linux/arch/arm64/include/asm/kvm_mmu.h
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012,2013 - ARM Ltd
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 */
  17
  18#ifndef __ARM64_KVM_MMU_H__
  19#define __ARM64_KVM_MMU_H__
  20
  21#include <asm/page.h>
  22#include <asm/memory.h>
  23#include <asm/cpufeature.h>
  24
  25/*
  26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
  27 * "negative" addresses. This makes it impossible to directly share
  28 * mappings with the kernel.
  29 *
  30 * Instead, give the HYP mode its own VA region at a fixed offset from
  31 * the kernel by just masking the top bits (which are all ones for a
  32 * kernel address). We need to find out how many bits to mask.
  33 *
  34 * We want to build a set of page tables that cover both parts of the
  35 * idmap (the trampoline page used to initialize EL2), and our normal
  36 * runtime VA space, at the same time.
  37 *
  38 * Given that the kernel uses VA_BITS for its entire address space,
  39 * and that half of that space (VA_BITS - 1) is used for the linear
  40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
  41 *
  42 * The main question is "Within the VA_BITS space, does EL2 use the
  43 * top or the bottom half of that space to shadow the kernel's linear
  44 * mapping?". As we need to idmap the trampoline page, this is
  45 * determined by the range in which this page lives.
  46 *
  47 * If the page is in the bottom half, we have to use the top half. If
  48 * the page is in the top half, we have to use the bottom half:
  49 *
  50 * T = __pa_symbol(__hyp_idmap_text_start)
  51 * if (T & BIT(VA_BITS - 1))
  52 *      HYP_VA_MIN = 0  //idmap in upper half
  53 * else
  54 *      HYP_VA_MIN = 1 << (VA_BITS - 1)
  55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
  56 *
  57 * This of course assumes that the trampoline page exists within the
  58 * VA_BITS range. If it doesn't, then it means we're in the odd case
  59 * where the kernel idmap (as well as HYP) uses more levels than the
  60 * kernel runtime page tables (as seen when the kernel is configured
  61 * for 4k pages, 39bits VA, and yet memory lives just above that
  62 * limit, forcing the idmap to use 4 levels of page tables while the
  63 * kernel itself only uses 3). In this particular case, it doesn't
  64 * matter which side of VA_BITS we use, as we're guaranteed not to
  65 * conflict with anything.
  66 *
  67 * When using VHE, there are no separate hyp mappings and all KVM
  68 * functionality is already mapped as part of the main kernel
  69 * mappings, and none of this applies in that case.
  70 */
  71
  72#ifdef __ASSEMBLY__
  73
  74#include <asm/alternative.h>
  75#include <asm/cpufeature.h>
  76
  77/*
  78 * Convert a kernel VA into a HYP VA.
  79 * reg: VA to be converted.
  80 *
  81 * The actual code generation takes place in kvm_update_va_mask, and
  82 * the instructions below are only there to reserve the space and
  83 * perform the register allocation (kvm_update_va_mask uses the
  84 * specific registers encoded in the instructions).
  85 */
  86.macro kern_hyp_va      reg
  87alternative_cb kvm_update_va_mask
  88        and     \reg, \reg, #1          /* mask with va_mask */
  89        ror     \reg, \reg, #1          /* rotate to the first tag bit */
  90        add     \reg, \reg, #0          /* insert the low 12 bits of the tag */
  91        add     \reg, \reg, #0, lsl 12  /* insert the top 12 bits of the tag */
  92        ror     \reg, \reg, #63         /* rotate back */
  93alternative_cb_end
  94.endm
  95
  96#else
  97
  98#include <asm/pgalloc.h>
  99#include <asm/cache.h>
 100#include <asm/cacheflush.h>
 101#include <asm/mmu_context.h>
 102#include <asm/pgtable.h>
 103
 104void kvm_update_va_mask(struct alt_instr *alt,
 105                        __le32 *origptr, __le32 *updptr, int nr_inst);
 106
 107static inline unsigned long __kern_hyp_va(unsigned long v)
 108{
 109        asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
 110                                    "ror %0, %0, #1\n"
 111                                    "add %0, %0, #0\n"
 112                                    "add %0, %0, #0, lsl 12\n"
 113                                    "ror %0, %0, #63\n",
 114                                    kvm_update_va_mask)
 115                     : "+r" (v));
 116        return v;
 117}
 118
 119#define kern_hyp_va(v)  ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
 120
 121/*
 122 * Obtain the PC-relative address of a kernel symbol
 123 * s: symbol
 124 *
 125 * The goal of this macro is to return a symbol's address based on a
 126 * PC-relative computation, as opposed to a loading the VA from a
 127 * constant pool or something similar. This works well for HYP, as an
 128 * absolute VA is guaranteed to be wrong. Only use this if trying to
 129 * obtain the address of a symbol (i.e. not something you obtained by
 130 * following a pointer).
