75#define STACK_OFFSET(k) (k)
  76#define TMP_REG_1       (MAX_BPF_JIT_REG + 0)   /* TEMP Register 1 */
  77#define TMP_REG_2       (MAX_BPF_JIT_REG + 1)   /* TEMP Register 2 */
  78#define TCALL_CNT       (MAX_BPF_JIT_REG + 2)   /* Tail Call Count */
  79
  80#define FLAG_IMM_OVERFLOW       (1 << 0)
  81
  82/*
  83 * Map eBPF registers to ARM 32bit registers or stack scratch space.
  84 *
  85 * 1. First argument is passed using the arm 32bit registers and rest of the
  86 * arguments are passed on stack scratch space.
  87 * 2. First callee-saved arugument is mapped to arm 32 bit registers and rest
  88 * arguments are mapped to scratch space on stack.
  89 * 3. We need two 64 bit temp registers to do complex operations on eBPF
  90 * registers.
  91 *
  92 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
  93 * registers, we have to map each eBPF registers with two arm 32 bit regs or
  94 * scratch memory space and we have to build eBPF 64 bit register from those.
  95 *
  96 */
  97static const u8 bpf2a32[][2] = {
  98        /* return value from in-kernel function, and exit value from eBPF */
  99        [BPF_REG_0] = {ARM_R1, ARM_R0},
 100        /* arguments from eBPF program to in-kernel function */
 101        [BPF_REG_1] = {ARM_R3, ARM_R2},
 102        /* Stored on stack scratch space */
 103        [BPF_REG_2] = {STACK_OFFSET(0), STACK_OFFSET(4)},
 104        [BPF_REG_3] = {STACK_OFFSET(8), STACK_OFFSET(12)},
 105        [BPF_REG_4] = {STACK_OFFSET(16), STACK_OFFSET(20)},
 106        [BPF_REG_5] = {STACK_OFFSET(24), STACK_OFFSET(28)},
 107        /* callee saved registers that in-kernel function will preserve */
 108        [BPF_REG_6] = {ARM_R5, ARM_R4},
 109        /* Stored on stack scratch space */
 110        [BPF_REG_7] = {STACK_OFFSET(32), STACK_OFFSET(36)},
 111        [BPF_REG_8] = {STACK_OFFSET(40), STACK_OFFSET(44)},
 112        [BPF_REG_9] = {STACK_OFFSET(48), STACK_OFFSET(52)},
 113        /* Read only Frame Pointer to access Stack */
 114        [BPF_REG_FP] = {STACK_OFFSET(56), STACK_OFFSET(60)},
 115        /* Temporary Register for internal BPF JIT, can be used
 116         * for constant blindings and others.
 117         */
 118        [TMP_REG_1] = {ARM_R7, ARM_R6},
 119        [TMP_REG_2] = {ARM_R10, ARM_R8},
 120        /* Tail call count. Stored on stack scratch space. */
 121        [TCALL_CNT] = {STACK_OFFSET(64), STACK_OFFSET(68)},
 122        /* temporary register for blinding constants.
 123         * Stored on stack scratch space.
 124         */
 125        [BPF_REG_AX] = {STACK_OFFSET(72), STACK_OFFSET(76)},
 126};
 127
 128#define dst_lo  dst[1]
 129#define dst_hi  dst[0]
 130#define src_lo  src[1]
 131#define src_hi  src[0]
 132
 133/*
 134 * JIT Context:
 135 *
 136 * prog                 :       bpf_prog
 137 * idx                  :       index of current last JITed instruction.
 138 * prologue_bytes       :       bytes used in prologue.
 139 * epilogue_offset      :       offset of epilogue starting.
 140 * offsets              :       array of eBPF instruction offsets in
 141 *                              JITed code.
 142 * target               :       final JITed code.
 143 * epilogue_bytes       :       no of bytes used in epilogue.
 144 * imm_count            :       no of immediate counts used for global
 145 *                              variables.
 146 * imms                 :       array of global variable addresses.
 147 */
 148
 149struct jit_ctx {
 150        const struct bpf_prog *prog;
 151        unsigned int idx;
 152        unsigned int prologue_bytes;
 153        unsigned int epilogue_offset;
 154        u32 flags;
 155        u32 *offsets;
 156        u32 *target;
 157        u32 stack_size;
 158#if __LINUX_ARM_ARCH__ < 7
 159        u16 epilogue_bytes;
 160        u16 imm_count;
 161        u32 *imms;
 162#endif
 163};
 164
 165/*
 166 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 167 * (where the assembly routines like __aeabi_uidiv could cause problems).
 168 */
 169static u32 jit_udiv32(u32 dividend, u32 divisor)
 170{
 171        return dividend / divisor;
 172}
 173
 174static u32 jit_mod32(u32 dividend, u32 divisor)
 175{
 176        return dividend % divisor;
 177}
 178
 179static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 180{
 181        inst |= (cond << 28);
 182        inst = __opcode_to_mem_arm(inst);
 183
 184        if (ctx->target != NULL)
 185                ctx->target[ctx->idx] = inst;
 186
 187        ctx->idx++;
 188}
 189
 190/*
 191 * Emit an instruction that will be executed unconditionally.
 192 */
 193static inline void emit(u32 inst, struct jit_ctx *ctx)
 194{
 195        _emit(ARM_COND_AL, inst, ctx);
 196}
 197
 198/*
 199 * Checks if immediate value can be converted to imm12(12 bits) value.
 200 */
 201static int16_t imm8m(u32 x)
 202{
 203        u32 rot;
 204
 205        for (rot = 0; rot < 16; rot++)
 206                if ((x & ~ror32(0xff, 2 * rot)) == 0)
 207                        return rol32(x, 2 * rot) | (rot << 8);
 208        return -1;
 209}
 210
 211/*
 212 * Initializes the JIT space with undefined instructions.
 213 */
 214static void jit_fill_hole(void *area, unsigned int size)
 215{
 216        u32 *ptr;
 217        /* We are guaranteed to have aligned memory. */
 218        for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 219                *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 220}
 221
 222#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 223/* EABI requires the stack to be aligned to 64-bit boundaries */
 224#define STACK_ALIGNMENT 8
 225#else
 226/* Stack must be aligned to 32-bit boundaries */
 227#define STACK_ALIGNMENT 4
 228#endif
 229
 230/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
 231 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
 232 * BPF_REG_FP and Tail call counts.
 233 */
 234#define SCRATCH_SIZE 80
 235
 236/* total stack size used in JITed code */
 237#define _STACK_SIZE \
 238        (ctx->prog->aux->stack_depth + \
 239         + SCRATCH_SIZE + \
 240         + 4 /* extra for skb_copy_bits buffer */)
 241
 242#define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 243
 244/* Get the offset of eBPF REGISTERs stored on scratch space. */
 245#define STACK_VAR(off) (STACK_SIZE-off-4)
 246
 247/* Offset of skb_copy_bits buffer */
 248#define SKB_BUFFER STACK_VAR(SCRATCH_SIZE)
 249
 250#if __LINUX_ARM_ARCH__ < 7
 251
 252static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 253{
 254        unsigned int i = 0, offset;
 255        u16 imm;
 256
 257        /* on the "fake" run we just count them (duplicates included) */
 258        if (ctx->target == NULL) {
 259                ctx->imm_count++;
 260                return 0;
 261        }
 262
 263        while ((i < ctx->imm_count) && ctx->imms[i]) {
 264                if (ctx->imms[i] == k)
 265                        break;
 266                i++;
 267        }
 268
 269        if (ctx->imms[i] == 0)
 270                ctx->imms[i] = k;
 271
 272        /* constants go just after the epilogue */
 273        offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 274        offset += ctx->prologue_bytes;
 275        offset += ctx->epilogue_bytes;
 276        offset += i * 4;
 277
 278        ctx->target[offset / 4] = k;
 279
 280        /* PC in ARM mode == address of the instruction + 8 */
 281        imm = offset - (8 + ctx->idx * 4);
 282
 283        if (imm & ~0xfff) {
 284                /*
 285                 * literal pool is too far, signal it into flags. we
 286                 * can only detect it on the second pass unfortunately.
 287                 */
 288                ctx->flags |= FLAG_IMM_OVERFLOW;
 289                return 0;
 290        }
 291
 292        return imm;
 293}
 294
 295#endif /* __LINUX_ARM_ARCH__ */
 296
 297static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 298                                 const struct jit_ctx *ctx) {
 299        int to, from;
 300
 301        if (ctx->target == NULL)
 302                return 0;
 303        to = ctx->offsets[bpf_to];
 304        from = ctx->offsets[bpf_from];
 305
 306        return to - from - 1;
 307}
 308
 309/*
 310 * Move an immediate that's not an imm8m to a core register.
