linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/sched/task.h>
  26#include <linux/sched/task_stack.h>
  27#include <linux/interrupt.h>
  28#include <linux/proc_fs.h>
  29#include <linux/seq_file.h>
  30#include <linux/init.h>
  31#include <linux/vmalloc.h>
  32#include <linux/mm.h>
  33#include <linux/sysctl.h>
  34#include <linux/list.h>
  35#include <linux/file.h>
  36#include <linux/poll.h>
  37#include <linux/vfs.h>
  38#include <linux/smp.h>
  39#include <linux/pagemap.h>
  40#include <linux/mount.h>
  41#include <linux/bitops.h>
  42#include <linux/capability.h>
  43#include <linux/rcupdate.h>
  44#include <linux/completion.h>
  45#include <linux/tracehook.h>
  46#include <linux/slab.h>
  47#include <linux/cpu.h>
  48
  49#include <asm/errno.h>
  50#include <asm/intrinsics.h>
  51#include <asm/page.h>
  52#include <asm/perfmon.h>
  53#include <asm/processor.h>
  54#include <asm/signal.h>
  55#include <linux/uaccess.h>
  56#include <asm/delay.h>
  57
  58#ifdef CONFIG_PERFMON
  59/*
  60 * perfmon context state
  61 */
  62#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  63#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  64#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  65#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  66
  67#define PFM_INVALID_ACTIVATION  (~0UL)
  68
  69#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  70#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  71
  72/*
  73 * depth of message queue
  74 */
  75#define PFM_MAX_MSGS            32
  76#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  77
  78/*
  79 * type of a PMU register (bitmask).
  80 * bitmask structure:
  81 *      bit0   : register implemented
  82 *      bit1   : end marker
  83 *      bit2-3 : reserved
  84 *      bit4   : pmc has pmc.pm
  85 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  86 *      bit6-7 : register type
  87 *      bit8-31: reserved
  88 */
  89#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  90#define PFM_REG_IMPL            0x1 /* register implemented */
  91#define PFM_REG_END             0x2 /* end marker */
  92#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  93#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  94#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  95#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  96#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  97
  98#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  99#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
 100
 101#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
 102
 103/* i assumed unsigned */
 104#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 105#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 106
 107/* XXX: these assume that register i is implemented */
 108#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 109#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 110#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 111#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 112
 113#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 114#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 115#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 116#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 117
 118#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 119#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 120
 121#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 122#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 123#define PFM_CTX_TASK(h)         (h)->ctx_task
 124
 125#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 126
 127/* XXX: does not support more than 64 PMDs */
 128#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 129#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 130
 131#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 132
 133#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 134#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 135#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 136#define PFM_CODE_RR     0       /* requesting code range restriction */
 137#define PFM_DATA_RR     1       /* requestion data range restriction */
 138
 139#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 140#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 141#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 142
 143#define RDEP(x) (1UL<<(x))
 144
 145/*
 146 * context protection macros
 147 * in SMP:
 148 *      - we need to protect against CPU concurrency (spin_lock)
 149 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 150 * in UP:
 151 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 152 *
 153 * spin_lock_irqsave()/spin_unlock_irqrestore():
 154 *      in SMP: local_irq_disable + spin_lock
 155 *      in UP : local_irq_disable
 156 *
 157 * spin_lock()/spin_lock():
 158 *      in UP : removed automatically
 159 *      in SMP: protect against context accesses from other CPU. interrupts
 160 *              are not masked. This is useful for the PMU interrupt handler
 161 *              because we know we will not get PMU concurrency in that code.
 162 */
 163#define PROTECT_CTX(c, f) \
 164        do {  \
 165                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 166                spin_lock_irqsave(&(c)->ctx_lock, f); \
 167                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 168        } while(0)
 169
 170#define UNPROTECT_CTX(c, f) \
 171        do { \
 172                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 173                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 174        } while(0)
 175
 176#define PROTECT_CTX_NOPRINT(c, f) \
 177        do {  \
 178                spin_lock_irqsave(&(c)->ctx_lock, f); \
 179        } while(0)
 180
 181
 182#define UNPROTECT_CTX_NOPRINT(c, f) \
 183        do { \
 184                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 185        } while(0)
 186
 187
 188#define PROTECT_CTX_NOIRQ(c) \
 189        do {  \
 190                spin_lock(&(c)->ctx_lock); \
 191        } while(0)
 192
 193#define UNPROTECT_CTX_NOIRQ(c) \
 194        do { \
 195                spin_unlock(&(c)->ctx_lock); \
 196        } while(0)
 197
 198
 199#ifdef CONFIG_SMP
 200
 201#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 202#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 203#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 204
 205#else /* !CONFIG_SMP */
 206#define SET_ACTIVATION(t)       do {} while(0)
 207#define GET_ACTIVATION(t)       do {} while(0)
 208#define INC_ACTIVATION(t)       do {} while(0)
 209#endif /* CONFIG_SMP */
 210
 211#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 212#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 213#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 214
 215#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 216#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 217
 218#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 219
 220/*
 221 * cmp0 must be the value of pmc0
 222 */
 223#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 224
 225#define PFMFS_MAGIC 0xa0b4d889
 226
 227/*
 228 * debugging
 229 */
 230#define PFM_DEBUGGING 1
 231#ifdef PFM_DEBUGGING
 232#define DPRINT(a) \
 233        do { \
 234                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 235        } while (0)
 236
 237#define DPRINT_ovfl(a) \
 238        do { \
 239                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 240        } while (0)
 241#endif
 242
 243/*
 244 * 64-bit software counter structure
 245 *
 246 * the next_reset_type is applied to the next call to pfm_reset_regs()
 247 */
 248typedef struct {
 249        unsigned long   val;            /* virtual 64bit counter value */
 250        unsigned long   lval;           /* last reset value */
 251        unsigned long   long_reset;     /* reset value on sampling overflow */
 252        unsigned long   short_reset;    /* reset value on overflow */
 253        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 254        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 255        unsigned long   seed;           /* seed for random-number generator */
 256        unsigned long   mask;           /* mask for random-number generator */
 257        unsigned int    flags;          /* notify/do not notify */
 258        unsigned long   eventid;        /* overflow event identifier */
 259} pfm_counter_t;
 260
 261/*
 262 * context flags
 263 */
 264typedef struct {
 265        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 266        unsigned int system:1;          /* do system wide monitoring */
 267        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 268        unsigned int is_sampling:1;     /* true if using a custom format */
 269        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 270        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 271        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 272        unsigned int no_msg:1;          /* no message sent on overflow */
 273        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 274        unsigned int reserved:22;
 275} pfm_context_flags_t;
 276
 277#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 278#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 279#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 280
 281
 282/*
 283 * perfmon context: encapsulates all the state of a monitoring session
 284 */
 285
 286typedef struct pfm_context {
 287        spinlock_t              ctx_lock;               /* context protection */
 288
 289        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 290        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 291
 292        struct task_struct      *ctx_task;              /* task to which context is attached */
 293
 294        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 295
 296        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 297
 298        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 299        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 300        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 301
 302        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 303        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 304        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 305
 306        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 307
 308        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 309        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 310        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 311        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 312
 313        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 314
 315        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 316        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 317
 318        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 319
 320        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 321        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 322        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 323
 324        int                     ctx_fd;                 /* file descriptor used my this context */
 325        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 326
 327        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 328        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 329        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 330        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 331
 332        wait_queue_head_t       ctx_msgq_wait;
 333        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 334        int                     ctx_msgq_head;
 335        int                     ctx_msgq_tail;
 336        struct fasync_struct    *ctx_async_queue;
 337
 338        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 339} pfm_context_t;
 340
 341/*
 342 * magic number used to verify that structure is really
 343 * a perfmon context
 344 */
 345#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 346
 347#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 348
 349#ifdef CONFIG_SMP
 350#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 351#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 352#else
 353#define SET_LAST_CPU(ctx, v)    do {} while(0)
 354#define GET_LAST_CPU(ctx)       do {} while(0)
 355#endif
 356
 357
 358#define ctx_fl_block            ctx_flags.block
 359#define ctx_fl_system           ctx_flags.system
 360#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 361#define ctx_fl_is_sampling      ctx_flags.is_sampling
 362#define ctx_fl_excl_idle        ctx_flags.excl_idle
 363#define ctx_fl_going_zombie     ctx_flags.going_zombie
 364#define ctx_fl_trap_reason      ctx_flags.trap_reason
 365#define ctx_fl_no_msg           ctx_flags.no_msg
 366#define ctx_fl_can_restart      ctx_flags.can_restart
 367
 368#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 369#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 370
 371/*
 372 * global information about all sessions
 373 * mostly used to synchronize between system wide and per-process
 374 */
 375typedef struct {
 376        spinlock_t              pfs_lock;                  /* lock the structure */
 377
 378        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 379        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 380        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 381        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 382        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 383} pfm_session_t;
 384
 385/*
 386 * information about a PMC or PMD.
 387 * dep_pmd[]: a bitmask of dependent PMD registers
 388 * dep_pmc[]: a bitmask of dependent PMC registers
 389 */
 390typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 391typedef struct {
 392        unsigned int            type;
 393        int                     pm_pos;
 394        unsigned long           default_value;  /* power-on default value */
 395        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 396        pfm_reg_check_t         read_check;
 397        pfm_reg_check_t         write_check;
 398        unsigned long           dep_pmd[4];
 399        unsigned long           dep_pmc[4];
 400} pfm_reg_desc_t;
 401
 402/* assume cnum is a valid monitor */
 403#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 404
 405/*
 406 * This structure is initialized at boot time and contains
 407 * a description of the PMU main characteristics.
 408 *
 409 * If the probe function is defined, detection is based
 410 * on its return value: 
 411 *      - 0 means recognized PMU
 412 *      - anything else means not supported
 413 * When the probe function is not defined, then the pmu_family field
 414 * is used and it must match the host CPU family such that:
 415 *      - cpu->family & config->pmu_family != 0
 416 */
 417typedef struct {
 418        unsigned long  ovfl_val;        /* overflow value for counters */
 419
 420        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 421        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 422
 423        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 424        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 425        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 426        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 427
 428        char          *pmu_name;        /* PMU family name */
 429        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 430        unsigned int  flags;            /* pmu specific flags */
 431        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 432        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 433        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 434        int           (*probe)(void);   /* customized probe routine */
 435        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 436} pmu_config_t;
 437/*
 438 * PMU specific flags
 439 */
 440#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 441
 442/*
 443 * debug register related type definitions
 444 */
 445typedef struct {
 446        unsigned long ibr_mask:56;
 447        unsigned long ibr_plm:4;
 448        unsigned long ibr_ig:3;
 449        unsigned long ibr_x:1;
 450} ibr_mask_reg_t;
 451
 452typedef struct {
 453        unsigned long dbr_mask:56;
 454        unsigned long dbr_plm:4;
 455        unsigned long dbr_ig:2;
 456        unsigned long dbr_w:1;
 457        unsigned long dbr_r:1;
 458} dbr_mask_reg_t;
 459
 460typedef union {
 461        unsigned long  val;
 462        ibr_mask_reg_t ibr;
 463        dbr_mask_reg_t dbr;
 464} dbreg_t;
 465
 466
 467/*
 468 * perfmon command descriptions
 469 */
 470typedef struct {
 471        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 472        char            *cmd_name;
 473        int             cmd_flags;
 474        unsigned int    cmd_narg;
 475        size_t          cmd_argsize;
 476        int             (*cmd_getsize)(void *arg, size_t *sz);
 477} pfm_cmd_desc_t;
 478
 479#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 480#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 481#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 482#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 483
 484
 485#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 486#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 487#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 488#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 489#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 490
 491#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 492
 493typedef struct {
 494        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 495        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 496        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 497        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 498        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 499        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 500        unsigned long pfm_smpl_handler_calls;
 501        unsigned long pfm_smpl_handler_cycles;
 502        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 503} pfm_stats_t;
 504
 505/*
 506 * perfmon internal variables
 507 */
 508static pfm_stats_t              pfm_stats[NR_CPUS];
 509static pfm_session_t            pfm_sessions;   /* global sessions information */
 510
 511static DEFINE_SPINLOCK(pfm_alt_install_check);
 512static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 513
 514static struct proc_dir_entry    *perfmon_dir;
 515static pfm_uuid_t               pfm_null_uuid = {0,};
 516
 517static spinlock_t               pfm_buffer_fmt_lock;
 518static LIST_HEAD(pfm_buffer_fmt_list);
 519
 520static pmu_config_t             *pmu_conf;
 521
 522/* sysctl() controls */
 523pfm_sysctl_t pfm_sysctl;
 524EXPORT_SYMBOL(pfm_sysctl);
 525
 526static struct ctl_table pfm_ctl_table[] = {
 527        {
 528                .procname       = "debug",
 529                .data           = &pfm_sysctl.debug,
 530                .maxlen         = sizeof(int),
 531                .mode           = 0666,
 532                .proc_handler   = proc_dointvec,
 533        },
 534        {
 535                .procname       = "debug_ovfl",
 536                .data           = &pfm_sysctl.debug_ovfl,
 537                .maxlen         = sizeof(int),
 538                .mode           = 0666,
 539                .proc_handler   = proc_dointvec,
 540        },
 541        {
 542                .procname       = "fastctxsw",
 543                .data           = &pfm_sysctl.fastctxsw,
 544                .maxlen         = sizeof(int),
 545                .mode           = 0600,
 546                .proc_handler   = proc_dointvec,
 547        },
 548        {
 549                .procname       = "expert_mode",
 550                .data           = &pfm_sysctl.expert_mode,
 551                .maxlen         = sizeof(int),
 552                .mode           = 0600,
 553                .proc_handler   = proc_dointvec,
 554        },
 555        {}
 556};
 557static struct ctl_table pfm_sysctl_dir[] = {
 558        {
 559                .procname       = "perfmon",
 560                .mode           = 0555,
 561                .child          = pfm_ctl_table,
 562        },
 563        {}
 564};
 565static struct ctl_table pfm_sysctl_root[] = {
 566        {
 567                .procname       = "kernel",
 568                .mode           = 0555,
 569                .child          = pfm_sysctl_dir,
 570        },
 571        {}
 572};
 573static struct ctl_table_header *pfm_sysctl_header;
 574
 575static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 576
 577#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 578#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 579
 580static inline void
 581pfm_put_task(struct task_struct *task)
 582{
 583        if (task != current) put_task_struct(task);
 584}
 585
 586static inline void
 587pfm_reserve_page(unsigned long a)
 588{
 589        SetPageReserved(vmalloc_to_page((void *)a));
 590}
 591static inline void
 592pfm_unreserve_page(unsigned long a)
 593{
 594        ClearPageReserved(vmalloc_to_page((void*)a));
 595}
 596
 597static inline unsigned long
 598pfm_protect_ctx_ctxsw(pfm_context_t *x)
 599{
 600        spin_lock(&(x)->ctx_lock);
 601        return 0UL;
 602}
 603
 604static inline void
 605pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 606{
 607        spin_unlock(&(x)->ctx_lock);
 608}
 609
 610/* forward declaration */
 611static const struct dentry_operations pfmfs_dentry_operations;
 612
 613static struct dentry *
 614pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
 615{
 616        return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
 617                        PFMFS_MAGIC);
 618}
 619
 620static struct file_system_type pfm_fs_type = {
 621        .name     = "pfmfs",
 622        .mount    = pfmfs_mount,
 623        .kill_sb  = kill_anon_super,
 624};
 625MODULE_ALIAS_FS("pfmfs");
 626
 627DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 628DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 629DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 630DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 631EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 632
 633
 634/* forward declaration */
 635static const struct file_operations pfm_file_ops;
 636
 637/*
 638 * forward declarations
 639 */
 640#ifndef CONFIG_SMP
 641static void pfm_lazy_save_regs (struct task_struct *ta);
 642#endif
 643
 644void dump_pmu_state(const char *);
 645static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 646
 647#include "perfmon_itanium.h"
 648#include "perfmon_mckinley.h"
 649#include "perfmon_montecito.h"
 650#include "perfmon_generic.h"
 651
 652static pmu_config_t *pmu_confs[]={
 653        &pmu_conf_mont,
 654        &pmu_conf_mck,
 655        &pmu_conf_ita,
 656        &pmu_conf_gen, /* must be last */
 657        NULL
 658};
 659
 660
 661static int pfm_end_notify_user(pfm_context_t *ctx);
 662
 663static inline void
 664pfm_clear_psr_pp(void)
 665{
 666        ia64_rsm(IA64_PSR_PP);
 667        ia64_srlz_i();
 668}
 669
 670static inline void
 671pfm_set_psr_pp(void)
 672{
 673        ia64_ssm(IA64_PSR_PP);
 674        ia64_srlz_i();
 675}
 676
 677static inline void
 678pfm_clear_psr_up(void)
 679{
 680        ia64_rsm(IA64_PSR_UP);
 681        ia64_srlz_i();
 682}
 683
 684static inline void
 685pfm_set_psr_up(void)
 686{
 687        ia64_ssm(IA64_PSR_UP);
 688        ia64_srlz_i();
 689}
 690
 691static inline unsigned long
 692pfm_get_psr(void)
 693{
 694        unsigned long tmp;
 695        tmp = ia64_getreg(_IA64_REG_PSR);
 696        ia64_srlz_i();
 697        return tmp;
 698}
 699
 700static inline void
 701pfm_set_psr_l(unsigned long val)
 702{
 703        ia64_setreg(_IA64_REG_PSR_L, val);
 704        ia64_srlz_i();
 705}
 706
 707static inline void
 708pfm_freeze_pmu(void)
 709{
 710        ia64_set_pmc(0,1UL);
 711        ia64_srlz_d();
 712}
 713
 714static inline void
 715pfm_unfreeze_pmu(void)
 716{
 717        ia64_set_pmc(0,0UL);
 718        ia64_srlz_d();
 719}
 720
 721static inline void
 722pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 723{
 724        int i;
 725
 726        for (i=0; i < nibrs; i++) {
 727                ia64_set_ibr(i, ibrs[i]);
 728                ia64_dv_serialize_instruction();
 729        }
 730        ia64_srlz_i();
 731}
 732
 733static inline void
 734pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 735{
 736        int i;
 737
 738        for (i=0; i < ndbrs; i++) {
 739                ia64_set_dbr(i, dbrs[i]);
 740                ia64_dv_serialize_data();
 741        }
 742        ia64_srlz_d();
 743}
 744
 745/*
 746 * PMD[i] must be a counter. no check is made
 747 */
 748static inline unsigned long
 749pfm_read_soft_counter(pfm_context_t *ctx, int i)
 750{
 751        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 752}
 753
 754/*
 755 * PMD[i] must be a counter. no check is made
 756 */
 757static inline void
 758pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 759{
 760        unsigned long ovfl_val = pmu_conf->ovfl_val;
 761
 762        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 763        /*
 764         * writing to unimplemented part is ignore, so we do not need to
 765         * mask off top part
 766         */
 767        ia64_set_pmd(i, val & ovfl_val);
 768}
 769
 770static pfm_msg_t *
 771pfm_get_new_msg(pfm_context_t *ctx)
 772{
 773        int idx, next;
 774
 775        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 776
 777        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 778        if (next == ctx->ctx_msgq_head) return NULL;
 779
 780        idx =   ctx->ctx_msgq_tail;
 781        ctx->ctx_msgq_tail = next;
 782
 783        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 784
 785        return ctx->ctx_msgq+idx;
 786}
 787
 788static pfm_msg_t *
 789pfm_get_next_msg(pfm_context_t *ctx)
 790{
 791        pfm_msg_t *msg;
 792
 793        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 794
 795        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 796
 797        /*
 798         * get oldest message
 799         */
 800        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 801
 802        /*
 803         * and move forward
 804         */
 805        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 806
 807        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 808
 809        return msg;
 810}
 811
 812static void
 813pfm_reset_msgq(pfm_context_t *ctx)
 814{
 815        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 816        DPRINT(("ctx=%p msgq reset\n", ctx));
 817}
 818
 819static void *
 820pfm_rvmalloc(unsigned long size)
 821{
 822        void *mem;
 823        unsigned long addr;
 824
 825        size = PAGE_ALIGN(size);
 826        mem  = vzalloc(size);
 827        if (mem) {
 828                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 829                addr = (unsigned long)mem;
 830                while (size > 0) {
 831                        pfm_reserve_page(addr);
 832                        addr+=PAGE_SIZE;
 833                        size-=PAGE_SIZE;
 834                }
 835        }
 836        return mem;
 837}
 838
 839static void
 840pfm_rvfree(void *mem, unsigned long size)
 841{
 842        unsigned long addr;
 843
 844        if (mem) {
 845                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 846                addr = (unsigned long) mem;
 847                while ((long) size > 0) {
 848                        pfm_unreserve_page(addr);
 849                        addr+=PAGE_SIZE;
 850                        size-=PAGE_SIZE;
 851                }
 852                vfree(mem);
 853        }
 854        return;
 855}
 856
 857static pfm_context_t *
 858pfm_context_alloc(int ctx_flags)
 859{
 860        pfm_context_t *ctx;
 861
 862        /* 
 863         * allocate context descriptor 
 864         * must be able to free with interrupts disabled
 865         */
 866        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 867        if (ctx) {
 868                DPRINT(("alloc ctx @%p\n", ctx));
 869
 870                /*
 871                 * init context protection lock
 872                 */
 873                spin_lock_init(&ctx->ctx_lock);
 874
 875                /*
 876                 * context is unloaded
 877                 */
 878                ctx->ctx_state = PFM_CTX_UNLOADED;
 879
 880                /*
 881                 * initialization of context's flags
 882                 */
 883                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 884                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 885                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 886                /*
 887                 * will move to set properties
 888                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 889                 */
 890
 891                /*
 892                 * init restart semaphore to locked
 893                 */
 894                init_completion(&ctx->ctx_restart_done);
 895
 896                /*
 897                 * activation is used in SMP only
 898                 */
 899                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 900                SET_LAST_CPU(ctx, -1);
 901
 902                /*
 903                 * initialize notification message queue
 904                 */
 905                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 906                init_waitqueue_head(&ctx->ctx_msgq_wait);
 907                init_waitqueue_head(&ctx->ctx_zombieq);
 908
 909        }
 910        return ctx;
 911}
 912
 913static void
 914pfm_context_free(pfm_context_t *ctx)
 915{
 916        if (ctx) {
 917                DPRINT(("free ctx @%p\n", ctx));
 918                kfree(ctx);
 919        }
 920}
 921
 922static void
 923pfm_mask_monitoring(struct task_struct *task)
 924{
 925        pfm_context_t *ctx = PFM_GET_CTX(task);
 926        unsigned long mask, val, ovfl_mask;
 927        int i;
 928
 929        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 930
 931        ovfl_mask = pmu_conf->ovfl_val;
 932        /*
 933         * monitoring can only be masked as a result of a valid
 934         * counter overflow. In UP, it means that the PMU still
 935         * has an owner. Note that the owner can be different
 936         * from the current task. However the PMU state belongs
 937         * to the owner.