 131 */
 132#define hyp_symbol_addr(s)                                              \
 133        ({                                                              \
 134                typeof(s) *addr;                                        \
 135                asm("adrp       %0, %1\n"                               \
 136                    "add        %0, %0, :lo12:%1\n"                     \
 137                    : "=r" (addr) : "S" (&s));                          \
 138                addr;                                                   \
 139        })
 140
 141/*
 142 * We currently only support a 40bit IPA.
 143 */
 144#define KVM_PHYS_SHIFT  (40)
 145#define KVM_PHYS_SIZE   (1UL << KVM_PHYS_SHIFT)
 146#define KVM_PHYS_MASK   (KVM_PHYS_SIZE - 1UL)
 147
 148#include <asm/stage2_pgtable.h>
 149
 150int create_hyp_mappings(void *from, void *to, pgprot_t prot);
 151int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
 152                           void __iomem **kaddr,
 153                           void __iomem **haddr);
 154int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
 155                             void **haddr);
 156void free_hyp_pgds(void);
 157
 158void stage2_unmap_vm(struct kvm *kvm);
 159int kvm_alloc_stage2_pgd(struct kvm *kvm);
 160void kvm_free_stage2_pgd(struct kvm *kvm);
 161int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
 162                          phys_addr_t pa, unsigned long size, bool writable);
 163
 164int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
 165
 166void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
 167
 168phys_addr_t kvm_mmu_get_httbr(void);
 169phys_addr_t kvm_get_idmap_vector(void);
 170int kvm_mmu_init(void);
 171void kvm_clear_hyp_idmap(void);
 172
 173#define kvm_set_pte(ptep, pte)          set_pte(ptep, pte)
 174#define kvm_set_pmd(pmdp, pmd)          set_pmd(pmdp, pmd)
 175
 176static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
 177{
 178        pte_val(pte) |= PTE_S2_RDWR;
 179        return pte;
 180}
 181
 182static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
 183{
 184        pmd_val(pmd) |= PMD_S2_RDWR;
 185        return pmd;
 186}
 187
 188static inline pte_t kvm_s2pte_mkexec(pte_t pte)
 189{
 190        pte_val(pte) &= ~PTE_S2_XN;
 191        return pte;
 192}
 193
 194static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
 195{
 196        pmd_val(pmd) &= ~PMD_S2_XN;
 197        return pmd;
 198}
 199
 200static inline void kvm_set_s2pte_readonly(pte_t *ptep)
 201{
 202        pteval_t old_pteval, pteval;
 203
 204        pteval = READ_ONCE(pte_val(*ptep));
 205        do {
 206                old_pteval = pteval;
 207                pteval &= ~PTE_S2_RDWR;
 208                pteval |= PTE_S2_RDONLY;
 209                pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
 210        } while (pteval != old_pteval);
 211}
 212
 213static inline bool kvm_s2pte_readonly(pte_t *ptep)
 214{
 215        return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
 216}
 217
 218static inline bool kvm_s2pte_exec(pte_t *ptep)
 219{
 220        return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
 221}
 222
 223static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
 224{
 225        kvm_set_s2pte_readonly((pte_t *)pmdp);
 226}
 227
 228static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
 229{
 230        return kvm_s2pte_readonly((pte_t *)pmdp);
 231}
 232
 233static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
 234{
 235        return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
 236}
 237
 238static inline bool kvm_page_empty(void *ptr)
 239{
 240        struct page *ptr_page = virt_to_page(ptr);
 241        return page_count(ptr_page) == 1;
 242}
 243
 244#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
 245
 246#ifdef __PAGETABLE_PMD_FOLDED
 247#define hyp_pmd_table_empty(pmdp) (0)
 248#else
 249#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
 250#endif
 251
 252#ifdef __PAGETABLE_PUD_FOLDED
 253#define hyp_pud_table_empty(pudp) (0)
 254#else
 255#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
 256#endif
 257
 258struct kvm;
 259
 260#define kvm_flush_dcache_to_poc(a,l)    __flush_dcache_area((a), (l))
 261
 262static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
 263{
 264        return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
 265}
 266
 267static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
 268{
 269        void *va = page_address(pfn_to_page(pfn));
 270
 271        kvm_flush_dcache_to_poc(va, size);
 272}
 273
 274static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
 275                                                  unsigned long size)
 276{
 277        if (icache_is_aliasing()) {
 278                /* any kind of VIPT cache */
 279                __flush_icache_all();
 280        } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
 281                /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
 282                void *va = page_address(pfn_to_page(pfn));
 283
 284                invalidate_icache_range((unsigned long)va,
 285                                        (unsigned long)va + size);
 286        }
 287}
 288
 289static inline void __kvm_flush_dcache_pte(pte_t pte)
 290{
 291        struct page *page = pte_page(pte);
 292        kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
 293}
 294
 295static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
 296{
 297        struct page *page = pmd_page(pmd);
 298        kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
 299}
 300
 301static inline void __kvm_flush_dcache_pud(pud_t pud)
 302{
 303        struct page *page = pud_page(pud);
 304        kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
 305}
 306
 307#define kvm_virt_to_phys(x)             __pa_symbol(x)
 308
 309void kvm_set_way_flush(struct kvm_vcpu *vcpu);
 310void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
 311
 312static inline bool __kvm_cpu_uses_extended_idmap(void)
 313{
 314        return __cpu_uses_extended_idmap_level();
 315}
 316
 317static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
 318{
 319        return idmap_ptrs_per_pgd;
 320}
 321
 322/*
 323 * Can't use pgd_populate here, because the extended idmap adds an extra level
 324 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
 325 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
 326 */
 327static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
 328                                       pgd_t *hyp_pgd,
 329                                       pgd_t *merged_hyp_pgd,
 330                                       unsigned long hyp_idmap_start)
 331{
 332        int idmap_idx;
 333        u64 pgd_addr;
 334
 335        /*
 336         * Use the first entry to access the HYP mappings. It is
 337         * guaranteed to be free, otherwise we wouldn't use an
 338         * extended idmap.