 311 */
 312static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 313{
 314#if __LINUX_ARM_ARCH__ < 7
 315        emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 316#else
 317        emit(ARM_MOVW(rd, val & 0xffff), ctx);
 318        if (val > 0xffff)
 319                emit(ARM_MOVT(rd, val >> 16), ctx);
 320#endif
 321}
 322
 323static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 324{
 325        int imm12 = imm8m(val);
 326
 327        if (imm12 >= 0)
 328                emit(ARM_MOV_I(rd, imm12), ctx);
 329        else
 330                emit_mov_i_no8m(rd, val, ctx);
 331}
 332
 333static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 334{
 335        if (elf_hwcap & HWCAP_THUMB)
 336                emit(ARM_BX(tgt_reg), ctx);
 337        else
 338                emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 339}
 340
 341static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 342{
 343#if __LINUX_ARM_ARCH__ < 5
 344        emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 345        emit_bx_r(tgt_reg, ctx);
 346#else
 347        emit(ARM_BLX_R(tgt_reg), ctx);
 348#endif
 349}
 350
 351static inline int epilogue_offset(const struct jit_ctx *ctx)
 352{
 353        int to, from;
 354        /* No need for 1st dummy run */
 355        if (ctx->target == NULL)
 356                return 0;
 357        to = ctx->epilogue_offset;
 358        from = ctx->idx;
 359
 360        return to - from - 2;
 361}
 362
 363static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
 364{
 365        const u8 *tmp = bpf2a32[TMP_REG_1];
 366
 367#if __LINUX_ARM_ARCH__ == 7
 368        if (elf_hwcap & HWCAP_IDIVA) {
 369                if (op == BPF_DIV)
 370                        emit(ARM_UDIV(rd, rm, rn), ctx);
 371                else {
 372                        emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
 373                        emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 374                }
 375                return;
 376        }
 377#endif
 378
 379        /*
 380         * For BPF_ALU | BPF_DIV | BPF_K instructions
 381         * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 382         * function, we need to save it on caller side to save
 383         * it from getting destroyed within callee.
 384         * After the return from the callee, we restore ARM_R0
 385         * ARM_R1.
 386         */
 387        if (rn != ARM_R1) {
 388                emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 389                emit(ARM_MOV_R(ARM_R1, rn), ctx);
 390        }
 391        if (rm != ARM_R0) {
 392                emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 393                emit(ARM_MOV_R(ARM_R0, rm), ctx);
 394        }
 395
 396        /* Call appropriate function */
 397        emit_mov_i(ARM_IP, op == BPF_DIV ?
 398                   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
 399        emit_blx_r(ARM_IP, ctx);
 400
 401        /* Save return value */
 402        if (rd != ARM_R0)
 403                emit(ARM_MOV_R(rd, ARM_R0), ctx);
 404
 405        /* Restore ARM_R0 and ARM_R1 */
 406        if (rn != ARM_R1)
 407                emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 408        if (rm != ARM_R0)
 409                emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 410}
 411
 412/* Checks whether BPF register is on scratch stack space or not. */
 413static inline bool is_on_stack(u8 bpf_reg)
 414{
 415        static u8 stack_regs[] = {BPF_REG_AX, BPF_REG_3, BPF_REG_4, BPF_REG_5,
 416                                BPF_REG_7, BPF_REG_8, BPF_REG_9, TCALL_CNT,
 417                                BPF_REG_2, BPF_REG_FP};
 418        int i, reg_len = sizeof(stack_regs);
 419
 420        for (i = 0 ; i < reg_len ; i++) {
 421                if (bpf_reg == stack_regs[i])
 422                        return true;
 423        }
 424        return false;
 425}
 426
 427static inline void emit_a32_mov_i(const u8 dst, const u32 val,
 428                                  bool dstk, struct jit_ctx *ctx)
 429{
 430        const u8 *tmp = bpf2a32[TMP_REG_1];
 431
 432        if (dstk) {
 433                emit_mov_i(tmp[1], val, ctx);
 434                emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(dst)), ctx);
 435        } else {
 436                emit_mov_i(dst, val, ctx);
 437        }
 438}
 439
 440/* Sign extended move */
 441static inline void emit_a32_mov_i64(const bool is64, const u8 dst[],
 442                                  const u32 val, bool dstk,
 443                                  struct jit_ctx *ctx) {
 444        u32 hi = 0;
 445
 446        if (is64 && (val & (1<<31)))
 447                hi = (u32)~0;
 448        emit_a32_mov_i(dst_lo, val, dstk, ctx);
 449        emit_a32_mov_i(dst_hi, hi, dstk, ctx);
 450}
 451
 452static inline void emit_a32_add_r(const u8 dst, const u8 src,
 453                              const bool is64, const bool hi,
 454                              struct jit_ctx *ctx) {
 455        /* 64 bit :
 456         *      adds dst_lo, dst_lo, src_lo
 457         *      adc dst_hi, dst_hi, src_hi
 458         * 32 bit :
 459         *      add dst_lo, dst_lo, src_lo
 460         */
 461        if (!hi && is64)
 462                emit(ARM_ADDS_R(dst, dst, src), ctx);
 463        else if (hi && is64)
 464                emit(ARM_ADC_R(dst, dst, src), ctx);
 465        else
 466                emit(ARM_ADD_R(dst, dst, src), ctx);
 467}
 468
 469static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 470                                  const bool is64, const bool hi,
 471                                  struct jit_ctx *ctx) {
 472        /* 64 bit :
 473         *      subs dst_lo, dst_lo, src_lo
 474         *      sbc dst_hi, dst_hi, src_hi
 475         * 32 bit :
 476         *      sub dst_lo, dst_lo, src_lo
 477         */
 478        if (!hi && is64)
 479                emit(ARM_SUBS_R(dst, dst, src), ctx);
 480        else if (hi && is64)
 481                emit(ARM_SBC_R(dst, dst, src), ctx);
 482        else
 483                emit(ARM_SUB_R(dst, dst, src), ctx);
 484}
 485
 486static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 487                              const bool hi, const u8 op, struct jit_ctx *ctx){
 488        switch (BPF_OP(op)) {
 489        /* dst = dst + src */
 490        case BPF_ADD:
 491                emit_a32_add_r(dst, src, is64, hi, ctx);
 492                break;
 493        /* dst = dst - src */
 494        case BPF_SUB:
 495                emit_a32_sub_r(dst, src, is64, hi, ctx);
 496                break;
 497        /* dst = dst | src */
 498        case BPF_OR:
 499                emit(ARM_ORR_R(dst, dst, src), ctx);
 500                break;
 501        /* dst = dst & src */
 502        case BPF_AND:
 503                emit(ARM_AND_R(dst, dst, src), ctx);
 504                break;
 505        /* dst = dst ^ src */
 506        case BPF_XOR:
 507                emit(ARM_EOR_R(dst, dst, src), ctx);
 508                break;
 509        /* dst = dst * src */
 510        case BPF_MUL:
 511                emit(ARM_MUL(dst, dst, src), ctx);
 512                break;
 513        /* dst = dst << src */
 514        case BPF_LSH:
 515                emit(ARM_LSL_R(dst, dst, src), ctx);
 516                break;
 517        /* dst = dst >> src */
 518        case BPF_RSH:
 519                emit(ARM_LSR_R(dst, dst, src), ctx);
 520                break;
 521        /* dst = dst >> src (signed)*/
 522        case BPF_ARSH:
 523                emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 524                break;
 525        }
 526}
 527
 528/* ALU operation (32 bit)
 529 * dst = dst (op) src
 530 */
 531static inline void emit_a32_alu_r(const u8 dst, const u8 src,
 532                                  bool dstk, bool sstk,
 533                                  struct jit_ctx *ctx, const bool is64,
 534                                  const bool hi, const u8 op) {
 535        const u8 *tmp = bpf2a32[TMP_REG_1];
 536        u8 rn = sstk ? tmp[1] : src;
 537
 538        if (sstk)
 539                emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src)), ctx);
 540
 541        /* ALU operation */
 542        if (dstk) {
 543                emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
 544                emit_alu_r(tmp[0], rn, is64, hi, op, ctx);
 545                emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
 546        } else {
 547                emit_alu_r(dst, rn, is64, hi, op, ctx);
 548        }
 549}
 550
 551/* ALU operation (64 bit) */
 552static inline void emit_a32_alu_r64(const bool is64, const u8 dst[],
 553                                  const u8 src[], bool dstk,
 554                                  bool sstk, struct jit_ctx *ctx,
 555                                  const u8 op) {
 556        emit_a32_alu_r(dst_lo, src_lo, dstk, sstk, ctx, is64, false, op);
 557        if (is64)
 558                emit_a32_alu_r(dst_hi, src_hi, dstk, sstk, ctx, is64, true, op);
 559        else
 560                emit_a32_mov_i(dst_hi, 0, dstk, ctx);
 561}
 562
 563/* dst = imm (4 bytes)*/
 564static inline void emit_a32_mov_r(const u8 dst, const u8 src,
 565                                  bool dstk, bool sstk,
 566                                  struct jit_ctx *ctx) {
 567        const u8 *tmp = bpf2a32[TMP_REG_1];
 568        u8 rt = sstk ? tmp[0] : src;
 569
 570        if (sstk)
 571                emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(src)), ctx);
 572        if (dstk)
 573                emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst)), ctx);
 574        else