 938         * In SMP, a valid overflow only happens when task is
 939         * current. Therefore if we come here, we know that
 940         * the PMU state belongs to the current task, therefore
 941         * we can access the live registers.
 942         *
 943         * So in both cases, the live register contains the owner's
 944         * state. We can ONLY touch the PMU registers and NOT the PSR.
 945         *
 946         * As a consequence to this call, the ctx->th_pmds[] array
 947         * contains stale information which must be ignored
 948         * when context is reloaded AND monitoring is active (see
 949         * pfm_restart).
 950         */
 951        mask = ctx->ctx_used_pmds[0];
 952        for (i = 0; mask; i++, mask>>=1) {
 953                /* skip non used pmds */
 954                if ((mask & 0x1) == 0) continue;
 955                val = ia64_get_pmd(i);
 956
 957                if (PMD_IS_COUNTING(i)) {
 958                        /*
 959                         * we rebuild the full 64 bit value of the counter
 960                         */
 961                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 962                } else {
 963                        ctx->ctx_pmds[i].val = val;
 964                }
 965                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 966                        i,
 967                        ctx->ctx_pmds[i].val,
 968                        val & ovfl_mask));
 969        }
 970        /*
 971         * mask monitoring by setting the privilege level to 0
 972         * we cannot use psr.pp/psr.up for this, it is controlled by
 973         * the user
 974         *
 975         * if task is current, modify actual registers, otherwise modify
 976         * thread save state, i.e., what will be restored in pfm_load_regs()
 977         */
 978        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 979        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 980                if ((mask & 0x1) == 0UL) continue;
 981                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 982                ctx->th_pmcs[i] &= ~0xfUL;
 983                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 984        }
 985        /*
 986         * make all of this visible
 987         */
 988        ia64_srlz_d();
 989}
 990
 991/*
 992 * must always be done with task == current
 993 *
 994 * context must be in MASKED state when calling
 995 */
 996static void
 997pfm_restore_monitoring(struct task_struct *task)
 998{
 999        pfm_context_t *ctx = PFM_GET_CTX(task);
1000        unsigned long mask, ovfl_mask;
1001        unsigned long psr, val;
1002        int i, is_system;
1003
1004        is_system = ctx->ctx_fl_system;
1005        ovfl_mask = pmu_conf->ovfl_val;
1006
1007        if (task != current) {
1008                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1009                return;
1010        }
1011        if (ctx->ctx_state != PFM_CTX_MASKED) {
1012                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1013                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1014                return;
1015        }
1016        psr = pfm_get_psr();
1017        /*
1018         * monitoring is masked via the PMC.
1019         * As we restore their value, we do not want each counter to
1020         * restart right away. We stop monitoring using the PSR,
1021         * restore the PMC (and PMD) and then re-establish the psr
1022         * as it was. Note that there can be no pending overflow at
1023         * this point, because monitoring was MASKED.
1024         *
1025         * system-wide session are pinned and self-monitoring
1026         */
1027        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1028                /* disable dcr pp */
1029                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1030                pfm_clear_psr_pp();
1031        } else {
1032                pfm_clear_psr_up();
1033        }
1034        /*
1035         * first, we restore the PMD
1036         */
1037        mask = ctx->ctx_used_pmds[0];
1038        for (i = 0; mask; i++, mask>>=1) {
1039                /* skip non used pmds */
1040                if ((mask & 0x1) == 0) continue;
1041
1042                if (PMD_IS_COUNTING(i)) {
1043                        /*
1044                         * we split the 64bit value according to
1045                         * counter width
1046                         */
1047                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1048                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1049                } else {
1050                        val = ctx->ctx_pmds[i].val;
1051                }
1052                ia64_set_pmd(i, val);
1053
1054                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1055                        i,
1056                        ctx->ctx_pmds[i].val,
1057                        val));
1058        }
1059        /*
1060         * restore the PMCs
1061         */
1062        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1063        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1064                if ((mask & 0x1) == 0UL) continue;
1065                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1066                ia64_set_pmc(i, ctx->th_pmcs[i]);
1067                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1068                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1069        }
1070        ia64_srlz_d();
1071
1072        /*
1073         * must restore DBR/IBR because could be modified while masked
1074         * XXX: need to optimize 
1075         */
1076        if (ctx->ctx_fl_using_dbreg) {
1077                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1078                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1079        }
1080
1081        /*
1082         * now restore PSR
1083         */
1084        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1085                /* enable dcr pp */
1086                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1087                ia64_srlz_i();
1088        }
1089        pfm_set_psr_l(psr);
1090}
1091
1092static inline void
1093pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1094{
1095        int i;
1096
1097        ia64_srlz_d();
1098
1099        for (i=0; mask; i++, mask>>=1) {
1100                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1101        }
1102}
1103
1104/*
1105 * reload from thread state (used for ctxw only)
1106 */
1107static inline void
1108pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1109{
1110        int i;
1111        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1112
1113        for (i=0; mask; i++, mask>>=1) {
1114                if ((mask & 0x1) == 0) continue;
1115                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1116                ia64_set_pmd(i, val);
1117        }
1118        ia64_srlz_d();
1119}
1120
1121/*
1122 * propagate PMD from context to thread-state
1123 */
1124static inline void
1125pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1126{
1127        unsigned long ovfl_val = pmu_conf->ovfl_val;
1128        unsigned long mask = ctx->ctx_all_pmds[0];
1129        unsigned long val;
1130        int i;
1131
1132        DPRINT(("mask=0x%lx\n", mask));
1133
1134        for (i=0; mask; i++, mask>>=1) {
1135
1136                val = ctx->ctx_pmds[i].val;
1137
1138                /*
1139                 * We break up the 64 bit value into 2 pieces
1140                 * the lower bits go to the machine state in the
1141                 * thread (will be reloaded on ctxsw in).
1142                 * The upper part stays in the soft-counter.
1143                 */
1144                if (PMD_IS_COUNTING(i)) {
1145                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1146                         val &= ovfl_val;
1147                }
1148                ctx->th_pmds[i] = val;
1149
1150                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151                        i,
1152                        ctx->th_pmds[i],
1153                        ctx->ctx_pmds[i].val));
1154        }
1155}
1156
1157/*
1158 * propagate PMC from context to thread-state
1159 */
1160static inline void
1161pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1162{
1163        unsigned long mask = ctx->ctx_all_pmcs[0];
1164        int i;
1165
1166        DPRINT(("mask=0x%lx\n", mask));
1167
1168        for (i=0; mask; i++, mask>>=1) {
1169                /* masking 0 with ovfl_val yields 0 */
1170                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1171                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1172        }
1173}
1174
1175
1176
1177static inline void
1178pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1179{
1180        int i;
1181
1182        for (i=0; mask; i++, mask>>=1) {
1183                if ((mask & 0x1) == 0) continue;
1184                ia64_set_pmc(i, pmcs[i]);
1185        }
1186        ia64_srlz_d();
1187}
1188
1189static inline int
1190pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1191{
1192        return memcmp(a, b, sizeof(pfm_uuid_t));
1193}
1194
1195static inline int
1196pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1197{
1198        int ret = 0;
1199        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1200        return ret;
1201}
1202
1203static inline int
1204pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1205{
1206        int ret = 0;
1207        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1208        return ret;
1209}
1210
1211
1212static inline int
1213pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1214                     int cpu, void *arg)
1215{
1216        int ret = 0;
1217        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1218        return ret;
1219}
1220
1221static inline int
1222pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1223                     int cpu, void *arg)
1224{
1225        int ret = 0;
1226        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1227        return ret;
1228}
1229
1230static inline int
1231pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1232{
1233        int ret = 0;
1234        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1235        return ret;
1236}
1237
1238static inline int
1239pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1240{
1241        int ret = 0;
1242        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1243        return ret;
1244}
1245
1246static pfm_buffer_fmt_t *
1247__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1248{
1249        struct list_head * pos;
1250        pfm_buffer_fmt_t * entry;
1251
1252        list_for_each(pos, &pfm_buffer_fmt_list) {
1253                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1254                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1255                        return entry;
1256        }
1257        return NULL;
1258}
1259 
1260/*
1261 * find a buffer format based on its uuid
1262 */
1263static pfm_buffer_fmt_t *
1264pfm_find_buffer_fmt(pfm_uuid_t uuid)
1265{
1266        pfm_buffer_fmt_t * fmt;
1267        spin_lock(&pfm_buffer_fmt_lock);
1268        fmt = __pfm_find_buffer_fmt(uuid);
1269        spin_unlock(&pfm_buffer_fmt_lock);
1270        return fmt;
1271}
1272 
1273int
1274pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1275{
1276        int ret = 0;
1277
1278        /* some sanity checks */
1279        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1280
1281        /* we need at least a handler */
1282        if (fmt->fmt_handler == NULL) return -EINVAL;
1283
1284        /*
1285         * XXX: need check validity of fmt_arg_size
1286         */
1287
1288        spin_lock(&pfm_buffer_fmt_lock);
1289
1290        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1291                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1292                ret = -EBUSY;
1293                goto out;
1294        } 
1295        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1296        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1297
1298out:
1299        spin_unlock(&pfm_buffer_fmt_lock);
1300        return ret;
1301}
1302EXPORT_SYMBOL(pfm_register_buffer_fmt);
1303
1304int
1305pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1306{
1307        pfm_buffer_fmt_t *fmt;
1308        int ret = 0;
1309
1310        spin_lock(&pfm_buffer_fmt_lock);
1311
1312        fmt = __pfm_find_buffer_fmt(uuid);
1313        if (!fmt) {
1314                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1315                ret = -EINVAL;
1316                goto out;
1317        }
1318        list_del_init(&fmt->fmt_list);
1319        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1320
1321out:
1322        spin_unlock(&pfm_buffer_fmt_lock);
1323        return ret;
1324
1325}
1326EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1327
1328static int
1329pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1330{
1331        unsigned long flags;
1332        /*
1333         * validity checks on cpu_mask have been done upstream
1334         */
1335        LOCK_PFS(flags);
1336
1337        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1338                pfm_sessions.pfs_sys_sessions,
1339                pfm_sessions.pfs_task_sessions,
1340                pfm_sessions.pfs_sys_use_dbregs,
1341                is_syswide,
1342                cpu));
1343
1344        if (is_syswide) {
1345                /*
1346                 * cannot mix system wide and per-task sessions
1347                 */
1348                if (pfm_sessions.pfs_task_sessions > 0UL) {
1349                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1350                                pfm_sessions.pfs_task_sessions));
1351                        goto abort;
1352                }
1353
1354                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1355
1356                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1357
1358                pfm_sessions.pfs_sys_session[cpu] = task;
1359
1360                pfm_sessions.pfs_sys_sessions++ ;
1361
1362        } else {
1363                if (pfm_sessions.pfs_sys_sessions) goto abort;
1364                pfm_sessions.pfs_task_sessions++;
1365        }
1366
1367        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1368                pfm_sessions.pfs_sys_sessions,
1369                pfm_sessions.pfs_task_sessions,
1370                pfm_sessions.pfs_sys_use_dbregs,
1371                is_syswide,
1372                cpu));
1373
1374        /*
1375         * Force idle() into poll mode
1376         */
1377        cpu_idle_poll_ctrl(true);
1378
1379        UNLOCK_PFS(flags);
1380
1381        return 0;
1382
1383error_conflict:
1384        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1385                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1386                cpu));
1387abort:
1388        UNLOCK_PFS(flags);
1389
1390        return -EBUSY;
1391
1392}
1393
1394static int
1395pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1396{
1397        unsigned long flags;
1398        /*
1399         * validity checks on cpu_mask have been done upstream
1400         */
1401        LOCK_PFS(flags);
1402
1403        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1404                pfm_sessions.pfs_sys_sessions,
1405                pfm_sessions.pfs_task_sessions,
1406                pfm_sessions.pfs_sys_use_dbregs,
1407                is_syswide,
1408                cpu));
1409
1410
1411        if (is_syswide) {
1412                pfm_sessions.pfs_sys_session[cpu] = NULL;
1413                /*
1414                 * would not work with perfmon+more than one bit in cpu_mask
1415                 */
1416                if (ctx && ctx->ctx_fl_using_dbreg) {
1417                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1418                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1419                        } else {
1420                                pfm_sessions.pfs_sys_use_dbregs--;
1421                        }
1422                }
1423                pfm_sessions.pfs_sys_sessions--;
1424        } else {
1425                pfm_sessions.pfs_task_sessions--;
1426        }
1427        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1428                pfm_sessions.pfs_sys_sessions,
1429                pfm_sessions.pfs_task_sessions,
1430                pfm_sessions.pfs_sys_use_dbregs,
1431                is_syswide,
1432                cpu));
1433
1434        /* Undo forced polling. Last session reenables pal_halt */
1435        cpu_idle_poll_ctrl(false);
1436
1437        UNLOCK_PFS(flags);
1438
1439        return 0;
1440}
1441
1442/*
1443 * removes virtual mapping of the sampling buffer.
1444 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1445 * a PROTECT_CTX() section.
1446 */
1447static int
1448pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1449{
1450        struct task_struct *task = current;
1451        int r;
1452
1453        /* sanity checks */
1454        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1455                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1456                return -EINVAL;
1457        }
1458
1459        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1460
1461        /*
1462         * does the actual unmapping
1463         */
1464        r = vm_munmap((unsigned long)vaddr, size);
1465
1466        if (r !=0) {
1467                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1468        }
1469
1470        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1471
1472        return 0;
1473}
1474
1475/*
1476 * free actual physical storage used by sampling buffer
1477 */
1478#if 0
1479static int
1480pfm_free_smpl_buffer(pfm_context_t *ctx)
1481{
1482        pfm_buffer_fmt_t *fmt;
1483
1484        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1485
1486        /*
1487         * we won't use the buffer format anymore
1488         */
1489        fmt = ctx->ctx_buf_fmt;
1490
1491        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492                ctx->ctx_smpl_hdr,
1493                ctx->ctx_smpl_size,
1494                ctx->ctx_smpl_vaddr));
1495
1496        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497
1498        /*
1499         * free the buffer
1500         */
1501        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1502
1503        ctx->ctx_smpl_hdr  = NULL;
1504        ctx->ctx_smpl_size = 0UL;
1505
1506        return 0;
1507
1508invalid_free:
1509        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1510        return -EINVAL;
1511}
1512#endif
1513
1514static inline void
1515pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1516{
1517        if (fmt == NULL) return;
1518
1519        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520
1521}
1522
1523/*
1524 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1525 * no real gain from having the whole whorehouse mounted. So we don't need
1526 * any operations on the root directory. However, we need a non-trivial
1527 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1528 */
1529static struct vfsmount *pfmfs_mnt __read_mostly;
1530
1531static int __init
1532init_pfm_fs(void)
1533{
1534        int err = register_filesystem(&pfm_fs_type);
1535        if (!err) {
1536                pfmfs_mnt = kern_mount(&pfm_fs_type);
1537                err = PTR_ERR(pfmfs_mnt);
1538                if (IS_ERR(pfmfs_mnt))
1539                        unregister_filesystem(&pfm_fs_type);
1540                else
1541                        err = 0;
1542        }
1543        return err;
1544}
1545
1546static ssize_t
1547pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1548{
1549        pfm_context_t *ctx;
1550        pfm_msg_t *msg;
1551        ssize_t ret;
1552        unsigned long flags;
1553        DECLARE_WAITQUEUE(wait, current);
1554        if (PFM_IS_FILE(filp) == 0) {
1555                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1556                return -EINVAL;
1557        }
1558
1559        ctx = filp->private_data;
1560        if (ctx == NULL) {
1561                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1562                return -EINVAL;
1563        }
1564
1565        /*
1566         * check even when there is no message
1567         */
1568        if (size < sizeof(pfm_msg_t)) {
1569                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1570                return -EINVAL;
1571        }
1572
1573        PROTECT_CTX(ctx, flags);
1574
1575        /*
1576         * put ourselves on the wait queue
1577         */
1578        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579
1580
1581        for(;;) {
1582                /*
1583                 * check wait queue
1584                 */
1585
1586                set_current_state(TASK_INTERRUPTIBLE);
1587
1588                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1589
1590                ret = 0;
1591                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1592
1593                UNPROTECT_CTX(ctx, flags);
1594
1595                /*
1596                 * check non-blocking read
1597                 */
1598                ret = -EAGAIN;
1599                if(filp->f_flags & O_NONBLOCK) break;
1600
1601                /*
1602                 * check pending signals
1603                 */
1604                if(signal_pending(current)) {
1605                        ret = -EINTR;
1606                        break;
1607                }
1608                /*
1609                 * no message, so wait
1610                 */
1611                schedule();
1612
1613                PROTECT_CTX(ctx, flags);
1614        }
1615        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1616        set_current_state(TASK_RUNNING);
1617        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1618
1619        if (ret < 0) goto abort;
1620
1621        ret = -EINVAL;
1622        msg = pfm_get_next_msg(ctx);
1623        if (msg == NULL) {
1624                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1625                goto abort_locked;
1626        }
1627
1628        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1629
1630        ret = -EFAULT;
1631        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1632
1633abort_locked:
1634        UNPROTECT_CTX(ctx, flags);
1635abort:
1636        return ret;
1637}
1638
1639static ssize_t
1640pfm_write(struct file *file, const char __user *ubuf,
1641                          size_t size, loff_t *ppos)
1642{
1643        DPRINT(("pfm_write called\n"));
1644        return -EINVAL;
1645}
1646
1647static __poll_t
1648pfm_poll(struct file *filp, poll_table * wait)
1649{
1650        pfm_context_t *ctx;
1651        unsigned long flags;
1652        __poll_t mask = 0;
1653
1654        if (PFM_IS_FILE(filp) == 0) {
1655                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1656                return 0;
1657        }
1658
1659        ctx = filp->private_data;
1660        if (ctx == NULL) {
1661                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1662                return 0;
1663        }
1664
1665
1666        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1667
1668        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1669
1670        PROTECT_CTX(ctx, flags);
1671
1672        if (PFM_CTXQ_EMPTY(ctx) == 0)
1673                mask =  EPOLLIN | EPOLLRDNORM;
1674
1675        UNPROTECT_CTX(ctx, flags);
1676
1677        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1678
1679        return mask;
1680}
1681
1682static long
1683pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1684{
1685        DPRINT(("pfm_ioctl called\n"));
1686        return -EINVAL;
1687}
1688
1689/*
1690 * interrupt cannot be masked when coming here
1691 */
1692static inline int
1693pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1694{
1695        int ret;
1696
1697        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1698
1699        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700                task_pid_nr(current),
1701                fd,
1702                on,
1703                ctx->ctx_async_queue, ret));
1704
1705        return ret;
1706}
1707
1708static int
1709pfm_fasync(int fd, struct file *filp, int on)
1710{
1711        pfm_context_t *ctx;
1712        int ret;
1713
1714        if (PFM_IS_FILE(filp) == 0) {
1715                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1716                return -EBADF;
1717        }
1718
1719        ctx = filp->private_data;
1720        if (ctx == NULL) {
1721                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1722                return -EBADF;
1723        }
1724        /*
1725         * we cannot mask interrupts during this call because this may
1726         * may go to sleep if memory is not readily avalaible.
1727         *
1728         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1729         * done in caller. Serialization of this function is ensured by caller.
1730         */
1731        ret = pfm_do_fasync(fd, filp, ctx, on);
1732
1733
1734        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735                fd,
1736                on,
1737                ctx->ctx_async_queue, ret));
1738
1739        return ret;
1740}
1741
1742#ifdef CONFIG_SMP
1743/*
1744 * this function is exclusively called from pfm_close().
1745 * The context is not protected at that time, nor are interrupts
1746 * on the remote CPU. That's necessary to avoid deadlocks.
1747 */
1748static void
1749pfm_syswide_force_stop(void *info)
1750{
1751        pfm_context_t   *ctx = (pfm_context_t *)info;
1752        struct pt_regs *regs = task_pt_regs(current);
1753        struct task_struct *owner;
1754        unsigned long flags;
1755        int ret;
1756
1757        if (ctx->ctx_cpu != smp_processor_id()) {
1758                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1759                        ctx->ctx_cpu,
1760                        smp_processor_id());
1761                return;
1762        }
1763        owner = GET_PMU_OWNER();
1764        if (owner != ctx->ctx_task) {
1765                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1766                        smp_processor_id(),
1767                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1768                return;
1769        }
1770        if (GET_PMU_CTX() != ctx) {
1771                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1772                        smp_processor_id(),
1773                        GET_PMU_CTX(), ctx);
1774                return;
1775        }
1776
1777        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1778        /*
1779         * the context is already protected in pfm_close(), we simply
1780         * need to mask interrupts to avoid a PMU interrupt race on
1781         * this CPU
1782         */
1783        local_irq_save(flags);
1784
1785        ret = pfm_context_unload(ctx, NULL, 0, regs);
1786        if (ret) {
1787                DPRINT(("context_unload returned %d\n", ret));
1788        }
1789
1790        /*
1791         * unmask interrupts, PMU interrupts are now spurious here
1792         */
1793        local_irq_restore(flags);
1794}
1795
1796static void
1797pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1798{
1799        int ret;
1800
1801        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1802        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1803        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1804}
1805#endif /* CONFIG_SMP */
1806
1807/*
1808 * called for each close(). Partially free resources.