 339         */
 340        VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
 341        pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
 342        merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
 343
 344        /*
 345         * Create another extended level entry that points to the boot HYP map,
 346         * which contains an ID mapping of the HYP init code. We essentially
 347         * merge the boot and runtime HYP maps by doing so, but they don't
 348         * overlap anyway, so this is fine.
 349         */
 350        idmap_idx = hyp_idmap_start >> VA_BITS;
 351        VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
 352        pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
 353        merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
 354}
 355
 356static inline unsigned int kvm_get_vmid_bits(void)
 357{
 358        int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
 359
 360        return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
 361}
 362
 363/*
 364 * We are not in the kvm->srcu critical section most of the time, so we take
 365 * the SRCU read lock here. Since we copy the data from the user page, we
 366 * can immediately drop the lock again.
 367 */
 368static inline int kvm_read_guest_lock(struct kvm *kvm,
 369                                      gpa_t gpa, void *data, unsigned long len)
 370{
 371        int srcu_idx = srcu_read_lock(&kvm->srcu);
 372        int ret = kvm_read_guest(kvm, gpa, data, len);
 373
 374        srcu_read_unlock(&kvm->srcu, srcu_idx);
 375
 376        return ret;
 377}
 378
 379#ifdef CONFIG_KVM_INDIRECT_VECTORS
 380/*
 381 * EL2 vectors can be mapped and rerouted in a number of ways,
 382 * depending on the kernel configuration and CPU present:
 383 *
 384 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
 385 *   hardening sequence is placed in one of the vector slots, which is
 386 *   executed before jumping to the real vectors.
 387 *
 388 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
 389 *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
 390 *   hardening sequence is mapped next to the idmap page, and executed
 391 *   before jumping to the real vectors.
 392 *
 393 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
 394 *   empty slot is selected, mapped next to the idmap page, and
 395 *   executed before jumping to the real vectors.
 396 *
 397 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
 398 * VHE, as we don't have hypervisor-specific mappings. If the system
 399 * is VHE and yet selects this capability, it will be ignored.
 400 */
 401#include <asm/mmu.h>
 402
 403extern void *__kvm_bp_vect_base;
 404extern int __kvm_harden_el2_vector_slot;
 405
 406static inline void *kvm_get_hyp_vector(void)
 407{
 408        struct bp_hardening_data *data = arm64_get_bp_hardening_data();
 409        void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
 410        int slot = -1;
 411
 412        if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
 413                vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
 414                slot = data->hyp_vectors_slot;
 415        }
 416
 417        if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
 418                vect = __kvm_bp_vect_base;
 419                if (slot == -1)
 420                        slot = __kvm_harden_el2_vector_slot;
 421        }
 422
 423        if (slot != -1)
 424                vect += slot * SZ_2K;
 425
 426        return vect;
 427}
 428
 429/*  This is only called on a !VHE system */
 430static inline int kvm_map_vectors(void)
 431{
 432        /*
 433         * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
 434         * HEL2 = ARM64_HARDEN_EL2_VECTORS
 435         *
 436         * !HBP + !HEL2 -> use direct vectors
 437         *  HBP + !HEL2 -> use hardened vectors in place
 438         * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
 439         *  HBP +  HEL2 -> use hardened vertors and use exec mapping
 440         */
 441        if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
 442                __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
 443                __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
 444        }
 445
 446        if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
 447                phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
 448                unsigned long size = (__bp_harden_hyp_vecs_end -
 449                                      __bp_harden_hyp_vecs_start);
 450
 451                /*
 452                 * Always allocate a spare vector slot, as we don't
 453                 * know yet which CPUs have a BP hardening slot that
 454                 * we can reuse.
 455                 */
 456                __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
 457                BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
 458                return create_hyp_exec_mappings(vect_pa, size,
 459                                                &__kvm_bp_vect_base);
 460        }
 461
 462        return 0;
 463}
 464#else
 465static inline void *kvm_get_hyp_vector(void)
 466{
 467        return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
 468}
 469
 470static inline int kvm_map_vectors(void)
 471{
 472        return 0;
 473}
 474#endif
 475
 476#define kvm_phys_to_vttbr(addr)         phys_to_ttbr(addr)
 477
 478#endif /* __ASSEMBLY__ */
 479#endif /* __ARM64_KVM_MMU_H__ */
 480