 575                emit(ARM_MOV_R(dst, rt), ctx);
 576}
 577
 578/* dst = src */
 579static inline void emit_a32_mov_r64(const bool is64, const u8 dst[],
 580                                  const u8 src[], bool dstk,
 581                                  bool sstk, struct jit_ctx *ctx) {
 582        emit_a32_mov_r(dst_lo, src_lo, dstk, sstk, ctx);
 583        if (is64) {
 584                /* complete 8 byte move */
 585                emit_a32_mov_r(dst_hi, src_hi, dstk, sstk, ctx);
 586        } else {
 587                /* Zero out high 4 bytes */
 588                emit_a32_mov_i(dst_hi, 0, dstk, ctx);
 589        }
 590}
 591
 592/* Shift operations */
 593static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk,
 594                                struct jit_ctx *ctx, const u8 op) {
 595        const u8 *tmp = bpf2a32[TMP_REG_1];
 596        u8 rd = dstk ? tmp[0] : dst;
 597
 598        if (dstk)
 599                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
 600
 601        /* Do shift operation */
 602        switch (op) {
 603        case BPF_LSH:
 604                emit(ARM_LSL_I(rd, rd, val), ctx);
 605                break;
 606        case BPF_RSH:
 607                emit(ARM_LSR_I(rd, rd, val), ctx);
 608                break;
 609        case BPF_NEG:
 610                emit(ARM_RSB_I(rd, rd, val), ctx);
 611                break;
 612        }
 613
 614        if (dstk)
 615                emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
 616}
 617
 618/* dst = ~dst (64 bit) */
 619static inline void emit_a32_neg64(const u8 dst[], bool dstk,
 620                                struct jit_ctx *ctx){
 621        const u8 *tmp = bpf2a32[TMP_REG_1];
 622        u8 rd = dstk ? tmp[1] : dst[1];
 623        u8 rm = dstk ? tmp[0] : dst[0];
 624
 625        /* Setup Operand */
 626        if (dstk) {
 627                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 628                emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 629        }
 630
 631        /* Do Negate Operation */
 632        emit(ARM_RSBS_I(rd, rd, 0), ctx);
 633        emit(ARM_RSC_I(rm, rm, 0), ctx);
 634
 635        if (dstk) {
 636                emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 637                emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 638        }
 639}
 640
 641/* dst = dst << src */
 642static inline void emit_a32_lsh_r64(const u8 dst[], const u8 src[], bool dstk,
 643                                    bool sstk, struct jit_ctx *ctx) {
 644        const u8 *tmp = bpf2a32[TMP_REG_1];
 645        const u8 *tmp2 = bpf2a32[TMP_REG_2];
 646
 647        /* Setup Operands */
 648        u8 rt = sstk ? tmp2[1] : src_lo;
 649        u8 rd = dstk ? tmp[1] : dst_lo;
 650        u8 rm = dstk ? tmp[0] : dst_hi;
 651
 652        if (sstk)
 653                emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 654        if (dstk) {
 655                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 656                emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 657        }
 658
 659        /* Do LSH operation */
 660        emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 661        emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 662        emit(ARM_MOV_SR(ARM_LR, rm, SRTYPE_ASL, rt), ctx);
 663        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd, SRTYPE_ASL, ARM_IP), ctx);
 664        emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd, SRTYPE_LSR, tmp2[0]), ctx);
 665        emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_ASL, rt), ctx);
 666
 667        if (dstk) {
 668                emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
 669                emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
 670        } else {
 671                emit(ARM_MOV_R(rd, ARM_LR), ctx);
 672                emit(ARM_MOV_R(rm, ARM_IP), ctx);
 673        }
 674}
 675
 676/* dst = dst >> src (signed)*/
 677static inline void emit_a32_arsh_r64(const u8 dst[], const u8 src[], bool dstk,
 678                                    bool sstk, struct jit_ctx *ctx) {
 679        const u8 *tmp = bpf2a32[TMP_REG_1];
 680        const u8 *tmp2 = bpf2a32[TMP_REG_2];
 681        /* Setup Operands */
 682        u8 rt = sstk ? tmp2[1] : src_lo;
 683        u8 rd = dstk ? tmp[1] : dst_lo;
 684        u8 rm = dstk ? tmp[0] : dst_hi;
 685
 686        if (sstk)
 687                emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 688        if (dstk) {
 689                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 690                emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 691        }
 692
 693        /* Do the ARSH operation */
 694        emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 695        emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 696        emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
 697        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
 698        _emit(ARM_COND_MI, ARM_B(0), ctx);
 699        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASR, tmp2[0]), ctx);
 700        emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_ASR, rt), ctx);
 701        if (dstk) {
 702                emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
 703                emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
 704        } else {
 705                emit(ARM_MOV_R(rd, ARM_LR), ctx);
 706                emit(ARM_MOV_R(rm, ARM_IP), ctx);
 707        }
 708}
 709
 710/* dst = dst >> src */
 711static inline void emit_a32_lsr_r64(const u8 dst[], const u8 src[], bool dstk,
 712                                     bool sstk, struct jit_ctx *ctx) {
 713        const u8 *tmp = bpf2a32[TMP_REG_1];
 714        const u8 *tmp2 = bpf2a32[TMP_REG_2];
 715        /* Setup Operands */
 716        u8 rt = sstk ? tmp2[1] : src_lo;
 717        u8 rd = dstk ? tmp[1] : dst_lo;
 718        u8 rm = dstk ? tmp[0] : dst_hi;
 719
 720        if (sstk)
 721                emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 722        if (dstk) {
 723                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 724                emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 725        }
 726
 727        /* Do LSH operation */
 728        emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 729        emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 730        emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
 731        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
 732        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_LSR, tmp2[0]), ctx);
 733        emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_LSR, rt), ctx);
 734        if (dstk) {
 735                emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
 736                emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
 737        } else {
 738                emit(ARM_MOV_R(rd, ARM_LR), ctx);
 739                emit(ARM_MOV_R(rm, ARM_IP), ctx);
 740        }
 741}
 742
 743/* dst = dst << val */
 744static inline void emit_a32_lsh_i64(const u8 dst[], bool dstk,
 745                                     const u32 val, struct jit_ctx *ctx){
 746        const u8 *tmp = bpf2a32[TMP_REG_1];
 747        const u8 *tmp2 = bpf2a32[TMP_REG_2];
 748        /* Setup operands */
 749        u8 rd = dstk ? tmp[1] : dst_lo;
 750        u8 rm = dstk ? tmp[0] : dst_hi;
 751
 752        if (dstk) {
 753                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 754                emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 755        }
 756
 757        /* Do LSH operation */
 758        if (val < 32) {
 759                emit(ARM_MOV_SI(tmp2[0], rm, SRTYPE_ASL, val), ctx);
 760                emit(ARM_ORR_SI(rm, tmp2[0], rd, SRTYPE_LSR, 32 - val), ctx);
 761                emit(ARM_MOV_SI(rd, rd, SRTYPE_ASL, val), ctx);
 762        } else {
 763                if (val == 32)
 764                        emit(ARM_MOV_R(rm, rd), ctx);
 765                else
 766                        emit(ARM_MOV_SI(rm, rd, SRTYPE_ASL, val - 32), ctx);
 767                emit(ARM_EOR_R(rd, rd, rd), ctx);
 768        }
 769
 770        if (dstk) {
 771                emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 772                emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 773        }
 774}
 775
 776/* dst = dst >> val */
 777static inline void emit_a32_lsr_i64(const u8 dst[], bool dstk,
 778                                    const u32 val, struct jit_ctx *ctx) {
 779        const u8 *tmp = bpf2a32[TMP_REG_1];
 780        const u8 *tmp2 = bpf2a32[TMP_REG_2];
 781        /* Setup operands */
 782        u8 rd = dstk ? tmp[1] : dst_lo;
 783        u8 rm = dstk ? tmp[0] : dst_hi;
 784
 785        if (dstk) {
 786                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 787                emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 788        }
 789
 790        /* Do LSR operation */
 791        if (val < 32) {
 792                emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
 793                emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
 794                emit(ARM_MOV_SI(rm, rm, SRTYPE_LSR, val), ctx);
 795        } else if (val == 32) {
 796                emit(ARM_MOV_R(rd, rm), ctx);
 797                emit(ARM_MOV_I(rm, 0), ctx);
 798        } else {
 799                emit(ARM_MOV_SI(rd, rm, SRTYPE_LSR, val - 32), ctx);
 800                emit(ARM_MOV_I(rm, 0), ctx);
 801        }
 802
 803        if (dstk) {
 804                emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 805                emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 806        }