1809 * When caller is self-monitoring, the context is unloaded.
1810 */
1811static int
1812pfm_flush(struct file *filp, fl_owner_t id)
1813{
1814        pfm_context_t *ctx;
1815        struct task_struct *task;
1816        struct pt_regs *regs;
1817        unsigned long flags;
1818        unsigned long smpl_buf_size = 0UL;
1819        void *smpl_buf_vaddr = NULL;
1820        int state, is_system;
1821
1822        if (PFM_IS_FILE(filp) == 0) {
1823                DPRINT(("bad magic for\n"));
1824                return -EBADF;
1825        }
1826
1827        ctx = filp->private_data;
1828        if (ctx == NULL) {
1829                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1830                return -EBADF;
1831        }
1832
1833        /*
1834         * remove our file from the async queue, if we use this mode.
1835         * This can be done without the context being protected. We come
1836         * here when the context has become unreachable by other tasks.
1837         *
1838         * We may still have active monitoring at this point and we may
1839         * end up in pfm_overflow_handler(). However, fasync_helper()
1840         * operates with interrupts disabled and it cleans up the
1841         * queue. If the PMU handler is called prior to entering
1842         * fasync_helper() then it will send a signal. If it is
1843         * invoked after, it will find an empty queue and no
1844         * signal will be sent. In both case, we are safe
1845         */
1846        PROTECT_CTX(ctx, flags);
1847
1848        state     = ctx->ctx_state;
1849        is_system = ctx->ctx_fl_system;
1850
1851        task = PFM_CTX_TASK(ctx);
1852        regs = task_pt_regs(task);
1853
1854        DPRINT(("ctx_state=%d is_current=%d\n",
1855                state,
1856                task == current ? 1 : 0));
1857
1858        /*
1859         * if state == UNLOADED, then task is NULL
1860         */
1861
1862        /*
1863         * we must stop and unload because we are losing access to the context.
1864         */
1865        if (task == current) {
1866#ifdef CONFIG_SMP
1867                /*
1868                 * the task IS the owner but it migrated to another CPU: that's bad
1869                 * but we must handle this cleanly. Unfortunately, the kernel does
1870                 * not provide a mechanism to block migration (while the context is loaded).
1871                 *
1872                 * We need to release the resource on the ORIGINAL cpu.
1873                 */
1874                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1875
1876                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1877                        /*
1878                         * keep context protected but unmask interrupt for IPI
1879                         */
1880                        local_irq_restore(flags);
1881
1882                        pfm_syswide_cleanup_other_cpu(ctx);
1883
1884                        /*
1885                         * restore interrupt masking
1886                         */
1887                        local_irq_save(flags);
1888
1889                        /*
1890                         * context is unloaded at this point
1891                         */
1892                } else
1893#endif /* CONFIG_SMP */
1894                {
1895
1896                        DPRINT(("forcing unload\n"));
1897                        /*
1898                        * stop and unload, returning with state UNLOADED
1899                        * and session unreserved.
1900                        */
1901                        pfm_context_unload(ctx, NULL, 0, regs);
1902
1903                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1904                }
1905        }
1906
1907        /*
1908         * remove virtual mapping, if any, for the calling task.
1909         * cannot reset ctx field until last user is calling close().
1910         *
1911         * ctx_smpl_vaddr must never be cleared because it is needed
1912         * by every task with access to the context
1913         *
1914         * When called from do_exit(), the mm context is gone already, therefore
1915         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1916         * do anything here
1917         */
1918        if (ctx->ctx_smpl_vaddr && current->mm) {
1919                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1920                smpl_buf_size  = ctx->ctx_smpl_size;
1921        }
1922
1923        UNPROTECT_CTX(ctx, flags);
1924
1925        /*
1926         * if there was a mapping, then we systematically remove it
1927         * at this point. Cannot be done inside critical section
1928         * because some VM function reenables interrupts.
1929         *
1930         */
1931        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1932
1933        return 0;
1934}
1935/*
1936 * called either on explicit close() or from exit_files(). 
1937 * Only the LAST user of the file gets to this point, i.e., it is
1938 * called only ONCE.
1939 *
1940 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1941 * (fput()),i.e, last task to access the file. Nobody else can access the 
1942 * file at this point.
1943 *
1944 * When called from exit_files(), the VMA has been freed because exit_mm()
1945 * is executed before exit_files().
1946 *
1947 * When called from exit_files(), the current task is not yet ZOMBIE but we
1948 * flush the PMU state to the context. 
1949 */
1950static int
1951pfm_close(struct inode *inode, struct file *filp)
1952{
1953        pfm_context_t *ctx;
1954        struct task_struct *task;
1955        struct pt_regs *regs;
1956        DECLARE_WAITQUEUE(wait, current);
1957        unsigned long flags;
1958        unsigned long smpl_buf_size = 0UL;
1959        void *smpl_buf_addr = NULL;
1960        int free_possible = 1;
1961        int state, is_system;
1962
1963        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1964
1965        if (PFM_IS_FILE(filp) == 0) {
1966                DPRINT(("bad magic\n"));
1967                return -EBADF;
1968        }
1969        
1970        ctx = filp->private_data;
1971        if (ctx == NULL) {
1972                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1973                return -EBADF;
1974        }
1975
1976        PROTECT_CTX(ctx, flags);
1977
1978        state     = ctx->ctx_state;
1979        is_system = ctx->ctx_fl_system;
1980
1981        task = PFM_CTX_TASK(ctx);
1982        regs = task_pt_regs(task);
1983
1984        DPRINT(("ctx_state=%d is_current=%d\n", 
1985                state,
1986                task == current ? 1 : 0));
1987
1988        /*
1989         * if task == current, then pfm_flush() unloaded the context
1990         */
1991        if (state == PFM_CTX_UNLOADED) goto doit;
1992
1993        /*
1994         * context is loaded/masked and task != current, we need to
1995         * either force an unload or go zombie
1996         */
1997
1998        /*
1999         * The task is currently blocked or will block after an overflow.
2000         * we must force it to wakeup to get out of the
2001         * MASKED state and transition to the unloaded state by itself.
2002         *
2003         * This situation is only possible for per-task mode
2004         */
2005        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2006
2007                /*
2008                 * set a "partial" zombie state to be checked
2009                 * upon return from down() in pfm_handle_work().
2010                 *
2011                 * We cannot use the ZOMBIE state, because it is checked
2012                 * by pfm_load_regs() which is called upon wakeup from down().
2013                 * In such case, it would free the context and then we would
2014                 * return to pfm_handle_work() which would access the
2015                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2016                 * but visible to pfm_handle_work().
2017                 *
2018                 * For some window of time, we have a zombie context with
2019                 * ctx_state = MASKED  and not ZOMBIE
2020                 */
2021                ctx->ctx_fl_going_zombie = 1;
2022
2023                /*
2024                 * force task to wake up from MASKED state
2025                 */
2026                complete(&ctx->ctx_restart_done);
2027
2028                DPRINT(("waking up ctx_state=%d\n", state));
2029
2030                /*
2031                 * put ourself to sleep waiting for the other
2032                 * task to report completion
2033                 *
2034                 * the context is protected by mutex, therefore there
2035                 * is no risk of being notified of completion before
2036                 * begin actually on the waitq.
2037                 */
2038                set_current_state(TASK_INTERRUPTIBLE);
2039                add_wait_queue(&ctx->ctx_zombieq, &wait);
2040
2041                UNPROTECT_CTX(ctx, flags);
2042
2043                /*
2044                 * XXX: check for signals :
2045                 *      - ok for explicit close
2046                 *      - not ok when coming from exit_files()
2047                 */
2048                schedule();
2049
2050
2051                PROTECT_CTX(ctx, flags);
2052
2053
2054                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2055                set_current_state(TASK_RUNNING);
2056
2057                /*
2058                 * context is unloaded at this point
2059                 */
2060                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2061        }
2062        else if (task != current) {
2063#ifdef CONFIG_SMP
2064                /*
2065                 * switch context to zombie state
2066                 */
2067                ctx->ctx_state = PFM_CTX_ZOMBIE;
2068
2069                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2070                /*
2071                 * cannot free the context on the spot. deferred until
2072                 * the task notices the ZOMBIE state
2073                 */
2074                free_possible = 0;
2075#else
2076                pfm_context_unload(ctx, NULL, 0, regs);
2077#endif
2078        }
2079
2080doit:
2081        /* reload state, may have changed during  opening of critical section */
2082        state = ctx->ctx_state;
2083
2084        /*
2085         * the context is still attached to a task (possibly current)
2086         * we cannot destroy it right now
2087         */
2088
2089        /*
2090         * we must free the sampling buffer right here because
2091         * we cannot rely on it being cleaned up later by the
2092         * monitored task. It is not possible to free vmalloc'ed
2093         * memory in pfm_load_regs(). Instead, we remove the buffer
2094         * now. should there be subsequent PMU overflow originally
2095         * meant for sampling, the will be converted to spurious
2096         * and that's fine because the monitoring tools is gone anyway.
2097         */
2098        if (ctx->ctx_smpl_hdr) {
2099                smpl_buf_addr = ctx->ctx_smpl_hdr;
2100                smpl_buf_size = ctx->ctx_smpl_size;
2101                /* no more sampling */
2102                ctx->ctx_smpl_hdr = NULL;
2103                ctx->ctx_fl_is_sampling = 0;
2104        }
2105
2106        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2107                state,
2108                free_possible,
2109                smpl_buf_addr,
2110                smpl_buf_size));
2111
2112        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2113
2114        /*
2115         * UNLOADED that the session has already been unreserved.
2116         */
2117        if (state == PFM_CTX_ZOMBIE) {
2118                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2119        }
2120
2121        /*
2122         * disconnect file descriptor from context must be done
2123         * before we unlock.
2124         */
2125        filp->private_data = NULL;
2126
2127        /*
2128         * if we free on the spot, the context is now completely unreachable
2129         * from the callers side. The monitored task side is also cut, so we
2130         * can freely cut.
2131         *
2132         * If we have a deferred free, only the caller side is disconnected.
2133         */
2134        UNPROTECT_CTX(ctx, flags);
2135
2136        /*
2137         * All memory free operations (especially for vmalloc'ed memory)
2138         * MUST be done with interrupts ENABLED.
2139         */
2140        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2141
2142        /*
2143         * return the memory used by the context
2144         */
2145        if (free_possible) pfm_context_free(ctx);
2146
2147        return 0;
2148}
2149
2150static const struct file_operations pfm_file_ops = {
2151        .llseek         = no_llseek,
2152        .read           = pfm_read,
2153        .write          = pfm_write,
2154        .poll           = pfm_poll,
2155        .unlocked_ioctl = pfm_ioctl,
2156        .fasync         = pfm_fasync,
2157        .release        = pfm_close,
2158        .flush          = pfm_flush
2159};
2160
2161static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2162{
2163        return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2164                             d_inode(dentry)->i_ino);
2165}
2166
2167static const struct dentry_operations pfmfs_dentry_operations = {
2168        .d_delete = always_delete_dentry,
2169        .d_dname = pfmfs_dname,
2170};
2171
2172
2173static struct file *
2174pfm_alloc_file(pfm_context_t *ctx)
2175{
2176        struct file *file;
2177        struct inode *inode;
2178        struct path path;
2179        struct qstr this = { .name = "" };
2180
2181        /*
2182         * allocate a new inode
2183         */
2184        inode = new_inode(pfmfs_mnt->mnt_sb);
2185        if (!inode)
2186                return ERR_PTR(-ENOMEM);
2187
2188        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2189
2190        inode->i_mode = S_IFCHR|S_IRUGO;
2191        inode->i_uid  = current_fsuid();
2192        inode->i_gid  = current_fsgid();
2193
2194        /*
2195         * allocate a new dcache entry
2196         */
2197        path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2198        if (!path.dentry) {
2199                iput(inode);
2200                return ERR_PTR(-ENOMEM);
2201        }
2202        path.mnt = mntget(pfmfs_mnt);
2203
2204        d_add(path.dentry, inode);
2205
2206        file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2207        if (IS_ERR(file)) {
2208                path_put(&path);
2209                return file;
2210        }
2211
2212        file->f_flags = O_RDONLY;
2213        file->private_data = ctx;
2214
2215        return file;
2216}
2217
2218static int
2219pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2220{
2221        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2222
2223        while (size > 0) {
2224                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2225
2226
2227                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2228                        return -ENOMEM;
2229
2230                addr  += PAGE_SIZE;
2231                buf   += PAGE_SIZE;
2232                size  -= PAGE_SIZE;
2233        }
2234        return 0;
2235}
2236
2237/*
2238 * allocate a sampling buffer and remaps it into the user address space of the task
2239 */
2240static int
2241pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2242{
2243        struct mm_struct *mm = task->mm;
2244        struct vm_area_struct *vma = NULL;
2245        unsigned long size;
2246        void *smpl_buf;
2247
2248
2249        /*
2250         * the fixed header + requested size and align to page boundary
2251         */
2252        size = PAGE_ALIGN(rsize);
2253
2254        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2255
2256        /*
2257         * check requested size to avoid Denial-of-service attacks
2258         * XXX: may have to refine this test
2259         * Check against address space limit.
2260         *
2261         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2262         *      return -ENOMEM;
2263         */
2264        if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2265                return -ENOMEM;
2266
2267        /*
2268         * We do the easy to undo allocations first.
2269         *
2270         * pfm_rvmalloc(), clears the buffer, so there is no leak
2271         */
2272        smpl_buf = pfm_rvmalloc(size);
2273        if (smpl_buf == NULL) {
2274                DPRINT(("Can't allocate sampling buffer\n"));
2275                return -ENOMEM;
2276        }
2277
2278        DPRINT(("smpl_buf @%p\n", smpl_buf));
2279
2280        /* allocate vma */
2281        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2282        if (!vma) {
2283                DPRINT(("Cannot allocate vma\n"));
2284                goto error_kmem;
2285        }
2286        INIT_LIST_HEAD(&vma->anon_vma_chain);
2287
2288        /*
2289         * partially initialize the vma for the sampling buffer
2290         */
2291        vma->vm_mm           = mm;
2292        vma->vm_file         = get_file(filp);
2293        vma->vm_flags        = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2294        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2295
2296        /*
2297         * Now we have everything we need and we can initialize
2298         * and connect all the data structures
2299         */
2300
2301        ctx->ctx_smpl_hdr   = smpl_buf;
2302        ctx->ctx_smpl_size  = size; /* aligned size */
2303
2304        /*
2305         * Let's do the difficult operations next.
2306         *
2307         * now we atomically find some area in the address space and
2308         * remap the buffer in it.
2309         */
2310        down_write(&task->mm->mmap_sem);
2311
2312        /* find some free area in address space, must have mmap sem held */
2313        vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2314        if (IS_ERR_VALUE(vma->vm_start)) {
2315                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2316                up_write(&task->mm->mmap_sem);
2317                goto error;
2318        }
2319        vma->vm_end = vma->vm_start + size;
2320        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321
2322        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2323
2324        /* can only be applied to current task, need to have the mm semaphore held when called */
2325        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2326                DPRINT(("Can't remap buffer\n"));
2327                up_write(&task->mm->mmap_sem);
2328                goto error;
2329        }
2330
2331        /*
2332         * now insert the vma in the vm list for the process, must be
2333         * done with mmap lock held
2334         */
2335        insert_vm_struct(mm, vma);
2336
2337        vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2338        up_write(&task->mm->mmap_sem);
2339
2340        /*
2341         * keep track of user level virtual address
2342         */
2343        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2344        *(unsigned long *)user_vaddr = vma->vm_start;
2345
2346        return 0;
2347
2348error:
2349        kmem_cache_free(vm_area_cachep, vma);
2350error_kmem:
2351        pfm_rvfree(smpl_buf, size);
2352
2353        return -ENOMEM;
2354}
2355
2356/*
2357 * XXX: do something better here
2358 */
2359static int
2360pfm_bad_permissions(struct task_struct *task)
2361{
2362        const struct cred *tcred;
2363        kuid_t uid = current_uid();
2364        kgid_t gid = current_gid();
2365        int ret;
2366
2367        rcu_read_lock();
2368        tcred = __task_cred(task);
2369
2370        /* inspired by ptrace_attach() */
2371        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2372                from_kuid(&init_user_ns, uid),
2373                from_kgid(&init_user_ns, gid),
2374                from_kuid(&init_user_ns, tcred->euid),
2375                from_kuid(&init_user_ns, tcred->suid),
2376                from_kuid(&init_user_ns, tcred->uid),
2377                from_kgid(&init_user_ns, tcred->egid),
2378                from_kgid(&init_user_ns, tcred->sgid)));
2379
2380        ret = ((!uid_eq(uid, tcred->euid))
2381               || (!uid_eq(uid, tcred->suid))
2382               || (!uid_eq(uid, tcred->uid))
2383               || (!gid_eq(gid, tcred->egid))
2384               || (!gid_eq(gid, tcred->sgid))
2385               || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2386
2387        rcu_read_unlock();
2388        return ret;
2389}
2390
2391static int
2392pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2393{
2394        int ctx_flags;
2395
2396        /* valid signal */
2397
2398        ctx_flags = pfx->ctx_flags;
2399
2400        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2401
2402                /*
2403                 * cannot block in this mode
2404                 */
2405                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2406                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2407                        return -EINVAL;
2408                }
2409        } else {
2410        }
2411        /* probably more to add here */
2412
2413        return 0;
2414}
2415
2416static int
2417pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2418                     unsigned int cpu, pfarg_context_t *arg)
2419{
2420        pfm_buffer_fmt_t *fmt = NULL;
2421        unsigned long size = 0UL;
2422        void *uaddr = NULL;
2423        void *fmt_arg = NULL;
2424        int ret = 0;
2425#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2426
2427        /* invoke and lock buffer format, if found */
2428        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2429        if (fmt == NULL) {
2430                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2431                return -EINVAL;
2432        }
2433
2434        /*
2435         * buffer argument MUST be contiguous to pfarg_context_t
2436         */
2437        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2438
2439        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2440
2441        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2442
2443        if (ret) goto error;
2444
2445        /* link buffer format and context */
2446        ctx->ctx_buf_fmt = fmt;
2447        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2448
2449        /*
2450         * check if buffer format wants to use perfmon buffer allocation/mapping service
2451         */
2452        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2453        if (ret) goto error;
2454
2455        if (size) {
2456                /*
2457                 * buffer is always remapped into the caller's address space
2458                 */
2459                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2460                if (ret) goto error;
2461
2462                /* keep track of user address of buffer */
2463                arg->ctx_smpl_vaddr = uaddr;
2464        }
2465        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2466
2467error:
2468        return ret;
2469}
2470
2471static void
2472pfm_reset_pmu_state(pfm_context_t *ctx)
2473{
2474        int i;
2475
2476        /*
2477         * install reset values for PMC.
2478         */
2479        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2480                if (PMC_IS_IMPL(i) == 0) continue;
2481                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2482                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2483        }
2484        /*
2485         * PMD registers are set to 0UL when the context in memset()
2486         */
2487
2488        /*
2489         * On context switched restore, we must restore ALL pmc and ALL pmd even
2490         * when they are not actively used by the task. In UP, the incoming process
2491         * may otherwise pick up left over PMC, PMD state from the previous process.
2492         * As opposed to PMD, stale PMC can cause harm to the incoming
2493         * process because they may change what is being measured.
2494         * Therefore, we must systematically reinstall the entire
2495         * PMC state. In SMP, the same thing is possible on the
2496         * same CPU but also on between 2 CPUs.
2497         *
2498         * The problem with PMD is information leaking especially
2499         * to user level when psr.sp=0
2500         *
2501         * There is unfortunately no easy way to avoid this problem
2502         * on either UP or SMP. This definitively slows down the
2503         * pfm_load_regs() function.
2504         */
2505
2506         /*
2507          * bitmask of all PMCs accessible to this context
2508          *
2509          * PMC0 is treated differently.
2510          */
2511        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2512
2513        /*
2514         * bitmask of all PMDs that are accessible to this context
2515         */
2516        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2517
2518        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2519
2520        /*
2521         * useful in case of re-enable after disable
2522         */
2523        ctx->ctx_used_ibrs[0] = 0UL;
2524        ctx->ctx_used_dbrs[0] = 0UL;
2525}
2526
2527static int
2528pfm_ctx_getsize(void *arg, size_t *sz)
2529{
2530        pfarg_context_t *req = (pfarg_context_t *)arg;
2531        pfm_buffer_fmt_t *fmt;
2532
2533        *sz = 0;
2534
2535        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2536
2537        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2538        if (fmt == NULL) {
2539                DPRINT(("cannot find buffer format\n"));
2540                return -EINVAL;
2541        }
2542        /* get just enough to copy in user parameters */
2543        *sz = fmt->fmt_arg_size;
2544        DPRINT(("arg_size=%lu\n", *sz));
2545
2546        return 0;
2547}
2548
2549
2550
2551/*
2552 * cannot attach if :
2553 *      - kernel task
2554 *      - task not owned by caller
2555 *      - task incompatible with context mode
2556 */
2557static int
2558pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2559{
2560        /*
2561         * no kernel task or task not owner by caller
2562         */
2563        if (task->mm == NULL) {
2564                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2565                return -EPERM;
2566        }
2567        if (pfm_bad_permissions(task)) {
2568                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2569                return -EPERM;
2570        }
2571        /*
2572         * cannot block in self-monitoring mode
2573         */
2574        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2575                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2576                return -EINVAL;
2577        }
2578
2579        if (task->exit_state == EXIT_ZOMBIE) {
2580                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2581                return -EBUSY;
2582        }
2583
2584        /*
2585         * always ok for self
2586         */
2587        if (task == current) return 0;
2588
2589        if (!task_is_stopped_or_traced(task)) {
2590                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2591                return -EBUSY;
2592        }
2593        /*
2594         * make sure the task is off any CPU
2595         */
2596        wait_task_inactive(task, 0);
2597
2598        /* more to come... */
2599
2600        return 0;
2601}
2602
2603static int
2604pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2605{
2606        struct task_struct *p = current;
2607        int ret;
2608
2609        /* XXX: need to add more checks here */
2610        if (pid < 2) return -EPERM;
2611
2612        if (pid != task_pid_vnr(current)) {
2613                /* make sure task cannot go away while we operate on it */
2614                p = find_get_task_by_vpid(pid);
2615                if (!p)
2616                        return -ESRCH;
2617        }
2618
2619        ret = pfm_task_incompatible(ctx, p);
2620        if (ret == 0) {
2621                *task = p;
2622        } else if (p != current) {
2623                pfm_put_task(p);
2624        }
2625        return ret;
2626}
2627
2628
2629
2630static int
2631pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2632{
2633        pfarg_context_t *req = (pfarg_context_t *)arg;
2634        struct file *filp;
2635        struct path path;
2636        int ctx_flags;
2637        int fd;
2638        int ret;
2639
2640        /* let's check the arguments first */
2641        ret = pfarg_is_sane(current, req);
2642        if (ret < 0)
2643                return ret;
2644
2645        ctx_flags = req->ctx_flags;
2646
2647        ret = -ENOMEM;
2648
2649        fd = get_unused_fd_flags(0);
2650        if (fd < 0)
2651                return fd;
2652
2653        ctx = pfm_context_alloc(ctx_flags);
2654        if (!ctx)
2655                goto error;
2656
2657        filp = pfm_alloc_file(ctx);
2658        if (IS_ERR(filp)) {
2659                ret = PTR_ERR(filp);
2660                goto error_file;
2661        }
2662
2663        req->ctx_fd = ctx->ctx_fd = fd;
2664
2665        /*
2666         * does the user want to sample?
