linux/arch/arm64/mm/context.c
<<
>>
Prefs
   1/*
   2 * Based on arch/arm/mm/context.c
   3 *
   4 * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
   5 * Copyright (C) 2012 ARM Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/bitops.h>
  21#include <linux/sched.h>
  22#include <linux/slab.h>
  23#include <linux/mm.h>
  24
  25#include <asm/cpufeature.h>
  26#include <asm/mmu_context.h>
  27#include <asm/smp.h>
  28#include <asm/tlbflush.h>
  29
  30static u32 asid_bits;
  31static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
  32
  33static atomic64_t asid_generation;
  34static unsigned long *asid_map;
  35
  36static DEFINE_PER_CPU(atomic64_t, active_asids);
  37static DEFINE_PER_CPU(u64, reserved_asids);
  38static cpumask_t tlb_flush_pending;
  39
  40#define ASID_MASK               (~GENMASK(asid_bits - 1, 0))
  41#define ASID_FIRST_VERSION      (1UL << asid_bits)
  42
  43#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
  44#define NUM_USER_ASIDS          (ASID_FIRST_VERSION >> 1)
  45#define asid2idx(asid)          (((asid) & ~ASID_MASK) >> 1)
  46#define idx2asid(idx)           (((idx) << 1) & ~ASID_MASK)
  47#else
  48#define NUM_USER_ASIDS          (ASID_FIRST_VERSION)
  49#define asid2idx(asid)          ((asid) & ~ASID_MASK)
  50#define idx2asid(idx)           asid2idx(idx)
  51#endif
  52
  53/* Get the ASIDBits supported by the current CPU */
  54static u32 get_cpu_asid_bits(void)
  55{
  56        u32 asid;
  57        int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
  58                                                ID_AA64MMFR0_ASID_SHIFT);
  59
  60        switch (fld) {
  61        default:
  62                pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
  63                                        smp_processor_id(),  fld);
  64                /* Fallthrough */
  65        case 0:
  66                asid = 8;
  67                break;
  68        case 2:
  69                asid = 16;
  70        }
  71
  72        return asid;
  73}
  74
  75/* Check if the current cpu's ASIDBits is compatible with asid_bits */
  76void verify_cpu_asid_bits(void)
  77{
  78        u32 asid = get_cpu_asid_bits();
  79
  80        if (asid < asid_bits) {
  81                /*
  82                 * We cannot decrease the ASID size at runtime, so panic if we support
  83                 * fewer ASID bits than the boot CPU.
  84                 */
  85                pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
  86                                smp_processor_id(), asid, asid_bits);
  87                cpu_panic_kernel();
  88        }
  89}
  90
  91static void flush_context(unsigned int cpu)
  92{
  93        int i;
  94        u64 asid;
  95
  96        /* Update the list of reserved ASIDs and the ASID bitmap. */
  97        bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
  98
  99        for_each_possible_cpu(i) {
 100                asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
 101                /*
 102                 * If this CPU has already been through a
 103                 * rollover, but hasn't run another task in
 104                 * the meantime, we must preserve its reserved
 105                 * ASID, as this is the only trace we have of
 106                 * the process it is still running.
 107                 */
 108                if (asid == 0)
 109                        asid = per_cpu(reserved_asids, i);
 110                __set_bit(asid2idx(asid), asid_map);
 111                per_cpu(reserved_asids, i) = asid;
 112        }
 113
 114        /*
 115         * Queue a TLB invalidation for each CPU to perform on next
 116         * context-switch
 117         */
 118        cpumask_setall(&tlb_flush_pending);
 119}
 120
 121static bool check_update_reserved_asid(u64 asid, u64 newasid)
 122{
 123        int cpu;
 124        bool hit = false;
 125
 126        /*
 127         * Iterate over the set of reserved ASIDs looking for a match.
 128         * If we find one, then we can update our mm to use newasid
 129         * (i.e. the same ASID in the current generation) but we can't
 130         * exit the loop early, since we need to ensure that all copies
 131         * of the old ASID are updated to reflect the mm. Failure to do
 132         * so could result in us missing the reserved ASID in a future
 133         * generation.
 134         */
 135        for_each_possible_cpu(cpu) {
 136                if (per_cpu(reserved_asids, cpu) == asid) {
 137                        hit = true;
 138                        per_cpu(reserved_asids, cpu) = newasid;
 139                }
 140        }
 141
 142        return hit;
 143}
 144
 145static u64 new_context(struct mm_struct *mm, unsigned int cpu)
 146{
 147        static u32 cur_idx = 1;
 148        u64 asid = atomic64_read(&mm->context.id);
 149        u64 generation = atomic64_read(&asid_generation);
 150
 151        if (asid != 0) {
 152                u64 newasid = generation | (asid & ~ASID_MASK);
 153
 154                /*
 155                 * If our current ASID was active during a rollover, we
 156                 * can continue to use it and this was just a false alarm.