 807}
 808
 809/* dst = dst >> val (signed) */
 810static inline void emit_a32_arsh_i64(const u8 dst[], bool dstk,
 811                                     const u32 val, struct jit_ctx *ctx){
 812        const u8 *tmp = bpf2a32[TMP_REG_1];
 813        const u8 *tmp2 = bpf2a32[TMP_REG_2];
 814         /* Setup operands */
 815        u8 rd = dstk ? tmp[1] : dst_lo;
 816        u8 rm = dstk ? tmp[0] : dst_hi;
 817
 818        if (dstk) {
 819                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 820                emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 821        }
 822
 823        /* Do ARSH operation */
 824        if (val < 32) {
 825                emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
 826                emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
 827                emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, val), ctx);
 828        } else if (val == 32) {
 829                emit(ARM_MOV_R(rd, rm), ctx);
 830                emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
 831        } else {
 832                emit(ARM_MOV_SI(rd, rm, SRTYPE_ASR, val - 32), ctx);
 833                emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
 834        }
 835
 836        if (dstk) {
 837                emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 838                emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 839        }
 840}
 841
 842static inline void emit_a32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
 843                                    bool sstk, struct jit_ctx *ctx) {
 844        const u8 *tmp = bpf2a32[TMP_REG_1];
 845        const u8 *tmp2 = bpf2a32[TMP_REG_2];
 846        /* Setup operands for multiplication */
 847        u8 rd = dstk ? tmp[1] : dst_lo;
 848        u8 rm = dstk ? tmp[0] : dst_hi;
 849        u8 rt = sstk ? tmp2[1] : src_lo;
 850        u8 rn = sstk ? tmp2[0] : src_hi;
 851
 852        if (dstk) {
 853                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
 854                emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 855        }
 856        if (sstk) {
 857                emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
 858                emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_hi)), ctx);
 859        }
 860
 861        /* Do Multiplication */
 862        emit(ARM_MUL(ARM_IP, rd, rn), ctx);
 863        emit(ARM_MUL(ARM_LR, rm, rt), ctx);
 864        emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
 865
 866        emit(ARM_UMULL(ARM_IP, rm, rd, rt), ctx);
 867        emit(ARM_ADD_R(rm, ARM_LR, rm), ctx);
 868        if (dstk) {
 869                emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_lo)), ctx);
 870                emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
 871        } else {
 872                emit(ARM_MOV_R(rd, ARM_IP), ctx);
 873        }
 874}
 875
 876/* *(size *)(dst + off) = src */
 877static inline void emit_str_r(const u8 dst, const u8 src, bool dstk,
 878                              const s32 off, struct jit_ctx *ctx, const u8 sz){
 879        const u8 *tmp = bpf2a32[TMP_REG_1];
 880        u8 rd = dstk ? tmp[1] : dst;
 881
 882        if (dstk)
 883                emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
 884        if (off) {
 885                emit_a32_mov_i(tmp[0], off, false, ctx);
 886                emit(ARM_ADD_R(tmp[0], rd, tmp[0]), ctx);
 887                rd = tmp[0];
 888        }
 889        switch (sz) {
 890        case BPF_W:
 891                /* Store a Word */
 892                emit(ARM_STR_I(src, rd, 0), ctx);
 893                break;
 894        case BPF_H:
 895                /* Store a HalfWord */
 896                emit(ARM_STRH_I(src, rd, 0), ctx);
 897                break;
 898        case BPF_B:
 899                /* Store a Byte */
 900                emit(ARM_STRB_I(src, rd, 0), ctx);
 901                break;
 902        }
 903}
 904
 905/* dst = *(size*)(src + off) */
 906static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk,
 907                              s32 off, struct jit_ctx *ctx, const u8 sz){
 908        const u8 *tmp = bpf2a32[TMP_REG_1];
 909        const u8 *rd = dstk ? tmp : dst;
 910        u8 rm = src;
 911        s32 off_max;
 912
 913        if (sz == BPF_H)
 914                off_max = 0xff;
 915        else
 916                off_max = 0xfff;
 917
 918        if (off < 0 || off > off_max) {
 919                emit_a32_mov_i(tmp[0], off, false, ctx);
 920                emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
 921                rm = tmp[0];
 922                off = 0;
 923        } else if (rd[1] == rm) {
 924                emit(ARM_MOV_R(tmp[0], rm), ctx);
 925                rm = tmp[0];
 926        }
 927        switch (sz) {
 928        case BPF_B:
 929                /* Load a Byte */
 930                emit(ARM_LDRB_I(rd[1], rm, off), ctx);
 931                emit_a32_mov_i(dst[0], 0, dstk, ctx);
 932                break;
 933        case BPF_H:
 934                /* Load a HalfWord */
 935                emit(ARM_LDRH_I(rd[1], rm, off), ctx);
 936                emit_a32_mov_i(dst[0], 0, dstk, ctx);
 937                break;
 938        case BPF_W:
 939                /* Load a Word */
 940                emit(ARM_LDR_I(rd[1], rm, off), ctx);
 941                emit_a32_mov_i(dst[0], 0, dstk, ctx);
 942                break;
 943        case BPF_DW:
 944                /* Load a Double Word */
 945                emit(ARM_LDR_I(rd[1], rm, off), ctx);
 946                emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
 947                break;
 948        }
 949        if (dstk)
 950                emit(ARM_STR_I(rd[1], ARM_SP, STACK_VAR(dst[1])), ctx);
 951        if (dstk && sz == BPF_DW)
 952                emit(ARM_STR_I(rd[0], ARM_SP, STACK_VAR(dst[0])), ctx);
 953}
 954
 955/* Arithmatic Operation */
 956static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
 957                             const u8 rn, struct jit_ctx *ctx, u8 op) {
 958        switch (op) {
 959        case BPF_JSET:
 960                emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
 961                emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
 962                emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
 963                break;
 964        case BPF_JEQ:
 965        case BPF_JNE:
 966        case BPF_JGT:
 967        case BPF_JGE:
 968        case BPF_JLE:
 969        case BPF_JLT:
 970                emit(ARM_CMP_R(rd, rm), ctx);
 971                _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
 972                break;
 973        case BPF_JSLE:
 974        case BPF_JSGT:
 975                emit(ARM_CMP_R(rn, rt), ctx);
 976                emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
 977                break;
 978        case BPF_JSLT:
 979        case BPF_JSGE:
 980                emit(ARM_CMP_R(rt, rn), ctx);
 981                emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
 982                break;
 983        }
 984}
 985
 986static int out_offset = -1; /* initialized on the first pass of build_body() */
 987static int emit_bpf_tail_call(struct jit_ctx *ctx)
 988{
 989
 990        /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
 991        const u8 *r2 = bpf2a32[BPF_REG_2];
 992        const u8 *r3 = bpf2a32[BPF_REG_3];
 993        const u8 *tmp = bpf2a32[TMP_REG_1];
 994        const u8 *tmp2 = bpf2a32[TMP_REG_2];
 995        const u8 *tcc = bpf2a32[TCALL_CNT];
 996        const int idx0 = ctx->idx;
 997#define cur_offset (ctx->idx - idx0)
 998#define jmp_offset (out_offset - (cur_offset) - 2)
 999        u32 off, lo, hi;
1000
1001        /* if (index >= array->map.max_entries)
1002         *      goto out;
1003         */
1004        off = offsetof(struct bpf_array, map.max_entries);
1005        /* array->map.max_entries */
1006        emit_a32_mov_i(tmp[1], off, false, ctx);
1007        emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
1008        emit(ARM_LDR_R(tmp[1], tmp2[1], tmp[1]), ctx);
1009        /* index is 32-bit for arrays */
1010        emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
1011        /* index >= array->map.max_entries */
1012        emit(ARM_CMP_R(tmp2[1], tmp[1]), ctx);
1013        _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1014
1015        /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1016         *      goto out;
1017         * tail_call_cnt++;
1018         */
1019        lo = (u32)MAX_TAIL_CALL_CNT;
1020        hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1021        emit(ARM_LDR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
1022        emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
1023        emit(ARM_CMP_I(tmp[0], hi), ctx);
1024        _emit(ARM_COND_EQ, ARM_CMP_I(tmp[1], lo), ctx);
1025        _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1026        emit(ARM_ADDS_I(tmp[1], tmp[1], 1), ctx);
1027        emit(ARM_ADC_I(tmp[0], tmp[0], 0), ctx);
1028        emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
1029        emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
1030
1031        /* prog = array->ptrs[index]
1032         * if (prog == NULL)
1033         *      goto out;
1034         */
1035        off = offsetof(struct bpf_array, ptrs);
1036        emit_a32_mov_i(tmp[1], off, false, ctx);
1037        emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
1038        emit(ARM_ADD_R(tmp[1], tmp2[1], tmp[1]), ctx);
1039        emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