2667         */
2668        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2669                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2670                if (ret)
2671                        goto buffer_error;
2672        }
2673
2674        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2675                ctx,
2676                ctx_flags,
2677                ctx->ctx_fl_system,
2678                ctx->ctx_fl_block,
2679                ctx->ctx_fl_excl_idle,
2680                ctx->ctx_fl_no_msg,
2681                ctx->ctx_fd));
2682
2683        /*
2684         * initialize soft PMU state
2685         */
2686        pfm_reset_pmu_state(ctx);
2687
2688        fd_install(fd, filp);
2689
2690        return 0;
2691
2692buffer_error:
2693        path = filp->f_path;
2694        put_filp(filp);
2695        path_put(&path);
2696
2697        if (ctx->ctx_buf_fmt) {
2698                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2699        }
2700error_file:
2701        pfm_context_free(ctx);
2702
2703error:
2704        put_unused_fd(fd);
2705        return ret;
2706}
2707
2708static inline unsigned long
2709pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2710{
2711        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2712        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2713        extern unsigned long carta_random32 (unsigned long seed);
2714
2715        if (reg->flags & PFM_REGFL_RANDOM) {
2716                new_seed = carta_random32(old_seed);
2717                val -= (old_seed & mask);       /* counter values are negative numbers! */
2718                if ((mask >> 32) != 0)
2719                        /* construct a full 64-bit random value: */
2720                        new_seed |= carta_random32(old_seed >> 32) << 32;
2721                reg->seed = new_seed;
2722        }
2723        reg->lval = val;
2724        return val;
2725}
2726
2727static void
2728pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2729{
2730        unsigned long mask = ovfl_regs[0];
2731        unsigned long reset_others = 0UL;
2732        unsigned long val;
2733        int i;
2734
2735        /*
2736         * now restore reset value on sampling overflowed counters
2737         */
2738        mask >>= PMU_FIRST_COUNTER;
2739        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2740
2741                if ((mask & 0x1UL) == 0UL) continue;
2742
2743                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2744                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2745
2746                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2747        }
2748
2749        /*
2750         * Now take care of resetting the other registers
2751         */
2752        for(i = 0; reset_others; i++, reset_others >>= 1) {
2753
2754                if ((reset_others & 0x1) == 0) continue;
2755
2756                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2757
2758                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2759                          is_long_reset ? "long" : "short", i, val));
2760        }
2761}
2762
2763static void
2764pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2765{
2766        unsigned long mask = ovfl_regs[0];
2767        unsigned long reset_others = 0UL;
2768        unsigned long val;
2769        int i;
2770
2771        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2772
2773        if (ctx->ctx_state == PFM_CTX_MASKED) {
2774                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2775                return;
2776        }
2777
2778        /*
2779         * now restore reset value on sampling overflowed counters
2780         */
2781        mask >>= PMU_FIRST_COUNTER;
2782        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2783
2784                if ((mask & 0x1UL) == 0UL) continue;
2785
2786                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2787                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2788
2789                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2790
2791                pfm_write_soft_counter(ctx, i, val);
2792        }
2793
2794        /*
2795         * Now take care of resetting the other registers
2796         */
2797        for(i = 0; reset_others; i++, reset_others >>= 1) {
2798
2799                if ((reset_others & 0x1) == 0) continue;
2800
2801                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2802
2803                if (PMD_IS_COUNTING(i)) {
2804                        pfm_write_soft_counter(ctx, i, val);
2805                } else {
2806                        ia64_set_pmd(i, val);
2807                }
2808                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2809                          is_long_reset ? "long" : "short", i, val));
2810        }
2811        ia64_srlz_d();
2812}
2813
2814static int
2815pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2816{
2817        struct task_struct *task;
2818        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2819        unsigned long value, pmc_pm;
2820        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2821        unsigned int cnum, reg_flags, flags, pmc_type;
2822        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2823        int is_monitor, is_counting, state;
2824        int ret = -EINVAL;
2825        pfm_reg_check_t wr_func;
2826#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2827
2828        state     = ctx->ctx_state;
2829        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2830        is_system = ctx->ctx_fl_system;
2831        task      = ctx->ctx_task;
2832        impl_pmds = pmu_conf->impl_pmds[0];
2833
2834        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2835
2836        if (is_loaded) {
2837                /*
2838                 * In system wide and when the context is loaded, access can only happen
2839                 * when the caller is running on the CPU being monitored by the session.
2840                 * It does not have to be the owner (ctx_task) of the context per se.
2841                 */
2842                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2843                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2844                        return -EBUSY;
2845                }
2846                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2847        }
2848        expert_mode = pfm_sysctl.expert_mode; 
2849
2850        for (i = 0; i < count; i++, req++) {
2851
2852                cnum       = req->reg_num;
2853                reg_flags  = req->reg_flags;
2854                value      = req->reg_value;
2855                smpl_pmds  = req->reg_smpl_pmds[0];
2856                reset_pmds = req->reg_reset_pmds[0];
2857                flags      = 0;
2858
2859
2860                if (cnum >= PMU_MAX_PMCS) {
2861                        DPRINT(("pmc%u is invalid\n", cnum));
2862                        goto error;
2863                }
2864
2865                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2866                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2867                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2868                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2869
2870                /*
2871                 * we reject all non implemented PMC as well
2872                 * as attempts to modify PMC[0-3] which are used
2873                 * as status registers by the PMU
2874                 */
2875                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2876                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2877                        goto error;
2878                }
2879                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2880                /*
2881                 * If the PMC is a monitor, then if the value is not the default:
2882                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2883                 *      - per-task           : PMCx.pm=0 (user monitor)
2884                 */
2885                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2886                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2887                                cnum,
2888                                pmc_pm,
2889                                is_system));
2890                        goto error;
2891                }
2892
2893                if (is_counting) {
2894                        /*
2895                         * enforce generation of overflow interrupt. Necessary on all
2896                         * CPUs.
2897                         */
2898                        value |= 1 << PMU_PMC_OI;
2899
2900                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2901                                flags |= PFM_REGFL_OVFL_NOTIFY;
2902                        }
2903
2904                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2905
2906                        /* verify validity of smpl_pmds */
2907                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2908                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2909                                goto error;
2910                        }
2911
2912                        /* verify validity of reset_pmds */
2913                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2914                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2915                                goto error;
2916                        }
2917                } else {
2918                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2919                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2920                                goto error;
2921                        }
2922                        /* eventid on non-counting monitors are ignored */
2923                }
2924
2925                /*
2926                 * execute write checker, if any
2927                 */
2928                if (likely(expert_mode == 0 && wr_func)) {
2929                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2930                        if (ret) goto error;
2931                        ret = -EINVAL;
2932                }
2933
2934                /*
2935                 * no error on this register
2936                 */
2937                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2938
2939                /*
2940                 * Now we commit the changes to the software state
2941                 */
2942
2943                /*
2944                 * update overflow information
2945                 */
2946                if (is_counting) {
2947                        /*
2948                         * full flag update each time a register is programmed
2949                         */
2950                        ctx->ctx_pmds[cnum].flags = flags;
2951
2952                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2953                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2954                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2955
2956                        /*
2957                         * Mark all PMDS to be accessed as used.
2958                         *
2959                         * We do not keep track of PMC because we have to
2960                         * systematically restore ALL of them.
2961                         *
2962                         * We do not update the used_monitors mask, because
2963                         * if we have not programmed them, then will be in
2964                         * a quiescent state, therefore we will not need to
2965                         * mask/restore then when context is MASKED.
2966                         */
2967                        CTX_USED_PMD(ctx, reset_pmds);
2968                        CTX_USED_PMD(ctx, smpl_pmds);
2969                        /*
2970                         * make sure we do not try to reset on
2971                         * restart because we have established new values
2972                         */
2973                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2974                }
2975                /*
2976                 * Needed in case the user does not initialize the equivalent
2977                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2978                 * possible leak here.
2979                 */
2980                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2981
2982                /*
2983                 * keep track of the monitor PMC that we are using.
2984                 * we save the value of the pmc in ctx_pmcs[] and if
2985                 * the monitoring is not stopped for the context we also
2986                 * place it in the saved state area so that it will be
2987                 * picked up later by the context switch code.
2988                 *
2989                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2990                 *
2991                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2992                 * monitoring needs to be stopped.
2993                 */
2994                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
2995
2996                /*
2997                 * update context state
2998                 */
2999                ctx->ctx_pmcs[cnum] = value;
3000
3001                if (is_loaded) {
3002                        /*
3003                         * write thread state
3004                         */
3005                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3006
3007                        /*
3008                         * write hardware register if we can
3009                         */
3010                        if (can_access_pmu) {
3011                                ia64_set_pmc(cnum, value);
3012                        }
3013#ifdef CONFIG_SMP
3014                        else {
3015                                /*
3016                                 * per-task SMP only here
3017                                 *
3018                                 * we are guaranteed that the task is not running on the other CPU,
3019                                 * we indicate that this PMD will need to be reloaded if the task
3020                                 * is rescheduled on the CPU it ran last on.
3021                                 */
3022                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3023                        }
3024#endif
3025                }
3026
3027                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3028                          cnum,
3029                          value,
3030                          is_loaded,
3031                          can_access_pmu,
3032                          flags,
3033                          ctx->ctx_all_pmcs[0],
3034                          ctx->ctx_used_pmds[0],
3035                          ctx->ctx_pmds[cnum].eventid,
3036                          smpl_pmds,
3037                          reset_pmds,
3038                          ctx->ctx_reload_pmcs[0],
3039                          ctx->ctx_used_monitors[0],
3040                          ctx->ctx_ovfl_regs[0]));
3041        }
3042
3043        /*
3044         * make sure the changes are visible
3045         */
3046        if (can_access_pmu) ia64_srlz_d();
3047
3048        return 0;
3049error:
3050        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3051        return ret;
3052}
3053
3054static int
3055pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3056{
3057        struct task_struct *task;
3058        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3059        unsigned long value, hw_value, ovfl_mask;
3060        unsigned int cnum;
3061        int i, can_access_pmu = 0, state;
3062        int is_counting, is_loaded, is_system, expert_mode;
3063        int ret = -EINVAL;
3064        pfm_reg_check_t wr_func;
3065
3066
3067        state     = ctx->ctx_state;
3068        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3069        is_system = ctx->ctx_fl_system;
3070        ovfl_mask = pmu_conf->ovfl_val;
3071        task      = ctx->ctx_task;
3072
3073        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3074
3075        /*
3076         * on both UP and SMP, we can only write to the PMC when the task is
3077         * the owner of the local PMU.
3078         */
3079        if (likely(is_loaded)) {
3080                /*
3081                 * In system wide and when the context is loaded, access can only happen
3082                 * when the caller is running on the CPU being monitored by the session.
3083                 * It does not have to be the owner (ctx_task) of the context per se.
3084                 */
3085                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3086                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3087                        return -EBUSY;
3088                }
3089                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3090        }
3091        expert_mode = pfm_sysctl.expert_mode; 
3092
3093        for (i = 0; i < count; i++, req++) {
3094
3095                cnum  = req->reg_num;
3096                value = req->reg_value;
3097
3098                if (!PMD_IS_IMPL(cnum)) {
3099                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3100                        goto abort_mission;
3101                }
3102                is_counting = PMD_IS_COUNTING(cnum);
3103                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3104
3105                /*
3106                 * execute write checker, if any
3107                 */
3108                if (unlikely(expert_mode == 0 && wr_func)) {
3109                        unsigned long v = value;
3110
3111                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3112                        if (ret) goto abort_mission;
3113
3114                        value = v;
3115                        ret   = -EINVAL;
3116                }
3117
3118                /*
3119                 * no error on this register
3120                 */
3121                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3122
3123                /*
3124                 * now commit changes to software state
3125                 */
3126                hw_value = value;
3127
3128                /*
3129                 * update virtualized (64bits) counter
3130                 */
3131                if (is_counting) {
3132                        /*
3133                         * write context state
3134                         */
3135                        ctx->ctx_pmds[cnum].lval = value;
3136
3137                        /*
3138                         * when context is load we use the split value
3139                         */
3140                        if (is_loaded) {
3141                                hw_value = value &  ovfl_mask;
3142                                value    = value & ~ovfl_mask;
3143                        }
3144                }
3145                /*
3146                 * update reset values (not just for counters)
3147                 */
3148                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3149                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3150
3151                /*
3152                 * update randomization parameters (not just for counters)
3153                 */
3154                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3155                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3156
3157                /*
3158                 * update context value
3159                 */
3160                ctx->ctx_pmds[cnum].val  = value;
3161
3162                /*
3163                 * Keep track of what we use
3164                 *
3165                 * We do not keep track of PMC because we have to
3166                 * systematically restore ALL of them.
3167                 */
3168                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3169
3170                /*
3171                 * mark this PMD register used as well
3172                 */
3173                CTX_USED_PMD(ctx, RDEP(cnum));
3174
3175                /*
3176                 * make sure we do not try to reset on
3177                 * restart because we have established new values
3178                 */
3179                if (is_counting && state == PFM_CTX_MASKED) {
3180                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3181                }
3182
3183                if (is_loaded) {
3184                        /*
3185                         * write thread state
3186                         */
3187                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3188
3189                        /*
3190                         * write hardware register if we can
3191                         */
3192                        if (can_access_pmu) {
3193                                ia64_set_pmd(cnum, hw_value);
3194                        } else {
3195#ifdef CONFIG_SMP
3196                                /*
3197                                 * we are guaranteed that the task is not running on the other CPU,
3198                                 * we indicate that this PMD will need to be reloaded if the task
3199                                 * is rescheduled on the CPU it ran last on.
3200                                 */
3201                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3202#endif
3203                        }
3204                }
3205
3206                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3207                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3208                        cnum,
3209                        value,
3210                        is_loaded,
3211                        can_access_pmu,
3212                        hw_value,
3213                        ctx->ctx_pmds[cnum].val,
3214                        ctx->ctx_pmds[cnum].short_reset,
3215                        ctx->ctx_pmds[cnum].long_reset,
3216                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3217                        ctx->ctx_pmds[cnum].seed,
3218                        ctx->ctx_pmds[cnum].mask,
3219                        ctx->ctx_used_pmds[0],
3220                        ctx->ctx_pmds[cnum].reset_pmds[0],
3221                        ctx->ctx_reload_pmds[0],
3222                        ctx->ctx_all_pmds[0],
3223                        ctx->ctx_ovfl_regs[0]));
3224        }
3225
3226        /*
3227         * make changes visible
3228         */
3229        if (can_access_pmu) ia64_srlz_d();
3230
3231        return 0;
3232
3233abort_mission:
3234        /*
3235         * for now, we have only one possibility for error
3236         */
3237        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3238        return ret;
3239}
3240
3241/*
3242 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3243 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3244 * interrupt is delivered during the call, it will be kept pending until we leave, making
3245 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3246 * guaranteed to return consistent data to the user, it may simply be old. It is not
3247 * trivial to treat the overflow while inside the call because you may end up in
3248 * some module sampling buffer code causing deadlocks.
3249 */
3250static int
3251pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3252{
3253        struct task_struct *task;
3254        unsigned long val = 0UL, lval, ovfl_mask, sval;
3255        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3256        unsigned int cnum, reg_flags = 0;
3257        int i, can_access_pmu = 0, state;
3258        int is_loaded, is_system, is_counting, expert_mode;
3259        int ret = -EINVAL;
3260        pfm_reg_check_t rd_func;
3261
3262        /*
3263         * access is possible when loaded only for
3264         * self-monitoring tasks or in UP mode
3265         */
3266
3267        state     = ctx->ctx_state;
3268        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3269        is_system = ctx->ctx_fl_system;
3270        ovfl_mask = pmu_conf->ovfl_val;
3271        task      = ctx->ctx_task;
3272
3273        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3274
3275        if (likely(is_loaded)) {
3276                /*
3277                 * In system wide and when the context is loaded, access can only happen
3278                 * when the caller is running on the CPU being monitored by the session.
3279                 * It does not have to be the owner (ctx_task) of the context per se.
3280                 */
3281                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3282                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3283                        return -EBUSY;
3284                }
3285                /*
3286                 * this can be true when not self-monitoring only in UP
3287                 */
3288                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3289
3290                if (can_access_pmu) ia64_srlz_d();
3291        }
3292        expert_mode = pfm_sysctl.expert_mode; 
3293
3294        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3295                is_loaded,
3296                can_access_pmu,
3297                state));
3298
3299        /*
3300         * on both UP and SMP, we can only read the PMD from the hardware register when
3301         * the task is the owner of the local PMU.
3302         */
3303
3304        for (i = 0; i < count; i++, req++) {
3305
3306                cnum        = req->reg_num;
3307                reg_flags   = req->reg_flags;
3308
3309                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3310                /*
3311                 * we can only read the register that we use. That includes
3312                 * the one we explicitly initialize AND the one we want included
3313                 * in the sampling buffer (smpl_regs).
3314                 *
3315                 * Having this restriction allows optimization in the ctxsw routine
3316                 * without compromising security (leaks)
3317                 */
3318                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3319
3320                sval        = ctx->ctx_pmds[cnum].val;
3321                lval        = ctx->ctx_pmds[cnum].lval;
3322                is_counting = PMD_IS_COUNTING(cnum);
3323
3324                /*
3325                 * If the task is not the current one, then we check if the
3326                 * PMU state is still in the local live register due to lazy ctxsw.
3327                 * If true, then we read directly from the registers.
3328                 */
3329                if (can_access_pmu){
3330                        val = ia64_get_pmd(cnum);
3331                } else {
3332                        /*
3333                         * context has been saved
3334                         * if context is zombie, then task does not exist anymore.
3335                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3336                         */
3337                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3338                }
3339                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3340
3341                if (is_counting) {
3342                        /*
3343                         * XXX: need to check for overflow when loaded
3344                         */
3345                        val &= ovfl_mask;
3346                        val += sval;
3347                }
3348
3349                /*
3350                 * execute read checker, if any
3351                 */
3352                if (unlikely(expert_mode == 0 && rd_func)) {
3353                        unsigned long v = val;
3354                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3355                        if (ret) goto error;
3356                        val = v;
3357                        ret = -EINVAL;
3358                }
3359
3360                PFM_REG_RETFLAG_SET(reg_flags, 0);
3361
3362                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3363
3364                /*
3365                 * update register return value, abort all if problem during copy.
3366                 * we only modify the reg_flags field. no check mode is fine because
3367                 * access has been verified upfront in sys_perfmonctl().
3368                 */
3369                req->reg_value            = val;
3370                req->reg_flags            = reg_flags;
3371                req->reg_last_reset_val   = lval;
3372        }
3373
3374        return 0;
3375
3376error:
3377        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3378        return ret;
3379}
3380
3381int
3382pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3383{
3384        pfm_context_t *ctx;
3385
3386        if (req == NULL) return -EINVAL;
3387
3388        ctx = GET_PMU_CTX();
3389
3390        if (ctx == NULL) return -EINVAL;
3391
3392        /*
3393         * for now limit to current task, which is enough when calling
3394         * from overflow handler
3395         */
3396        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3397
3398        return pfm_write_pmcs(ctx, req, nreq, regs);
3399}
3400EXPORT_SYMBOL(pfm_mod_write_pmcs);
3401
3402int
3403pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3404{
3405        pfm_context_t *ctx;
3406
3407        if (req == NULL) return -EINVAL;
3408
3409        ctx = GET_PMU_CTX();
3410
3411        if (ctx == NULL) return -EINVAL;
3412
3413        /*
3414         * for now limit to current task, which is enough when calling
3415         * from overflow handler
3416         */
3417        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3418
3419        return pfm_read_pmds(ctx, req, nreq, regs);
3420}
3421EXPORT_SYMBOL(pfm_mod_read_pmds);
3422
3423/*
3424 * Only call this function when a process it trying to
3425 * write the debug registers (reading is always allowed)
3426 */
3427int
3428pfm_use_debug_registers(struct task_struct *task)
3429{
3430        pfm_context_t *ctx = task->thread.pfm_context;
3431        unsigned long flags;
3432        int ret = 0;
3433
3434        if (pmu_conf->use_rr_dbregs == 0) return 0;
3435
3436        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3437
3438        /*
3439         * do it only once
3440         */
3441        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3442
3443        /*
3444         * Even on SMP, we do not need to use an atomic here because
3445         * the only way in is via ptrace() and this is possible only when the
3446         * process is stopped. Even in the case where the ctxsw out is not totally
3447         * completed by the time we come here, there is no way the 'stopped' process
3448         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3449         * So this is always safe.
