linux/arch/ia64/lib/do_csum.S
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *
   4 * Optmized version of the standard do_csum() function
   5 *
   6 * Return: a 64bit quantity containing the 16bit Internet checksum
   7 *
   8 * Inputs:
   9 *      in0: address of buffer to checksum (char *)
  10 *      in1: length of the buffer (int)
  11 *
  12 * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
  13 *      Stephane Eranian <eranian@hpl.hp.com>
  14 *
  15 * 02/04/22     Ken Chen <kenneth.w.chen@intel.com>
  16 *              Data locality study on the checksum buffer.
  17 *              More optimization cleanup - remove excessive stop bits.
  18 * 02/04/08     David Mosberger <davidm@hpl.hp.com>
  19 *              More cleanup and tuning.
  20 * 01/04/18     Jun Nakajima <jun.nakajima@intel.com>
  21 *              Clean up and optimize and the software pipeline, loading two
  22 *              back-to-back 8-byte words per loop. Clean up the initialization
  23 *              for the loop. Support the cases where load latency = 1 or 2.
  24 *              Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
  25 */
  26
  27#include <asm/asmmacro.h>
  28
  29//
  30// Theory of operations:
  31//      The goal is to go as quickly as possible to the point where
  32//      we can checksum 16 bytes/loop. Before reaching that point we must
  33//      take care of incorrect alignment of first byte.
  34//
  35//      The code hereafter also takes care of the "tail" part of the buffer
  36//      before entering the core loop, if any. The checksum is a sum so it
  37//      allows us to commute operations. So we do the "head" and "tail"
  38//      first to finish at full speed in the body. Once we get the head and
  39//      tail values, we feed them into the pipeline, very handy initialization.
  40//
  41//      Of course we deal with the special case where the whole buffer fits
  42//      into one 8 byte word. In this case we have only one entry in the pipeline.
  43//
  44//      We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
  45//      possible load latency and also to accommodate for head and tail.
  46//
  47//      The end of the function deals with folding the checksum from 64bits
  48//      down to 16bits taking care of the carry.
  49//
  50//      This version avoids synchronization in the core loop by also using a
  51//      pipeline for the accumulation of the checksum in resultx[] (x=1,2).
  52//
  53//       wordx[] (x=1,2)
  54//      |---|
  55//      |   | 0                 : new value loaded in pipeline
  56//      |---|
  57//      |   | -                 : in transit data
  58//      |---|
  59//      |   | LOAD_LATENCY      : current value to add to checksum
  60//      |---|
  61//      |   | LOAD_LATENCY+1    : previous value added to checksum
  62//      |---|                   (previous iteration)
  63//
  64//      resultx[] (x=1,2)
  65//      |---|
  66//      |   | 0                 : initial value
  67//      |---|
  68//      |   | LOAD_LATENCY-1    : new checksum
  69//      |---|
  70//      |   | LOAD_LATENCY      : previous value of checksum
  71//      |---|
  72//      |   | LOAD_LATENCY+1    : final checksum when out of the loop
  73//      |---|
  74//
  75//
  76//      See RFC1071 "Computing the Internet Checksum" for various techniques for
  77//      calculating the Internet checksum.
  78//
  79// NOT YET DONE:
  80//      - Maybe another algorithm which would take care of the folding at the
  81//        end in a different manner
  82//      - Work with people more knowledgeable than me on the network stack
  83//        to figure out if we could not split the function depending on the
  84//        type of packet or alignment we get. Like the ip_fast_csum() routine
  85//        where we know we have at least 20bytes worth of data to checksum.
  86//      - Do a better job of handling small packets.
  87//      - Note on prefetching: it was found that under various load, i.e. ftp read/write,
  88//        nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
  89//        on the data that buffer points to (partly because the checksum is often preceded by
  90//        a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
  91//        the data is already in the cache.