1040        emit(ARM_MOV_SI(tmp[0], tmp2[1], SRTYPE_ASL, 2), ctx);
1041        emit(ARM_LDR_R(tmp[1], tmp[1], tmp[0]), ctx);
1042        emit(ARM_CMP_I(tmp[1], 0), ctx);
1043        _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1044
1045        /* goto *(prog->bpf_func + prologue_size); */
1046        off = offsetof(struct bpf_prog, bpf_func);
1047        emit_a32_mov_i(tmp2[1], off, false, ctx);
1048        emit(ARM_LDR_R(tmp[1], tmp[1], tmp2[1]), ctx);
1049        emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1050        emit_bx_r(tmp[1], ctx);
1051
1052        /* out: */
1053        if (out_offset == -1)
1054                out_offset = cur_offset;
1055        if (cur_offset != out_offset) {
1056                pr_err_once("tail_call out_offset = %d, expected %d!\n",
1057                            cur_offset, out_offset);
1058                return -1;
1059        }
1060        return 0;
1061#undef cur_offset
1062#undef jmp_offset
1063}
1064
1065/* 0xabcd => 0xcdab */
1066static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1067{
1068#if __LINUX_ARM_ARCH__ < 6
1069        const u8 *tmp2 = bpf2a32[TMP_REG_2];
1070
1071        emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1072        emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1073        emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1074        emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1075#else /* ARMv6+ */
1076        emit(ARM_REV16(rd, rn), ctx);
1077#endif
1078}
1079
1080/* 0xabcdefgh => 0xghefcdab */
1081static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1082{
1083#if __LINUX_ARM_ARCH__ < 6
1084        const u8 *tmp2 = bpf2a32[TMP_REG_2];
1085
1086        emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1087        emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1088        emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1089
1090        emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1091        emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1092        emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1093        emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1094        emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1095        emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1096        emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1097
1098#else /* ARMv6+ */
1099        emit(ARM_REV(rd, rn), ctx);
1100#endif
1101}
1102
1103// push the scratch stack register on top of the stack
1104static inline void emit_push_r64(const u8 src[], const u8 shift,
1105                struct jit_ctx *ctx)
1106{
1107        const u8 *tmp2 = bpf2a32[TMP_REG_2];
1108        u16 reg_set = 0;
1109
1110        emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(src[1]+shift)), ctx);
1111        emit(ARM_LDR_I(tmp2[0], ARM_SP, STACK_VAR(src[0]+shift)), ctx);
1112
1113        reg_set = (1 << tmp2[1]) | (1 << tmp2[0]);
1114        emit(ARM_PUSH(reg_set), ctx);
1115}
1116
1117static void build_prologue(struct jit_ctx *ctx)
1118{
1119        const u8 r0 = bpf2a32[BPF_REG_0][1];
1120        const u8 r2 = bpf2a32[BPF_REG_1][1];
1121        const u8 r3 = bpf2a32[BPF_REG_1][0];
1122        const u8 r4 = bpf2a32[BPF_REG_6][1];
1123        const u8 fplo = bpf2a32[BPF_REG_FP][1];
1124        const u8 fphi = bpf2a32[BPF_REG_FP][0];
1125        const u8 *tcc = bpf2a32[TCALL_CNT];
1126
1127        /* Save callee saved registers. */
1128#ifdef CONFIG_FRAME_POINTER
1129        u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1130        emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1131        emit(ARM_PUSH(reg_set), ctx);
1132        emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1133#else
1134        emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1135        emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1136#endif
1137        /* Save frame pointer for later */
1138        emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
1139
1140        ctx->stack_size = imm8m(STACK_SIZE);
1141
1142        /* Set up function call stack */
1143        emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1144
1145        /* Set up BPF prog stack base register */
1146        emit_a32_mov_r(fplo, ARM_IP, true, false, ctx);
1147        emit_a32_mov_i(fphi, 0, true, ctx);
1148
1149        /* mov r4, 0 */
1150        emit(ARM_MOV_I(r4, 0), ctx);
1151
1152        /* Move BPF_CTX to BPF_R1 */
1153        emit(ARM_MOV_R(r3, r4), ctx);
1154        emit(ARM_MOV_R(r2, r0), ctx);
1155        /* Initialize Tail Count */
1156        emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[0])), ctx);
1157        emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[1])), ctx);
1158        /* end of prologue */
1159}
1160
1161/* restore callee saved registers. */
1162static void build_epilogue(struct jit_ctx *ctx)
1163{
1164#ifdef CONFIG_FRAME_POINTER
1165        /* When using frame pointers, some additional registers need to
1166         * be loaded. */
1167        u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1168        emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1169        emit(ARM_LDM(ARM_SP, reg_set), ctx);
1170#else
1171        /* Restore callee saved registers. */
1172        emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1173        emit(ARM_POP(CALLEE_POP_MASK), ctx);
1174#endif
1175}
1176
1177/*
1178 * Convert an eBPF instruction to native instruction, i.e
1179 * JITs an eBPF instruction.
1180 * Returns :
1181 *      0  - Successfully JITed an 8-byte eBPF instruction
1182 *      >0 - Successfully JITed a 16-byte eBPF instruction
1183 *      <0 - Failed to JIT.
1184 */
1185static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1186{
1187        const u8 code = insn->code;
1188        const u8 *dst = bpf2a32[insn->dst_reg];
1189        const u8 *src = bpf2a32[insn->src_reg];
1190        const u8 *tmp = bpf2a32[TMP_REG_1];
1191        const u8 *tmp2 = bpf2a32[TMP_REG_2];
1192        const s16 off = insn->off;
1193        const s32 imm = insn->imm;
1194        const int i = insn - ctx->prog->insnsi;
1195        const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1196        const bool dstk = is_on_stack(insn->dst_reg);
1197        const bool sstk = is_on_stack(insn->src_reg);
1198        u8 rd, rt, rm, rn;
1199        s32 jmp_offset;
1200
1201#define check_imm(bits, imm) do {                               \
1202        if ((((imm) > 0) && ((imm) >> (bits))) ||               \
1203            (((imm) < 0) && (~(imm) >> (bits)))) {              \
1204                pr_info("[%2d] imm=%d(0x%x) out of range\n",    \
1205                        i, imm, imm);                           \
1206                return -EINVAL;                                 \
1207        }                                                       \
1208} while (0)
1209#define check_imm24(imm) check_imm(24, imm)
1210
1211        switch (code) {
1212        /* ALU operations */
1213
1214        /* dst = src */
1215        case BPF_ALU | BPF_MOV | BPF_K:
1216        case BPF_ALU | BPF_MOV | BPF_X:
1217        case BPF_ALU64 | BPF_MOV | BPF_K:
1218        case BPF_ALU64 | BPF_MOV | BPF_X:
1219                switch (BPF_SRC(code)) {
1220                case BPF_X:
1221                        emit_a32_mov_r64(is64, dst, src, dstk, sstk, ctx);
1222                        break;
1223                case BPF_K:
1224                        /* Sign-extend immediate value to destination reg */
1225                        emit_a32_mov_i64(is64, dst, imm, dstk, ctx);
1226                        break;
1227                }
1228                break;
1229        /* dst = dst + src/imm */
1230        /* dst = dst - src/imm */
1231        /* dst = dst | src/imm */
1232        /* dst = dst & src/imm */
1233        /* dst = dst ^ src/imm */
1234        /* dst = dst * src/imm */
1235        /* dst = dst << src */
1236        /* dst = dst >> src */
1237        case BPF_ALU | BPF_ADD | BPF_K:
1238        case BPF_ALU | BPF_ADD | BPF_X:
1239        case BPF_ALU | BPF_SUB | BPF_K:
1240        case BPF_ALU | BPF_SUB | BPF_X:
1241        case BPF_ALU | BPF_OR | BPF_K:
1242        case BPF_ALU | BPF_OR | BPF_X:
1243        case BPF_ALU | BPF_AND | BPF_K:
1244        case BPF_ALU | BPF_AND | BPF_X:
1245        case BPF_ALU | BPF_XOR | BPF_K:
1246        case BPF_ALU | BPF_XOR | BPF_X:
1247        case BPF_ALU | BPF_MUL | BPF_K:
1248        case BPF_ALU | BPF_MUL | BPF_X:
1249        case BPF_ALU | BPF_LSH | BPF_X:
1250        case BPF_ALU | BPF_RSH | BPF_X:
1251        case BPF_ALU | BPF_ARSH | BPF_K:
1252        case BPF_ALU | BPF_ARSH | BPF_X:
1253        case BPF_ALU64 | BPF_ADD | BPF_K:
1254        case BPF_ALU64 | BPF_ADD | BPF_X:
1255        case BPF_ALU64 | BPF_SUB | BPF_K:
1256        case BPF_ALU64 | BPF_SUB | BPF_X:
1257        case BPF_ALU64 | BPF_OR | BPF_K:
1258        case BPF_ALU64 | BPF_OR | BPF_X:
1259        case BPF_ALU64 | BPF_AND | BPF_K:
1260        case BPF_ALU64 | BPF_AND | BPF_X:
1261        case BPF_ALU64 | BPF_XOR | BPF_K:
1262        case BPF_ALU64 | BPF_XOR | BPF_X:
1263                switch (BPF_SRC(code)) {
1264                case BPF_X:
1265                        emit_a32_alu_r64(is64, dst, src, dstk, sstk,
1266                                         ctx, BPF_OP(code));
1267                        break;
1268                case BPF_K:
1269                        /* Move immediate value to the temporary register
1270                         * and then do the ALU operation on the temporary
1271                         * register as this will sign-extend the immediate
1272                         * value into temporary reg and then it would be
1273                         * safe to do the operation on it.