3450         */
3451        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3452
3453        LOCK_PFS(flags);
3454
3455        /*
3456         * We cannot allow setting breakpoints when system wide monitoring
3457         * sessions are using the debug registers.
3458         */
3459        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3460                ret = -1;
3461        else
3462                pfm_sessions.pfs_ptrace_use_dbregs++;
3463
3464        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3465                  pfm_sessions.pfs_ptrace_use_dbregs,
3466                  pfm_sessions.pfs_sys_use_dbregs,
3467                  task_pid_nr(task), ret));
3468
3469        UNLOCK_PFS(flags);
3470
3471        return ret;
3472}
3473
3474/*
3475 * This function is called for every task that exits with the
3476 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3477 * able to use the debug registers for debugging purposes via
3478 * ptrace(). Therefore we know it was not using them for
3479 * performance monitoring, so we only decrement the number
3480 * of "ptraced" debug register users to keep the count up to date
3481 */
3482int
3483pfm_release_debug_registers(struct task_struct *task)
3484{
3485        unsigned long flags;
3486        int ret;
3487
3488        if (pmu_conf->use_rr_dbregs == 0) return 0;
3489
3490        LOCK_PFS(flags);
3491        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3492                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3493                ret = -1;
3494        }  else {
3495                pfm_sessions.pfs_ptrace_use_dbregs--;
3496                ret = 0;
3497        }
3498        UNLOCK_PFS(flags);
3499
3500        return ret;
3501}
3502
3503static int
3504pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3505{
3506        struct task_struct *task;
3507        pfm_buffer_fmt_t *fmt;
3508        pfm_ovfl_ctrl_t rst_ctrl;
3509        int state, is_system;
3510        int ret = 0;
3511
3512        state     = ctx->ctx_state;
3513        fmt       = ctx->ctx_buf_fmt;
3514        is_system = ctx->ctx_fl_system;
3515        task      = PFM_CTX_TASK(ctx);
3516
3517        switch(state) {
3518                case PFM_CTX_MASKED:
3519                        break;
3520                case PFM_CTX_LOADED: 
3521                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3522                        /* fall through */
3523                case PFM_CTX_UNLOADED:
3524                case PFM_CTX_ZOMBIE:
3525                        DPRINT(("invalid state=%d\n", state));
3526                        return -EBUSY;
3527                default:
3528                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3529                        return -EINVAL;
3530        }
3531
3532        /*
3533         * In system wide and when the context is loaded, access can only happen
3534         * when the caller is running on the CPU being monitored by the session.
3535         * It does not have to be the owner (ctx_task) of the context per se.
3536         */
3537        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3538                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3539                return -EBUSY;
3540        }
3541
3542        /* sanity check */
3543        if (unlikely(task == NULL)) {
3544                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3545                return -EINVAL;
3546        }
3547
3548        if (task == current || is_system) {
3549
3550                fmt = ctx->ctx_buf_fmt;
3551
3552                DPRINT(("restarting self %d ovfl=0x%lx\n",
3553                        task_pid_nr(task),
3554                        ctx->ctx_ovfl_regs[0]));
3555
3556                if (CTX_HAS_SMPL(ctx)) {
3557
3558                        prefetch(ctx->ctx_smpl_hdr);
3559
3560                        rst_ctrl.bits.mask_monitoring = 0;
3561                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3562
3563                        if (state == PFM_CTX_LOADED)
3564                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3565                        else
3566                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3567                } else {
3568                        rst_ctrl.bits.mask_monitoring = 0;
3569                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3570                }
3571
3572                if (ret == 0) {
3573                        if (rst_ctrl.bits.reset_ovfl_pmds)
3574                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3575
3576                        if (rst_ctrl.bits.mask_monitoring == 0) {
3577                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3578
3579                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3580                        } else {
3581                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3582
3583                                // cannot use pfm_stop_monitoring(task, regs);
3584                        }
3585                }
3586                /*
3587                 * clear overflowed PMD mask to remove any stale information
3588                 */
3589                ctx->ctx_ovfl_regs[0] = 0UL;
3590
3591                /*
3592                 * back to LOADED state
3593                 */
3594                ctx->ctx_state = PFM_CTX_LOADED;
3595
3596                /*
3597                 * XXX: not really useful for self monitoring
3598                 */
3599                ctx->ctx_fl_can_restart = 0;
3600
3601                return 0;
3602        }
3603
3604        /* 
3605         * restart another task
3606         */
3607
3608        /*
3609         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3610         * one is seen by the task.
3611         */
3612        if (state == PFM_CTX_MASKED) {
3613                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3614                /*
3615                 * will prevent subsequent restart before this one is
3616                 * seen by other task
3617                 */
3618                ctx->ctx_fl_can_restart = 0;
3619        }
3620
3621        /*
3622         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3623         * the task is blocked or on its way to block. That's the normal
3624         * restart path. If the monitoring is not masked, then the task
3625         * can be actively monitoring and we cannot directly intervene.
3626         * Therefore we use the trap mechanism to catch the task and
3627         * force it to reset the buffer/reset PMDs.
3628         *
3629         * if non-blocking, then we ensure that the task will go into
3630         * pfm_handle_work() before returning to user mode.
3631         *
3632         * We cannot explicitly reset another task, it MUST always
3633         * be done by the task itself. This works for system wide because
3634         * the tool that is controlling the session is logically doing 
3635         * "self-monitoring".
3636         */
3637        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3638                DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3639                complete(&ctx->ctx_restart_done);
3640        } else {
3641                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3642
3643                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3644
3645                PFM_SET_WORK_PENDING(task, 1);
3646
3647                set_notify_resume(task);
3648
3649                /*
3650                 * XXX: send reschedule if task runs on another CPU
3651                 */
3652        }
3653        return 0;
3654}
3655
3656static int
3657pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3658{
3659        unsigned int m = *(unsigned int *)arg;
3660
3661        pfm_sysctl.debug = m == 0 ? 0 : 1;
3662
3663        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3664
3665        if (m == 0) {
3666                memset(pfm_stats, 0, sizeof(pfm_stats));
3667                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3668        }
3669        return 0;
3670}
3671
3672/*
3673 * arg can be NULL and count can be zero for this function
3674 */
3675static int
3676pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3677{
3678        struct thread_struct *thread = NULL;
3679        struct task_struct *task;
3680        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3681        unsigned long flags;
3682        dbreg_t dbreg;
3683        unsigned int rnum;
3684        int first_time;
3685        int ret = 0, state;
3686        int i, can_access_pmu = 0;
3687        int is_system, is_loaded;
3688
3689        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3690
3691        state     = ctx->ctx_state;
3692        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3693        is_system = ctx->ctx_fl_system;
3694        task      = ctx->ctx_task;
3695
3696        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3697
3698        /*
3699         * on both UP and SMP, we can only write to the PMC when the task is
3700         * the owner of the local PMU.
3701         */
3702        if (is_loaded) {
3703                thread = &task->thread;
3704                /*
3705                 * In system wide and when the context is loaded, access can only happen
3706                 * when the caller is running on the CPU being monitored by the session.
3707                 * It does not have to be the owner (ctx_task) of the context per se.
3708                 */
3709                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3710                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3711                        return -EBUSY;
3712                }
3713                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3714        }
3715
3716        /*
3717         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3718         * ensuring that no real breakpoint can be installed via this call.
3719         *
3720         * IMPORTANT: regs can be NULL in this function
3721         */
3722
3723        first_time = ctx->ctx_fl_using_dbreg == 0;
3724
3725        /*
3726         * don't bother if we are loaded and task is being debugged
3727         */
3728        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3729                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3730                return -EBUSY;
3731        }
3732
3733        /*
3734         * check for debug registers in system wide mode
3735         *
3736         * If though a check is done in pfm_context_load(),
3737         * we must repeat it here, in case the registers are
3738         * written after the context is loaded
3739         */
3740        if (is_loaded) {
3741                LOCK_PFS(flags);
3742
3743                if (first_time && is_system) {
3744                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3745                                ret = -EBUSY;
3746                        else
3747                                pfm_sessions.pfs_sys_use_dbregs++;
3748                }
3749                UNLOCK_PFS(flags);
3750        }
3751
3752        if (ret != 0) return ret;
3753
3754        /*
3755         * mark ourself as user of the debug registers for
3756         * perfmon purposes.
3757         */
3758        ctx->ctx_fl_using_dbreg = 1;
3759
3760        /*
3761         * clear hardware registers to make sure we don't
3762         * pick up stale state.
3763         *
3764         * for a system wide session, we do not use
3765         * thread.dbr, thread.ibr because this process
3766         * never leaves the current CPU and the state
3767         * is shared by all processes running on it
3768         */
3769        if (first_time && can_access_pmu) {
3770                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3771                for (i=0; i < pmu_conf->num_ibrs; i++) {
3772                        ia64_set_ibr(i, 0UL);
3773                        ia64_dv_serialize_instruction();
3774                }
3775                ia64_srlz_i();
3776                for (i=0; i < pmu_conf->num_dbrs; i++) {
3777                        ia64_set_dbr(i, 0UL);
3778                        ia64_dv_serialize_data();
3779                }
3780                ia64_srlz_d();
3781        }
3782
3783        /*
3784         * Now install the values into the registers
3785         */
3786        for (i = 0; i < count; i++, req++) {
3787
3788                rnum      = req->dbreg_num;
3789                dbreg.val = req->dbreg_value;
3790
3791                ret = -EINVAL;
3792
3793                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3794                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3795                                  rnum, dbreg.val, mode, i, count));
3796
3797                        goto abort_mission;
3798                }
3799
3800                /*
3801                 * make sure we do not install enabled breakpoint
3802                 */
3803                if (rnum & 0x1) {
3804                        if (mode == PFM_CODE_RR)
3805                                dbreg.ibr.ibr_x = 0;
3806                        else
3807                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3808                }
3809
3810                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3811
3812                /*
3813                 * Debug registers, just like PMC, can only be modified
3814                 * by a kernel call. Moreover, perfmon() access to those
3815                 * registers are centralized in this routine. The hardware
3816                 * does not modify the value of these registers, therefore,
3817                 * if we save them as they are written, we can avoid having
3818                 * to save them on context switch out. This is made possible
3819                 * by the fact that when perfmon uses debug registers, ptrace()
3820                 * won't be able to modify them concurrently.
3821                 */
3822                if (mode == PFM_CODE_RR) {
3823                        CTX_USED_IBR(ctx, rnum);
3824
3825                        if (can_access_pmu) {
3826                                ia64_set_ibr(rnum, dbreg.val);
3827                                ia64_dv_serialize_instruction();
3828                        }
3829
3830                        ctx->ctx_ibrs[rnum] = dbreg.val;
3831
3832                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3833                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3834                } else {
3835                        CTX_USED_DBR(ctx, rnum);
3836
3837                        if (can_access_pmu) {
3838                                ia64_set_dbr(rnum, dbreg.val);
3839                                ia64_dv_serialize_data();
3840                        }
3841                        ctx->ctx_dbrs[rnum] = dbreg.val;
3842
3843                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3844                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3845                }
3846        }
3847
3848        return 0;
3849
3850abort_mission:
3851        /*
3852         * in case it was our first attempt, we undo the global modifications
3853         */
3854        if (first_time) {
3855                LOCK_PFS(flags);
3856                if (ctx->ctx_fl_system) {
3857                        pfm_sessions.pfs_sys_use_dbregs--;
3858                }
3859                UNLOCK_PFS(flags);
3860                ctx->ctx_fl_using_dbreg = 0;
3861        }
3862        /*
3863         * install error return flag
3864         */
3865        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3866
3867        return ret;
3868}
3869
3870static int
3871pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3872{
3873        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3874}
3875
3876static int
3877pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3878{
3879        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3880}
3881
3882int
3883pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3884{
3885        pfm_context_t *ctx;
3886
3887        if (req == NULL) return -EINVAL;
3888
3889        ctx = GET_PMU_CTX();
3890
3891        if (ctx == NULL) return -EINVAL;
3892
3893        /*
3894         * for now limit to current task, which is enough when calling
3895         * from overflow handler
3896         */
3897        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3898
3899        return pfm_write_ibrs(ctx, req, nreq, regs);
3900}
3901EXPORT_SYMBOL(pfm_mod_write_ibrs);
3902
3903int
3904pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3905{
3906        pfm_context_t *ctx;
3907
3908        if (req == NULL) return -EINVAL;
3909
3910        ctx = GET_PMU_CTX();
3911
3912        if (ctx == NULL) return -EINVAL;
3913
3914        /*
3915         * for now limit to current task, which is enough when calling
3916         * from overflow handler
3917         */
3918        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3919
3920        return pfm_write_dbrs(ctx, req, nreq, regs);
3921}
3922EXPORT_SYMBOL(pfm_mod_write_dbrs);
3923
3924
3925static int
3926pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3927{
3928        pfarg_features_t *req = (pfarg_features_t *)arg;
3929
3930        req->ft_version = PFM_VERSION;
3931        return 0;
3932}
3933
3934static int
3935pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3936{
3937        struct pt_regs *tregs;
3938        struct task_struct *task = PFM_CTX_TASK(ctx);
3939        int state, is_system;
3940
3941        state     = ctx->ctx_state;
3942        is_system = ctx->ctx_fl_system;
3943
3944        /*
3945         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3946         */
3947        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3948
3949        /*
3950         * In system wide and when the context is loaded, access can only happen
3951         * when the caller is running on the CPU being monitored by the session.
3952         * It does not have to be the owner (ctx_task) of the context per se.
3953         */
3954        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3955                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3956                return -EBUSY;
3957        }
3958        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3959                task_pid_nr(PFM_CTX_TASK(ctx)),
3960                state,
3961                is_system));
3962        /*
3963         * in system mode, we need to update the PMU directly
3964         * and the user level state of the caller, which may not
3965         * necessarily be the creator of the context.
3966         */
3967        if (is_system) {
3968                /*
3969                 * Update local PMU first
3970                 *
3971                 * disable dcr pp
3972                 */
3973                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3974                ia64_srlz_i();
3975
3976                /*
3977                 * update local cpuinfo
3978                 */
3979                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3980
3981                /*
3982                 * stop monitoring, does srlz.i
3983                 */
3984                pfm_clear_psr_pp();
3985
3986                /*
3987                 * stop monitoring in the caller
3988                 */
3989                ia64_psr(regs)->pp = 0;
3990
3991                return 0;
3992        }
3993        /*
3994         * per-task mode
3995         */
3996
3997        if (task == current) {
3998                /* stop monitoring  at kernel level */
3999                pfm_clear_psr_up();
4000
4001                /*
4002                 * stop monitoring at the user level
4003                 */
4004                ia64_psr(regs)->up = 0;
4005        } else {
4006                tregs = task_pt_regs(task);
4007
4008                /*
4009                 * stop monitoring at the user level
4010                 */
4011                ia64_psr(tregs)->up = 0;
4012
4013                /*
4014                 * monitoring disabled in kernel at next reschedule
4015                 */
4016                ctx->ctx_saved_psr_up = 0;
4017                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4018        }
4019        return 0;
4020}
4021
4022
4023static int
4024pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4025{
4026        struct pt_regs *tregs;
4027        int state, is_system;
4028
4029        state     = ctx->ctx_state;
4030        is_system = ctx->ctx_fl_system;
4031
4032        if (state != PFM_CTX_LOADED) return -EINVAL;
4033
4034        /*
4035         * In system wide and when the context is loaded, access can only happen
4036         * when the caller is running on the CPU being monitored by the session.
4037         * It does not have to be the owner (ctx_task) of the context per se.
4038         */
4039        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4040                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4041                return -EBUSY;
4042        }
4043
4044        /*
4045         * in system mode, we need to update the PMU directly
4046         * and the user level state of the caller, which may not
4047         * necessarily be the creator of the context.
4048         */
4049        if (is_system) {
4050
4051                /*
4052                 * set user level psr.pp for the caller
4053                 */
4054                ia64_psr(regs)->pp = 1;
4055
4056                /*
4057                 * now update the local PMU and cpuinfo
4058                 */
4059                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4060
4061                /*
4062                 * start monitoring at kernel level
4063                 */
4064                pfm_set_psr_pp();
4065
4066                /* enable dcr pp */
4067                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4068                ia64_srlz_i();
4069
4070                return 0;
4071        }
4072
4073        /*
4074         * per-process mode
4075         */
4076
4077        if (ctx->ctx_task == current) {
4078
4079                /* start monitoring at kernel level */
4080                pfm_set_psr_up();
4081
4082                /*
4083                 * activate monitoring at user level
4084                 */
4085                ia64_psr(regs)->up = 1;
4086
4087        } else {
4088                tregs = task_pt_regs(ctx->ctx_task);
4089
4090                /*
4091                 * start monitoring at the kernel level the next
4092                 * time the task is scheduled
4093                 */
4094                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4095
4096                /*
4097                 * activate monitoring at user level
4098                 */
4099                ia64_psr(tregs)->up = 1;
4100        }
4101        return 0;
4102}
4103
4104static int
4105pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4106{
4107        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4108        unsigned int cnum;
4109        int i;
4110        int ret = -EINVAL;
4111
4112        for (i = 0; i < count; i++, req++) {
4113
4114                cnum = req->reg_num;
4115
4116                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4117
4118                req->reg_value = PMC_DFL_VAL(cnum);
4119
4120                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4121
4122                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4123        }
4124        return 0;
4125
4126abort_mission:
4127        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4128        return ret;
4129}
4130
4131static int
4132pfm_check_task_exist(pfm_context_t *ctx)
4133{
4134        struct task_struct *g, *t;
4135        int ret = -ESRCH;
4136
4137        read_lock(&tasklist_lock);
4138
4139        do_each_thread (g, t) {
4140                if (t->thread.pfm_context == ctx) {
4141                        ret = 0;
4142                        goto out;
4143                }
4144        } while_each_thread (g, t);
4145out:
4146        read_unlock(&tasklist_lock);
4147
4148        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4149
4150        return ret;
4151}
4152
4153static int
4154pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4155{
4156        struct task_struct *task;
4157        struct thread_struct *thread;
4158        struct pfm_context_t *old;
4159        unsigned long flags;
4160#ifndef CONFIG_SMP
4161        struct task_struct *owner_task = NULL;
4162#endif
4163        pfarg_load_t *req = (pfarg_load_t *)arg;
4164        unsigned long *pmcs_source, *pmds_source;
4165        int the_cpu;
4166        int ret = 0;
4167        int state, is_system, set_dbregs = 0;
4168
4169        state     = ctx->ctx_state;
4170        is_system = ctx->ctx_fl_system;
4171        /*
4172         * can only load from unloaded or terminated state
4173         */
4174        if (state != PFM_CTX_UNLOADED) {
4175                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4176                        req->load_pid,
4177                        ctx->ctx_state));
4178                return -EBUSY;
4179        }
4180
4181        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4182
4183        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4184                DPRINT(("cannot use blocking mode on self\n"));
4185                return -EINVAL;
4186        }
4187
4188        ret = pfm_get_task(ctx, req->load_pid, &task);
4189        if (ret) {
4190                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4191                return ret;
4192        }
4193
4194        ret = -EINVAL;
4195
4196        /*
4197         * system wide is self monitoring only
4198         */
4199        if (is_system && task != current) {
4200                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4201                        req->load_pid));
4202                goto error;
4203        }
4204
4205        thread = &task->thread;
4206
4207        ret = 0;
4208        /*
4209         * cannot load a context which is using range restrictions,
4210         * into a task that is being debugged.
4211         */
4212        if (ctx->ctx_fl_using_dbreg) {
4213                if (thread->flags & IA64_THREAD_DBG_VALID) {
4214                        ret = -EBUSY;
4215                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4216                        goto error;
4217                }
4218                LOCK_PFS(flags);
4219
4220                if (is_system) {
4221                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4222                                DPRINT(("cannot load [%d] dbregs in use\n",
4223                                                        task_pid_nr(task)));
4224                                ret = -EBUSY;
4225                        } else {
4226                                pfm_sessions.pfs_sys_use_dbregs++;
4227                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4228                                set_dbregs = 1;
4229                        }
4230                }
4231
4232                UNLOCK_PFS(flags);
4233
4234                if (ret) goto error;
4235        }
4236
4237        /*
4238         * SMP system-wide monitoring implies self-monitoring.
4239         *
4240         * The programming model expects the task to
4241         * be pinned on a CPU throughout the session.
4242         * Here we take note of the current CPU at the
4243         * time the context is loaded. No call from
4244         * another CPU will be allowed.
4245         *
4246         * The pinning via shed_setaffinity()
4247         * must be done by the calling task prior
4248         * to this call.
4249         *
4250         * systemwide: keep track of CPU this session is supposed to run on
4251         */
4252        the_cpu = ctx->ctx_cpu = smp_processor_id();
4253
4254        ret = -EBUSY;
4255        /*
4256         * now reserve the session
4257         */
4258        ret = pfm_reserve_session(current, is_system, the_cpu);
4259        if (ret) goto error;
4260
4261        /*
4262         * task is necessarily stopped at this point.
4263         *
4264         * If the previous context was zombie, then it got removed in
4265         * pfm_save_regs(). Therefore we should not see it here.