  92//
  93
  94#define saved_pfs       r11
  95#define hmask           r16
  96#define tmask           r17
  97#define first1          r18
  98#define firstval        r19
  99#define firstoff        r20
 100#define last            r21
 101#define lastval         r22
 102#define lastoff         r23
 103#define saved_lc        r24
 104#define saved_pr        r25
 105#define tmp1            r26
 106#define tmp2            r27
 107#define tmp3            r28
 108#define carry1          r29
 109#define carry2          r30
 110#define first2          r31
 111
 112#define buf             in0
 113#define len             in1
 114
 115#define LOAD_LATENCY    2       // XXX fix me
 116
 117#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
 118# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
 119#endif
 120
 121#define PIPE_DEPTH                      (LOAD_LATENCY+2)
 122#define ELD     p[LOAD_LATENCY]         // end of load
 123#define ELD_1   p[LOAD_LATENCY+1]       // and next stage
 124
 125// unsigned long do_csum(unsigned char *buf,long len)
 126
 127GLOBAL_ENTRY(do_csum)
 128        .prologue
 129        .save ar.pfs, saved_pfs
 130        alloc saved_pfs=ar.pfs,2,16,0,16
 131        .rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
 132        .rotp p[PIPE_DEPTH], pC1[2], pC2[2]
 133        mov ret0=r0             // in case we have zero length
 134        cmp.lt p0,p6=r0,len     // check for zero length or negative (32bit len)
 135        ;;
 136        add tmp1=buf,len        // last byte's address
 137        .save pr, saved_pr
 138        mov saved_pr=pr         // preserve predicates (rotation)
 139(p6)    br.ret.spnt.many rp     // return if zero or negative length
 140
 141        mov hmask=-1            // initialize head mask
 142        tbit.nz p15,p0=buf,0    // is buf an odd address?
 143        and first1=-8,buf       // 8-byte align down address of first1 element
 144
 145        and firstoff=7,buf      // how many bytes off for first1 element
 146        mov tmask=-1            // initialize tail mask
 147
 148        ;;
 149        adds tmp2=-1,tmp1       // last-1
 150        and lastoff=7,tmp1      // how many bytes off for last element
 151        ;;
 152        sub tmp1=8,lastoff      // complement to lastoff
 153        and last=-8,tmp2        // address of word containing last byte
 154        ;;
 155        sub tmp3=last,first1    // tmp3=distance from first1 to last
 156        .save ar.lc, saved_lc
 157        mov saved_lc=ar.lc      // save lc
 158        cmp.eq p8,p9=last,first1        // everything fits in one word ?
 159
 160        ld8 firstval=[first1],8 // load, ahead of time, "first1" word
 161        and tmp1=7, tmp1        // make sure that if tmp1==8 -> tmp1=0
 162        shl tmp2=firstoff,3     // number of bits
 163        ;;
 164(p9)    ld8 lastval=[last]      // load, ahead of time, "last" word, if needed
 165        shl tmp1=tmp1,3         // number of bits
 166(p9)    adds tmp3=-8,tmp3       // effectively loaded
 167        ;;
 168(p8)    mov lastval=r0          // we don't need lastval if first1==last
 169        shl hmask=hmask,tmp2    // build head mask, mask off [0,first1off[
 170        shr.u tmask=tmask,tmp1  // build tail mask, mask off ]8,lastoff]
 171        ;;
 172        .body
 173#define count tmp3
 174
 175(p8)    and hmask=hmask,tmask   // apply tail mask to head mask if 1 word only
 176(p9)    and word2[0]=lastval,tmask      // mask last it as appropriate
 177        shr.u count=count,3     // how many 8-byte?
 178        ;;
 179        // If count is odd, finish this 8-byte word so that we can
 180        // load two back-to-back 8-byte words per loop thereafter.
 181        and word1[0]=firstval,hmask     // and mask it as appropriate
 182        tbit.nz p10,p11=count,0         // if (count is odd)
 183        ;;
 184(p8)    mov result1[0]=word1[0]
 185(p9)    add result1[0]=word1[0],word2[0]
 186        ;;
 187        cmp.ltu p6,p0=result1[0],word1[0]       // check the carry
 188        cmp.eq.or.andcm p8,p0=0,count           // exit if zero 8-byte
 189        ;;
 190(p6)    adds result1[0]=1,result1[0]
 191(p8)    br.cond.dptk .do_csum_exit      // if (within an 8-byte word)
 192(p11)   br.cond.dptk .do_csum16         // if (count is even)
 193
 194        // Here count is odd.
 195        ld8 word1[1]=[first1],8         // load an 8-byte word
 196        cmp.eq p9,p10=1,count           // if (count == 1)
 197        adds count=-1,count             // loaded an 8-byte word
 198        ;;
 199        add result1[0]=result1[0],word1[1]
 200        ;;
 201        cmp.ltu p6,p0=result1[0],word1[1]
 202        ;;
 203(p6)    adds result1[0]=1,result1[0]
 204(p9)    br.cond.sptk .do_csum_exit      // if (count == 1) exit
 205        // Fall through to calculate the checksum, feeding result1[0] as
 206        // the initial value in result1[0].