 157                 */
 158                if (check_update_reserved_asid(asid, newasid))
 159                        return newasid;
 160
 161                /*
 162                 * We had a valid ASID in a previous life, so try to re-use
 163                 * it if possible.
 164                 */
 165                if (!__test_and_set_bit(asid2idx(asid), asid_map))
 166                        return newasid;
 167        }
 168
 169        /*
 170         * Allocate a free ASID. If we can't find one, take a note of the
 171         * currently active ASIDs and mark the TLBs as requiring flushes.  We
 172         * always count from ASID #2 (index 1), as we use ASID #0 when setting
 173         * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
 174         * pairs.
 175         */
 176        asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
 177        if (asid != NUM_USER_ASIDS)
 178                goto set_asid;
 179
 180        /* We're out of ASIDs, so increment the global generation count */
 181        generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
 182                                                 &asid_generation);
 183        flush_context(cpu);
 184
 185        /* We have more ASIDs than CPUs, so this will always succeed */
 186        asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
 187
 188set_asid:
 189        __set_bit(asid, asid_map);
 190        cur_idx = asid;
 191        return idx2asid(asid) | generation;
 192}
 193
 194void check_and_switch_context(struct mm_struct *mm, unsigned int cpu)
 195{
 196        unsigned long flags;
 197        u64 asid, old_active_asid;
 198
 199        asid = atomic64_read(&mm->context.id);
 200
 201        /*
 202         * The memory ordering here is subtle.
 203         * If our active_asids is non-zero and the ASID matches the current
 204         * generation, then we update the active_asids entry with a relaxed
 205         * cmpxchg. Racing with a concurrent rollover means that either:
 206         *
 207         * - We get a zero back from the cmpxchg and end up waiting on the
 208         *   lock. Taking the lock synchronises with the rollover and so
 209         *   we are forced to see the updated generation.
 210         *
 211         * - We get a valid ASID back from the cmpxchg, which means the
 212         *   relaxed xchg in flush_context will treat us as reserved
 213         *   because atomic RmWs are totally ordered for a given location.
 214         */
 215        old_active_asid = atomic64_read(&per_cpu(active_asids, cpu));
 216        if (old_active_asid &&
 217            !((asid ^ atomic64_read(&asid_generation)) >> asid_bits) &&
 218            atomic64_cmpxchg_relaxed(&per_cpu(active_asids, cpu),
 219                                     old_active_asid, asid))
 220                goto switch_mm_fastpath;
 221
 222        raw_spin_lock_irqsave(&cpu_asid_lock, flags);
 223        /* Check that our ASID belongs to the current generation. */
 224        asid = atomic64_read(&mm->context.id);
 225        if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) {
 226                asid = new_context(mm, cpu);
 227                atomic64_set(&mm->context.id, asid);
 228        }
 229
 230        if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
 231                local_flush_tlb_all();
 232
 233        atomic64_set(&per_cpu(active_asids, cpu), asid);
 234        raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
 235
 236switch_mm_fastpath:
 237
 238        arm64_apply_bp_hardening();
 239
 240        /*
 241         * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
 242         * emulating PAN.
 243         */
 244        if (!system_uses_ttbr0_pan())
 245                cpu_switch_mm(mm->pgd, mm);
 246}
 247
 248/* Errata workaround post TTBRx_EL1 update. */
 249asmlinkage void post_ttbr_update_workaround(void)
 250{
 251        asm(ALTERNATIVE("nop; nop; nop",
 252                        "ic iallu; dsb nsh; isb",
 253                        ARM64_WORKAROUND_CAVIUM_27456,
 254                        CONFIG_CAVIUM_ERRATUM_27456));
 255}
 256
 257static int asids_init(void)
 258{
 259        asid_bits = get_cpu_asid_bits();
 260        /*
 261         * Expect allocation after rollover to fail if we don't have at least
 262         * one more ASID than CPUs. ASID #0 is reserved for init_mm.
 263         */
 264        WARN_ON(NUM_USER_ASIDS - 1 <= num_possible_cpus());
 265        atomic64_set(&asid_generation, ASID_FIRST_VERSION);
 266        asid_map = kzalloc(BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(*asid_map),
 267                           GFP_KERNEL);
 268        if (!asid_map)
 269                panic("Failed to allocate bitmap for %lu ASIDs\n",
 270                      NUM_USER_ASIDS);
 271
 272        pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS);
 273        return 0;
 274}
 275early_initcall(asids_init);
 276