4266         * If we see a context, then this is an active context
4267         *
4268         * XXX: needs to be atomic
4269         */
4270        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4271                thread->pfm_context, ctx));
4272
4273        ret = -EBUSY;
4274        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4275        if (old != NULL) {
4276                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4277                goto error_unres;
4278        }
4279
4280        pfm_reset_msgq(ctx);
4281
4282        ctx->ctx_state = PFM_CTX_LOADED;
4283
4284        /*
4285         * link context to task
4286         */
4287        ctx->ctx_task = task;
4288
4289        if (is_system) {
4290                /*
4291                 * we load as stopped
4292                 */
4293                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4294                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4295
4296                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4297        } else {
4298                thread->flags |= IA64_THREAD_PM_VALID;
4299        }
4300
4301        /*
4302         * propagate into thread-state
4303         */
4304        pfm_copy_pmds(task, ctx);
4305        pfm_copy_pmcs(task, ctx);
4306
4307        pmcs_source = ctx->th_pmcs;
4308        pmds_source = ctx->th_pmds;
4309
4310        /*
4311         * always the case for system-wide
4312         */
4313        if (task == current) {
4314
4315                if (is_system == 0) {
4316
4317                        /* allow user level control */
4318                        ia64_psr(regs)->sp = 0;
4319                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4320
4321                        SET_LAST_CPU(ctx, smp_processor_id());
4322                        INC_ACTIVATION();
4323                        SET_ACTIVATION(ctx);
4324#ifndef CONFIG_SMP
4325                        /*
4326                         * push the other task out, if any
4327                         */
4328                        owner_task = GET_PMU_OWNER();
4329                        if (owner_task) pfm_lazy_save_regs(owner_task);
4330#endif
4331                }
4332                /*
4333                 * load all PMD from ctx to PMU (as opposed to thread state)
4334                 * restore all PMC from ctx to PMU
4335                 */
4336                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4337                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4338
4339                ctx->ctx_reload_pmcs[0] = 0UL;
4340                ctx->ctx_reload_pmds[0] = 0UL;
4341
4342                /*
4343                 * guaranteed safe by earlier check against DBG_VALID
4344                 */
4345                if (ctx->ctx_fl_using_dbreg) {
4346                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4347                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4348                }
4349                /*
4350                 * set new ownership
4351                 */
4352                SET_PMU_OWNER(task, ctx);
4353
4354                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4355        } else {
4356                /*
4357                 * when not current, task MUST be stopped, so this is safe
4358                 */
4359                regs = task_pt_regs(task);
4360
4361                /* force a full reload */
4362                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4363                SET_LAST_CPU(ctx, -1);
4364
4365                /* initial saved psr (stopped) */
4366                ctx->ctx_saved_psr_up = 0UL;
4367                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4368        }
4369
4370        ret = 0;
4371
4372error_unres:
4373        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4374error:
4375        /*
4376         * we must undo the dbregs setting (for system-wide)
4377         */
4378        if (ret && set_dbregs) {
4379                LOCK_PFS(flags);
4380                pfm_sessions.pfs_sys_use_dbregs--;
4381                UNLOCK_PFS(flags);
4382        }
4383        /*
4384         * release task, there is now a link with the context
4385         */
4386        if (is_system == 0 && task != current) {
4387                pfm_put_task(task);
4388
4389                if (ret == 0) {
4390                        ret = pfm_check_task_exist(ctx);
4391                        if (ret) {
4392                                ctx->ctx_state = PFM_CTX_UNLOADED;
4393                                ctx->ctx_task  = NULL;
4394                        }
4395                }
4396        }
4397        return ret;
4398}
4399
4400/*
4401 * in this function, we do not need to increase the use count
4402 * for the task via get_task_struct(), because we hold the
4403 * context lock. If the task were to disappear while having
4404 * a context attached, it would go through pfm_exit_thread()
4405 * which also grabs the context lock  and would therefore be blocked
4406 * until we are here.
4407 */
4408static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4409
4410static int
4411pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4412{
4413        struct task_struct *task = PFM_CTX_TASK(ctx);
4414        struct pt_regs *tregs;
4415        int prev_state, is_system;
4416        int ret;
4417
4418        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4419
4420        prev_state = ctx->ctx_state;
4421        is_system  = ctx->ctx_fl_system;
4422
4423        /*
4424         * unload only when necessary
4425         */
4426        if (prev_state == PFM_CTX_UNLOADED) {
4427                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4428                return 0;
4429        }
4430
4431        /*
4432         * clear psr and dcr bits
4433         */
4434        ret = pfm_stop(ctx, NULL, 0, regs);
4435        if (ret) return ret;
4436
4437        ctx->ctx_state = PFM_CTX_UNLOADED;
4438
4439        /*
4440         * in system mode, we need to update the PMU directly
4441         * and the user level state of the caller, which may not
4442         * necessarily be the creator of the context.
4443         */
4444        if (is_system) {
4445
4446                /*
4447                 * Update cpuinfo
4448                 *
4449                 * local PMU is taken care of in pfm_stop()
4450                 */
4451                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4452                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4453
4454                /*
4455                 * save PMDs in context
4456                 * release ownership
4457                 */
4458                pfm_flush_pmds(current, ctx);
4459
4460                /*
4461                 * at this point we are done with the PMU
4462                 * so we can unreserve the resource.
4463                 */
4464                if (prev_state != PFM_CTX_ZOMBIE) 
4465                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4466
4467                /*
4468                 * disconnect context from task
4469                 */
4470                task->thread.pfm_context = NULL;
4471                /*
4472                 * disconnect task from context
4473                 */
4474                ctx->ctx_task = NULL;
4475
4476                /*
4477                 * There is nothing more to cleanup here.
4478                 */
4479                return 0;
4480        }
4481
4482        /*
4483         * per-task mode
4484         */
4485        tregs = task == current ? regs : task_pt_regs(task);
4486
4487        if (task == current) {
4488                /*
4489                 * cancel user level control
4490                 */
4491                ia64_psr(regs)->sp = 1;
4492
4493                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4494        }
4495        /*
4496         * save PMDs to context
4497         * release ownership
4498         */
4499        pfm_flush_pmds(task, ctx);
4500
4501        /*
4502         * at this point we are done with the PMU
4503         * so we can unreserve the resource.
4504         *
4505         * when state was ZOMBIE, we have already unreserved.
4506         */
4507        if (prev_state != PFM_CTX_ZOMBIE) 
4508                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4509
4510        /*
4511         * reset activation counter and psr
4512         */
4513        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4514        SET_LAST_CPU(ctx, -1);
4515
4516        /*
4517         * PMU state will not be restored
4518         */
4519        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4520
4521        /*
4522         * break links between context and task
4523         */
4524        task->thread.pfm_context  = NULL;
4525        ctx->ctx_task             = NULL;
4526
4527        PFM_SET_WORK_PENDING(task, 0);
4528
4529        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4530        ctx->ctx_fl_can_restart  = 0;
4531        ctx->ctx_fl_going_zombie = 0;
4532
4533        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4534
4535        return 0;
4536}
4537
4538
4539/*
4540 * called only from exit_thread()
4541 * we come here only if the task has a context attached (loaded or masked)
4542 */
4543void
4544pfm_exit_thread(struct task_struct *task)
4545{
4546        pfm_context_t *ctx;
4547        unsigned long flags;
4548        struct pt_regs *regs = task_pt_regs(task);
4549        int ret, state;
4550        int free_ok = 0;
4551
4552        ctx = PFM_GET_CTX(task);
4553
4554        PROTECT_CTX(ctx, flags);
4555
4556        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4557
4558        state = ctx->ctx_state;
4559        switch(state) {
4560                case PFM_CTX_UNLOADED:
4561                        /*
4562                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4563                         * be in unloaded state
4564                         */
4565                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4566                        break;
4567                case PFM_CTX_LOADED:
4568                case PFM_CTX_MASKED:
4569                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4570                        if (ret) {
4571                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4572                        }
4573                        DPRINT(("ctx unloaded for current state was %d\n", state));
4574
4575                        pfm_end_notify_user(ctx);
4576                        break;
4577                case PFM_CTX_ZOMBIE:
4578                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4579                        if (ret) {
4580                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4581                        }
4582                        free_ok = 1;
4583                        break;
4584                default:
4585                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4586                        break;
4587        }
4588        UNPROTECT_CTX(ctx, flags);
4589
4590        { u64 psr = pfm_get_psr();
4591          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4592          BUG_ON(GET_PMU_OWNER());
4593          BUG_ON(ia64_psr(regs)->up);
4594          BUG_ON(ia64_psr(regs)->pp);
4595        }
4596
4597        /*
4598         * All memory free operations (especially for vmalloc'ed memory)
4599         * MUST be done with interrupts ENABLED.
4600         */
4601        if (free_ok) pfm_context_free(ctx);
4602}
4603
4604/*
4605 * functions MUST be listed in the increasing order of their index (see permfon.h)
4606 */
4607#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4608#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4609#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4610#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4611#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4612
4613static pfm_cmd_desc_t pfm_cmd_tab[]={
4614/* 0  */PFM_CMD_NONE,
4615/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4616/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4617/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4618/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4619/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4620/* 6  */PFM_CMD_NONE,
4621/* 7  */PFM_CMD_NONE,
4622/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4623/* 9  */PFM_CMD_NONE,
4624/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4625/* 11 */PFM_CMD_NONE,
4626/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4627/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4628/* 14 */PFM_CMD_NONE,
4629/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4630/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4631/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4632/* 18 */PFM_CMD_NONE,
4633/* 19 */PFM_CMD_NONE,
4634/* 20 */PFM_CMD_NONE,
4635/* 21 */PFM_CMD_NONE,
4636/* 22 */PFM_CMD_NONE,
4637/* 23 */PFM_CMD_NONE,
4638/* 24 */PFM_CMD_NONE,
4639/* 25 */PFM_CMD_NONE,
4640/* 26 */PFM_CMD_NONE,
4641/* 27 */PFM_CMD_NONE,
4642/* 28 */PFM_CMD_NONE,
4643/* 29 */PFM_CMD_NONE,
4644/* 30 */PFM_CMD_NONE,
4645/* 31 */PFM_CMD_NONE,
4646/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4647/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4648};
4649#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4650
4651static int
4652pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4653{
4654        struct task_struct *task;
4655        int state, old_state;
4656
4657recheck:
4658        state = ctx->ctx_state;
4659        task  = ctx->ctx_task;
4660
4661        if (task == NULL) {
4662                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4663                return 0;
4664        }
4665
4666        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4667                ctx->ctx_fd,
4668                state,
4669                task_pid_nr(task),
4670                task->state, PFM_CMD_STOPPED(cmd)));
4671
4672        /*
4673         * self-monitoring always ok.
4674         *
4675         * for system-wide the caller can either be the creator of the
4676         * context (to one to which the context is attached to) OR
4677         * a task running on the same CPU as the session.
4678         */
4679        if (task == current || ctx->ctx_fl_system) return 0;
4680
4681        /*
4682         * we are monitoring another thread
4683         */
4684        switch(state) {
4685                case PFM_CTX_UNLOADED:
4686                        /*
4687                         * if context is UNLOADED we are safe to go
4688                         */
4689                        return 0;
4690                case PFM_CTX_ZOMBIE:
4691                        /*
4692                         * no command can operate on a zombie context
4693                         */
4694                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4695                        return -EINVAL;
4696                case PFM_CTX_MASKED:
4697                        /*
4698                         * PMU state has been saved to software even though
4699                         * the thread may still be running.
4700                         */
4701                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4702        }
4703
4704        /*
4705         * context is LOADED or MASKED. Some commands may need to have 
4706         * the task stopped.
4707         *
4708         * We could lift this restriction for UP but it would mean that
4709         * the user has no guarantee the task would not run between
4710         * two successive calls to perfmonctl(). That's probably OK.
4711         * If this user wants to ensure the task does not run, then
4712         * the task must be stopped.
4713         */
4714        if (PFM_CMD_STOPPED(cmd)) {
4715                if (!task_is_stopped_or_traced(task)) {
4716                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4717                        return -EBUSY;
4718                }
4719                /*
4720                 * task is now stopped, wait for ctxsw out
4721                 *
4722                 * This is an interesting point in the code.
4723                 * We need to unprotect the context because
4724                 * the pfm_save_regs() routines needs to grab
4725                 * the same lock. There are danger in doing
4726                 * this because it leaves a window open for
4727                 * another task to get access to the context
4728                 * and possibly change its state. The one thing
4729                 * that is not possible is for the context to disappear
4730                 * because we are protected by the VFS layer, i.e.,
4731                 * get_fd()/put_fd().
4732                 */
4733                old_state = state;
4734
4735                UNPROTECT_CTX(ctx, flags);
4736
4737                wait_task_inactive(task, 0);
4738
4739                PROTECT_CTX(ctx, flags);
4740
4741                /*
4742                 * we must recheck to verify if state has changed
4743                 */
4744                if (ctx->ctx_state != old_state) {
4745                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4746                        goto recheck;
4747                }
4748        }
4749        return 0;
4750}
4751
4752/*
4753 * system-call entry point (must return long)
4754 */
4755asmlinkage long
4756sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4757{
4758        struct fd f = {NULL, 0};
4759        pfm_context_t *ctx = NULL;
4760        unsigned long flags = 0UL;
4761        void *args_k = NULL;
4762        long ret; /* will expand int return types */
4763        size_t base_sz, sz, xtra_sz = 0;
4764        int narg, completed_args = 0, call_made = 0, cmd_flags;
4765        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4766        int (*getsize)(void *arg, size_t *sz);
4767#define PFM_MAX_ARGSIZE 4096
4768
4769        /*
4770         * reject any call if perfmon was disabled at initialization
4771         */
4772        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4773
4774        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4775                DPRINT(("invalid cmd=%d\n", cmd));
4776                return -EINVAL;
4777        }
4778
4779        func      = pfm_cmd_tab[cmd].cmd_func;
4780        narg      = pfm_cmd_tab[cmd].cmd_narg;
4781        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4782        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4783        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4784
4785        if (unlikely(func == NULL)) {
4786                DPRINT(("invalid cmd=%d\n", cmd));
4787                return -EINVAL;
4788        }
4789
4790        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4791                PFM_CMD_NAME(cmd),
4792                cmd,
4793                narg,
4794                base_sz,
4795                count));
4796
4797        /*
4798         * check if number of arguments matches what the command expects
4799         */
4800        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4801                return -EINVAL;
4802
4803restart_args:
4804        sz = xtra_sz + base_sz*count;
4805        /*
4806         * limit abuse to min page size
4807         */
4808        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4809                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4810                return -E2BIG;
4811        }
4812
4813        /*
4814         * allocate default-sized argument buffer
4815         */
4816        if (likely(count && args_k == NULL)) {
4817                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4818                if (args_k == NULL) return -ENOMEM;
4819        }
4820
4821        ret = -EFAULT;
4822
4823        /*
4824         * copy arguments
4825         *
4826         * assume sz = 0 for command without parameters
4827         */
4828        if (sz && copy_from_user(args_k, arg, sz)) {
4829                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4830                goto error_args;
4831        }
4832
4833        /*
4834         * check if command supports extra parameters
4835         */
4836        if (completed_args == 0 && getsize) {
4837                /*
4838                 * get extra parameters size (based on main argument)
4839                 */
4840                ret = (*getsize)(args_k, &xtra_sz);
4841                if (ret) goto error_args;
4842
4843                completed_args = 1;
4844
4845                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4846
4847                /* retry if necessary */
4848                if (likely(xtra_sz)) goto restart_args;
4849        }
4850
4851        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4852
4853        ret = -EBADF;
4854
4855        f = fdget(fd);
4856        if (unlikely(f.file == NULL)) {
4857                DPRINT(("invalid fd %d\n", fd));
4858                goto error_args;
4859        }
4860        if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4861                DPRINT(("fd %d not related to perfmon\n", fd));
4862                goto error_args;
4863        }
4864
4865        ctx = f.file->private_data;
4866        if (unlikely(ctx == NULL)) {
4867                DPRINT(("no context for fd %d\n", fd));
4868                goto error_args;
4869        }
4870        prefetch(&ctx->ctx_state);
4871
4872        PROTECT_CTX(ctx, flags);
4873
4874        /*
4875         * check task is stopped
4876         */
4877        ret = pfm_check_task_state(ctx, cmd, flags);
4878        if (unlikely(ret)) goto abort_locked;
4879
4880skip_fd:
4881        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4882
4883        call_made = 1;
4884
4885abort_locked:
4886        if (likely(ctx)) {
4887                DPRINT(("context unlocked\n"));
4888                UNPROTECT_CTX(ctx, flags);
4889        }
4890
4891        /* copy argument back to user, if needed */
4892        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4893
4894error_args:
4895        if (f.file)
4896                fdput(f);
4897
4898        kfree(args_k);
4899
4900        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4901
4902        return ret;
4903}
4904
4905static void
4906pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4907{
4908        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4909        pfm_ovfl_ctrl_t rst_ctrl;
4910        int state;
4911        int ret = 0;
4912
4913        state = ctx->ctx_state;
4914        /*
4915         * Unlock sampling buffer and reset index atomically
4916         * XXX: not really needed when blocking
4917         */
4918        if (CTX_HAS_SMPL(ctx)) {
4919
4920                rst_ctrl.bits.mask_monitoring = 0;
4921                rst_ctrl.bits.reset_ovfl_pmds = 0;
4922
4923                if (state == PFM_CTX_LOADED)
4924                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4925                else
4926                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4927        } else {
4928                rst_ctrl.bits.mask_monitoring = 0;
4929                rst_ctrl.bits.reset_ovfl_pmds = 1;
4930        }
4931
4932        if (ret == 0) {
4933                if (rst_ctrl.bits.reset_ovfl_pmds) {
4934                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4935                }
4936                if (rst_ctrl.bits.mask_monitoring == 0) {
4937                        DPRINT(("resuming monitoring\n"));
4938                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4939                } else {
4940                        DPRINT(("stopping monitoring\n"));
4941                        //pfm_stop_monitoring(current, regs);
4942                }
4943                ctx->ctx_state = PFM_CTX_LOADED;
4944        }
4945}
4946
4947/*
4948 * context MUST BE LOCKED when calling
4949 * can only be called for current
4950 */
4951static void
4952pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4953{
4954        int ret;
4955
4956        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4957
4958        ret = pfm_context_unload(ctx, NULL, 0, regs);
4959        if (ret) {
4960                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4961        }
4962
4963        /*
4964         * and wakeup controlling task, indicating we are now disconnected
4965         */
4966        wake_up_interruptible(&ctx->ctx_zombieq);
4967
4968        /*
4969         * given that context is still locked, the controlling
4970         * task will only get access when we return from
4971         * pfm_handle_work().
4972         */
4973}
4974
4975static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4976
4977 /*
4978  * pfm_handle_work() can be called with interrupts enabled
4979  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4980  * call may sleep, therefore we must re-enable interrupts
4981  * to avoid deadlocks. It is safe to do so because this function
4982  * is called ONLY when returning to user level (pUStk=1), in which case
4983  * there is no risk of kernel stack overflow due to deep
4984  * interrupt nesting.
4985  */
4986void
4987pfm_handle_work(void)
4988{
4989        pfm_context_t *ctx;
4990        struct pt_regs *regs;
4991        unsigned long flags, dummy_flags;
4992        unsigned long ovfl_regs;
4993        unsigned int reason;
4994        int ret;
4995
4996        ctx = PFM_GET_CTX(current);
4997        if (ctx == NULL) {
4998                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
4999                        task_pid_nr(current));
5000                return;
5001        }
5002
5003        PROTECT_CTX(ctx, flags);
5004
5005        PFM_SET_WORK_PENDING(current, 0);
5006
5007        regs = task_pt_regs(current);
5008
5009        /*
5010         * extract reason for being here and clear
5011         */
5012        reason = ctx->ctx_fl_trap_reason;
5013        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5014        ovfl_regs = ctx->ctx_ovfl_regs[0];
5015
5016        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5017
5018        /*
5019         * must be done before we check for simple-reset mode
5020         */
5021        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5022                goto do_zombie;
5023
5024        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5025        if (reason == PFM_TRAP_REASON_RESET)
5026                goto skip_blocking;
5027
5028        /*
5029         * restore interrupt mask to what it was on entry.
5030         * Could be enabled/diasbled.
5031         */
5032        UNPROTECT_CTX(ctx, flags);
5033
5034        /*
5035         * force interrupt enable because of down_interruptible()
5036         */
5037        local_irq_enable();
5038
5039        DPRINT(("before block sleeping\n"));
5040
5041        /*
5042         * may go through without blocking on SMP systems
5043         * if restart has been received already by the time we call down()
5044         */
5045        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5046
5047        DPRINT(("after block sleeping ret=%d\n", ret));
5048
5049        /*
5050         * lock context and mask interrupts again
5051         * We save flags into a dummy because we may have
5052         * altered interrupts mask compared to entry in this
5053         * function.
5054         */
5055        PROTECT_CTX(ctx, dummy_flags);
5056
5057        /*
5058         * we need to read the ovfl_regs only after wake-up
5059         * because we may have had pfm_write_pmds() in between
5060         * and that can changed PMD values and therefore 
5061         * ovfl_regs is reset for these new PMD values.
5062         */
5063        ovfl_regs = ctx->ctx_ovfl_regs[0];
5064
5065        if (ctx->ctx_fl_going_zombie) {
5066do_zombie:
5067                DPRINT(("context is zombie, bailing out\n"));
5068                pfm_context_force_terminate(ctx, regs);
5069                goto nothing_to_do;
5070        }
5071        /*
5072         * in case of interruption of down() we don't restart anything
5073         */
5074        if (ret < 0)
5075                goto nothing_to_do;
5076
5077skip_blocking:
5078        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5079        ctx->ctx_ovfl_regs[0] = 0UL;
5080
5081nothing_to_do:
5082        /*
5083         * restore flags as they were upon entry
5084         */
5085        UNPROTECT_CTX(ctx, flags);
5086}
5087
5088static int
5089pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5090{
5091        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5092                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5093                return 0;
5094        }
5095
5096        DPRINT(("waking up somebody\n"));
5097
5098        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5099
5100        /*
5101         * safe, we are not in intr handler, nor in ctxsw when
5102         * we come here
5103         */
5104        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5105
5106        return 0;
5107}
5108
5109static int
5110pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5111{
5112        pfm_msg_t *msg = NULL;
5113
5114        if (ctx->ctx_fl_no_msg == 0) {
5115                msg = pfm_get_new_msg(ctx);
5116                if (msg == NULL) {
5117                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5118                        return -1;
5119                }
5120
5121                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5122                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5123                msg->pfm_ovfl_msg.msg_active_set   = 0;
5124                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5125                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5126                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5127                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5128                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5129        }
5130
5131        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5132                msg,
5133                ctx->ctx_fl_no_msg,
5134                ctx->ctx_fd,
5135                ovfl_pmds));
5136
5137        return pfm_notify_user(ctx, msg);
5138}
5139
5140static int
5141pfm_end_notify_user(pfm_context_t *ctx)
5142{
5143        pfm_msg_t *msg;
5144
5145        msg = pfm_get_new_msg(ctx);
5146        if (msg == NULL) {
5147                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5148                return -1;
5149        }
5150        /* no leak */
5151        memset(msg, 0, sizeof(*msg));
5152
5153        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5154        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5155        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5156
5157        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5158                msg,
5159                ctx->ctx_fl_no_msg,
5160                ctx->ctx_fd));
5161
5162        return pfm_notify_user(ctx, msg);
5163}
5164
5165/*
5166 * main overflow processing routine.