1274                         */
1275                        emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
1276                        emit_a32_alu_r64(is64, dst, tmp2, dstk, false,
1277                                         ctx, BPF_OP(code));
1278                        break;
1279                }
1280                break;
1281        /* dst = dst / src(imm) */
1282        /* dst = dst % src(imm) */
1283        case BPF_ALU | BPF_DIV | BPF_K:
1284        case BPF_ALU | BPF_DIV | BPF_X:
1285        case BPF_ALU | BPF_MOD | BPF_K:
1286        case BPF_ALU | BPF_MOD | BPF_X:
1287                rt = src_lo;
1288                rd = dstk ? tmp2[1] : dst_lo;
1289                if (dstk)
1290                        emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
1291                switch (BPF_SRC(code)) {
1292                case BPF_X:
1293                        rt = sstk ? tmp2[0] : rt;
1294                        if (sstk)
1295                                emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)),
1296                                     ctx);
1297                        break;
1298                case BPF_K:
1299                        rt = tmp2[0];
1300                        emit_a32_mov_i(rt, imm, false, ctx);
1301                        break;
1302                }
1303                emit_udivmod(rd, rd, rt, ctx, BPF_OP(code));
1304                if (dstk)
1305                        emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
1306                emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1307                break;
1308        case BPF_ALU64 | BPF_DIV | BPF_K:
1309        case BPF_ALU64 | BPF_DIV | BPF_X:
1310        case BPF_ALU64 | BPF_MOD | BPF_K:
1311        case BPF_ALU64 | BPF_MOD | BPF_X:
1312                goto notyet;
1313        /* dst = dst >> imm */
1314        /* dst = dst << imm */
1315        case BPF_ALU | BPF_RSH | BPF_K:
1316        case BPF_ALU | BPF_LSH | BPF_K:
1317                if (unlikely(imm > 31))
1318                        return -EINVAL;
1319                if (imm)
1320                        emit_a32_alu_i(dst_lo, imm, dstk, ctx, BPF_OP(code));
1321                emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1322                break;
1323        /* dst = dst << imm */
1324        case BPF_ALU64 | BPF_LSH | BPF_K:
1325                if (unlikely(imm > 63))
1326                        return -EINVAL;
1327                emit_a32_lsh_i64(dst, dstk, imm, ctx);
1328                break;
1329        /* dst = dst >> imm */
1330        case BPF_ALU64 | BPF_RSH | BPF_K:
1331                if (unlikely(imm > 63))
1332                        return -EINVAL;
1333                emit_a32_lsr_i64(dst, dstk, imm, ctx);
1334                break;
1335        /* dst = dst << src */
1336        case BPF_ALU64 | BPF_LSH | BPF_X:
1337                emit_a32_lsh_r64(dst, src, dstk, sstk, ctx);
1338                break;
1339        /* dst = dst >> src */
1340        case BPF_ALU64 | BPF_RSH | BPF_X:
1341                emit_a32_lsr_r64(dst, src, dstk, sstk, ctx);
1342                break;
1343        /* dst = dst >> src (signed) */
1344        case BPF_ALU64 | BPF_ARSH | BPF_X:
1345                emit_a32_arsh_r64(dst, src, dstk, sstk, ctx);
1346                break;
1347        /* dst = dst >> imm (signed) */
1348        case BPF_ALU64 | BPF_ARSH | BPF_K:
1349                if (unlikely(imm > 63))
1350                        return -EINVAL;
1351                emit_a32_arsh_i64(dst, dstk, imm, ctx);
1352                break;
1353        /* dst = ~dst */
1354        case BPF_ALU | BPF_NEG:
1355                emit_a32_alu_i(dst_lo, 0, dstk, ctx, BPF_OP(code));
1356                emit_a32_mov_i(dst_hi, 0, dstk, ctx);
1357                break;
1358        /* dst = ~dst (64 bit) */
1359        case BPF_ALU64 | BPF_NEG:
1360                emit_a32_neg64(dst, dstk, ctx);
1361                break;
1362        /* dst = dst * src/imm */
1363        case BPF_ALU64 | BPF_MUL | BPF_X:
1364        case BPF_ALU64 | BPF_MUL | BPF_K:
1365                switch (BPF_SRC(code)) {
1366                case BPF_X:
1367                        emit_a32_mul_r64(dst, src, dstk, sstk, ctx);
1368                        break;
1369                case BPF_K:
1370                        /* Move immediate value to the temporary register
1371                         * and then do the multiplication on it as this
1372                         * will sign-extend the immediate value into temp
1373                         * reg then it would be safe to do the operation
1374                         * on it.
1375                         */
1376                        emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
1377                        emit_a32_mul_r64(dst, tmp2, dstk, false, ctx);
1378                        break;
1379                }
1380                break;
1381        /* dst = htole(dst) */
1382        /* dst = htobe(dst) */
1383        case BPF_ALU | BPF_END | BPF_FROM_LE:
1384        case BPF_ALU | BPF_END | BPF_FROM_BE:
1385                rd = dstk ? tmp[0] : dst_hi;
1386                rt = dstk ? tmp[1] : dst_lo;
1387                if (dstk) {
1388                        emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1389                        emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1390                }
1391                if (BPF_SRC(code) == BPF_FROM_LE)
1392                        goto emit_bswap_uxt;
1393                switch (imm) {
1394                case 16:
1395                        emit_rev16(rt, rt, ctx);
1396                        goto emit_bswap_uxt;
1397                case 32:
1398                        emit_rev32(rt, rt, ctx);
1399                        goto emit_bswap_uxt;
1400                case 64:
1401                        emit_rev32(ARM_LR, rt, ctx);
1402                        emit_rev32(rt, rd, ctx);
1403                        emit(ARM_MOV_R(rd, ARM_LR), ctx);
1404                        break;
1405                }
1406                goto exit;
1407emit_bswap_uxt:
1408                switch (imm) {
1409                case 16:
1410                        /* zero-extend 16 bits into 64 bits */
1411#if __LINUX_ARM_ARCH__ < 6
1412                        emit_a32_mov_i(tmp2[1], 0xffff, false, ctx);
1413                        emit(ARM_AND_R(rt, rt, tmp2[1]), ctx);
1414#else /* ARMv6+ */
1415                        emit(ARM_UXTH(rt, rt), ctx);
1416#endif
1417                        emit(ARM_EOR_R(rd, rd, rd), ctx);
1418                        break;
1419                case 32:
1420                        /* zero-extend 32 bits into 64 bits */
1421                        emit(ARM_EOR_R(rd, rd, rd), ctx);
1422                        break;
1423                case 64:
1424                        /* nop */
1425                        break;
1426                }
1427exit:
1428                if (dstk) {
1429                        emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1430                        emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1431                }
1432                break;
1433        /* dst = imm64 */
1434        case BPF_LD | BPF_IMM | BPF_DW:
1435        {
1436                const struct bpf_insn insn1 = insn[1];
1437                u32 hi, lo = imm;
1438
1439                hi = insn1.imm;
1440                emit_a32_mov_i(dst_lo, lo, dstk, ctx);
1441                emit_a32_mov_i(dst_hi, hi, dstk, ctx);
1442
1443                return 1;
1444        }
1445        /* LDX: dst = *(size *)(src + off) */
1446        case BPF_LDX | BPF_MEM | BPF_W:
1447        case BPF_LDX | BPF_MEM | BPF_H:
1448        case BPF_LDX | BPF_MEM | BPF_B:
1449        case BPF_LDX | BPF_MEM | BPF_DW:
1450                rn = sstk ? tmp2[1] : src_lo;
1451                if (sstk)
1452                        emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1453                emit_ldx_r(dst, rn, dstk, off, ctx, BPF_SIZE(code));
1454                break;
1455        /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1456        case BPF_LD | BPF_ABS | BPF_W:
1457        case BPF_LD | BPF_ABS | BPF_H:
1458        case BPF_LD | BPF_ABS | BPF_B:
1459        /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1460        case BPF_LD | BPF_IND | BPF_W:
1461        case BPF_LD | BPF_IND | BPF_H:
1462        case BPF_LD | BPF_IND | BPF_B:
1463        {
1464                const u8 r4 = bpf2a32[BPF_REG_6][1]; /* r4 = ptr to sk_buff */
1465                const u8 r0 = bpf2a32[BPF_REG_0][1]; /*r0: struct sk_buff *skb*/
1466                                                     /* rtn value */
1467                const u8 r1 = bpf2a32[BPF_REG_0][0]; /* r1: int k */
1468                const u8 r2 = bpf2a32[BPF_REG_1][1]; /* r2: unsigned int size */
1469                const u8 r3 = bpf2a32[BPF_REG_1][0]; /* r3: void *buffer */
1470                const u8 r6 = bpf2a32[TMP_REG_1][1]; /* r6: void *(*func)(..) */
1471                int size;
1472
1473                /* Setting up first argument */
1474                emit(ARM_MOV_R(r0, r4), ctx);
1475
1476                /* Setting up second argument */
1477                emit_a32_mov_i(r1, imm, false, ctx);
1478                if (BPF_MODE(code) == BPF_IND)
1479                        emit_a32_alu_r(r1, src_lo, false, sstk, ctx,
1480                                       false, false, BPF_ADD);
1481
1482                /* Setting up third argument */
1483                switch (BPF_SIZE(code)) {
1484                case BPF_W:
1485                        size = 4;
1486                        break;
1487                case BPF_H:
1488                        size = 2;
1489                        break;
1490                case BPF_B:
1491                        size = 1;
1492                        break;
1493                default:
1494                        return -EINVAL;
1495                }
1496                emit_a32_mov_i(r2, size, false, ctx);
1497
1498                /* Setting up fourth argument */
1499                emit(ARM_ADD_I(r3, ARM_SP, imm8m(SKB_BUFFER)), ctx);
1500
1501                /* Setting up function pointer to call */
1502                emit_a32_mov_i(r6, (unsigned int)bpf_load_pointer, false, ctx);
1503                emit_blx_r(r6, ctx);
1504
1505                emit(ARM_EOR_R(r1, r1, r1), ctx);
1506                /* Check if return address is NULL or not.