 207        //
 208        // Calculate the checksum loading two 8-byte words per loop.
 209        //
 210.do_csum16:
 211        add first2=8,first1
 212        shr.u count=count,1     // we do 16 bytes per loop
 213        ;;
 214        adds count=-1,count
 215        mov carry1=r0
 216        mov carry2=r0
 217        brp.loop.imp 1f,2f
 218        ;;
 219        mov ar.ec=PIPE_DEPTH
 220        mov ar.lc=count // set lc
 221        mov pr.rot=1<<16
 222        // result1[0] must be initialized in advance.
 223        mov result2[0]=r0
 224        ;;
 225        .align 32
 2261:
 227(ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
 228(pC1[1])adds carry1=1,carry1
 229(ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
 230(pC2[1])adds carry2=1,carry2
 231(ELD)   add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
 232(ELD)   add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
 2332:
 234(p[0])  ld8 word1[0]=[first1],16
 235(p[0])  ld8 word2[0]=[first2],16
 236        br.ctop.sptk 1b
 237        ;;
 238        // Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
 239(pC1[1])adds carry1=1,carry1    // since we miss the last one
 240(pC2[1])adds carry2=1,carry2
 241        ;;
 242        add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
 243        add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
 244        ;;
 245        cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
 246        cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
 247        ;;
 248(p6)    adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
 249(p7)    adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
 250        ;;
 251        add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
 252        ;;
 253        cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
 254        ;;
 255(p6)    adds result1[0]=1,result1[0]
 256        ;;
 257.do_csum_exit:
 258        //
 259        // now fold 64 into 16 bits taking care of carry
 260        // that's not very good because it has lots of sequentiality
 261        //
 262        mov tmp3=0xffff
 263        zxt4 tmp1=result1[0]
 264        shr.u tmp2=result1[0],32
 265        ;;
 266        add result1[0]=tmp1,tmp2
 267        ;;
 268        and tmp1=result1[0],tmp3
 269        shr.u tmp2=result1[0],16
 270        ;;
 271        add result1[0]=tmp1,tmp2
 272        ;;
 273        and tmp1=result1[0],tmp3
 274        shr.u tmp2=result1[0],16
 275        ;;
 276        add result1[0]=tmp1,tmp2
 277        ;;
 278        and tmp1=result1[0],tmp3
 279        shr.u tmp2=result1[0],16
 280        ;;
 281        add ret0=tmp1,tmp2
 282        mov pr=saved_pr,0xffffffffffff0000
 283        ;;
 284        // if buf was odd then swap bytes
 285        mov ar.pfs=saved_pfs            // restore ar.ec
 286(p15)   mux1 ret0=ret0,@rev             // reverse word
 287        ;;
 288        mov ar.lc=saved_lc
 289(p15)   shr.u ret0=ret0,64-16   // + shift back to position = swap bytes
 290        br.ret.sptk.many rp
 291
 292//      I (Jun Nakajima) wrote an equivalent code (see below), but it was
 293//      not much better than the original. So keep the original there so that
 294//      someone else can challenge.
 295//
 296//      shr.u word1[0]=result1[0],32
 297//      zxt4 result1[0]=result1[0]
 298//      ;;
 299//      add result1[0]=result1[0],word1[0]
 300//      ;;
 301//      zxt2 result2[0]=result1[0]
 302//      extr.u word1[0]=result1[0],16,16
 303//      shr.u carry1=result1[0],32
 304//      ;;
 305//      add result2[0]=result2[0],word1[0]
 306//      ;;
 307//      add result2[0]=result2[0],carry1
 308//      ;;
 309//      extr.u ret0=result2[0],16,16
 310//      ;;
 311//      add ret0=ret0,result2[0]
 312//      ;;
 313//      zxt2 ret0=ret0
 314//      mov ar.pfs=saved_pfs             // restore ar.ec
 315//      mov pr=saved_pr,0xffffffffffff0000
 316//      ;;
 317//      // if buf was odd then swap bytes
 318//      mov ar.lc=saved_lc
 319//(p15) mux1 ret0=ret0,@rev             // reverse word
 320//      ;;
 321//(p15) shr.u ret0=ret0,64-16   // + shift back to position = swap bytes
 322//      br.ret.sptk.many rp
 323
 324END(do_csum)
 325