5167 * it can be called from the interrupt path or explicitly during the context switch code
5168 */
5169static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5170                                unsigned long pmc0, struct pt_regs *regs)
5171{
5172        pfm_ovfl_arg_t *ovfl_arg;
5173        unsigned long mask;
5174        unsigned long old_val, ovfl_val, new_val;
5175        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5176        unsigned long tstamp;
5177        pfm_ovfl_ctrl_t ovfl_ctrl;
5178        unsigned int i, has_smpl;
5179        int must_notify = 0;
5180
5181        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5182
5183        /*
5184         * sanity test. Should never happen
5185         */
5186        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5187
5188        tstamp   = ia64_get_itc();
5189        mask     = pmc0 >> PMU_FIRST_COUNTER;
5190        ovfl_val = pmu_conf->ovfl_val;
5191        has_smpl = CTX_HAS_SMPL(ctx);
5192
5193        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5194                     "used_pmds=0x%lx\n",
5195                        pmc0,
5196                        task ? task_pid_nr(task): -1,
5197                        (regs ? regs->cr_iip : 0),
5198                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5199                        ctx->ctx_used_pmds[0]));
5200
5201
5202        /*
5203         * first we update the virtual counters
5204         * assume there was a prior ia64_srlz_d() issued
5205         */
5206        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5207
5208                /* skip pmd which did not overflow */
5209                if ((mask & 0x1) == 0) continue;
5210
5211                /*
5212                 * Note that the pmd is not necessarily 0 at this point as qualified events
5213                 * may have happened before the PMU was frozen. The residual count is not
5214                 * taken into consideration here but will be with any read of the pmd via
5215                 * pfm_read_pmds().
5216                 */
5217                old_val              = new_val = ctx->ctx_pmds[i].val;
5218                new_val             += 1 + ovfl_val;
5219                ctx->ctx_pmds[i].val = new_val;
5220
5221                /*
5222                 * check for overflow condition
5223                 */
5224                if (likely(old_val > new_val)) {
5225                        ovfl_pmds |= 1UL << i;
5226                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5227                }
5228
5229                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5230                        i,
5231                        new_val,
5232                        old_val,
5233                        ia64_get_pmd(i) & ovfl_val,
5234                        ovfl_pmds,
5235                        ovfl_notify));
5236        }
5237
5238        /*
5239         * there was no 64-bit overflow, nothing else to do
5240         */
5241        if (ovfl_pmds == 0UL) return;
5242
5243        /* 
5244         * reset all control bits
5245         */
5246        ovfl_ctrl.val = 0;
5247        reset_pmds    = 0UL;
5248
5249        /*
5250         * if a sampling format module exists, then we "cache" the overflow by 
5251         * calling the module's handler() routine.
5252         */
5253        if (has_smpl) {
5254                unsigned long start_cycles, end_cycles;
5255                unsigned long pmd_mask;
5256                int j, k, ret = 0;
5257                int this_cpu = smp_processor_id();
5258
5259                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5260                ovfl_arg = &ctx->ctx_ovfl_arg;
5261
5262                prefetch(ctx->ctx_smpl_hdr);
5263
5264                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5265
5266                        mask = 1UL << i;
5267
5268                        if ((pmd_mask & 0x1) == 0) continue;
5269
5270                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5271                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5272                        ovfl_arg->active_set    = 0;
5273                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5274                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5275
5276                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5277                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5278                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5279
5280                        /*
5281                         * copy values of pmds of interest. Sampling format may copy them
5282                         * into sampling buffer.
5283                         */
5284                        if (smpl_pmds) {
5285                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5286                                        if ((smpl_pmds & 0x1) == 0) continue;
5287                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5288                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5289                                }
5290                        }
5291
5292                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5293
5294                        start_cycles = ia64_get_itc();
5295
5296                        /*
5297                         * call custom buffer format record (handler) routine
5298                         */
5299                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5300
5301                        end_cycles = ia64_get_itc();
5302
5303                        /*
5304                         * For those controls, we take the union because they have
5305                         * an all or nothing behavior.
5306                         */
5307                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5308                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5309                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5310                        /*
5311                         * build the bitmask of pmds to reset now
5312                         */
5313                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5314
5315                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5316                }
5317                /*
5318                 * when the module cannot handle the rest of the overflows, we abort right here
5319                 */
5320                if (ret && pmd_mask) {
5321                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5322                                pmd_mask<<PMU_FIRST_COUNTER));
5323                }
5324                /*
5325                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5326                 */
5327                ovfl_pmds &= ~reset_pmds;
5328        } else {
5329                /*
5330                 * when no sampling module is used, then the default
5331                 * is to notify on overflow if requested by user
5332                 */
5333                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5334                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5335                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5336                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5337                /*
5338                 * if needed, we reset all overflowed pmds
5339                 */
5340                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5341        }
5342
5343        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5344
5345        /*
5346         * reset the requested PMD registers using the short reset values
5347         */
5348        if (reset_pmds) {
5349                unsigned long bm = reset_pmds;
5350                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5351        }
5352
5353        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5354                /*
5355                 * keep track of what to reset when unblocking
5356                 */
5357                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5358
5359                /*
5360                 * check for blocking context 
5361                 */
5362                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5363
5364                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5365
5366                        /*
5367                         * set the perfmon specific checking pending work for the task
5368                         */
5369                        PFM_SET_WORK_PENDING(task, 1);
5370
5371                        /*
5372                         * when coming from ctxsw, current still points to the
5373                         * previous task, therefore we must work with task and not current.
5374                         */
5375                        set_notify_resume(task);
5376                }
5377                /*
5378                 * defer until state is changed (shorten spin window). the context is locked
5379                 * anyway, so the signal receiver would come spin for nothing.
5380                 */
5381                must_notify = 1;
5382        }
5383
5384        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5385                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5386                        PFM_GET_WORK_PENDING(task),
5387                        ctx->ctx_fl_trap_reason,
5388                        ovfl_pmds,
5389                        ovfl_notify,
5390                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5391        /*
5392         * in case monitoring must be stopped, we toggle the psr bits
5393         */
5394        if (ovfl_ctrl.bits.mask_monitoring) {
5395                pfm_mask_monitoring(task);
5396                ctx->ctx_state = PFM_CTX_MASKED;
5397                ctx->ctx_fl_can_restart = 1;
5398        }
5399
5400        /*
5401         * send notification now
5402         */
5403        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5404
5405        return;
5406
5407sanity_check:
5408        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5409                        smp_processor_id(),
5410                        task ? task_pid_nr(task) : -1,
5411                        pmc0);
5412        return;
5413
5414stop_monitoring:
5415        /*
5416         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5417         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5418         * come here as zombie only if the task is the current task. In which case, we
5419         * can access the PMU  hardware directly.
5420         *
5421         * Note that zombies do have PM_VALID set. So here we do the minimal.
5422         *
5423         * In case the context was zombified it could not be reclaimed at the time
5424         * the monitoring program exited. At this point, the PMU reservation has been
5425         * returned, the sampiing buffer has been freed. We must convert this call
5426         * into a spurious interrupt. However, we must also avoid infinite overflows
5427         * by stopping monitoring for this task. We can only come here for a per-task
5428         * context. All we need to do is to stop monitoring using the psr bits which
5429         * are always task private. By re-enabling secure montioring, we ensure that
5430         * the monitored task will not be able to re-activate monitoring.
5431         * The task will eventually be context switched out, at which point the context
5432         * will be reclaimed (that includes releasing ownership of the PMU).
5433         *
5434         * So there might be a window of time where the number of per-task session is zero
5435         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5436         * context. This is safe because if a per-task session comes in, it will push this one
5437         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5438         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5439         * also push our zombie context out.
5440         *
5441         * Overall pretty hairy stuff....
5442         */
5443        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5444        pfm_clear_psr_up();
5445        ia64_psr(regs)->up = 0;
5446        ia64_psr(regs)->sp = 1;
5447        return;
5448}
5449
5450static int
5451pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5452{
5453        struct task_struct *task;
5454        pfm_context_t *ctx;
5455        unsigned long flags;
5456        u64 pmc0;
5457        int this_cpu = smp_processor_id();
5458        int retval = 0;
5459
5460        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5461
5462        /*
5463         * srlz.d done before arriving here
5464         */
5465        pmc0 = ia64_get_pmc(0);
5466
5467        task = GET_PMU_OWNER();
5468        ctx  = GET_PMU_CTX();
5469
5470        /*
5471         * if we have some pending bits set
5472         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5473         */
5474        if (PMC0_HAS_OVFL(pmc0) && task) {
5475                /*
5476                 * we assume that pmc0.fr is always set here
5477                 */
5478
5479                /* sanity check */
5480                if (!ctx) goto report_spurious1;
5481
5482                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5483                        goto report_spurious2;
5484
5485                PROTECT_CTX_NOPRINT(ctx, flags);
5486
5487                pfm_overflow_handler(task, ctx, pmc0, regs);
5488
5489                UNPROTECT_CTX_NOPRINT(ctx, flags);
5490
5491        } else {
5492                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5493                retval = -1;
5494        }
5495        /*
5496         * keep it unfrozen at all times
5497         */
5498        pfm_unfreeze_pmu();
5499
5500        return retval;
5501
5502report_spurious1:
5503        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5504                this_cpu, task_pid_nr(task));
5505        pfm_unfreeze_pmu();
5506        return -1;
5507report_spurious2:
5508        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5509                this_cpu, 
5510                task_pid_nr(task));
5511        pfm_unfreeze_pmu();
5512        return -1;
5513}
5514
5515static irqreturn_t
5516pfm_interrupt_handler(int irq, void *arg)
5517{
5518        unsigned long start_cycles, total_cycles;
5519        unsigned long min, max;
5520        int this_cpu;
5521        int ret;
5522        struct pt_regs *regs = get_irq_regs();
5523
5524        this_cpu = get_cpu();
5525        if (likely(!pfm_alt_intr_handler)) {
5526                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5527                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5528
5529                start_cycles = ia64_get_itc();
5530
5531                ret = pfm_do_interrupt_handler(arg, regs);
5532
5533                total_cycles = ia64_get_itc();
5534
5535                /*
5536                 * don't measure spurious interrupts
5537                 */
5538                if (likely(ret == 0)) {
5539                        total_cycles -= start_cycles;
5540
5541                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5542                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5543
5544                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5545                }
5546        }
5547        else {
5548                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5549        }
5550
5551        put_cpu();
5552        return IRQ_HANDLED;
5553}
5554
5555/*
5556 * /proc/perfmon interface, for debug only
5557 */
5558
5559#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5560
5561static void *
5562pfm_proc_start(struct seq_file *m, loff_t *pos)
5563{
5564        if (*pos == 0) {
5565                return PFM_PROC_SHOW_HEADER;
5566        }
5567
5568        while (*pos <= nr_cpu_ids) {
5569                if (cpu_online(*pos - 1)) {
5570                        return (void *)*pos;
5571                }
5572                ++*pos;
5573        }
5574        return NULL;
5575}
5576
5577static void *
5578pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5579{
5580        ++*pos;
5581        return pfm_proc_start(m, pos);
5582}
5583
5584static void
5585pfm_proc_stop(struct seq_file *m, void *v)
5586{
5587}
5588
5589static void
5590pfm_proc_show_header(struct seq_file *m)
5591{
5592        struct list_head * pos;
5593        pfm_buffer_fmt_t * entry;
5594        unsigned long flags;
5595
5596        seq_printf(m,
5597                "perfmon version           : %u.%u\n"
5598                "model                     : %s\n"
5599                "fastctxsw                 : %s\n"
5600                "expert mode               : %s\n"
5601                "ovfl_mask                 : 0x%lx\n"
5602                "PMU flags                 : 0x%x\n",
5603                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5604                pmu_conf->pmu_name,
5605                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5606                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5607                pmu_conf->ovfl_val,
5608                pmu_conf->flags);
5609
5610        LOCK_PFS(flags);
5611
5612        seq_printf(m,
5613                "proc_sessions             : %u\n"
5614                "sys_sessions              : %u\n"
5615                "sys_use_dbregs            : %u\n"
5616                "ptrace_use_dbregs         : %u\n",
5617                pfm_sessions.pfs_task_sessions,
5618                pfm_sessions.pfs_sys_sessions,
5619                pfm_sessions.pfs_sys_use_dbregs,
5620                pfm_sessions.pfs_ptrace_use_dbregs);
5621
5622        UNLOCK_PFS(flags);
5623
5624        spin_lock(&pfm_buffer_fmt_lock);
5625
5626        list_for_each(pos, &pfm_buffer_fmt_list) {
5627                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5628                seq_printf(m, "format                    : %16phD %s\n",
5629                           entry->fmt_uuid, entry->fmt_name);
5630        }
5631        spin_unlock(&pfm_buffer_fmt_lock);
5632
5633}
5634
5635static int
5636pfm_proc_show(struct seq_file *m, void *v)
5637{
5638        unsigned long psr;
5639        unsigned int i;
5640        int cpu;
5641
5642        if (v == PFM_PROC_SHOW_HEADER) {
5643                pfm_proc_show_header(m);
5644                return 0;
5645        }
5646
5647        /* show info for CPU (v - 1) */
5648
5649        cpu = (long)v - 1;
5650        seq_printf(m,
5651                "CPU%-2d overflow intrs      : %lu\n"
5652                "CPU%-2d overflow cycles     : %lu\n"
5653                "CPU%-2d overflow min        : %lu\n"
5654                "CPU%-2d overflow max        : %lu\n"
5655                "CPU%-2d smpl handler calls  : %lu\n"
5656                "CPU%-2d smpl handler cycles : %lu\n"
5657                "CPU%-2d spurious intrs      : %lu\n"
5658                "CPU%-2d replay   intrs      : %lu\n"
5659                "CPU%-2d syst_wide           : %d\n"
5660                "CPU%-2d dcr_pp              : %d\n"
5661                "CPU%-2d exclude idle        : %d\n"
5662                "CPU%-2d owner               : %d\n"
5663                "CPU%-2d context             : %p\n"
5664                "CPU%-2d activations         : %lu\n",
5665                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5666                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5667                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5668                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5669                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5670                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5671                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5672                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5673                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5674                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5675                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5676                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5677                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5678                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5679
5680        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5681
5682                psr = pfm_get_psr();
5683
5684                ia64_srlz_d();
5685
5686                seq_printf(m, 
5687                        "CPU%-2d psr                 : 0x%lx\n"
5688                        "CPU%-2d pmc0                : 0x%lx\n", 
5689                        cpu, psr,
5690                        cpu, ia64_get_pmc(0));
5691
5692                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5693                        if (PMC_IS_COUNTING(i) == 0) continue;
5694                        seq_printf(m, 
5695                                "CPU%-2d pmc%u                : 0x%lx\n"
5696                                "CPU%-2d pmd%u                : 0x%lx\n", 
5697                                cpu, i, ia64_get_pmc(i),
5698                                cpu, i, ia64_get_pmd(i));
5699                }
5700        }
5701        return 0;
5702}
5703
5704const struct seq_operations pfm_seq_ops = {
5705        .start =        pfm_proc_start,
5706        .next =         pfm_proc_next,
5707        .stop =         pfm_proc_stop,
5708        .show =         pfm_proc_show
5709};
5710
5711static int
5712pfm_proc_open(struct inode *inode, struct file *file)
5713{
5714        return seq_open(file, &pfm_seq_ops);
5715}
5716
5717
5718/*
5719 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5720 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5721 * is active or inactive based on mode. We must rely on the value in
5722 * local_cpu_data->pfm_syst_info
5723 */
5724void
5725pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5726{
5727        struct pt_regs *regs;
5728        unsigned long dcr;
5729        unsigned long dcr_pp;
5730
5731        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5732
5733        /*
5734         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5735         * on every CPU, so we can rely on the pid to identify the idle task.
5736         */
5737        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5738                regs = task_pt_regs(task);
5739                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5740                return;
5741        }
5742        /*
5743         * if monitoring has started
5744         */
5745        if (dcr_pp) {
5746                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5747                /*
5748                 * context switching in?
5749                 */
5750                if (is_ctxswin) {
5751                        /* mask monitoring for the idle task */
5752                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5753                        pfm_clear_psr_pp();
5754                        ia64_srlz_i();
5755                        return;
5756                }
5757                /*
5758                 * context switching out
5759                 * restore monitoring for next task
5760                 *
5761                 * Due to inlining this odd if-then-else construction generates
5762                 * better code.
5763                 */
5764                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5765                pfm_set_psr_pp();
5766                ia64_srlz_i();
5767        }
5768}
5769
5770#ifdef CONFIG_SMP
5771
5772static void
5773pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5774{
5775        struct task_struct *task = ctx->ctx_task;
5776
5777        ia64_psr(regs)->up = 0;
5778        ia64_psr(regs)->sp = 1;
5779
5780        if (GET_PMU_OWNER() == task) {
5781                DPRINT(("cleared ownership for [%d]\n",
5782                                        task_pid_nr(ctx->ctx_task)));
5783                SET_PMU_OWNER(NULL, NULL);
5784        }
5785
5786        /*
5787         * disconnect the task from the context and vice-versa
5788         */
5789        PFM_SET_WORK_PENDING(task, 0);
5790
5791        task->thread.pfm_context  = NULL;
5792        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5793
5794        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5795}
5796
5797
5798/*
5799 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5800 */
5801void
5802pfm_save_regs(struct task_struct *task)
5803{
5804        pfm_context_t *ctx;
5805        unsigned long flags;
5806        u64 psr;
5807
5808
5809        ctx = PFM_GET_CTX(task);
5810        if (ctx == NULL) return;
5811
5812        /*
5813         * we always come here with interrupts ALREADY disabled by
5814         * the scheduler. So we simply need to protect against concurrent
5815         * access, not CPU concurrency.
5816         */
5817        flags = pfm_protect_ctx_ctxsw(ctx);
5818
5819        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5820                struct pt_regs *regs = task_pt_regs(task);
5821
5822                pfm_clear_psr_up();
5823
5824                pfm_force_cleanup(ctx, regs);
5825
5826                BUG_ON(ctx->ctx_smpl_hdr);
5827
5828                pfm_unprotect_ctx_ctxsw(ctx, flags);
5829
5830                pfm_context_free(ctx);
5831                return;
5832        }
5833
5834        /*
5835         * save current PSR: needed because we modify it
5836         */
5837        ia64_srlz_d();
5838        psr = pfm_get_psr();
5839
5840        BUG_ON(psr & (IA64_PSR_I));
5841
5842        /*
5843         * stop monitoring:
5844         * This is the last instruction which may generate an overflow
5845         *
5846         * We do not need to set psr.sp because, it is irrelevant in kernel.
5847         * It will be restored from ipsr when going back to user level
5848         */
5849        pfm_clear_psr_up();
5850
5851        /*
5852         * keep a copy of psr.up (for reload)
5853         */
5854        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5855
5856        /*
5857         * release ownership of this PMU.
5858         * PM interrupts are masked, so nothing
5859         * can happen.
5860         */
5861        SET_PMU_OWNER(NULL, NULL);
5862
5863        /*
5864         * we systematically save the PMD as we have no
5865         * guarantee we will be schedule at that same
5866         * CPU again.
5867         */
5868        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5869
5870        /*
5871         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5872         * we will need it on the restore path to check
5873         * for pending overflow.
5874         */
5875        ctx->th_pmcs[0] = ia64_get_pmc(0);
5876
5877        /*
5878         * unfreeze PMU if had pending overflows
5879         */
5880        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5881
5882        /*
5883         * finally, allow context access.
5884         * interrupts will still be masked after this call.
5885         */
5886        pfm_unprotect_ctx_ctxsw(ctx, flags);
5887}
5888
5889#else /* !CONFIG_SMP */
5890void
5891pfm_save_regs(struct task_struct *task)
5892{
5893        pfm_context_t *ctx;
5894        u64 psr;
5895
5896        ctx = PFM_GET_CTX(task);
5897        if (ctx == NULL) return;
5898
5899        /*
5900         * save current PSR: needed because we modify it
5901         */
5902        psr = pfm_get_psr();
5903
5904        BUG_ON(psr & (IA64_PSR_I));
5905
5906        /*
5907         * stop monitoring:
5908         * This is the last instruction which may generate an overflow
5909         *
5910         * We do not need to set psr.sp because, it is irrelevant in kernel.
5911         * It will be restored from ipsr when going back to user level
5912         */
5913        pfm_clear_psr_up();
5914
5915        /*
5916         * keep a copy of psr.up (for reload)
5917         */
5918        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5919}
5920
5921static void
5922pfm_lazy_save_regs (struct task_struct *task)
5923{
5924        pfm_context_t *ctx;
5925        unsigned long flags;
5926
5927        { u64 psr  = pfm_get_psr();
5928          BUG_ON(psr & IA64_PSR_UP);
5929        }
5930
5931        ctx = PFM_GET_CTX(task);
5932
5933        /*
5934         * we need to mask PMU overflow here to
5935         * make sure that we maintain pmc0 until
5936         * we save it. overflow interrupts are
5937         * treated as spurious if there is no
5938         * owner.
5939         *
5940         * XXX: I don't think this is necessary
5941         */
5942        PROTECT_CTX(ctx,flags);
5943
5944        /*
5945         * release ownership of this PMU.
5946         * must be done before we save the registers.
5947         *
5948         * after this call any PMU interrupt is treated
5949         * as spurious.