1507                 * if NULL then jump to epilogue
1508                 * else continue to load the value from retn address
1509                 */
1510                emit(ARM_CMP_I(r0, 0), ctx);
1511                jmp_offset = epilogue_offset(ctx);
1512                check_imm24(jmp_offset);
1513                _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1514
1515                /* Load value from the address */
1516                switch (BPF_SIZE(code)) {
1517                case BPF_W:
1518                        emit(ARM_LDR_I(r0, r0, 0), ctx);
1519                        emit_rev32(r0, r0, ctx);
1520                        break;
1521                case BPF_H:
1522                        emit(ARM_LDRH_I(r0, r0, 0), ctx);
1523                        emit_rev16(r0, r0, ctx);
1524                        break;
1525                case BPF_B:
1526                        emit(ARM_LDRB_I(r0, r0, 0), ctx);
1527                        /* No need to reverse */
1528                        break;
1529                }
1530                break;
1531        }
1532        /* ST: *(size *)(dst + off) = imm */
1533        case BPF_ST | BPF_MEM | BPF_W:
1534        case BPF_ST | BPF_MEM | BPF_H:
1535        case BPF_ST | BPF_MEM | BPF_B:
1536        case BPF_ST | BPF_MEM | BPF_DW:
1537                switch (BPF_SIZE(code)) {
1538                case BPF_DW:
1539                        /* Sign-extend immediate value into temp reg */
1540                        emit_a32_mov_i64(true, tmp2, imm, false, ctx);
1541                        emit_str_r(dst_lo, tmp2[1], dstk, off, ctx, BPF_W);
1542                        emit_str_r(dst_lo, tmp2[0], dstk, off+4, ctx, BPF_W);
1543                        break;
1544                case BPF_W:
1545                case BPF_H:
1546                case BPF_B:
1547                        emit_a32_mov_i(tmp2[1], imm, false, ctx);
1548                        emit_str_r(dst_lo, tmp2[1], dstk, off, ctx,
1549                                   BPF_SIZE(code));
1550                        break;
1551                }
1552                break;
1553        /* STX XADD: lock *(u32 *)(dst + off) += src */
1554        case BPF_STX | BPF_XADD | BPF_W:
1555        /* STX XADD: lock *(u64 *)(dst + off) += src */
1556        case BPF_STX | BPF_XADD | BPF_DW:
1557                goto notyet;
1558        /* STX: *(size *)(dst + off) = src */
1559        case BPF_STX | BPF_MEM | BPF_W:
1560        case BPF_STX | BPF_MEM | BPF_H:
1561        case BPF_STX | BPF_MEM | BPF_B:
1562        case BPF_STX | BPF_MEM | BPF_DW:
1563        {
1564                u8 sz = BPF_SIZE(code);
1565
1566                rn = sstk ? tmp2[1] : src_lo;
1567                rm = sstk ? tmp2[0] : src_hi;
1568                if (sstk) {
1569                        emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1570                        emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
1571                }
1572
1573                /* Store the value */
1574                if (BPF_SIZE(code) == BPF_DW) {
1575                        emit_str_r(dst_lo, rn, dstk, off, ctx, BPF_W);
1576                        emit_str_r(dst_lo, rm, dstk, off+4, ctx, BPF_W);
1577                } else {
1578                        emit_str_r(dst_lo, rn, dstk, off, ctx, sz);
1579                }
1580                break;
1581        }
1582        /* PC += off if dst == src */
1583        /* PC += off if dst > src */
1584        /* PC += off if dst >= src */
1585        /* PC += off if dst < src */
1586        /* PC += off if dst <= src */
1587        /* PC += off if dst != src */
1588        /* PC += off if dst > src (signed) */
1589        /* PC += off if dst >= src (signed) */
1590        /* PC += off if dst < src (signed) */
1591        /* PC += off if dst <= src (signed) */
1592        /* PC += off if dst & src */
1593        case BPF_JMP | BPF_JEQ | BPF_X:
1594        case BPF_JMP | BPF_JGT | BPF_X:
1595        case BPF_JMP | BPF_JGE | BPF_X:
1596        case BPF_JMP | BPF_JNE | BPF_X:
1597        case BPF_JMP | BPF_JSGT | BPF_X:
1598        case BPF_JMP | BPF_JSGE | BPF_X:
1599        case BPF_JMP | BPF_JSET | BPF_X:
1600        case BPF_JMP | BPF_JLE | BPF_X:
1601        case BPF_JMP | BPF_JLT | BPF_X:
1602        case BPF_JMP | BPF_JSLT | BPF_X:
1603        case BPF_JMP | BPF_JSLE | BPF_X:
1604                /* Setup source registers */
1605                rm = sstk ? tmp2[0] : src_hi;
1606                rn = sstk ? tmp2[1] : src_lo;
1607                if (sstk) {
1608                        emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
1609                        emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
1610                }
1611                goto go_jmp;
1612        /* PC += off if dst == imm */
1613        /* PC += off if dst > imm */
1614        /* PC += off if dst >= imm */
1615        /* PC += off if dst < imm */
1616        /* PC += off if dst <= imm */
1617        /* PC += off if dst != imm */
1618        /* PC += off if dst > imm (signed) */
1619        /* PC += off if dst >= imm (signed) */
1620        /* PC += off if dst < imm (signed) */
1621        /* PC += off if dst <= imm (signed) */
1622        /* PC += off if dst & imm */
1623        case BPF_JMP | BPF_JEQ | BPF_K:
1624        case BPF_JMP | BPF_JGT | BPF_K:
1625        case BPF_JMP | BPF_JGE | BPF_K:
1626        case BPF_JMP | BPF_JNE | BPF_K:
1627        case BPF_JMP | BPF_JSGT | BPF_K:
1628        case BPF_JMP | BPF_JSGE | BPF_K:
1629        case BPF_JMP | BPF_JSET | BPF_K:
1630        case BPF_JMP | BPF_JLT | BPF_K:
1631        case BPF_JMP | BPF_JLE | BPF_K:
1632        case BPF_JMP | BPF_JSLT | BPF_K:
1633        case BPF_JMP | BPF_JSLE | BPF_K:
1634                if (off == 0)
1635                        break;
1636                rm = tmp2[0];
1637                rn = tmp2[1];
1638                /* Sign-extend immediate value */
1639                emit_a32_mov_i64(true, tmp2, imm, false, ctx);
1640go_jmp:
1641                /* Setup destination register */
1642                rd = dstk ? tmp[0] : dst_hi;
1643                rt = dstk ? tmp[1] : dst_lo;
1644                if (dstk) {
1645                        emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
1646                        emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
1647                }
1648
1649                /* Check for the condition */
1650                emit_ar_r(rd, rt, rm, rn, ctx, BPF_OP(code));
1651
1652                /* Setup JUMP instruction */
1653                jmp_offset = bpf2a32_offset(i+off, i, ctx);
1654                switch (BPF_OP(code)) {
1655                case BPF_JNE:
1656                case BPF_JSET:
1657                        _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1658                        break;
1659                case BPF_JEQ:
1660                        _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1661                        break;
1662                case BPF_JGT:
1663                        _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1664                        break;
1665                case BPF_JGE:
1666                        _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1667                        break;
1668                case BPF_JSGT:
1669                        _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1670                        break;
1671                case BPF_JSGE:
1672                        _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1673                        break;
1674                case BPF_JLE:
1675                        _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1676                        break;
1677                case BPF_JLT:
1678                        _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1679                        break;
1680                case BPF_JSLT:
1681                        _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1682                        break;
1683                case BPF_JSLE:
1684                        _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1685                        break;
1686                }
1687                break;
1688        /* JMP OFF */
1689        case BPF_JMP | BPF_JA:
1690        {
1691                if (off == 0)
1692                        break;
1693                jmp_offset = bpf2a32_offset(i+off, i, ctx);
1694                check_imm24(jmp_offset);
1695                emit(ARM_B(jmp_offset), ctx);
1696                break;
1697        }
1698        /* tail call */
1699        case BPF_JMP | BPF_TAIL_CALL:
1700                if (emit_bpf_tail_call(ctx))
1701                        return -EFAULT;
1702                break;
1703        /* function call */
1704        case BPF_JMP | BPF_CALL:
1705        {
1706                const u8 *r0 = bpf2a32[BPF_REG_0];
1707                const u8 *r1 = bpf2a32[BPF_REG_1];
1708                const u8 *r2 = bpf2a32[BPF_REG_2];
1709                const u8 *r3 = bpf2a32[BPF_REG_3];
1710                const u8 *r4 = bpf2a32[BPF_REG_4];
1711                const u8 *r5 = bpf2a32[BPF_REG_5];
1712                const u32 func = (u32)__bpf_call_base + (u32)imm;
1713
1714                emit_a32_mov_r64(true, r0, r1, false, false, ctx);
1715                emit_a32_mov_r64(true, r1, r2, false, true, ctx);
1716                emit_push_r64(r5, 0, ctx);
1717                emit_push_r64(r4, 8, ctx);
1718                emit_push_r64(r3, 16, ctx);
1719
1720                emit_a32_mov_i(tmp[1], func, false, ctx);
1721                emit_blx_r(tmp[1], ctx);
1722
1723                emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1724                break;
1725        }
1726        /* function return */
1727        case BPF_JMP | BPF_EXIT:
1728                /* Optimization: when last instruction is EXIT
1729                 * simply fallthrough to epilogue.