5950         */
5951        SET_PMU_OWNER(NULL, NULL);
5952
5953        /*
5954         * save all the pmds we use
5955         */
5956        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5957
5958        /*
5959         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5960         * it is needed to check for pended overflow
5961         * on the restore path
5962         */
5963        ctx->th_pmcs[0] = ia64_get_pmc(0);
5964
5965        /*
5966         * unfreeze PMU if had pending overflows
5967         */
5968        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5969
5970        /*
5971         * now get can unmask PMU interrupts, they will
5972         * be treated as purely spurious and we will not
5973         * lose any information
5974         */
5975        UNPROTECT_CTX(ctx,flags);
5976}
5977#endif /* CONFIG_SMP */
5978
5979#ifdef CONFIG_SMP
5980/*
5981 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5982 */
5983void
5984pfm_load_regs (struct task_struct *task)
5985{
5986        pfm_context_t *ctx;
5987        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5988        unsigned long flags;
5989        u64 psr, psr_up;
5990        int need_irq_resend;
5991
5992        ctx = PFM_GET_CTX(task);
5993        if (unlikely(ctx == NULL)) return;
5994
5995        BUG_ON(GET_PMU_OWNER());
5996
5997        /*
5998         * possible on unload
5999         */
6000        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6001
6002        /*
6003         * we always come here with interrupts ALREADY disabled by
6004         * the scheduler. So we simply need to protect against concurrent
6005         * access, not CPU concurrency.
6006         */
6007        flags = pfm_protect_ctx_ctxsw(ctx);
6008        psr   = pfm_get_psr();
6009
6010        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6011
6012        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6013        BUG_ON(psr & IA64_PSR_I);
6014
6015        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6016                struct pt_regs *regs = task_pt_regs(task);
6017
6018                BUG_ON(ctx->ctx_smpl_hdr);
6019
6020                pfm_force_cleanup(ctx, regs);
6021
6022                pfm_unprotect_ctx_ctxsw(ctx, flags);
6023
6024                /*
6025                 * this one (kmalloc'ed) is fine with interrupts disabled
6026                 */
6027                pfm_context_free(ctx);
6028
6029                return;
6030        }
6031
6032        /*
6033         * we restore ALL the debug registers to avoid picking up
6034         * stale state.
6035         */
6036        if (ctx->ctx_fl_using_dbreg) {
6037                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6038                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6039        }
6040        /*
6041         * retrieve saved psr.up
6042         */
6043        psr_up = ctx->ctx_saved_psr_up;
6044
6045        /*
6046         * if we were the last user of the PMU on that CPU,
6047         * then nothing to do except restore psr
6048         */
6049        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6050
6051                /*
6052                 * retrieve partial reload masks (due to user modifications)
6053                 */
6054                pmc_mask = ctx->ctx_reload_pmcs[0];
6055                pmd_mask = ctx->ctx_reload_pmds[0];
6056
6057        } else {
6058                /*
6059                 * To avoid leaking information to the user level when psr.sp=0,
6060                 * we must reload ALL implemented pmds (even the ones we don't use).
6061                 * In the kernel we only allow PFM_READ_PMDS on registers which
6062                 * we initialized or requested (sampling) so there is no risk there.
6063                 */
6064                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6065
6066                /*
6067                 * ALL accessible PMCs are systematically reloaded, unused registers
6068                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6069                 * up stale configuration.
6070                 *
6071                 * PMC0 is never in the mask. It is always restored separately.
6072                 */
6073                pmc_mask = ctx->ctx_all_pmcs[0];
6074        }
6075        /*
6076         * when context is MASKED, we will restore PMC with plm=0
6077         * and PMD with stale information, but that's ok, nothing
6078         * will be captured.
6079         *
6080         * XXX: optimize here
6081         */
6082        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6083        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6084
6085        /*
6086         * check for pending overflow at the time the state
6087         * was saved.
6088         */
6089        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6090                /*
6091                 * reload pmc0 with the overflow information
6092                 * On McKinley PMU, this will trigger a PMU interrupt
6093                 */
6094                ia64_set_pmc(0, ctx->th_pmcs[0]);
6095                ia64_srlz_d();
6096                ctx->th_pmcs[0] = 0UL;
6097
6098                /*
6099                 * will replay the PMU interrupt
6100                 */
6101                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6102
6103                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6104        }
6105
6106        /*
6107         * we just did a reload, so we reset the partial reload fields
6108         */
6109        ctx->ctx_reload_pmcs[0] = 0UL;
6110        ctx->ctx_reload_pmds[0] = 0UL;
6111
6112        SET_LAST_CPU(ctx, smp_processor_id());
6113
6114        /*
6115         * dump activation value for this PMU
6116         */
6117        INC_ACTIVATION();
6118        /*
6119         * record current activation for this context
6120         */
6121        SET_ACTIVATION(ctx);
6122
6123        /*
6124         * establish new ownership. 
6125         */
6126        SET_PMU_OWNER(task, ctx);
6127
6128        /*
6129         * restore the psr.up bit. measurement
6130         * is active again.
6131         * no PMU interrupt can happen at this point
6132         * because we still have interrupts disabled.
6133         */
6134        if (likely(psr_up)) pfm_set_psr_up();
6135
6136        /*
6137         * allow concurrent access to context
6138         */
6139        pfm_unprotect_ctx_ctxsw(ctx, flags);
6140}
6141#else /*  !CONFIG_SMP */
6142/*
6143 * reload PMU state for UP kernels
6144 * in 2.5 we come here with interrupts disabled
6145 */
6146void
6147pfm_load_regs (struct task_struct *task)
6148{
6149        pfm_context_t *ctx;
6150        struct task_struct *owner;
6151        unsigned long pmd_mask, pmc_mask;
6152        u64 psr, psr_up;
6153        int need_irq_resend;
6154
6155        owner = GET_PMU_OWNER();
6156        ctx   = PFM_GET_CTX(task);
6157        psr   = pfm_get_psr();
6158
6159        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6160        BUG_ON(psr & IA64_PSR_I);
6161
6162        /*
6163         * we restore ALL the debug registers to avoid picking up
6164         * stale state.
6165         *
6166         * This must be done even when the task is still the owner
6167         * as the registers may have been modified via ptrace()
6168         * (not perfmon) by the previous task.
6169         */
6170        if (ctx->ctx_fl_using_dbreg) {
6171                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6172                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6173        }
6174
6175        /*
6176         * retrieved saved psr.up
6177         */
6178        psr_up = ctx->ctx_saved_psr_up;
6179        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6180
6181        /*
6182         * short path, our state is still there, just
6183         * need to restore psr and we go
6184         *
6185         * we do not touch either PMC nor PMD. the psr is not touched
6186         * by the overflow_handler. So we are safe w.r.t. to interrupt
6187         * concurrency even without interrupt masking.
6188         */
6189        if (likely(owner == task)) {
6190                if (likely(psr_up)) pfm_set_psr_up();
6191                return;
6192        }
6193
6194        /*
6195         * someone else is still using the PMU, first push it out and
6196         * then we'll be able to install our stuff !
6197         *
6198         * Upon return, there will be no owner for the current PMU
6199         */
6200        if (owner) pfm_lazy_save_regs(owner);
6201
6202        /*
6203         * To avoid leaking information to the user level when psr.sp=0,
6204         * we must reload ALL implemented pmds (even the ones we don't use).
6205         * In the kernel we only allow PFM_READ_PMDS on registers which
6206         * we initialized or requested (sampling) so there is no risk there.
6207         */
6208        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6209
6210        /*
6211         * ALL accessible PMCs are systematically reloaded, unused registers
6212         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6213         * up stale configuration.
6214         *
6215         * PMC0 is never in the mask. It is always restored separately
6216         */
6217        pmc_mask = ctx->ctx_all_pmcs[0];
6218
6219        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6220        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6221
6222        /*
6223         * check for pending overflow at the time the state
6224         * was saved.
6225         */
6226        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6227                /*
6228                 * reload pmc0 with the overflow information
6229                 * On McKinley PMU, this will trigger a PMU interrupt
6230                 */
6231                ia64_set_pmc(0, ctx->th_pmcs[0]);
6232                ia64_srlz_d();
6233
6234                ctx->th_pmcs[0] = 0UL;
6235
6236                /*
6237                 * will replay the PMU interrupt
6238                 */
6239                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6240
6241                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6242        }
6243
6244        /*
6245         * establish new ownership. 
6246         */
6247        SET_PMU_OWNER(task, ctx);
6248
6249        /*
6250         * restore the psr.up bit. measurement
6251         * is active again.
6252         * no PMU interrupt can happen at this point
6253         * because we still have interrupts disabled.
6254         */
6255        if (likely(psr_up)) pfm_set_psr_up();
6256}
6257#endif /* CONFIG_SMP */
6258
6259/*
6260 * this function assumes monitoring is stopped
6261 */
6262static void
6263pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6264{
6265        u64 pmc0;
6266        unsigned long mask2, val, pmd_val, ovfl_val;
6267        int i, can_access_pmu = 0;
6268        int is_self;
6269
6270        /*
6271         * is the caller the task being monitored (or which initiated the
6272         * session for system wide measurements)
6273         */
6274        is_self = ctx->ctx_task == task ? 1 : 0;
6275
6276        /*
6277         * can access PMU is task is the owner of the PMU state on the current CPU
6278         * or if we are running on the CPU bound to the context in system-wide mode
6279         * (that is not necessarily the task the context is attached to in this mode).
6280         * In system-wide we always have can_access_pmu true because a task running on an
6281         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6282         */
6283        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6284        if (can_access_pmu) {
6285                /*
6286                 * Mark the PMU as not owned
6287                 * This will cause the interrupt handler to do nothing in case an overflow
6288                 * interrupt was in-flight
6289                 * This also guarantees that pmc0 will contain the final state
6290                 * It virtually gives us full control on overflow processing from that point
6291                 * on.
6292                 */
6293                SET_PMU_OWNER(NULL, NULL);
6294                DPRINT(("releasing ownership\n"));
6295
6296                /*
6297                 * read current overflow status:
6298                 *
6299                 * we are guaranteed to read the final stable state
6300                 */
6301                ia64_srlz_d();
6302                pmc0 = ia64_get_pmc(0); /* slow */
6303
6304                /*
6305                 * reset freeze bit, overflow status information destroyed
6306                 */
6307                pfm_unfreeze_pmu();
6308        } else {
6309                pmc0 = ctx->th_pmcs[0];
6310                /*
6311                 * clear whatever overflow status bits there were
6312                 */
6313                ctx->th_pmcs[0] = 0;
6314        }
6315        ovfl_val = pmu_conf->ovfl_val;
6316        /*
6317         * we save all the used pmds
6318         * we take care of overflows for counting PMDs
6319         *
6320         * XXX: sampling situation is not taken into account here
6321         */
6322        mask2 = ctx->ctx_used_pmds[0];
6323
6324        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6325
6326        for (i = 0; mask2; i++, mask2>>=1) {
6327
6328                /* skip non used pmds */
6329                if ((mask2 & 0x1) == 0) continue;
6330
6331                /*
6332                 * can access PMU always true in system wide mode
6333                 */
6334                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6335
6336                if (PMD_IS_COUNTING(i)) {
6337                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6338                                task_pid_nr(task),
6339                                i,
6340                                ctx->ctx_pmds[i].val,
6341                                val & ovfl_val));
6342
6343                        /*
6344                         * we rebuild the full 64 bit value of the counter
6345                         */
6346                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6347
6348                        /*
6349                         * now everything is in ctx_pmds[] and we need
6350                         * to clear the saved context from save_regs() such that
6351                         * pfm_read_pmds() gets the correct value
6352                         */
6353                        pmd_val = 0UL;
6354
6355                        /*
6356                         * take care of overflow inline
6357                         */
6358                        if (pmc0 & (1UL << i)) {
6359                                val += 1 + ovfl_val;
6360                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6361                        }
6362                }
6363
6364                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6365
6366                if (is_self) ctx->th_pmds[i] = pmd_val;
6367
6368                ctx->ctx_pmds[i].val = val;
6369        }
6370}
6371
6372static struct irqaction perfmon_irqaction = {
6373        .handler = pfm_interrupt_handler,
6374        .name    = "perfmon"
6375};
6376
6377static void
6378pfm_alt_save_pmu_state(void *data)
6379{
6380        struct pt_regs *regs;
6381
6382        regs = task_pt_regs(current);
6383
6384        DPRINT(("called\n"));
6385
6386        /*
6387         * should not be necessary but
6388         * let's take not risk
6389         */
6390        pfm_clear_psr_up();
6391        pfm_clear_psr_pp();
6392        ia64_psr(regs)->pp = 0;
6393
6394        /*
6395         * This call is required
6396         * May cause a spurious interrupt on some processors
6397         */
6398        pfm_freeze_pmu();
6399
6400        ia64_srlz_d();
6401}
6402
6403void
6404pfm_alt_restore_pmu_state(void *data)
6405{
6406        struct pt_regs *regs;
6407
6408        regs = task_pt_regs(current);
6409
6410        DPRINT(("called\n"));
6411
6412        /*
6413         * put PMU back in state expected
6414         * by perfmon
6415         */
6416        pfm_clear_psr_up();
6417        pfm_clear_psr_pp();
6418        ia64_psr(regs)->pp = 0;
6419
6420        /*
6421         * perfmon runs with PMU unfrozen at all times
6422         */
6423        pfm_unfreeze_pmu();
6424
6425        ia64_srlz_d();
6426}
6427
6428int
6429pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6430{
6431        int ret, i;
6432        int reserve_cpu;
6433
6434        /* some sanity checks */
6435        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6436
6437        /* do the easy test first */
6438        if (pfm_alt_intr_handler) return -EBUSY;
6439
6440        /* one at a time in the install or remove, just fail the others */
6441        if (!spin_trylock(&pfm_alt_install_check)) {
6442                return -EBUSY;
6443        }
6444
6445        /* reserve our session */
6446        for_each_online_cpu(reserve_cpu) {
6447                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6448                if (ret) goto cleanup_reserve;
6449        }
6450
6451        /* save the current system wide pmu states */
6452        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6453        if (ret) {
6454                DPRINT(("on_each_cpu() failed: %d\n", ret));
6455                goto cleanup_reserve;
6456        }
6457
6458        /* officially change to the alternate interrupt handler */
6459        pfm_alt_intr_handler = hdl;
6460
6461        spin_unlock(&pfm_alt_install_check);
6462
6463        return 0;
6464
6465cleanup_reserve:
6466        for_each_online_cpu(i) {
6467                /* don't unreserve more than we reserved */
6468                if (i >= reserve_cpu) break;
6469
6470                pfm_unreserve_session(NULL, 1, i);
6471        }
6472
6473        spin_unlock(&pfm_alt_install_check);
6474
6475        return ret;
6476}
6477EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6478
6479int
6480pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6481{
6482        int i;
6483        int ret;
6484
6485        if (hdl == NULL) return -EINVAL;
6486
6487        /* cannot remove someone else's handler! */
6488        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6489
6490        /* one at a time in the install or remove, just fail the others */
6491        if (!spin_trylock(&pfm_alt_install_check)) {
6492                return -EBUSY;
6493        }
6494
6495        pfm_alt_intr_handler = NULL;
6496
6497        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6498        if (ret) {
6499                DPRINT(("on_each_cpu() failed: %d\n", ret));
6500        }
6501
6502        for_each_online_cpu(i) {
6503                pfm_unreserve_session(NULL, 1, i);
6504        }
6505
6506        spin_unlock(&pfm_alt_install_check);
6507
6508        return 0;
6509}
6510EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6511
6512/*
6513 * perfmon initialization routine, called from the initcall() table
6514 */
6515static int init_pfm_fs(void);
6516
6517static int __init
6518pfm_probe_pmu(void)
6519{
6520        pmu_config_t **p;
6521        int family;
6522
6523        family = local_cpu_data->family;
6524        p      = pmu_confs;
6525
6526        while(*p) {
6527                if ((*p)->probe) {
6528                        if ((*p)->probe() == 0) goto found;
6529                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6530                        goto found;
6531                }
6532                p++;
6533        }
6534        return -1;
6535found:
6536        pmu_conf = *p;
6537        return 0;
6538}
6539
6540static const struct file_operations pfm_proc_fops = {
6541        .open           = pfm_proc_open,
6542        .read           = seq_read,
6543        .llseek         = seq_lseek,
6544        .release        = seq_release,
6545};
6546
6547int __init
6548pfm_init(void)
6549{
6550        unsigned int n, n_counters, i;
6551
6552        printk("perfmon: version %u.%u IRQ %u\n",
6553                PFM_VERSION_MAJ,
6554                PFM_VERSION_MIN,
6555                IA64_PERFMON_VECTOR);
6556
6557        if (pfm_probe_pmu()) {
6558                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6559                                local_cpu_data->family);
6560                return -ENODEV;
6561        }
6562
6563        /*
6564         * compute the number of implemented PMD/PMC from the
6565         * description tables
6566         */
6567        n = 0;
6568        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6569                if (PMC_IS_IMPL(i) == 0) continue;
6570                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6571                n++;
6572        }
6573        pmu_conf->num_pmcs = n;
6574
6575        n = 0; n_counters = 0;
6576        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6577                if (PMD_IS_IMPL(i) == 0) continue;
6578                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6579                n++;
6580                if (PMD_IS_COUNTING(i)) n_counters++;
6581        }
6582        pmu_conf->num_pmds      = n;
6583        pmu_conf->num_counters  = n_counters;
6584
6585        /*
6586         * sanity checks on the number of debug registers
6587         */
6588        if (pmu_conf->use_rr_dbregs) {
6589                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6590                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6591                        pmu_conf = NULL;
6592                        return -1;
6593                }
6594                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6595                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6596                        pmu_conf = NULL;
6597                        return -1;
6598                }
6599        }
6600
6601        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6602               pmu_conf->pmu_name,
6603               pmu_conf->num_pmcs,
6604               pmu_conf->num_pmds,
6605               pmu_conf->num_counters,
6606               ffz(pmu_conf->ovfl_val));
6607
6608        /* sanity check */
6609        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6610                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6611                pmu_conf = NULL;
6612                return -1;
6613        }
6614
6615        /*
6616         * create /proc/perfmon (mostly for debugging purposes)
6617         */
6618        perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6619        if (perfmon_dir == NULL) {
6620                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6621                pmu_conf = NULL;
6622                return -1;
6623        }
6624
6625        /*
6626         * create /proc/sys/kernel/perfmon (for debugging purposes)
6627         */
6628        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6629
6630        /*
6631         * initialize all our spinlocks
6632         */
6633        spin_lock_init(&pfm_sessions.pfs_lock);
6634        spin_lock_init(&pfm_buffer_fmt_lock);
6635
6636        init_pfm_fs();
6637
6638        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6639
6640        return 0;
6641}
6642
6643__initcall(pfm_init);
6644
6645/*
6646 * this function is called before pfm_init()
6647 */
6648void
6649pfm_init_percpu (void)
6650{
6651        static int first_time=1;
6652        /*
6653         * make sure no measurement is active
6654         * (may inherit programmed PMCs from EFI).
6655         */
6656        pfm_clear_psr_pp();
6657        pfm_clear_psr_up();
6658
6659        /*
6660         * we run with the PMU not frozen at all times
6661         */
6662        pfm_unfreeze_pmu();
6663
6664        if (first_time) {
6665                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6666                first_time=0;
6667        }
6668
6669        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6670        ia64_srlz_d();
6671}
6672
6673/*
6674 * used for debug purposes only
6675 */
6676void
6677dump_pmu_state(const char *from)
6678{
6679        struct task_struct *task;
6680        struct pt_regs *regs;
6681        pfm_context_t *ctx;
6682        unsigned long psr, dcr, info, flags;
6683        int i, this_cpu;
6684
6685        local_irq_save(flags);
6686
6687        this_cpu = smp_processor_id();
6688        regs     = task_pt_regs(current);
6689        info     = PFM_CPUINFO_GET();
6690        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6691
6692        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6693                local_irq_restore(flags);
6694                return;
6695        }
6696
6697        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6698                this_cpu, 
6699                from, 
6700                task_pid_nr(current),
6701                regs->cr_iip,
6702                current->comm);
6703
6704        task = GET_PMU_OWNER();
6705        ctx  = GET_PMU_CTX();
6706
6707        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6708
6709        psr = pfm_get_psr();
6710
6711        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6712                this_cpu,
6713                ia64_get_pmc(0),
6714                psr & IA64_PSR_PP ? 1 : 0,
6715                psr & IA64_PSR_UP ? 1 : 0,
6716                dcr & IA64_DCR_PP ? 1 : 0,
6717                info,
6718                ia64_psr(regs)->up,
6719                ia64_psr(regs)->pp);
6720
6721        ia64_psr(regs)->up = 0;
6722        ia64_psr(regs)->pp = 0;
6723
6724        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6725                if (PMC_IS_IMPL(i) == 0) continue;
6726                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6727        }
6728
6729        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6730                if (PMD_IS_IMPL(i) == 0) continue;
6731                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6732        }
6733
6734        if (ctx) {
6735                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6736                                this_cpu,
6737                                ctx->ctx_state,
6738                                ctx->ctx_smpl_vaddr,
6739                                ctx->ctx_smpl_hdr,
6740                                ctx->ctx_msgq_head,
6741                                ctx->ctx_msgq_tail,
6742                                ctx->ctx_saved_psr_up);
6743        }
6744        local_irq_restore(flags);
6745}
6746
6747/*
6748 * called from process.c:copy_thread(). task is new child.
6749 */
6750void
6751pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6752{
6753        struct thread_struct *thread;
6754
6755        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6756
6757        thread = &task->thread;
6758
6759        /*
6760         * cut links inherited from parent (current)
6761         */
6762        thread->pfm_context = NULL;
6763
6764        PFM_SET_WORK_PENDING(task, 0);
6765
6766        /*
6767         * the psr bits are already set properly in copy_threads()
6768         */
6769}
6770#else  /* !CONFIG_PERFMON */
6771asmlinkage long
6772sys_perfmonctl (int fd, int cmd, void *arg, int count)
6773{
6774        return -ENOSYS;
6775}
6776#endif /* CONFIG_PERFMON */
6777