1730                 */
1731                if (i == ctx->prog->len - 1)
1732                        break;
1733                jmp_offset = epilogue_offset(ctx);
1734                check_imm24(jmp_offset);
1735                emit(ARM_B(jmp_offset), ctx);
1736                break;
1737notyet:
1738                pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1739                return -EFAULT;
1740        default:
1741                pr_err_once("unknown opcode %02x\n", code);
1742                return -EINVAL;
1743        }
1744
1745        if (ctx->flags & FLAG_IMM_OVERFLOW)
1746                /*
1747                 * this instruction generated an overflow when
1748                 * trying to access the literal pool, so
1749                 * delegate this filter to the kernel interpreter.
1750                 */
1751                return -1;
1752        return 0;
1753}
1754
1755static int build_body(struct jit_ctx *ctx)
1756{
1757        const struct bpf_prog *prog = ctx->prog;
1758        unsigned int i;
1759
1760        for (i = 0; i < prog->len; i++) {
1761                const struct bpf_insn *insn = &(prog->insnsi[i]);
1762                int ret;
1763
1764                ret = build_insn(insn, ctx);
1765
1766                /* It's used with loading the 64 bit immediate value. */
1767                if (ret > 0) {
1768                        i++;
1769                        if (ctx->target == NULL)
1770                                ctx->offsets[i] = ctx->idx;
1771                        continue;
1772                }
1773
1774                if (ctx->target == NULL)
1775                        ctx->offsets[i] = ctx->idx;
1776
1777                /* If unsuccesfull, return with error code */
1778                if (ret)
1779                        return ret;
1780        }
1781        return 0;
1782}
1783
1784static int validate_code(struct jit_ctx *ctx)
1785{
1786        int i;
1787
1788        for (i = 0; i < ctx->idx; i++) {
1789                if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1790                        return -1;
1791        }
1792
1793        return 0;
1794}
1795
1796void bpf_jit_compile(struct bpf_prog *prog)
1797{
1798        /* Nothing to do here. We support Internal BPF. */
1799}
1800
1801struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1802{
1803        struct bpf_prog *tmp, *orig_prog = prog;
1804        struct bpf_binary_header *header;
1805        bool tmp_blinded = false;
1806        struct jit_ctx ctx;
1807        unsigned int tmp_idx;
1808        unsigned int image_size;
1809        u8 *image_ptr;
1810
1811        /* If BPF JIT was not enabled then we must fall back to
1812         * the interpreter.
1813         */
1814        if (!prog->jit_requested)
1815                return orig_prog;
1816
1817        /* If constant blinding was enabled and we failed during blinding
1818         * then we must fall back to the interpreter. Otherwise, we save
1819         * the new JITed code.
1820         */
1821        tmp = bpf_jit_blind_constants(prog);
1822
1823        if (IS_ERR(tmp))
1824                return orig_prog;
1825        if (tmp != prog) {
1826                tmp_blinded = true;
1827                prog = tmp;
1828        }
1829
1830        memset(&ctx, 0, sizeof(ctx));
1831        ctx.prog = prog;
1832
1833        /* Not able to allocate memory for offsets[] , then
1834         * we must fall back to the interpreter
1835         */
1836        ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1837        if (ctx.offsets == NULL) {
1838                prog = orig_prog;
1839                goto out;
1840        }
1841
1842        /* 1) fake pass to find in the length of the JITed code,
1843         * to compute ctx->offsets and other context variables
1844         * needed to compute final JITed code.
1845         * Also, calculate random starting pointer/start of JITed code
1846         * which is prefixed by random number of fault instructions.
1847         *
1848         * If the first pass fails then there is no chance of it
1849         * being successful in the second pass, so just fall back
1850         * to the interpreter.
1851         */
1852        if (build_body(&ctx)) {
1853                prog = orig_prog;
1854                goto out_off;
1855        }
1856
1857        tmp_idx = ctx.idx;
1858        build_prologue(&ctx);
1859        ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1860
1861        ctx.epilogue_offset = ctx.idx;
1862
1863#if __LINUX_ARM_ARCH__ < 7
1864        tmp_idx = ctx.idx;
1865        build_epilogue(&ctx);
1866        ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1867
1868        ctx.idx += ctx.imm_count;
1869        if (ctx.imm_count) {
1870                ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1871                if (ctx.imms == NULL) {
1872                        prog = orig_prog;
1873                        goto out_off;
1874                }
1875        }
1876#else
1877        /* there's nothing about the epilogue on ARMv7 */
1878        build_epilogue(&ctx);
1879#endif
1880        /* Now we can get the actual image size of the JITed arm code.
1881         * Currently, we are not considering the THUMB-2 instructions
1882         * for jit, although it can decrease the size of the image.
1883         *
1884         * As each arm instruction is of length 32bit, we are translating
1885         * number of JITed intructions into the size required to store these
1886         * JITed code.
1887         */
1888        image_size = sizeof(u32) * ctx.idx;
1889
1890        /* Now we know the size of the structure to make */
1891        header = bpf_jit_binary_alloc(image_size, &image_ptr,
1892                                      sizeof(u32), jit_fill_hole);
1893        /* Not able to allocate memory for the structure then
1894         * we must fall back to the interpretation
1895         */
1896        if (header == NULL) {
1897                prog = orig_prog;
1898                goto out_imms;
1899        }
1900
1901        /* 2.) Actual pass to generate final JIT code */
1902        ctx.target = (u32 *) image_ptr;
1903        ctx.idx = 0;
1904
1905        build_prologue(&ctx);
1906
1907        /* If building the body of the JITed code fails somehow,
1908         * we fall back to the interpretation.
1909         */
1910        if (build_body(&ctx) < 0) {
1911                image_ptr = NULL;
1912                bpf_jit_binary_free(header);
1913                prog = orig_prog;
1914                goto out_imms;
1915        }
1916        build_epilogue(&ctx);
1917
1918        /* 3.) Extra pass to validate JITed Code */
1919        if (validate_code(&ctx)) {
1920                image_ptr = NULL;
1921                bpf_jit_binary_free(header);
1922                prog = orig_prog;
1923                goto out_imms;
1924        }
1925        flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1926
1927        if (bpf_jit_enable > 1)
1928                /* there are 2 passes here */
1929                bpf_jit_dump(prog->len, image_size, 2, ctx.target);
1930
1931        set_memory_ro((unsigned long)header, header->pages);
1932        prog->bpf_func = (void *)ctx.target;
1933        prog->jited = 1;
1934        prog->jited_len = image_size;
1935
1936out_imms:
1937#if __LINUX_ARM_ARCH__ < 7
1938        if (ctx.imm_count)
1939                kfree(ctx.imms);
1940#endif
1941out_off:
1942        kfree(ctx.offsets);
1943out:
1944        if (tmp_blinded)
1945                bpf_jit_prog_release_other(prog, prog == orig_prog ?
1946                                           tmp : orig_prog);
1947        return prog;
1948}
1949
1950